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Abstract

This paper derives and applies preference models for decision analysis when consequences of the decision 

can vary across a geographic region.  These models address both decisions where decision consequences 

are constant within specified subregions of the overall geographic region, and where consequences can 

vary in a continuous fashion across the region.  We define preference conditions for such decisions, and 

derive specific value and utility function forms that are implied by these conditions.  The functions are 

applied to two planning decisions involving water use and temperature reduction in regional urban 

development, and fire coverage across a city. These examples illustrate the applicability of the approach 

and the insights that can be gained from using it.  With the increasing use of computer-based geographic 

information systems, it is now practical to use sophisticated decision making procedures of this type in 

situations where decision alternatives have geographically varying consequences, and these approaches 

can yield additional insights into the key drivers of a decision.

Subject classifications: Decision analysis; geographic information systems; multiattribute utility;

multiattribute value; spatial additive independence; spatial preferential independence; spatial 

homogeneity; utility independence.

Area of review: Decision Analysis.
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1.  Introduction

This paper derives and applies preference models for decision analysis when consequences of the decision

occur across a geographic region.  As an example, consider a situation where regional planners are 

addressing alternative regional development plans that could have varying environmental or 

socioeconomic impacts across a city or other geographic entity.  The regional planners and other 

stakeholders in the decision making process must consider multiple geographic maps showing current and 

potential future levels of environmental pollutants, urban development, water availability, air temperature, 

etc., that could vary across the region in different ways depending on which alternative is implemented.

In such decision making situations, the use of maps generated by computer-based geographic 

information systems (GIS) has become widespread due to increasing computer capabilities and decreasing 

costs (Obermeyer and Pinto 2007), but there has been limited application of preference models to address 

these decisions.  Instead, most GIS research has focused on statistical approaches for analyzing the data or

improved methods to display mapped data to decision stakeholders, and decision stakeholders are left to 

make geographic tradeoffs among the varying consequences using informal methods.  The availability of 

powerful geographic information systems with associated geographic databases now makes it feasible to 

support such decisions with preference models based on established decision analysis principles.  

Using decision analysis terminology, the consequences of selecting different alternatives in 

decisions supported by geographic information can be described in terms of one or more attributes

(variables) whose levels (scores) are known, or can be estimated with some uncertainty, over a region.  

The levels of these attributes may be a function of both the alternative that is selected and geographic 

location.  Thus, to judge the relative desirability of the decision alternatives, the decision maker(s) must 

combine the geographically-varying attribute levels of each alternative.  The question we address is: 

When each decision alternative can be represented by one or more maps showing attribute levels over a 

geographic region that would result from selecting each decision alternative, how can a decision maker 

determine the relative desirability of each alternative?
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This paper develops preference models for a decision analysis approach to such decisions. We 

use the term preference model to designate conditions on decision maker preferences and the possible 

forms for a value or utility function that will obey those conditions.  The models are applied to two

illustrative real-world problem domains:  Water use and temperature reduction tradeoffs in regional urban 

development and fire coverage across a city.

2.  Previous Related Work

The most relevant previous work includes concepts from multiattribute preference theory and specific 

applications of geographic information systems, including some previous limited applications of decision 

analysis to spatial models.

2.1.  Applications of Geographic Information Systems

Geographic information systems are now widely used for formulating and analyzing spatial problems 

(Obermeyer and Pinto 2007) and are the basis for a large stream of literature.  For example, Knox and 

Weatherfield (1999) consider their use in irrigation and water resource management, Pendleton et al. 

(1998) analyze them in studying wildlife habitat selection in Alaska, and Kohlin and Parks (2001) look at 

a GIS model to analyze deforestation.  An overview is provided by Bond and Devine (1991), who 

illustrate GIS as effectively incorporating techniques from classical statistics.  Arbia (1993) provides a 

more detailed overview of GIS, including consideration of sampling and modeling errors but not analysis 

of uncertainty over outcomes or consideration of preferences.  The lack of formal decision analysis 

methods is a limitation in most previous GIS work that reduces its usefulness for decision making.  Most 

previous work demonstrates how GIS can illuminate the geographic characteristics of a system but does 

not directly address the decision process that uses the outputs from the GIS analysis.  Worrall and Bond 

(1997) explore some of the reasons GIS tools have yielded fewer benefits than expected in the public 

sector; one of these reasons is a lack of effective spatial decision support systems.  As we will 
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demonstrate, adding a decision analysis component to the analysis of geographic information can increase 

the power of GIS tools to support policy decision making.

While most GIS literature does not directly address decision making, a small subset of the 

literature does consider using GIS in making decisions.  De Silva and Eglese (2000) discuss the 

development of a spatial decision support system which connects GIS data to a simulation model for 

evacuations.  Malczewski (1999) and Jankowski (1995, 2006) provide more detailed analysis of multi-

criteria decisions using GIS data.  Chan (2005) examines the use of multi-criteria decision making in a 

broad context of spatial applications.  However, the decisions considered by these authors do not directly 

involve preferences over a spatial distribution of consequences.  Rather, they are “siting” decisions, in 

which individual locations must be chosen for facilities or infrastructure to optimize one or more 

measures of performance.  Keisler and Sundell (1997) use a somewhat different approach for a park 

planning problem.  They examine multiattribute utility over aggregated attribute levels within a 

geographic region.  These aggregated levels are affected by the decision maker’s choice of where the 

boundary of the region is drawn.  In contrast, we consider preference functions that directly address 

spatially varying evaluation attributes.

2.2.  Multiattribute Preference Theory

We use Keeney and Raiffa’s (1976) terminology and notation for preference models with multiple 

evaluation attributes.  The potential consequences of a decision are characterized by multiple evaluation 

attributes, 1 2, , , nX X X , where xi designates a specific level of Xi, and we assume conditions on 

decision maker preferences such that:

1. For decisions with no uncertainty, the overall value of a consequence is specified by a 

multiattribute value function 1 2( , , )nV x x x , and
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2. For decisions under uncertainty, the overall preferability of an alternative is specified by the 

expected value of a multiattribute utility function 1 2( , )nU x x x , where probabilities are used to 

characterize the likelihoods that an alternative will yield various consequences.  

See Fishburn (1970) and Krantz et al. (1971) for expositions of the relevant preference theory.  Keeney 

and Raiffa (1976), Keeney (1992), and Kirkwood (1997) have more elementary presentations.

In decision analysis, specifying a multiattribute value or utility function requires assessments 

from a decision maker, and this can be difficult because it requires the determination of an n-dimensional

function.  To simplify this, researchers have established conditions on preferences under which the form 

of the value or utility function is simplified, and we use two of these conditions in our work, preferential 

independence and additive independence.  A subset of nXXX ,, 21 , when 3n  , is defined to be 

preferentially independent of its complement if the rank ordering of alternatives with no uncertainty that 

have common levels for the complementary attributes do not depend on those common levels. If this 

property holds for all subsets of 1 2, , , nX X X , then mutual preferential independence is said to hold, 

and in this case

1 2
1

( , , , ) ( )
n

n i i i
i

V x x x a v x


 , (1)

where vi(xi) is called the single attribute value function over xi, and 0ia is called the weighting constant

for attribute i (Debreu 1960).

For decisions under uncertainty, additive independence is defined to hold if the rank-ordering of 

alternatives using expected utility depends only on the marginal probability distributions over the 

attributes for each alternative.  When additive independence holds, the multiattribute utility function can 

be written in the same weighted sum form as (1), but in this case the single attribute functions are utility 

functions over each attribute (Fishburn 1965).  See Keeney and Raiffa (1976, Sections 3.6.2, pp. 111-112, 

and 6.5, pp. 295-297) and Kirkwood (1997, pp. 238-241 and 249-50) for further background, including 

assessment procedures for value and utility functions.
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We say that preferences modeled by a value or utility function are i) continuous if the value or 

utility function is defined over a continuous domain and is continuous, ii) twice-differentiable if the 

second partial derivatives of the value or utility function exist over the entire domain, and iii) monotonic

if the value or utility function is either always increasing or always decreasing with respect to any iX for 

any specified set of levels for the other attributes.  When mutual preferential independence holds so that 

(1) is valid, and preferences are continuous and monotonic, we define the midvalue mid
ix of an interval 

],[ ii xx  on iX as the attribute level such that 2/)]()([)( iiii
mid
ii xvxvxv  . See Keeney and Raiffa 

(1976, pp. 94, 120) and  Kirkwood (1997, Definition 9.13 and Theorem 9.14 on pp. 233-234) for further 

discussion of the midvalue, and see Harvey (1995, p. 384, 393) for discussion of a midvalue 

independence condition in a time-preference context and assessment of the midvalue.

3.  Spatially-Oriented Preference Models Under Certainty

This section develops new preference models for geographically-oriented decision making where

potential consequences of decision alternatives are known with no uncertainty.  Each preference model

designates conditions on decision maker preferences and the possible forms for a value function that will 

obey those conditions.  We assume that preferences among consequences obey conditions that imply that 

an ordinal value function exists over these consequences.  (See Debreu 1954, 1964, Fishburn 1970, and 

Krantz et al. 1971 for specification of such conditions.  Harvey and Østerdal 2011 show the development 

of this theory in the context of decisions with consequences that occur over time.)  Initially, we assume 

there is a single evaluation attribute Z , where z designates a specific level of Z .  We also assume the 

region of interest is partitioned into m subregions, labeled 1, ..., m, such that z does not vary within any

specified subregion, and we designate the level of Z in subregion i by iz .  The value function for 

decisions under certainty taking into account the variation between the subregions is designated by 

),,,( 21 mzzzV  .  After developing the theory for this situation, we then consider decisions that yield 
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consequences that can vary more continuously over the geographic region of interest or have multiple 

evaluation attributes.  We consider situations with uncertainty in Section 6.

3.1 Value Models for Spatial Decisions with a Single Evaluation Attribute

This section considers a single attribute Z, and develops a value model to evaluate alternatives that can 

have varying consequences over a region of interest in terms of the attribute. The derivations for the 

value models are in the Appendix.

DEFINITION 1.  Preferences for consequences over the region of interest exhibit mutual spatial 

preferential independence with respect to Z if the rank-ordering of alternatives that have common levels

of Z for any specified subset of subregions does not depend on those common levels.  (Note that the 

common levels do not have to be the same for different subregions.)

It follows directly from Debreu’s (1960) theorem presented in Section 2.2 that for a region with 

three or more subregions, mutual spatial preferential independence holds if and only if the value function 

can be written as

1 2
1

( , , , ) ( )
m

m i i i
i

V z z z a v z


 , (2)

where zi is the level of Z in subregion i, vi is called the single attribute value function over iz , and 0ia

is called the weighting constant associated with subregion i.  While (2) has the same form as (1), the iz in 

(2) represent the levels of the same attribute in different subregions, rather than the levels of different 

attributes 1 2, , , nX X X as in (1).
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DEFINITION 2.  Continuous monotonic preferences for the attribute Z over a region of interest that exhibit

mutual spatial preferential independence are spatially homogeneous if the midvalue mid
iz of any interval 

[zi', zi''] does not depend on the subregion i.

MODEL 1.  For a region with three or more subregions, assuming continuous twice-differentiable, 

monotonic preferences over Z that exhibit mutual spatial preferential independence, spatial homogeneity 

holds if and only if the value function can be written as

1 2
1

( , , , ) ( )
m

m i i
i

V z z z a v z


 , (3)

where v(zi) is the (common) single attribute value function over zi, and 0ia .

Thus, when spatial homogeneity holds it is only necessary to assess one single attribute value 

function and a weighting constant for each subregion.  This decomposition has intuitive appeal because it 

separates the returns to scale characteristics for preferences over the attribute, which are addressed in 

v(zi), from the priority or weighting assigned to each subregion, which is encoded in ai. In some cases 

subregions will be weighted equally, and then all ai can be set equal to one so the weights can be 

eliminated from the equation. For the analogous context of decisions with a stream of outcomes over 

time, the form of equation (3) has been previously applied with the ai’s being interpreted as time 

discounting weights.  In that context, Krantz et al. (1971, pp. 303-305) and Harvey (1986, 1995) show 

conditions for the existence of a value function of the form of (3), following up on a question raised about 

this by Fishburn (1970, p. 93).

The concepts of spatial preferential independence and spatial homogeneity generalize in a natural

way to situations where Z can vary continuously over a region.  In this case, there are no designated 

subregions, but rather the level of Z is a function of the geographic coordinates x and y that designate a 

location within the region of interest.  
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DEFINITION 3.  Preferences for consequences for a spatially varying attribute Z over a region exhibit 

mutual spatial preferential independence with respect to Z if the rank ordering of alternatives that have 

common levels of Z for any specified subregion does not depend on those common values.

DEFINITION 4.  Continuous monotonic preferences for consequences for a spatially varying attribute Z

that are mutually spatially preferentially independent with respect to Z are spatially homogeneous if the 

midvalue zmid(x, y) for any interval [zi'(x, y), zi''(x, y)] depends on zi' and zi'' but not on x and y.

The following model extends Model 1 to situations where Z and the geographic weight can vary 

continuously across the region.  To derive this model, it is necessary to make two assumptions that will 

hold in realistic decision situations: 1) The region of interest A has a finite area with a reasonably well-

behaved boundary, and 2) The value function v[z(x,y)] and weighting function a(x,y), which are defined in 

the next paragraph, are continuous, except on a set of zero area, and bounded.  Assumption 2 ensures that 

there are no locations in the region which have infinite weight or value.

MODEL 2.  Given the conditions in the preceding paragraph, spatial homogeneity holds for continuous,

twice-differentiable, monotonic preferences over an attribute Z that can vary over a region of interest A if 

and only if the overall value over A can be written as

( ) ( , ) [ ( , )]
A

V z a x y v z x y dxdy  , (4)

where x and y are coordinates within the region, v is the (common) single attribute value function over z,

and a(x,y) is the non-negative weight for the (x,y) location.

Equation (4) has a satisfying interpretation in geographic terms in that it separates two different 

aspects of the decision evaluation, the importance of a specific location ),( yx with respect to the 
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evaluation attribute, which is encoded by ),( yxa , and the impact of returns to scale on the attribute as a 

function of z, which is encoded by )],([ yxzv .

Spatial homogeneity is likely to be necessary for tractability in most realistic decision situations

since it would be difficult to assess a mathematical expression for a single attribute value function whose 

shape can vary continuously throughout the region.  Without this condition, there could be an infinite 

number of different single attribute value functions, one for each location.  We interpret a(x,y) as a 

weighting function, but it could also be viewed more broadly as a generating function for a transform of 

v[z(x,y)].

3.2  Multiple Evaluation Attributes

Thus far, we have considered only a single evaluation attribute defined across a region.  Some decisions

will address multiple attributes, one or more of which can vary geographically.  Incorporating multiple 

attributes is a conceptually straightforward extension provided that the appropriate preference 

independence conditions hold over the multiple attributes.  We first consider the situation where there are 

m subregions, and within each subregion the levels for the attributes do not vary.  Let n designate the 

number of attributes, and let ijZ designate the jth attribute in the ith subregion, where ijz stands for a 

specific level of that attribute.  Modify the notation presented earlier so that iZ now designates the vector 

of n attributes inii ZZZ ,,, 21  in subregion i, and jZ designates the vector mjjj ZZZ ,,, 21  of the jth

attribute across the m subregions.  Let Z designate all nm  attribute-subregion combinations.  Further, 

let iz designate a vector of specified levels for iZ , jz designate a vector of specified levels for jZ , and 

z designate specified levels for all the attribute-subregion combinations Z .

DEFINITION 5.  Preferences over the region of interest that are spatially preferentially independent with 

respect to a set of attribute vectors mZZZ ,,, 21  are multiattribute spatially homogeneous if when two 
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alternatives that differ only in the attribute levels for a specified subregion are indifferent, then the same 

indifference relation holds for those same attribute levels in any subregion.  (In this definition, the scalar 

attribute for each subregion considered in Definition 2 is replaced with a vector iZ that measures the 

decision consequences in each subregion i with respect to the n evaluation attributes inii ZZZ ,,, 21  .)

MODEL 3.  Multiattribute spatial homogeneity holds, and the jZ for j=1, …, n are mutually 

preferentially independent, if and only if the overall value can be written as

 
 


m

i
ijj

n

j
ji zvbazV

1 1

)()( , (5)

where 0ia is called the weighting constant for subregion i, 0jb is called the weighting constant for

the jth attribute, and )( ijj zv is called the single attribute value function over attribute level zij. (Note that

v only depends on the attribute index j.)

The following Model 4 extends Model 3 to the situation where the multiple attribute levels and 

weights can vary continuously across the region.  Thus, this model extends Model 3 analogously to the 

way that Model 2 extends Model 1. Let ( , )jZ x y designate the jth attribute at location ),( yx and 

( , )jz x y designate the level of ( , )jZ x y . We assume analogous conditions to those assumed for Model 

2: 1) The region of interest A has a finite area with a reasonably well-behaved boundary, and 2) The value 

functions [ ( , )]j
jv z x y and weighting function a(x,y) are continuous, except on a set of zero area, and 

bounded.
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DEFINITION 6.  Preferences over the region of interest that are spatially preferentially independent with 

respect to the n attributes are continuously multiattribute spatially homogeneous if the preference relation 

between any two specified vectors of n attribute levels at a location ),( yx does not depend on ),( yx .

MODEL 4.  Given the conditions in the paragraph preceding Definition 6, continuous multiattribute 

spatial homogeneity holds and the ( , )jZ x y are mutually preferentially independent for all ),( yx for a 

set of multiple attributes jZ that can vary over a region of interest A if and only if the overall value can 

be written as

1

( ) ( , ) [ ( , )]
n

j
j j

jA

V z a x y b v z x y dxdy


  , (6)

where x and y are coordinates within the region, jv is the jth single attribute value function, 0),( yxa

is the weight for location ),( yx , and 0jb is the weight for the jth attribute.

Some assumptions needed for models in this section may seem restrictive for some decision 

situations with geographically varying consequences.  However, the resulting formulas are more general 

than most summary metrics typically used in GIS analysis.  For example, those summary metrics are 

often simple averages, which are special cases of the more general formulas derived in this section.  The

functions and conditions on preference structures presented in this section serve as the foundation for 

Section 5, in which we apply these spatial decision tools to two illustrative applications.

4.  Value Model Assessment Procedures

This section summarizes approaches for assessing the single-attribute value functions and weights 

required for the preference models presented in Section 3, and presents references to sources with more 

details on value function assessment.
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Standard assessment procedures can be used to assess the single-attribute value function v(z). 

(See, for example, Keeney and Raiffa 1976, Section 3.7.2 or Kirkwood, 1997, Section 4.3.)  Often value 

functions will increase or decrease monotonically over levels of the attribute, such as value functions for 

median family incomes or levels of pollution, as assumed in our theoretical development. (If a value 

function is not monotonic, it can be possible to redefine the attribute as the distance from an “ideal point” 

level, in which case the redefined attribute will be monotonic.)  With monotonic preferences, single 

attribute value functions can be assessed using a midvalue splitting approach.  For example, suppose a 

value function is being assessed for profit, ranging from $0 to $100,000, with higher profits being 

preferred.  The value function can first be scaled by setting  $0 0v  , and  $100,000 1v  .  If the 

midvalue of [$0, $100,000], as defined in Section 2.2, is determined to be $40,000, then 

 $40,000 0.5v  .  The midvalue of [$0, $40,000] or [$40,000, $100,000] could then be assessed, 

yielding attribute levels with values of 0.25 and 0.75, respectively.  This procedure could be continued as 

long as desired to approximate the decision maker's value function over profit to any level of accuracy.  

Alternatively, a functional form for the value function, such as the exponential forms for evaporation rate 

and night cooling in the example in Section 5.1, can be fitted to a set of directly assessed points on the 

value function.

Spatial homogeneity could be verified by asking the decision maker whether the midvalue is the 

same for different subregions.  Provided that spatial homogeneity is satisfied, the procedure for assessing 

a single-attribute value function is the same whether the attribute is defined over discrete subregions or 

continuously over the entire region.  

The value tradeoff method (Keeney and Raiffa 1976, Section 3.7.3, Eisenführ et al 2010, Section 

6.4.2) or the swing weighting approach (Eisenführ et al. 2010, Section 6.4.3, Kirkwood, 1997, Section 

4.4) can be used to determine the weights ai, where the weights are on the subregions as shown in 

equation (3).  By convention weights are assumed to sum to 1.  If a decision involves spatially varying 

levels of night cooling, for example, then to begin the assessment of weights using the swing weighting 
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method, the decision maker can be asked to imagine that two subregions are both at the worst level of 

night cooling.  The decision maker is then asked to consider a situation where only one subregion could 

be improved to the best night cooling level and asked to select which subregion to improve, by 

“swinging” its amount of night cooling to the best level.  The subregion chosen for improvement would 

thus have a higher weight. Continuing with the standard swing weighting approach would quantify 

specific numbers for the weights, though this approach requires stronger preference assumptions than are 

used to derive the models in Section 3.  These stronger conditions, difference consistency and difference 

independence of one attribute from the others, were developed by Dyer and Sarin (1979).  See Kirkwood 

(1997, pp. 241-244) for further discussion of the conditions.  With a continuous weighting function, 

similar assessments might be done to fit an analytical form, as we illustrate in Section 5.2, or weight 

assessments might be done for a subset of points in the region with interpolation used to calculate weights 

for other points in the region. Weights for the continuous case could be normalized to integrate to 1.

A swing weighting approach may also be used to determine the attribute weights bj in Equations 

(5) and (6).  Since these weights refer to the single-attribute value functions themselves rather than the 

value achieved in different locations, the traditional swing weighting or value tradeoff approaches can be 

used with no need to incorporate further geographic considerations.

5.  Illustrative Applications

This section presents two examples which apply the preference models developed above and shows

insights that can be gained from using these models.  The analysis for these applications was conducted 

using Excel, with some use of Visual Basic for Applications and the Excel Solver.  As discussed in 

Section 2.1, the use of these preference models differs from the approaches in previous applications of 

GIS data in that decision maker preferences are explicitly specified over spatially-varying attributes, 

rather than assessed at an aggregate attribute level, such as the average attribute level over the region.
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5.1.  Water Use and Temperature Reduction in Regional Urban Development

Many decisions involving spatial data address multiple attributes.  (For example, Keller et al. 2010 found 

multiple attributes used by stakeholders in water resource planning in Arizona.)  The application in this 

section illustrates the use of Model 3 from section 3.2 in such decisions.   Gober et al. (2010) applied a 

heat flux model known as the “Local-Scale Urban Meteorological Parameterization Scheme” (LUMPS) to 

investigate urban heat island effects in Phoenix, Arizona.  Urban development has led to increased 

temperatures in Phoenix, mostly by reducing the amount of night cooling that occurs.  As a result, there is 

motivation to increase the quantity of vegetation, as “green” areas acquire and retain less heat.  However, 

this would also require more water, as green areas lose more to evaporation than developed urban areas.  

Thus, night cooling and evaporation rate are both important considerations when choosing development 

strategies.

Using the LUMPS model, evaporation rate and night cooling results were estimated by Gober et al. for 

ten different tracts of land with three different land use classifications (industrial, xeric, and mesic) in the 

greater Phoenix area using each of three potential development strategies for each tract (compact city, 

oasis city, and desert city).  The current levels of evaporation rate and night cooling for the ten tracts are 

shown in Figure 1.  As shown in the figure, the ten tracts included in the study are not contiguous. Figure 

2 shows the changes that would result from applying each strategy to each tract, as projected by the 

LUMPS model.  The different shades of the tracts represent the current classifications:  the darkest shade 

represents industrial tracts, the lightest shade xeric (desert vegetation) tracts, and the middle shade mesic 

(non-desert vegetation) tracts.

***************************
>>INSERT FIGURE 1 HERE<<
***************************

***************************
>>INSERT FIGURE 2 HERE<<
***************************
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Given only the data shown in Figures 1 and 2, it is not clear which development strategy should be 

implemented in each tract, since reductions in evaporation rate (which are desirable) are accompanied by 

increases in night temperature (which are undesirable), and the magnitudes of these effects vary from tract 

to tract.  Thus, to defensibly choose the optimal development strategy, we should specify a value function 

to determine an overall value for different combinations of evaporation rate and night cooling across the 

ten tracts.  If the conditions for Model 3 hold, then to determine a value function we need only specify 

single attribute value functions for evaporation rate and night cooling, as well as weights for the two 

attributes and each tract.  To illustrate the analysis, assume an equal weight of 0.10 on each tract and use

the following normalized exponential single-attribute value functions for evaporation rate and night 

cooling, where higher levels of evaporation are less desirable, while higher levels of night cooling are 

more desirable, and the functions are normalized between zero and one over the ranges of possible levels 

for the two attributes, as graphed in Figure 3:
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 
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



,                                                          (7b)

where 0.905 and 3.35 are the exponential constants, ziE represents the evaporation rate in tract i, and ziN

represents the amount of night cooling in tract i.  [Analysis of the information in Figures 1 and 2 shows 

that the smallest achievable evaporation rate is 0.047, and the largest is 0.160 (equal to 0.047 + 0.113).  

Subtracting 0.047 from the evaporation rate and dividing by 0.113 normalizes it to range from 0 to 1. The 

smallest achievable level of night cooling is 0.031, and the largest is 2.405 (equal to 0.031 + 2.374).] 

***************************
>>INSERT FIGURE 3 HERE<<
***************************
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To illustrate the analysis approach, assume the decision maker places a 40% weight on the 

evaporation rate value and a 60% weight on the night cooling value. Then the overall value function is

obtained using Model 3:

      
10

1

0.1 0.4 0.6E iE N iN
i

V z v z v z


  ,                                       (8)   

and the resulting optimal development plan is shown in Figure 4, assuming there are no constraints on

which development strategy can be applied to each tract.

***************************
>>INSERT FIGURE 4 HERE<<
***************************

Once we framed this decision using a multiattribute value function, analyzing the decision 

problem became more straightforward.  We specified the single attribute value functions over evaporation 

rate and night cooling, as well as weights on the two evaluation attributes and the ten tracts.  These 

clarified the geographic value structure, and with this structure it was a straightforward calculation to 

determine the preferred decision for each tract. 

With this formulation, the decision problem is effectively made up of ten smaller decision 

problems, one for each tract, which can be solved independently.  This is because using equation (8) the 

total value is the sum of the values for each tract, and there is no constraint across tracts.  We can extend 

this model to incorporate cross-tract constraints on the development plans.  For example, assume there are

constraints on the average decrease in evaporation rate and the average increase in night cooling allowed 

across the tracts.  Restrictions such as these can be included without altering the preference model, and 

will allow decision makers to consider “what if?” questions about the impact of different constraints.  For 

example, Figure 5 shows the optimal plan still using (8), but now requiring a minimum average decrease 

of 7% in evaporation rate and a minimum average increase of 12% in night cooling across the tracts.  In 

this case, it is optimal to neglect the oasis development strategy entirely.  This is because the oasis 

strategy leads to increased evaporation rates in tracts where it is imposed, leaving little flexibility in other 
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tracts to satisfy the overall evaporation constraint.  This example illustrates the type of constrained 

optimization analysis that can be done once a spatial value function is determined.  This type of analysis 

is not realistic by simply examining mapped projections of the impacts of various policies, such as those 

shown in Figure 2.

***************************
>>INSERT FIGURE 5 HERE<<
***************************

5.2.  Fire Coverage Across a City

The second example is a stylized fire coverage problem motivated by the discussion in Church and 

Roberts (1983) that illustrates the application of Model 2 from Section 3.1.  In this example, the decision 

is where to locate three fire stations within a city, and we initially consider a solution to minimize average

response times, where average response time is calculated as a continuous function over the city.  An

optimization model for this is

, (9)

where K is a vector representing the x and y coordinates of the three stations, and z is the average response 

time for a point (x, y) in the city region A given the locations of the three fire stations.  For this illustrative 

example, region A is assumed to be square with dimensions normalized from 0 to 1 in both x and y.

To develop a specific functional form for (9), we assume that for some fraction of incidents α, the 

fire station assigned to respond is not the closest one.  Of those incidents, the same fraction α are not 

assigned to the next closest station.  Finally, of those incidents not assigned to the two closest stations, the 

same fraction α will end up unassigned to any of the three stations.  With these assumptions, the 

expression in equation (9) becomes
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         
3

1 3

1

, , 1 , , ii

i

z x y K f d x y K f  



    
 
 , (10)

where K(i) is the location of the ith closest station,     , , id x y K is the distance between (x,y) and K(i), 

f(d) is the average response time from a station at distance d, and f is the average "unassigned" response 

time (occurring when none of the three stations is properly equipped to respond).  For d(·), we use a 

"metropolitan" distance measure, which is the sum of the x and y distances to account for travel along 

gridlines in a metropolitan area.  The range of f(d) is assumed to be [0,1].  We assume that f(d) is linear in 

d below an upper bound d'.   We can think of d' as a large enough distance between the station and the 

incident such that there is no benefit to responding, and the station therefore will not respond if d ≥ d'.  

Provided α is not large, 3 f will be close to zero.  Since this term is constant and close to zero, the exact 

choice of f is immaterial, and we assume 3 f can be ignored.  In this illustrative example, we set α =

0.15.  While (9) was developed directly from the definition of average response time, it is a special case 

of (4) where all locations are given equal weight so that a(x, y) = 1 for all x and y, and v(z) = z, and we 

will now generalize (9) based on Model 2.

Using the notation of Model 2, we can say that the approach shown in (9) assumes that all areas 

of the city are equally important, and that the value function over the average response time at a given 

location is linear with respect to the response time.  Given the relationship between response time and the 

size of the fire that the responder will have to fight, it is reasonable to assume there are diminishing 

returns for decreases in response time from the perspective of a policy maker.  That is, high values will be

placed on the range of response times which will likely assure the survival of the building(s), while 

changes in response times slightly above this range will be associated with steeper decreases in value.

For example, consider the following nonlinear value function that incorporates this consideration:

  
  3.86 1 , ,

3.86

1
, ,

1

z x y Ke
v z x y K

e

 







.                                                     (11)
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An exponential constant of 3.86 corresponds to a midvalue of 0.826 for the range from zero to one, where 

the midvalue would be obtained using the assessment procedures discussed in Section 4.  Equation (11) is

shown in Figure 6.  It is normalized so that v(0)  = 1 and v(1) = 0.

****************************
>>INSERT FIGURE 6 HERE<<
****************************

It is reasonable that a rapid average response time could be more critical in some areas than others, due to 

differences in, for example, population or economic importance.  To illustrate the impact of this on the 

optimal fire station locations, assume that development in this city is concentrated along a river extending

upstream from the center of the eastern boundary of the city, which is on a bay, to the southwestern area, 

and therefore more emphasis is placed on protecting areas which are closer to the bay and the river.   A

weighting function that represents this geographic weighting is specified by:

 ,a x y ~    
1.425 0.6

0.11.1 1.5 0.05 0.41 1
x

xx x y y

  ,                                                    (12)

normalized to integrate to 1 over the region, as shown in Figure 7.  (In this illustrative analysis, we ignore 

the impact of the river on response times.)  This mathematical representation of a is illustrative, and the 

weighting function for any decision problem would be constructed to capture the region-specific pattern 

of variation in the characteristics which are relevant to the decision. 

****************************
>>INSERT FIGURE 7 HERE<<
****************************

The resulting optimization problem is now

 
  

      

3.86 1 , ,

3.86

1 1 2 2 3 3

1
max  , ,

1

        , , , , , ,

z x y K

K
A

x y x y x y

e
a x y dxdy

e

K K K K K K K

 









(13)

where a(x,y) is given by (12) normalized to integrate to one over the region of interest.
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               The optimization problems given in both (9) and (13) were solved numerically using a grid 

search with a distance of 0.025 between adjacent points, and a numerical integration that divides the 

region into 400 cells, computing the average response time in the center of each cell.  Changes in the 

search and integration parameters did not noticeably affect the results.  Figure 8 shows the optimal fire 

station locations for (13) designated with diamonds, along with the locations determined with an 

unweighted linear value function as given in (9) designated with circles.  Conforming with the preference 

to protect areas closer to the bay and river, the locations of the fire stations have been “pulled” toward the 

higher weighted part of the city relative to their locations when only average response time is considered.

****************************
>>INSERT FIGURE 8 HERE<<
****************************

6.  Extensions of the Preference Models to Address Uncertainty

In this section, we consider preference models for decisions where the consequences of decision

alternatives are uncertain. We assume that decision maker preferences obey a set of conditions (such as 

those provided in the sources referenced in Section 2) so that probabilities can be assigned to the possible 

consequences of each alternative and expected utility can be used to rank alternatives.  The preference 

conditions in Section 3 can be extended to decisions under uncertainty to determine the requirements for 

an additive utility function.  Instead of preferential independence, however, the use of an additive 

multiattribute utility function requires the considerably stronger condition of additive independence.  

We first consider the case in which the level for the single evaluation attribute Z does not vary

within each subregion, and then consider the continuous case.
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DEFINITION 6.  Spatial additive independence with respect to Z over the region of interest holds if the 

rank ordering for any set of alternatives depends only on the marginal probability distributions for each 

alternative over the levels z1, z2, …, zm of Z in each of the subregions 1, ..., m.  

In spatial decision problems with uncertainty, instead of maximizing a spatial value function, we 

maximize expected utility using a spatial utility function.  With this assumption, it is straightforward to 

show that spatial additive independence is satisfied if and only if the utility is given by

1 2
1

( , , , ) ( )
m

m i i i
i

U z z z a u z


 . (14)

where ui(zi) is the single attribute utility function over zi, and ai is the weighting constant associated with

subregion i.  Equation (14) follows directly from Definition 6 using the same approach used to prove that 

additive independence implies an additive utility function. (See Section 2.2 for references to previous 

related work that proved this result.)  When spatial homogeneity also holds, the ui(zi) are all equal to a 

common function u(zi) by analogous reasoning to Model 1.

Analogously to Model 2, we can extend (14) to situations where the single evaluation attribute Z

can vary continuously over the region of interest, resulting in utility given by

( ) ( , ) [ ( , )]
A

U z a x y u z x y dxdy  . (15)

Establishing equation (15) requires analogous assumptions about A, a(x,y), and u as were required for A, 

a(x,y), and v in Model 2.  With these assumptions, equation (15) is obtained under the assumption of 

spatial homogeneity using reasoning analogous to the development in the Appendix for equation (4), but 

to develop (15) the spatial preferential independence condition in Definition 4 is replaced with spatial 

additive independence.  Results analogous to Models 3 and 4, but with a utility function and assuming 

additive independence can also be derived.  As with the case of no uncertainty, spatial homogeneity is an 

important assumption to make the analysis tractable.  However, the required preference assumptions for 

an additive utility function are strong and may not be appropriate in some decision situations.
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An approach to developing more general spatial utility function forms with less restrictive 

requirements would be to construct the utility function over the value functions that were developed in

Section 3 using methods such as those presented by Dyer and Sarin (1982) and Matheson and Abbas 

(2005).  If the conditions needed for a spatially homogeneous additive value function hold, then in the 

case with discrete subregions, a utility function U could be constructed over the value function in (3) with 

the form:

 1 2
1

( , , , ) ( )
m

m i i
i

U V z z z U a v z


   
 
 .                                              (16)

Similarly, in the continuous case the utility function could be constructed over the value function in (4) 

with the form:

 ( ) ( , ) [ ( , )]
A

U V z U a x y v z x y dxdy
 

  
 


.                                         (17)

These are less restrictive than (14) and (15) in that they have unspecified utility functions U, and hence 

can represent more general preference conditions than (14) or (15).  Standard utility function assessment 

procedures can be modified to determine U.  For example, a possible approach for assessing this utility 

function is to identify the potential decision consequences with the highest and lowest possible values, 

and visualize a hypothetical binary gamble between them with probability p of the highest-value outcome 

occurring and probability 1-p of the lowest-value outcome occurring.  The utility of the value placed on a 

specified consequence could then be determined by finding the value of p for which the decision maker is 

indifferent between the specified consequence and the gamble.  By equating expected utilities, the 

assessed p would be the utility associated with the specified consequence.

7.  Concluding Comments

This paper develops preference theory for decisions with geographically varying consequences.  As 

shown by the illustrative applications in this paper, these types of decisions are important in a variety of 
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decision contexts, and with the widespread use of geographic information systems, it is now practical to 

apply more rigorous decision analysis methods to these decisions.  When faced with a decision that has 

spatially-varying consequences, formulating specific structures and conditions for the decision 

stakeholders’ preferences will allow an analyst to elicit an appropriate value or utility function using the 

results in this paper.  This can help to provide a more defensible gauge of the desirability of the proposed 

decision alternatives.  We believe the methods in this paper can be applied to a wide range of real-world 

policy decisions with geographically varying consequences, such as regional development planning, 

pollution abatement, facility location, and utility service provision.

Appendix

DERIVATION OF MODEL 1.  Since our definition of spatial homogeneity requires preferential 

independence to hold, (2) must hold, so the only additional step required is to establish that all of the iv

are identical. If mid
iz is the midvalue of [zi', zi''], then ( ) [ ( ) ( )] / 2mid

i i i i i iv z v z v z   .  For notational 

convenience, define 2/)( ii zzz  , ii zzzzh  , and mid
izz  .  Then the midvalue 

equation can be rewritten as 2/)]()([)( hzvhzvzv iii  .  Performing a Taylor series 

expansion around z and keeping only the first terms that do not cancel out results in 

2)](/)()[2/1( hzvzv ii  , where iv and iv  represent the first and second derivatives, respectively.  

This is a second order linear differential equation, although since  may depend on z , it is not a constant 

coefficient linear differential equation.  However, since it is a second order linear differential equation, 

any solutions must be the same to within two constants of integration.  Therefore, since the iv can always 

be scaled to lie between zero and one, the solutions for all the different iv can be set equal to the same 

function, which is called v in (3).  The converse of the model result follows by direct substitution into 

(3).  Harvey (1995, Theorem 2.1) proves a result with similar mathematical structure to Model 1 in the 

context of decisions with consequences that vary over time with an infinite planning horizon.
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DERIVATION OF MODEL 2.  Start with Model 1, as stated in (2), and define iii Aa / in (2), where iA is 

the area (for example, in square miles) of subregion i.  Then (2) can be rewritten as





m

i
iiim zvAzzzV

1
21 )(),,,(  . (A-1)

We extend (A-1) to an attribute that varies over the region as follows:  Partition the region into a uniform

grid, where the two dimensions of the grid are designed by x and y, and where the x and y dimensions of 

each cell in the grid are designated by x and y , respectively, so that the area iA of any cell is yx  .  

While it is easiest to visualize this partition if A is rectangular, the result holds for more general regions, 

as established in the references given below.  If i and )( ii zv did not vary within a grid cell, then from 

the assumptions for Model 2, the conditions of Model 1 would hold and therefore (A-1) could be written 

as





m

i
iiiim yxyxzvyxzzzV

1
21 )],([),(),,,(  , (A-2)

where ix and iy designate some specified but arbitrary point within grid cell i, iii yx  ),( , and 

)()],([ iii zvyxzv  .

However, in Model 2 i and )( ii zv can vary within a grid cell so that (A-2) is only an 

approximation to the value of ( )V z .  However, equation (A-2) is a Riemann sum of )],([),( yxzvyx

over A.  From the assumptions for Model 2,  and v are both bounded, and therefore their product is also 

bounded.  Also by the assumptions of Model 2, these functions are continuous almost everywhere (that is, 

except on a subset of A with measure zero), and therefore )],([),( yxzvyx is Riemann integrable over A

if the boundary of A obeys conditions that will be met in any practical situation. (For proofs of this, see

Apostol 1962, Section 2.12, or Trench 2003, Theorem 7.1.19.)  Since )],([),( yxzvyx is integrable, the 

Riemann sum in (A-2) will converge to a unique value (which by definition is the integral) as the partition 



25

of A is made finer so that m approaches infinity and both x and y approach zero.  Thus, in the limit,

(A-2) becomes

( ) ( , ) [ ( , )]
A

V z x y v z x y dxdy  , (A-3)

where V(z) is the value from a decision-making perspective associated with the distribution of the 

attribute over the region of interest.  The converse of the model result follows by direct substitution into 

(4). Note that in (4), ),( yx in (A-3) has been replaced with a(x, y) to make the notation more parallel 

to (2).  However, the units for a in (2) and (4) are different.

  Harvey and Østerdal (2011) more completely specify the steps necessary to rigorously establish 

a result analogous to Model 2 in the context of continuous time decisions. 

DERIVATION OF MODEL 3.  The notation used in this proof is defined in Section 3.2.  Since the iZ are 

multiattribute spatially homogenous by assumption, it follows from the definition of multiattribute spatial 

homogeneity that the iZ are mutually preferentially independent.  From the assumptions of the model

statement, the jZ are also mutually preferentially independent.  From the definition of mutual 

preferential independence, any subset of the (vector) attributes in either the set of niZi ,2,1,  , or the 

set of mjZ j ,2,1,  , is preferentially independent of its complement.  Consider the specific case of 

two pairs of vector attributes },{ ba ZZ and },{ dc ZZ , where a, b, c, and d are specified but arbitrary 

indices in the feasible ranges for the number of subregions or the number of attributes, as appropriate.  

Then },{ ba ZZ and },{ dc ZZ are each mutually independent of their complements.  Also, the 

intersection of these two subsets of attributes is the two attribute-subregion combination acZ and bdZ , 

and it follows from Gorrman (1968), Theorem 2, (also stated as condition ii of Keeney and Raiffa 1976, 

Theorem 3.7), that },{ bdac ZZ is preferentially independent of its complement.  However, a, b, c, and d

are arbitrary, and therefore this establishes that every pair of attribute-subregion combinations is
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preferentially independent of its complement.  Hence, from inductive application of Gorman (1968), 

Theorem 2 (also stated as a Corollary on page 114 of Keeney and Raiffa 1976), the ijZ are mutually 

preferentially independent, and therefore

1 1

( ) ( )
m n

ij ij ij
i j

V z k v z
 

 (A-4)

(Debreu 1960).  Since the attributes are multiattribute spatially homogeneous by assumption, it follows 

that if mid
ijz is the midvalue of an interval [zij', zij''] for some specified i and j, it must be the midvalue for 

any i.  Therefore an analogous argument to the one given in the derivation of Model 1 establishes that the 

single-attribute value functions ijv cannot be a function of the subregion i, and hence

1 1

( ) ( )
m n

ij j ij
i j

V z k v z
 

 (A-5)

holds in this case.

To show that multiattribute spatial homogeneity also implies jiij bak  , and hence (5) holds, first 

assume without loss of generality that the subregions and attributes are labeled so that the largest scaling 

constant is 11k .  Consider two hypothetical alternatives:  1) all the attribute-subregion combinations 

except 11Z and jZ1 are set to arbitrary levels, 11Z is set to its least preferred level so that 0)( 11 zv j in 

(A-5), and jZ1 is set to its most preferable level so that 1)( 1 jj zv , and 2) another hypothetical 

alternative with all the attribute-subregion combinations except 11Z and jZ1 set to the same arbitrary 

levels as the first alternative, jZ1 set to its least preferred level so 0)( 1 jj zv , and 11Z set to the level 

jz11 such that the two alternatives are equally preferred.  Then equating the values for each of these two 

alternatives calculated using (A-5) and cancelling common terms results in j
j kzvk 111111 )(  for any 

1j .  However, by the multiattribute spatial homogeneity condition, if this equation holds for subregion 

1, then the same level jz11 must make the analogous equation true for any subregion i, and hence 
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ij
j

i kzvk )( 1111 for any i.  Define )( 111
j

j zvb  and 1ii ka  .  Substituting these definitions into 

ij
j

i kzvk )( 1111 gives jiij bak  .  Substitute this into (A-5), and (5) follows.  The converse of the model

result follows by direct substitution into (5).

DERIVATION OF MODEL 4.  The derivation of Model 4 from Model 3 is analogous to the derivation of 

Model 2 from Model 1. By the assumptions of Model 4, the conditions for (5) hold, and therefore this 

formula can be converted to a Riemann sum analogous to (A-2) using an analogous procedure to that used

in the Model 2 derivation.  A further derivation analogous to the Model 2 derivation leads to (6), and 

direct substitution into (6) yields the converse of the result.  
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Figure 1.  Current evaporation rate and night cooling for each of the ten tracts.  The darkest shade 
represents industrial tracts, the lightest shade xeric, and the middle shade mesic.

Figure 2.  Changes in evaporation rate and night cooling that would result from implementing each of the 
three strategies in the ten tracts.  The different shades represent the current classification.



32

Figure 3.  The exponential value functions over (normalized) evaporation rate and night cooling, with
exponential constants c = 0.905 and c = 3.35, respectively.

Figure 4.  The optimal development plan using (7) and no cross-tract constraints.  C=Compact, O=Oasis, 
D=Desert

Figure 5.  The optimal development plan with constraints on overall levels of evaporation rate and night 
cooling.  C=Compact, O=Oasis, D=Desert
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Figure 6.  The exponential value function over average response time, with exponential constant c = 3.86.
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Figure 7.  A contour map of the illustrative weighting function expressing the weight assigned to any 
point in the city.  The maximum weight is assigned to (0.85, 0.4).
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Figure 8.  Optimal fire station locations when minimizing unweighted average response time, and when 
maximizing a geographically-weighted nonlinear value function.


