
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1996-09

Reengineering DoD through enterprise-wide

migration to open systems

Cameron, Robert A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/32221

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

REENGINEERING DOD THROUGH ENTERPRISE­
WIDE MIGRATION TO OPEN SYSTEMS

Co-Advisors:

by

Robert A. Cameron
Kenneth G. Carrick

September, 1996

James C. Emery
Barry Frew

Approved for public release; distribution is unlimited.

19970220 054

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22"202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1996 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

REENGINEERING DOD THROUGH ENTERPRISE-WIDE
MIGRATION TO OPEN SYSTEMS

6. AUTHOR(S) Cameron, Robert A. and Carrick, Kenneth G.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the authors and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The Department of Defense cannot afford to develop and deploy information systems that have

no growth potential. Legacy systems must be replaced with flexible, highly interoperable systems that

produce high residual values. With shrinking budgets, depreciation of existing hardware, and rising

maintenance of legacy systems, organizations must deploy systems that are capable of evolving with

changing business requirements.
The Department of Defense enterprise vision for information management (IM) emphasizes

integration, interoperability, flexibility, and efficiency through the development of a common, multi-purpose,
standards-based technical infrastructure. This vision requires a new paradigm for building information
systems.

The new paradigm relies on open systems, which make it easier, less expensive, and faster to develop

and change applications and to employ new technology features. This research examines open systems and

provides a strategy for organizations to migrate to them. A case study of the Naval Postgraduate School

illustrates the strategy. Provisionally, a prototype application models the desired characteristics of an open

system.

14. SUBJECT TERMS Open Systems, Client/Server, Reengineering

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19.

CATION OF REPORT CATION OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF
PAGES191

16. PRICE CODE

SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF ABSTRACT ABSTRACT

Unclassified UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

ll

Approved for public release; distribution is unlimited.

REENGINEERING DOD THROUGH ENTERPRISE-WIDE MIGRATION TO OPEN
SYSTEMS

Robert A. Cameron

Lieutenant, United States Navy

B.S., United States Naval Academy, 1989

Kenneth G. Carrick

Captain, United States Army

B.S., United States Military Academy, 1986

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY 1\tlANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
• I • II I • I I a ~

Authors:
-----~-- -----

Approved by:

Department of Systems Management

iii

iv

ABSTRACT

The Department of Defense cannot afford to develop and deploy information

systems that have no growth potential. Legacy systems must be replaced with flexible,

highly interoperable systems that produce high residual values. With shrinking budgets,

depreciation of existing hardware, and rising maintenance of legacy systems, organizations

must deploy systems that are capable of evolving with changing business requirements.

The Department of Defense enterprise vision for information management (IM)

emphasizes integration, interoperability, flexibility, and efficiency through the development of a

common, multi-purpose, standards-based technical infrastructure. This vision requires a new

paradigm for building information systems.

The new paradigm relies on open systems, which make it easier, less expensive, and

faster to develop and change applications and to employ new technology features. This

research examines open systems and provides a strategy for organizations to migrate to them.

A case study of the Naval Postgraduate School illustrates the strategy. Provisionally, a

prototype application models the desired characteristics of an open system.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND .. 1

B. OBJECTIVES ... 3

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS ... 3

D. ORGANIZATION .. 4

II. OPEN SYSTEMS .. 5

A. WHY OPEN SYSTEMS? ... 5

B. EVOLVING DEFINITIONS .. 6

C. CHARACTERISTICS OF AN OPEN SYSTEM 8
1. Applications ... 8
2. Hardware ... 9
3. Network ... : 10
4. Operating System ... 10
5. Data ... 10
6. Skills Set .. 11
7. Tools ... 11

D. THE OPENNESS CONTINUUM MODEL .. 12

III. DISTRIBUTED SYSTEMS ... 13

A DISTRIBUTED SYSTEM CHARACTERISTICS .. 13
1. Processing .. 13
2. Connectivity ... 15
3. Information Storage ... 15
4. Technical and Organizational Standards ... 18

B. CLASSIFYING DISTRIBUTED SYSTEMS ... 18
1. A Hierarchy ofProcessors .. 19
2. Decentralized Stand-Alone Systems ... 19
3. LAN-Based Systems .. 19
4. LAN Systems That Communicate With Mainframe-Based Systems 19
5. Cooperative Systems .. 20

vii

C. BUSINESS APPLICATION COMPONENTS .. 21
1. Presentation Processing Logic " .. 21
2. Business Processing Logic ... 21

3. Data Processing Logic ... 22
4. Database Server Processing Logic .. 22

D. DISTRIBUTED APPLICATIONS ... 22
1. Single-Tier ... 23

2. Two-Tier ... 23

3. Three-Tier .. 25

E. EXTENDING CLIENT/SERVER .. 29
1. Defining an Intranet ... 3 0
2. Intranet Management ... 35

3. Analysis oflntranet's Merits ... 35

4. Analysis oflntranet's Shortfalls .. 37

IV. STRATEGY FOR OPEN SYSTEMS MIGRATION ... 39

A. STEP ONE: BASELINE ANALYSIS .. 39

B. STEP TWO: IDENTIFY SYSTEMS THAT REQUIRE MIGRATION 40

C. STEP THREE: SYSTEM REQUIREMENTS ANALYSIS 40

D. STEP FOUR: OPENNESS ANALYSIS .. 41
1. Identify Competing Alternatives ... 41
2. Pare Down the Alternatives .. 41
3. Define Competing "Packages" of Alternatives .. 42

E. STEP FIVE: COST/BENEFIT ANALYSIS AND SELECTION OF
TARGET SYSTEM .. 43

F. STEP SIX: IMPLEMENT THE PLAN .. 45

G. CONCLUSION .. 46

V. A CASE STUDY: NAVAL POSTGRADUATE SCHOOL 47

A. BACKGROUND- THE NAVAL POSTGRADUATE SCHOOL 47

1. The Network .. 48

2. Computing Resources .. 48

3. Administrative Applications .. 49

viii

B. BACKGROUND -DOD ACCOUNTING .. 50
1. Official vs. Unofficial Accounting Records .. 50
2. Legal Requirements .. 51
3. Job Order Cost System ... 52

C. STRATEGY APPLIED TO NAVAL POSTGRADUATE SCHOOL. 53

1. Step One: Baseline Analysis .. 53

2. Step Two: Identify Systems That Require Migration 54
3. Step Three: System Requirements Analysis ... 56

4. Step Four: Openness Analysis ... 56

5. Step Five: Cost/Benefit Analysis and Selection of Target System 65

6. Step Six: Implement the Plan ... 66

D. CONCLUSIONS .. 67

VI. CONCLUSIONSIRECOM:MENDATIONS ... 69

A. S~Y ... 69

B. OVERVIEW OF PROTOTYPE APPLICATION ... 70
1. What Is it? ... 70
2. What Can it Do? .. 70
3. How Is it Open? ... 71
4. Lessons Learned .. 72

C. RECOM:MENDATIONS .. 73

1. Investment in the Campus Network Should Be the School's Top
Infrastructure Priority ... 73

2. Further Analyze Solomon IV as a Viable Solution 73
3. Investigate the Requirements of Establishing an In-House Custom

Development Environment ... 7 4

D. PROSPECTIVE AREAS OF RESEARCH ... 74
1. Cost/Benefit Analysis of Solomon IV ... 74
2. Organizational Issues ... 75
3. Continuation ofEnterprise Accounting System Development 75

LIST OF REFERENCES .. 77

APPENDIX A. ACRONYMS AND TERMS ... 79

APPENDIX B. :MEMORANDUM ACCOUNTING SYSTEM REQUIRE:MENTS 81

APPENDIX C. ACCOUNTING APPLICATION FORMS AND SOURCE CODE 83

IX

APPENDIX D. DATA MODEL SPECIFICATION ... 167

INITIAL DISTRIBUTION LIST .. 179

X

I. INTRODUCTION

Today's organizations are beginning to realize that one of their critical challenges

is the management of information systems (IS). Technology is moving so rapidly that IS

is no longer just a component in support of strategic goals and missions; it is quickly

becoming the strategic fulcrum of an organization's success.

The reality of today' s business environment dictates that managers in all functional

areas must do more with less resources. Nowhere is this more true than in IS.

This research investigates the trends with which IS management must deal.

Specifically we address migration to open systems in a distributed environment. Our

research provides common-sense strategies for dealing with the complex and turbulent

realities IS managers face today. A case study of a mission-critical system at the Naval

Postgraduate School illustrates the implementation of our proposed strategies.

A. BACKGROUND

The 50's, 60's, and 70's were dominated by host-based systems with the mainframe

as the dominant fixture of corporate computing. With the advent of the personal

computer (PC) in the early 80's, computing power began to shift from the centralized

control of the IS department to the desktops of users. Local area networking (LAN) and

wide area networking (WAN) have decentralized organizations' computing power even

further.

Client/server architectures and distributed computing have served to complicate

the management of information systems. At the outset, these technologies were touted as

a low-cost alternative to the expensive mainframes of the past. However, organizations

have begun to realize the hidden costs associated with their implementation. Recent

1

research by the Gartner Group, a leading information technology research consultancy,

revealed that the costs of implementing client/server solutions may be two to three times

that of a comparable mainframe solution [Ref 1].

The Internet and web technology, the latest computing craze, promises the

advantages of client/server computing without the difficulties in getting heterogeneous

systems to communicate with each other.

For a number of reasons, such as lack of money or lack of technical expertise,

many organizations have been unable to evolve with the technology. Instead, they have

built stovepipe systems or relied upon their existing systems. When their business

requirements changed, they either built another stand-alone system to deal with the

change, or they modified their existing system with high-maintenance kludges. Before

long, these systems cannot keep up with the changing requirements.

These systems have come to be known as legacy systems. A legacy system is one

that "significantly resists modification and evolution to meet new and constantly changing

business requirements [Ref 2]." Not only are these systems expensive - maintaining and

operating legacy systems consume 80-95% ofiS budgets [Ref 2]- they are inflexible and

prone to break.

Because of the huge expense of maintaining and operating these legacy systems,

too few resources are allocated for new development. Little development leads to even

more legacy systems. So how do organizations get beyond this downward spiral?

This huge legacy cost must be leveraged. Instead of deploying systems that meet

an organization's short-term needs, organizations must deploy systems that are capable of

change and capable of evolving with the changing business requirements.

2

Paul Strassmann, former Department ofDefense (DoD) Director of Defense

Information, describes this system characteristic of growth potential as residual value.

Information systems should be developed and deployed, he writes, in such a manner that

when the system becomes obsolete, a portion of the system remains for inclusion into the

replacement system. [Ref 3]

Organizations simply cannot afford to develop and deploy systems that have no

growth potential. Legacy systems must be replaced with flexible, highly interoperable

systems that produce high residual values. With shrinking budgets, depreciation of

existing hardware, and rising maintenance of legacy systems, how should organizations

forge ahead with the necessary changes?

B. OBJECTIVES

The primary objective of this research is to provide a practical, common-sense

strategy for managers struggling to deal with their monolithic legacy systems while

attempting to cope with changing business requirements. In developing this strategy we

examine the current trends in information technology with which managers must deal. A

case study of the Naval Postgraduate School provides a real world example of how this

strategy should be implemented. Provisionally, we provide a fully functional accounting

system developed with Borland's Delphi Version 2.0, an object-oriented visual

development tool. Complete source code and sample screen displays are included.

C. SCOPE, LIMITATIONS, AND ASSUMPTIONS

This research does not examine organizational issues associated with new system

deployment; it is limited to the technological issues organizations must consider. That is

not to say that the organizational issues are trivial. To the contrary, organizational issues

3

such as politics, 11turfbattles, 11 training, user resistance, vision, and fiscal problems are the

most difficult challenges to overcome - so much so that they could be the subject of an

entirely different research effort. We assume that IS managers have the capability to

overcome these organizational issues, either internally or with the help of outside

consultants, as they implement our strategy.

We also do not advocate a methodology for conversion to a new system. The four

most common approaches to system conversion - parallel conversion, direct conversion,

phased conversion, and pilot conversion - must be analyzed to determine which is best for

the system under consideration.

D. ORGANIZATION

Chapter II investigates the trend toward 11 open systems .. and the many definitions

of this term. Here we propose our own working definition and suggest an approach for IS

managers moving to open systems.

Chapter III continues the research of trends in IS. Here we explore the concept of

distributed computing, client/server architectures, and the latest trend toward using web­

based technologies.

In Chapter IV we present our strategy for the development and deployment of

information systems that are more open.

Chapter Vis a case study of the Naval Postgraduate School. Here we document

the development and deployment of a new accounting system using the strategies we

propose.

In Chapter VI, we present our conclusions and recommendations. Finally, we

suggest areas of further research.

4

ll. OPEN SYSTEMS

One method of developing and deploying systems that have some degree of

growth potential is to move to "open systems." This phrase, however, means different

things to different people. It also has a temporal connotation; the meaning has evolved

over time as technology has changed. It would follow that the term will continue to

change with the technology.

The purpose of this chapter is to investigate the importance of open systems. We

will examine the myriad definitions of open systems and suggest a practical methodology

for managers to analyze the "open-ness" of their systems.

A. WHY OPEN SYSTEMS?

The major push toward open systems in the past two decades has been driven by

users' desires to extend the useful life-cycle oftheir information systems. Specifically,

open systems offer the following benefits:

• Provide an infrastructure for distributed applications

• Less reliance on proprietary products

• More competition leading to lower cost

• Decreased probability of schedule delay

• Better tested products (more users)

• Portable applications

• Increased interoperability through the use of industry standard links

• Faster technology insertion

5

B. EVOLVING DEFINITIONS

The IEEE defines an open system as a system that "implements sufficient open

specifications for interfaces, services, and supporting formats to enable properly

engineered applications software:

(a) to be ported with minimal changes across a wide range of systems,

(b) to intemperate with other applications on local and remote systems, and

(c) to interact with users in a style that facilitates user portability [Ref 4]."

This definition has evolved with the technology and the changing business landscape. It

provides a good reference point from which to begin examination of the numerous notions

of open systems.

In the 1980s, open systems primarily referred to telecommunications. The

International Standards Organization's (ISO) Open System Interconnection (OSI)

reference model was the guiding force behind the open systems movement. While this

model did provide a practical modular approach for defining the ways in which systems

communicate with each other, it did not prescribe specific standards for doing so.

Without these standards, an organization's use of the term "open systems" generally was

limited to an intention to implement products that followed the OSI reference model. The

problem was that vendors did not agree upon how to implement this open model.

In about 1990, open systems expanded to include the operating system (OS). The

increasing popularity of the UNIX operating system was a major factor for this shift.

Because it ran on many more platforms than other OSs, UNIX became the leading

contender to usurp the mainframe's hold on enterprise computing. [Ref 5]

6

In 1992, the term "open system" expanded again to include standard interfaces

between applications and components of a system. Application Programming Interfaces

(APis) provide a formal method for applications to access a computational resource such

as a file or a procedure from the operating system. Other interfaces define how different

components within a system should interact with one another. This is important because

the degree of openness can be measured by the detail and breadth of these interfaces.

The data component of a system has become a critical element of the expanding

notion of open systems. Accessing the global expanse of enterprise data is a mission­

critical task that requires standards of connectivity and format. Structured Query

Language (SQL) has become the de facto standard to accomplish this. Different versions

ofthe standard and proprietary implementations of it, however, have served to muddy the

notion of open data.

With all of these definitions of open systems, one can see the difficulty that arises

as organizations attempt to move toward such systems. Which definition do they choose?

We suggest that there is no such thing as an "open" system.

Rather, "openness" should be viewed on a relative scale (See Figure 1). When

analyzing existing and proposed systems, organizations should consider the system's

degree of openness as compared to the alternatives. It would not be practical to say that

an "open system" is required; what is "open?" What is more practical is to say that a more

"open" system is required as compared to the existing system. Proper analysis of the

alternatives can then lead to a more meaningful approach to problem.

7

WIDELY
USED

NARROWLY
USED

POPULAR PROPRIETARY
SYSTEMS

UNIQUE DESIGNS,
OPTIMIZED PERFORMANCE

CLOSED
SYSTEMS

MANY SUPPLIERS
MANY CUSTOMERS

LONG LIFE ARCHITECTURE
TECHNOLOGY UPGRADES

CONSENSUS STANDARDS
WITH NO PRODUCTS

OPEN SYSTEMS

Figure 1. Open Systems as a Relative Scale

That analysis however, is an extremely complex undertaking. Like most complex

problems, it is helpful to decompose them into more manageable and discrete pieces. In

the next section we will analyze the characteristics of an open system and set the stage for

our proposed strategy of moving toward more open systems.

C. CHARACTERISTICS OF AN OPEN SYSTEM

It would be extremely difficult to measure the openness of a system without

looking at the system from a more detailed perspective. The following is an analysis of the

characteristics of an open system.

1. Applications

Applications refer to the software that accomplishes the intended task of the

system. The measures of openness would include the language in which the application

was written, the availability of APis, the ability to modify the code, and the availability of

useful documentation.

The applications characteristic is perhaps the most critical part of an open system

because this is where the work of the system is done. The potential openness of the other

characteristics depends on the strength of the applications. It is possible to have great

8

skills sets, tools, data, and networks (any or all other characteristics), but without

applications developed with a keen eye towards open standards to leverage these

characteristics, the system will never provide residual value.

Application complexity and utility is directly proportional to the degree of

openness desired. As systems become more open, applications are more able to take

advantage of the benefits of distributed systems. This places application processing where

it is most appropriate within an open environment. This is inherently more complex to

manage and develop than applications running in a closed environment. By developing

distributed applications built on open standards, an organization can fully utilize all

available processing power, from the mainframe to the desktop PC.

This characteristic consumes a significant amount of analysis resources within

organizations, as it is critical to have a modem, well-resourced application development

program.

2. Hardware

This characteristic refers to the computers on which the clients and servers run.

Naturally, for an even more granular analysis, separate analysis of the clients and servers

may be practical.

At the closed end of the spectrum would be a completely proprietary system that

runs perhaps on only one operating system. Because of their closed architectures and

ability to only run proprietary operating systems, Apple computers have traditionally fallen

toward the closed end of the openness spectrum. At the open end of the spectrum would

be a system that could run many different operating systems and is capable of

interchanging components. Because of the intentional open design ofPCs by IBM, these

9

machines are able to support a variety of operating systems from DOS to OS/2 to certain

strains of UNIX and LINUX.

3. Network

The network refers to the physical components that connect enterprise computing

assets as well as the software that permits that connectivity. Again, if a system runs on

several networks within an organization, it may be useful to analyze each one separately.

The degree of openness for this characteristic would be determined by the ability

to support long-term vertical and horizontal growth and the ability for clients to access the

necessary servers and required data. This implies the ability to support multiple platforms

and hardware components as well as multiple protocols. We suggest that to even be

considered, a network should support the vastly popular TCP/IP.

Network architectures must be capable of easily replacing components, simple

plug-on multiple processors with higher clock speeds, or superscalar processing to allow

for eventual growth of the target system. In addition, to be more open, the architecture

should rely on industry-standard network connectivity cards and a fast VO bus such as the

25-l\tfHz SBus, which is supported by over 300 VO cards from over 100 vendors.

4. Operating System

This characteristic refers to the operating systems running the servers and clients.

The measure of openness would be the types of platforms that can run the OS and the

applications that are able to run under it.

5. Data

Data is one of the most critical characteristics of an open system. The degree of

openness can be measured by how easily the data can be accessed and manipulated by

10

different users and applications within and outside the organization. Proprietary systems

that do not permit manipulation of data or conversion to useable formats would be at the

closed end of the openness spectrum. Systems that conform to SQL standards or permit

the conversion of data to open standards would be considered more open.

6. Skills Set

The organization's IS knowledge base should be considered in determining the

degree of a system's openness. This characteristic refers to existing expertise as well as

the ability to learn and adapt quickly to changing skill requirements. It essentially cuts

across all other characteristics. That is, expertise in the other characteristics should be

considered in determining how much the system will be able to grow.

For example, if the organization has an expert in SQL, and if the data conforms to

SQL standards, then it is likely that the data components of the system would be capable

of growth.

7. Tools

The development and system administration tools used certainly determine the

degree of openness of a system. The measures of effectiveness would include the degree

of ease and speed in which systems can be developed, and the ability to modify existing

systems, diagnose problems, and integrate with other systems. While extremely powerful,

industrial-strength development tools, such as CASE and I-CASE, exist, they are not

applicable to the scope of our research, and will not be included in further discussion.

11

D. THE OPENNESS CONTINUUM MODEL

Each of these characteristics can be analyzed on a relative scale from completely

closed to completely open. Figure 2 is a useful means to illustrate a system's degree of

openness.

Characteristic Closed Open

Applications X
Hardware X
Network X
Operating System X
Data X
Skills Set X
Tools X

Figure 2. Openness Continuum Model

This model can be a useful tool for organizations attempting to get a grasp on the

complex issue of openness. At a glance, managers can easily see where·they should

concentrate their efforts and where existing characteristics can be leveraged. While it is

desirable to move all characteristics to the most open alternative, this is not practical nor

affordable for most organizations. This model will be used as a blueprint for analyzing the

tradeoff's among characteristics. Chapters IV and V provide extensive discussion on its

effective use.

12

ill. DISTRIBUTED SYSTEMS

In Chapter II we discussed many of the benefits of open systems and offered a

definition and a methodology for determining openness. We also stated that building

applications that provide residual value ought to be an objective for organizations.

Implicit in this is the notion that current legacy applications must be converted to a new

environment when moving to open systems.

This chapter provides the technical background necessary to support our migration

strategy described in Chapter IV. In addition, it discusses the technical issues with

migrating to distributed systems and building distributed applications, such as

client/server-based and e-mail- and world wide web-enabled client/server applications.

A. DISTRIBUTED SYSTEM CHARACTERISTICS

In analyzing distributed systems, we start by describing their components or

attributes. The characteristics of these components are strongly coupled to the open

systems characteristics of the environment as discussed in Chapter II; this will not be

covered in-depth here. Distributed systems consist of the following attributes:

• Processing

• Connectivity

• Information storage

• Technical and organizational standards [Ref 5]

1. Processing

Processing refers to the ability to manipulate data and perform computations in

separate locations simultaneously. Distributed processing can be a service handled in the

13

background automatically by either the computer or the network operating system.

Distributed processing can also be built into an application.

Choosing the processing location for a specific task in a distributed system requires

examination of several factors such as:

• Type of task

• Client processing power

• Server processing power

By examining these three factors, developers can determine where best to

distribute processing for a given task. For example, client processing power is generally a

function ofRAM, CPU, and swap file space. Depending on the relative strength of these

parameters, a client can be classified as either "fat" or "thin."

A fat client performs a majority of required processing while a server supplies

"raw" data. A fat client incorporates a GUI, business rules, and data integrity enforcement

on the client machine, returning updates for storage on the server. File servers and many

database server applications employ fat clients.

A thin client provides a GUI and transmits requests to "fat" servers. Fat servers

provide high-level abstraction by exporting procedure calls and methods instead of raw

data. This has an added benefit of reduced network traffic. Transaction, application, and

object servers are examples of fat servers.

Load balancing technology is another alternative to dividing processing

responsibility. An example is transaction processing (TP) monitors in database

applications. All database requests are handled by a TP monitor that assigns transaction

requests among a set of database servers equally, in order to maximize overall transaction

14

processing rate. TP monitors are not cheap and are used only in large distributed database

application systems with many users. When they are required, they save time and reduce

overall complexity in trying to manage transactions directly. [Ref. 6]

2. Connectivity

Clients require access to servers in order to process data. Likewise, servers need a

path to provide data to the client. This simple relationship is the backbone of distributed

applications and necessitates ubiquitous connectivity via a network.

The network is an integral part of the infrastructure and is often a top concern for

IS. This is obvious, for without connectivity, real-time distributed systems are not

possible. This management focus lies in network robustness and sound design. A poorly

constructed network can suffocate IS financial resources just to maintain connectivity.

Furthermore, a poorly designed network can severely impact performance in distributed

applications. Proper design methods attempt to eliminate bottlenecks.

In distributed applications, the network is merely an extension of the client PC

internal data bus. Therefore, loss of the network is the same as losing the client PC.

Because of the dependence of distributed applications on the network, investment into the

network infrastructure is money well spent.

3. Information Storage

Information storage refers to where data is located and how it is structured. Data

may be stored in a large secondary storage pool associated with a mainframe, it may be

stored on a PC server, or it may be scattered across an organization on desktop hard­

disks. Data may be duplicated, out-of-date, erroneous, and inaccessible in many cases.

15

Distributed systems can bring order to data chaos and provide universal access to data -

a precept of open systems.

SQL is the predominate language for access to data stored in relational model

database servers. It is an ISO standard and well supported by DBMS vendors. There are

several alternative data models, such as hierarchical and object-oriented. These alternative

models either are legacy, or meet specific requirements for niche markets. Relational

model database servers are the industry standard, with SQL providing an open avenue to

data access. Two popular database architectures are distributed and federated databases.

a. Distributed database architecture

A distributed database system tracks data location on the network, and

routes requests to the correct database node, making location transparent to the client.

Several layers of middleware provide this transparency. The top middleware layer,

located on the client side, provides an alias for use by client software. The bottom

middleware layer, on the server side, the DBMS translates the logical update request into

a physical data update. Figure 3 illustrates how this technology works. This alternative is

not perfect, however. It has the following problems:

• The mechanisms that distribute data across servers are vendor-specific, locking

an organization into a single vendor solution.

• It poorly encapsulates data and services. For example a local table cannot be

changed, or restructured, if it is in use by another site.

• It requires too many low-level (SQL) message exchanges, resulting in excess

network traffic.

• Due to the nature of transactions, partial updates are not possible. Therefore if

a server becomes unavailable, all transaction processing that includes data on

the unavailable server will fail, making administration difficult. [Ref 6]

16

Distributed
Transaction

Figure 3. Distributed Database Model from [Ref 6]

b. Federated databases

Federated databases are described as "multivendor, heterogeneous,

database networks" [Ref 6]. A federated database provides single-point access to all

database servers within an enterprise through the use of middleware.

Single-vendor federated databases are the easiest to implement for the

obvious reason that everything is common, e.g., SQL syntax, APis, drivers, and stacks.

Multivendor federated databases are much more difficult to implement and maintain due to

proprietary interfaces and implementations. Despite these implementation challenges

posed by federated databases, they provide many benefits:

• Legacy database servers do not require immediate replacement if they can
adapt to a heterogeneous environment.

• They enable organizations to place database servers where the data originates,
speeding access while promoting ownership.

• They reduce risk of downtime by storing data on multiple servers, providing
redundancy unmatched in a single server configuration.

17

4. Technical and Organizational Standards

Technical and organizational standards refer to standards adopted by an

organization in support of an open system environment. Examples of technical standards

are network protocols, operating systems, and hardware capabilities. Examples of

organizational and administrative standards are security, end-user computing guidelines,

and content management.

Standards are the foundation of open systems. When to adopt a standard is an

aspect of risk management. Any given standard can be evaluated on several levels. Is the

standard supported by an international body? How much does market presence play in

deciding to adopt a de facto standard? Is there a need to adopt cutting-edge standards or

should a more conservative position be taken? These questions are not part of this

research. They are merely presented to indicate that standards adoption is a strategic

decision and should be treated as such.

B. CLASSIFYING DISTRIBUTED SYSTEMS

The following system configurations have appeared over time, with a hierarchy of

processors the first to appear and cooperative processing the latest trend. All of these

systems are in existence today, which is why we discuss them all, providing background

for our open systems strategy in Chapter IV. They can be used to classify distributed

systems.

• A hierarchy of processors

• Decentralized stand-alone systems

• LAN-based systems

18

• LAN systems that communicate with mainframe-based systems

• Cooperative systems [Ref. 5]

1. A Hierarchy of Processors

This system has a large controlling computer, such as a mainframe, at the top of

the hierarchy, followed by minicomputers at the next level with dumb terminals or

microcomputers at the bottom. The key component is the mainframe because it controls

all processing. Also, data can be distributed throughout the system on departmental mini­

computers or it can be centrally stored on the mainframe. [Ref. 5]

2. Decentralized Stand-Alone Systems

This system consists of a mini-computer with terminals connected to it. They are

small in scale and usually reside within a department. These systems generally do not

connect with other departmental systems but may transfer information ''up" to the

enterprise mainframe. [Ref. 5]

3. LAN-Based Systems

This system consists of linking microcomputers. This configuration allows

microcomputers to share resources such as printers, scanners, CD-ROM jukeboxes, etc.,

as well as to connect to other LAN s via bridges, gateways, and routers. All of the

computers are equal with no single computer controlling any of the others. [Ref. 5]

4. LAN Systems That Communicate With Mainframe-Based Systems

This is a combination of LAN-based systems and a hierarchy of processors. This

is a compromise solution, as it does not fundamentally change how an organization

operates. It has the advantage of conserving past IT investments while potentially

allowing information to be shared throughout the organization.

19

This type of system looks good on paper because it is networked. In reality,

organizational boundaries can still exist and data may not be shared because the same

physical and logical application structure is in use. [Ref 5]

5. Cooperative Systems

In this type of system all computers are networked via LANs and W ANs.

Resources are shared and all computers can be peers; however, large servers and/or

mainframes can be the hub of a system, providing centralized database services due to

their massive I/0 and data storage capacity.

Cooperative systems allow applications to be divided among computers. This

permits application designers to maximize (or conserve) computing resources such as

processing power, permanent storage, and network bandwidth, by placing workload

where it is best handled. For example, if an organization has a powerful client-side

machine, then the bulk of CPU operations may be placed there, creating a "fat client."

Another reason to divide applications is to balance network loading by placing application

modules physically on a server in the application's functional area. Once the application

module processes a request, it forwards data via the network backbone to a central server

for storage and reporting. This effectively employs network bandwidth by limiting traffic

that must traverse the network backbone, keeping all other network traffic local to the

functional area.

A cooperative system is the most open category because it permits an organization

to maintain existing hardware investments while more effectively utilizing computing

resources. [Ref 5]

20

C. BUSINESS APPLICATION COMPONENTS

In the previous section, we discussed the characteristics of distributed systems and

described five different types of distributed systems. In this section we describe the

general components of a business application. We do this to set the stage for our

discussion of client/server architectures in the next section. Berson [Ref 7] identifies four

different components in a typical application:

• Presentation processing logic

• Business processing logic

• Data processing logic

• Database server processing logic

1. Presentation Processing Logic

This component is the front-end of a client application with which users interact to

manipulate data. It consists of menus and a GUI, if in a windowing operating system. It

also manages local services required ofthe client operating system such as file 1/0.

2. Business Processing Logic

This component contains rules that are enforced as a user interacts and

manipulates data. This logic is usually written in the native language of the application.

These rules can apply prior to viewing, during manipulation, or after viewing. Examples

are calculating totals and setting flags based on data values prior to viewing, preventing

illegal manipulations during editing, and validating data entries/changes after manipulation.

21

3. Data Processing Logic

This component retrieves data for presentation and stores updated data after

manipulation. The language standard is SQL. However, any data entries or changes made

by a user are translated to SQL statements for processing by an application.

4. Database Server Processing Logic

Database server processing logic serves and stores data by processing SQL

statements. This component function is usually performed by a DBMS, that serves data

for presentation to a user and applies edits made by a user. (See Figure 4)

,...

Presentation Data Business Data Data Processing Data~ .-'

Logic Rules Logic DBMS

,..._

Figure 4. Diagram of a Typical Business Application Data Flow

In Figure 4, data is passed through several components or layers. Each layer

processes data differently. This separation of processing is important to long term

maintenance.

D. DISTRIBUTED APPLICATIONS

In the previous sections of this chapter, we discussed the categories of distributed

systems and their characteristics. We also described a model for the components in a

business application. In this section we concentrate on the popular client/server

ar.chitectures used in building distributed business applications.

A distributed system can be described as a "tiered" architecture. The concept of

tiers is used to differentiate where the five components of a business application are

located.

22

1. Single-Tier

In a single-tier system, all components of a business application exist on a single

machine. Because of this, application development is greatly simplified. The data can be

stored locally so there may not be any network overhead, or it can be located on a logical

network drive. Because there is no separation between the components, maintenance and

modification will be difficult at best. An example is updating business rules as they

change. It would be difficult to isolate the business rules code from the interface and

database code. Worse, every application that is affected by the rule change must be

updated separately. Finally, single-tier applications do not promote data sharing and

should be avoided.

2. Two-Tier

In two-tier applications, there is a clear logical separation of the client and the

server, be they located on a single machine or physically located on separate machines. In

addition, depending on the configuration, many middleware layers may exist to move data

between these two tiers. Examples ofmiddleware are database vendor-specific software

on the client and libraries to connect the vendor-specific software to an application, such

as Microsoft's ODBC or Borland's IDAPI.

The server is usually one of two types: a file server or a database server. With a

file server, the client passes requests for files over the network to the file server. File

servers have been used to provide shared access to a desktop database , such as Paradox.

Applications using this architecture were made possible by the PC revolution and were

popular in the late 80's early '90s due to their ease of construction over mainframe

23

applications. They often provided quick solutions to departmental-level business

problems, providing an excellent alternative to relying on a central mainframe.

Despite their appeal, file server-based applications have serious drawbacks. They

tend to have large network bandwidth needs because of excessive message exchanges

required to locate the requested data. Also, local desktop database applications, typical of

file-server-based applications, lack robust backup functionality, transaction processing,

and full featured SQL. Both of these drawbacks severely inhibit a file server-based

business solution in scaling to the enterprise level.

Application design typical of file server -based applications tends to couple business

rules with the user interface code. As with single-tier architectures, such coupling

complicates design management and code maintenance, clouding the separation between

user interface (UI) and business logic.

Because business logic is closely coupled with UI code, changes to the user

interface often lead to complete redevelopment, necessitating rewrite of business rules as

well. In addition, since the business rules are part of the UI, they must also be rewritten

into every new application. Finally, business rules can change rapidly, demanding

significant resource allocation to ensure all application versions are updated promptly and

redistributed.

Remote database servers are an alternative to file servers. They permit

applications to be separated into two distinct tiers in which the UI forms one tier and data

and business rules are stored together in the second tier. In this architecture changes in

the UI would not necessarily require modification of the business rules. As other

applications require access to data, business rules are automatically applied.

24

The two-tier client/server architecture has been used to build mission-critical

applications with success, but it is a complex undertaking. It requires expert knowledge

of SQL, and DBMS-specific knowledge for programming business rules. Finally,

business rules using SQL are difficult to write and debug. 11 These are not the tools for

creating and maintaining good code. Doing it this way is SQL-abuse; SQL is a query

language and was never designed to do this kind of procedural computation [Ref 8]. 11

Despite its advantages over file server-based applications, the two-tiered approach

has several limitations. First, database servers are optimized to provide data as quickly as

possible. They are not optimized for enforcing business rules, so placing them in the

database inhibits server performance. Because of the combined processing requirements

of data and business rules, applications are difficult to scale upwards.

3. Thr~e-Tier

The latest trend in client/server is the three-tier model, as diagrammed in Figure 5.

This model consists of a server, a client, and a middle-tier where business rules are stored.

Here, the database server performs its optimal role of serving data, the client manages the

UI, and an application server applies business rules. These components can be physically

or logically separated.

25

~ ~ata
~-~ ~ 1.--------.1 ~ JJ

Business Rules

Dai
,..- -....._

DBMS

Server

~ Businessmles·can
exist physically
separate on an
application server,
or logically
separate on the
client machine .

Figure 5. Three-Tier Business Application

a. Physical Separation

The physical three-tier architecture places another machine as an

application server in the business rule layer. As new applications are needed, the middle

tier provides a consistent interface between the UI and the database for each application,

ensuring consistent enforcement ofbusiness rules irrespective ofthe client application

seeking access to the database.

In very large environments, such as major DoD installations, the use of

additional hardware in the business rule layer provides the added benefit of load

distribution. Multiple middle tier servers can be distributed across the organization to

provide scalability.

Physical three-tier models are not appropriate for all situations. The use of

a third physical layer adds additional expense and complexity in the form of extra

26

hardware and software with their attendant implementation and maintenance costs. Project

management is further complicated by the potential use of three separate programming

languages for each of the three tiers.

Recent technologies promise easier access to and implementation of

business rules in a physically separated middle tier. Microsoft's Remote OLE Automation

holds promise for the future, especially with the dominance of clients with Intel processors

and Microsoft operating systems. Other technologies such as CORBA, ISAPI, and JDBC

also hold promise, but they have yet to mature.

Whatever standard dominates, client-oriented tools add support for

developing the middle tier natively. This greatly reduces the complexity of the physical

three-tier architecture by eliminating the need for a third development environment

specific to the middle tier. Until an alternative becomes available, the logical three-tier is

most appropriate in most cases.

b. Logical Three-Tier

The primary difference between logical and physical three-tier architectures

is that with logical three tiers, business rules are implemented on the client machine. This

is also a significant change from the two-tier architecture where business rules are

implemented in the DBMS server. In the logical three-tier architecture, the middle tier is

physically located on the client hardware but logically separate from the UI portion of the

application. This has several benefits, such as:

• Developers are able to create business rules in the middle tier using a language

and tools with which they are already skilled.

• Often, all that is required to re-implement new business rules is a recompilation

of the existing applications with the modified middle tier.

27

• Development effort is reduced when creating new applications that use the

same database. Business rules can be shared objects.

• Modular design of the middle tier provides re-usable software, thus increasing

residual value.

c. Physical or Logical?

Currently, the physical three-tier is only a possibility in large organizations

with mature IS support. This will change when a clear distributed computing standard

emerges and vendors bring products to market that give programmers more flexibility to

develop in their native environment. Until then, the cost and complexity resulting from

implementing an application server is prohibitive in most cases.

For most organizations, the logical three-tier model is the quickest

opportunity to achieve scalable client/server solutions. Also, both physical and logical

three-tier architectures are best implemented in an object-oriented environment due to the

inherent modularity, abstraction, and inheritance characteristics of object-oriented

languages. This is most important in the logical three-tier architecture where the UI and

business rules share the same platform. Without careful attention to achieve logical

separation, business rules can easily end up in the UI tier.

d N-Tier

The three-tier architecture can be extended ton-tiers with multiple middle-

tier layers providing connections to various types of services, integrating and coupling

them to the client, and to each other. An n-tiered system can also be created by

partitioning the application logic among various hosts. Encapsulation of distributed

functionality in such a manner provides significant advantages.

28

• Network bottlenecks are minimized because the application layer does not
transmit extra data to the client, but only what is needed to handle a task.

• When business logic changes are required, only the server has to be updated. In
two-tier architectures, each client application must be modified when logic
changes. With the n-tier architecture, the client is modified only when functions
are discontinued or the function's parameters change. The client is insulated
from database and network operations. It can access data easily and quickly
without having to know data location or how many servers are on the system.

• An organization has database independence because the data layer is written in
standard SQL and is platform independent. In addition, the enterprise is not
tied to vendor-specific stored procedures for business rule implementations.

• An effective communications pipeline is created between the application layer
and the client.

• An application layer can be written in standard third- or fourth-generation
languages, with which the organization's in-house programmers are
experienced. [Ref. 9]

Alternative solutions have arisen as a result of the difficulty in developing

application servers as a middle tier. One such alternative, an intranet, provides great

promise because it supports open systems and truly abstracts out the UI from the other

portions of the application. Intranets are not a replacement for client/server; they are an

extension to client/server.

E. EXTENDING CLIENT/SERVER

The holy grail of client/server is the "universal client" meaning that a client can

access an application from any platform. This goal has been almost impossible to achieve

with the traditional client/server architecture because of operating system and

microprocessor dependencies. One solution is to take advantage of existing technology

used on the Internet. Figure 6 represents a client/server architecture that includes another

tier, the web server, with the client UI managed via a web browser.

29

www
Browser

Figure 6. Web Based Client/server Application

In this scenario, any client operating system or microprocessor that supports

TCPIIP and has an Internet WWW browser can interact with this application. The WWW

browser initiates a request for data. The WWW server translates the request and passes it

to the application server for processing. The application server validates the request and

retrieves the data from the DBMS. The application server then applies its business rules

and passes it to the WWW server. The WWW server takes the data and packages it in the

form of a web page that then can be viewed by the browser.

Notice that this is a four-tier architecture with several advantages over the logical

three-tier model. The application server provides the interface between the WWW server

and the DBMS. This tier can be constructed using current RAD tools such as Delphi,

Visual Basic, PowerBuilder, or Oracle 2000. The benefits of this are enormous. The

business rules are implemented as a separate tier and they are separated from the UI. This

promising technology, known as an intranet, deserves further examination.

1. Defining an Intranet

An intranet is a concept defined formally in January 1995 by Steven L. Telleen,

Ph.D., Director, IntraNet Solutions at the Amdahl Corporation, in a white paper entitled

IntraNet Methodology™. Simply put, an intranet is an enterprise communications

architecture that relies on Internet technologies. The "intra" part of intranet means that

30

information is shared only within the confines of the enterprise, although access to the

Internet can be, and most times is, implemented.

Not too long ago, most networked devices were 3278 and 3279 character-mode

terminals that had coaxial cable connections to large mainframe-based networks. Most of

these devices have since been replaced by personal computers and local area networks.

The intranet portends a similar revolution in information processing. There are several

distinguishing features of an intranet.

• It uses TCPIIP for both wide-area and local-area transport of information.

• It uses HTML, SMTP, and other open Internet-based standards as the means
of moving information from clients to servers.

• It is completely owned by the organization and not accessible from the
Internet-at-large by the general public. This is usually enforced by a firewall.

• It is managed by IS with similar attitudes and procedures as they currently
manage their legacy mainframe-based networks; only the tools are different.
[Ref 10]

A detailed review of these features will illustrate the trends leading up to the

widespread use of intranets.

a. TCPIIP as the Emerging Protocol of Choice

Today, most enterprise networks are a mixture of many protocols: IPX,

TCPIIP, SNA, Banyan Vines, and AppleTalk, to name a few. Many organizations have

begun careful evaluation to standardize on one protocol; typically TCPIIP is chosen. The

reasons for its popularity are many.

• It can handle both LAN and WAN traffic well.

• It is supported by the majority of computing platforms, ranging from
Macintoshes to Windows NT to the largest mainframes.

31

• It has a robust set of management tools and an active development community

to enhance them.

• It is the protocol used by the vastly popular Internet. [Ref 1 0]

While the merits of standardizing on TCPIIP are worthwhile, it is not

without a downside. TCPIIP is hampered by large memory requirements- up to 150 KB-

especially on DOS-based machines. Many organizations, like DoD, still have a

preponderance ofDOS-based machines and the migration to more advanced systems

could mean a huge hardware investment. Fortunately, hardware costs for Windows-based

machines is dropping at a rapid pace. These systems operating under Windows95 and NT

offer tighter integration and better support ofTCPIIP.

h. Internet Open Standards

HTML is the language used to define the structure of hypertext documents

on the intranet provided by servers. The display ofHTML documents is the responsibility

of clients or browsers. While HTML is an open standard, it is not wholly "standard."

Different vendors use different versions of the standard, and some vendors inject their own

feature sets into their products. Most likely, the standard will continue to evolve. Most

browsers do, however, provide a core set of standard features according to the HTML 2.0

standard.

Even the core standards provide for the transport of data in a wide variety

of media, to include text, recorded speech, and graphics. Most browsers have the

capability to transport formatted tables, video clips, and animation.

The flexibility with which data can be presented has led to the explosive

growth of the Internet in the last 18 to 24 months. The "web craze" has now hit

32

organizations seeking ways to minimize costs for their communications architectures.

Web sites can range from the most mundane of lists to the most sophisticated of

multimedia shows and from the most personal to the most corporate, depending on the

content, author, and effort.

The openness of web-based technology allows for information to be cross­

linked from web server to web server, whether they be located around the world, just

down the street, or just down the hall. It is this ability to link, when designed correctly,

that enables the power of the web as a distributed corporate information source. [Ref 10]

The web is only one of many capabilities of an intranet, however. Along

with this technology is support for other standards such as FTP servers, Gopher servers,

SMTP and others originally developed for UNIX computers, but have become

commonplace among PC-based LANs and WANs.

Because of the use of these open and pervasive standards, intranets are

quickly becoming the architecture of choice in corporate America. In fact, the use of web­

based technologies for intranets is quickly catching, and will soon surpass, Internet usage

(See Figure 7). According to Zona Research, a market-research firm located in

Redwood City, California, revenues from the sale of web servers for an intranet will be

four times those for the Internet [Ref 11].

33

.

INIRANEtS••WIIWL
DWARF•••IRERNETS
S·'

~91
. · · · ., " , ·' .. .J:sr·;;;;,~ · ~...;;..;;;~
..... BILLiON$ oF.f)OLl~R$;·•

., ~Al1J.,·z~NA R~E.Qil¢ij··~r;w•••••

Figure 7. Intranet Trends

c. Internal Enterprise Access Only

lntranets, if designed properly, offer the benefits of the Internet without the

risks of invasion. Pure intranets are those that run solely on a LAN and provide no access

to the Internet. However, organizations have begun to achieve secure intranets behind

firewalls.

A firewall is a system or group of systems that enforces an access control

policy between two networks. The actual means by which this is ~ccomplished varies

widely, but, in principle, the firewall can be thought of as a pair of mechanisms: one that

exists to block traffic, and the other that exists to permit traffic. In an intranet, a firewall

is typically implemented to permit access from within the intranet to the outside Internet,

while limiting traffic from the outside Internet into the organization's intranet.

However, as the popularity of the web continues to increase, organizations

have begun to allow public access to certain portions of their intranets. These "extended"

intranets offer the best of both worlds: the ability to allow the public to see that which is

desired while limiting access to that which is not. This type of intranet, by its nature,

34

poses an increased security threat. Organizations should perform careful risk analysis

before implementing an extended intranet. Analysis of vulnerabilities is beyond the scope

of this research. Suffice it to say that current technology will support such

implementation, but organizations must thoroughly analyze the risks and benefits of such

an undertaking.

2. Intranet Management

Management of an intranet is no different than that of a typical legacy mainframe­

based network. The purpose and procedures are the same; only the tools required to

manage the two are different.

Although an intranet is based on Internet technology, this does not mean that an

enterprise intranet must follow the same, anything-goes policies that have grown with the

Internet.

3. Analysis of Intranet's Merits

The web is enabled by a widely adopted set of standards for creating and

communicating information across networks. These standards provide six powerful

benefits:

a. Platform Independence

Information can be created, served, viewed, and moved without

modification across different hardware, operating systems, and software.

b. Information Transparency

Information can be retrieved from another computer anywhere on the web

without the user needing to know where the information is physically located, what kind

35

of machine and operating system is serving the information, or what network commands

are involved.

c. Ease of Use

Web page development complexity is increasingly more transparent to

users with the emergence of powerful new tools such as Microsoft's Frontpage

and Internet Assistant for Word and countless HTML editors. These tools greatly

reduce the learning curve.

d Universal Qient

Web pages can provide users with an easy-to-use, common interface across

multiple applications and data, including legacy applications. This translates into

significant savings in user training costs. Users need only to be trained on the enterprise

browser of choice.

e. Cost Efficiency

Information distribution costs can be reduced compared to distributing the

same information on paper or in person. On the external web this means reaching

potential customers directly for the cost of publishing the information once. On the

internal web it means reducing paper, printing, copying, mailing, and faxing costs.

f Time Efficiency

Users can control their own information flow, reducing the time consuming

activities of sorting, evaluating, and filing just-in-case information that currently floods

their in-baskets.

36

4. Analysis of Intranet Shortfalls

Intranets have several limitations. From an application development perspective,

current generation WWW development tools have not matured enough to support

mission-critical applications using the web browser client as the UI. This is a short-term

issue, however, as vendors are rushing to provide out-of-the-box solutions to intranet

construction. Gradient Technologies Inc. in Marlboro, Mass., and WayFarer

Communications in Mountain View, Calif, are two startups working on that challenge.

The basic problem, says WayFarer CEO Edward Colby, is that Web servers were not

designed for high-speed transactions, things like getting a credit authorization.

WayFarer's QuickServer uses its own messaging protocol to speed up transactions and

juggle high-volume database requests.

Another issue with web-based development is maintaining state. The web is a

"stateless" environment, meaning that developers have no programmatic control over

different users and what they will do next. End-users may branch off to another page

unconnected with an application and may or may not return. If application program logic

requires closure from end-users, it may not happen. One solution is use of "cookies"

embedded in web pages. Cookies are transmitted to the client browser from the web

server with state information. If an end-user returns to the web page, state can be

retrieved from the cookie by the web server. A more robust solution is provided by HREF

Tools' WebHubtrn product that provides an object framework for Delphi which manages

state from the server application, in large part providing necessary programmatic control.

37

Despite the seemingly easy facilities needed to create web content, mission- critical

applications still require substantive tools. Web application development is no different

than traditional application development in many ways. There is still a need for tools like

project management to enable many people to work on projects, for debugging and testing

tools, and for production-level database design and modeling tools for back end

development.

38

IV. STRATEGY FOR OPEN SYSTEMS MIGRATION

Chapter II of this research provided an overview of the evolving meaning of open

systems. We also discussed the benefits of open systems and suggested a useful model

with which managers could analyze the openness of their systems.

In Chapter III we extended the discussion to distributed systems, an architecture

made possible by open systems standards.

The previous discussion essentially prescribes what organizations need to do in

order to develop and deploy information systems that are not legacy the day they are put

into action. This chapter aims to prescribe how organizations should go about the

daunting task of moving their IS infrastructure into a viable and contemporary asset,

capable of growth and evolution in a changing business environment. Our premise is that

an open systems infrastructure, capable of supporting modem distributed computing,

cannot be built overnight: it is too costly and time consuming. Rather, it must be evolved

over a realistic time frame. The remainder of this chapter outlines our strategy for doing

SO.

A. STEP ONE: BASELINE ANALYSIS

Using the Openness Continuum Model discussed in Chapter II, organizations

should examine their major information systems. This analysis should not consume

excessive time or resources. Its intended purpose is only to give an organization a general

indication of the current condition of their infrastructure. Results of this cursory analysis

may include the following:

• Alarming or encouraging trends in the current state of a particular
characteristic (Hardware, Operating System, Network, etc.)

39

• Identification of likely candidates for migration, thus allowing for management

to keep a closer watch on performance

• Conversely, identification of systems that fall toward the open end of the

spectrum and thus may not require much attention for some time to come

B. STEP TWO: IDENTIFY SYSTEMS THAT REQUIRE MIGRATION

Any migration process will be extremely costly to an organization. It is simply not

realistic to expect that organizations will be able to reengineer their entire information

infrastructure at once. They may be able to continue using many existing systems. This

step of the strategy is to identify those systems that must be migrated. Some of the

indicators that a system should be migrated to a more open one are:

• Results from cursory analysis in Step One indicate the need to migrate.

• A system simply becomes too costly to maintain.

• A system no longer meets the requirements and modifications are too costly or

not cost effective.

• A system is incapable of any additional kludges (longevity of many legacy

systems is extended through use of patchwork fixes.

• Although all systems still meet the requirements, money is available to

reengineer one or more systems that may require migration in the near future.

• A mandate from a higher authority requires migration.

C. STEP THREE: SYSTEM REQUIREMENTS ANALYSIS

Once an organization identifies that a system requires migration, it must conduct a

detailed analysis of what the system should do. This analysis should result in the

specifications for basic information, functions, performance, behavior, and interfaces. This

step is no different than any other system development effort. This is a critical step

because in the next step, openness analysis, competing alternatives of each characteristic

40

will be analyzed for openness. Only those alternatives that meet all system requirements

should be considered as candidates for the new system.

D. STEP FOUR: OPENNESS ANALYSIS

The requirements analysis in Step 3 should identify the core functionality of the

system. From this foundation, the drive to a more open system can proceed.

1. Identify Competing Alternatives

For each characteristic, attempt to place the existing system on a relative scale

among the available alternatives (See Figure 8). For example, for the operating system

characteristic, the existing system may run on a Windows 3.x. That would be considered

more open than, say, DOS 5.0, but less open than Windows 95, Windows NT, and UNIX

Characteristic Closed Open
Applications Existing Alt Alt

Svstem A B
Hardware Existing Alt Alt

Svstem A B
Network Existing Alt Alt Alt

System A B c
Operating System Existing Alt Alt Alt

System A B c
Data Existing

System
Skills Set Existing Alt Alt

System A B
Tools Existing Alt Alt

Svstem A B

Figure 8. Example Use of the Openness Continuum Model

2. Pare Down the Alternatives

Rule out any characteristic alternative that does not meet the minimum system

requirements identified in Step Three and the minimum openness desired. For example,

41

the DOS operating system might be eliminated because of its lack of native TCPIIP

support.

This process should also remove from further consideration those alternatives that

are not possible. This could include those that are not affordable or those that are not

permitted by higher authority mandate.

3. Define Competing "Packages" of Alternatives

Because of the interdependencies among characteristics in the Openness

Continuum Model, it is most likely not possible to create a system consisting of the

"winner" (the most open alternative) from each characteristic. Some characteristics are

dependent upon others. For example, an application development environment based on a

32-bit development tool would naturally require a 32-bit operating system.

In this step it is important to determine the characteristics with which the success

of the system will hinge. The alternatives for these critical characteristics will form the

basis for competing "packages" of alternatives that will work well with each other and will

result in a new system that meets the desired degree of openness. These packages are ·

comprised of one or more competing alternative from each characteristic from the Open

Continuum Model, each a viable solution to the minimum system requirements and the

desired degree of openness.

In defining these packages, an organization should consider a "mixed portfolio"

strategy oflow-risk alternatives mixed with high-risk alternatives. For example, the

organization may counter an emerging, highly proprietary database management system

from an upstart vendor with a relatively low risk selection in the network characteristic

42

such as one that uses the existing network hardware and industry leader Novell's Netware

3.x.

The result of this step should be a number of competing packages that (a) meet the

minimum system requirements, and (b) identify an alternative for each characteristic of the

Openness Continuum Model. A simplistic example package may look like Table 1.

Characteristic Alternative Selected
Applications Custom developed
Hardware Windows/Intel Machines
Network Peer to peer
Operating System Windows NT
Data Oracle
Skills Set In-house, existing workforce
Tools Delphi

Table 1. Sample Package

From this detailed analysis of each of the characteristics of the Openness

Continuum Model, organizations will be postured to make prudent decisions on the

direction for the migration. This is essential to the follow-on steps of the migration

strategy.

E. STEP FIVE: COST/BENEFIT ANALYSIS AND SELECTION OF
TARGET SYSTEM

Each of these packages should be put through a rigorous cost/benefit analysis.

This will be the most arduous step because of the interdependencies among characteristics

~d the difficulty in quantifying intangibles such as the ability to better support future

interoperability.

Entire books have been written about the subject of cost/benefit analysis.

Examination of how to best accomplish this complex task is beyond the scope of this

43

research. What we offer here are some considerations in identifying the costs and benefits

of the competing packages.

This analysis should include rigorous research into all costs associated with the

alternatives. This research should include cost of purchase, maintenance contracts,

training, license fees, and any costs that may arise from the conversion process. For

example, if a parallel approach to conversion is required, the incremental costs of running

two systems should be considered, especially if another alternative would support a direct

conversion approach. Intangible costs such as user resistance need only to be identified

or, if possible, quantified in some manner.

It is important to consider how well an alternative's characteristics fit into the

long-range plans of the organization. The selection of a particular alternative in a package

may result in long-term costs or benefits. For example, if a less than optimal data

alternative is part of a package, this may make it more difficult to migrate other existing

systems in the future. An organization may be able to quantify these costs, but most likely

the costs will fall into the intangible category.

In addition, it is critical to analyze the effects of choosing one alternative on the

other characteristics. For example, how does the selection of a particular operating

system impact the existing application base? Does the organization have the skills set to

effectively manage and administer a particular network operating system?

In most cases an organization will be able to capitalize on an alternative that is

available for little or no cost. It may be that a desired alternative is in use in another

system in the organization. These "free" characteristics of the target system should be

leveraged.

44

It may be that the existence of these less expensive alternatives may even alter the

migration plan. The benefits of these characteristics may be so overwhelming that, despite

not providing all of the desired openness, they may provide a significant portion of the

budget to be used elsewhere.

For example, the organization may have one or more system administrators that,

from a previous assignment or job, have extensive experience on application development

in C++. While the goal may have been to establish an application development

environment using an object-oriented RAD tool such as Delphi, the organization may opt

to develop the new system in C++ and delay plans to standardize on Delphi. By doing

this, they may save extensive training dollars on this system that may be needed in another

characteristic that is woefully "un-open," such as their network infrastructure.

The result of this analysis should be a single package of openness characteristics

that will form the target system.

F. STEP SIX: IMPLEMENT THE PLAN

The final step in this strategy is to implement the plan. This will not be a trivial

undertaking. At a minimum, the implementation phase will include the following:

• Contracting for hardware, software, and services

• Sequencing analysis (Which characteristic should be completed first?
Hardware? Network? Operating System?)

• Software development (Design, coding, testing, review, prototyping, etc.)

• Possible construction

• Conversion analysis (Will the new system be converted directly, in parallel with
the old system, in phases, or through a pilot?)

• Training and education

45

• Policy modifications.

G. CONCLUSION

The goal of this strategy is to produce systems that can evolve and grow with

changing business requirements. This strategy recognizes that organizations are working

with shrinking IS budgets and provides a commonsense and in-depth approach to

leveraging open systems for the accomplishment of their mission.

46

V. A CASE STUDY: NAVAL POSTGRADUATE SCHOOL

The goal of the strategy discussed in the last chapter is to move from legacy

systems to distributed applications built on open standards, leveraging the desktop, sharing

information, and empowering the user. In this chapter we apply our methodology to NPS.

Before we can apply the strategy, however, we must provide necessary

background information about NPS. The focus of our research is limited to the

accounting system at NPS, which is the target system for the illustration of our strategy.

Because it is the target of our strategy, we must also include necessary background on

DoD accounting principles.

This case study is not meant as a prescription for a specific course of action.

Rather, its purpose is to illustrate how our strategy can be applied to a real world

organization.

A. BACKGROUND-THENAVALPOSTGRADUATESCHOOL

NPS is uniquely postured as a re-invention lab for DoD, having a vast array of

resources available to tackle the hard IT issues that face DoD and the federal government

in general. Part of these unique resources are the top-notch civilian faculty and almost

two thousand highly motivated military students. In addition, NPS has several hundred

PCs, Sun Workstations, and Apple computers, as well as a 1990 Amdahl Mainframe and a

Cray 190 for computational-intensive research. Finally, NPS has a fair amount of

connectivity as well as access to the Internet.

NPS is a major command within DoD, and endeavoring to understand how to

develop systems supporting the Defense Information Infrastructure (DII) provides a rich

area of research at NPS. The DII is "a seamless web of communications networks,

47

computers, software, databases, applications, and other capabilities that meets the

information processing and transport needs of DoD users in peace and in all crises,

conflict, humanitarian support and wartime roles. It includes physical facilities,

applications, network standards and protocols, people and assets [Ref 12]."

The basis for the following background information is the Strategic Plan for

Computing at the Naval Postgraduate School [Ref 13].

The Naval Postgraduate School encounters many of the information technology

issues found in DoD: multiple network operating systems, various levels of cabling,

stovepipe (non-integrated) application programs, and weak infrastructure. The current

focus ofiT at NPS is on enhancing the campus network, analyzing computing resources,

and developing improved administrative systems.

1. The Network

The existing network at NPS falls well short of meeting academic or administrative

needs. The cabling requires a major investment to bring it up to reasonable standards. In

general, additional investments are needed to organize the network, improve information,

and manage the network more reliably and efficiently. According to the Strategic Plan for

Computing, a total network investment of about $4 million spread over two or three years

would bring the School up to an adequate standard. In addition, it further states that four

additional GS billets are needed to support an enhanced network infrastructure.

2. Computing Resources

a. The mainframe

Usage on the Amdahl mainframe has changed substantially over the years.

Most research and instructional computing has migrated to PCs and workstations (as well

48

as to the Cray for processor-intensive work) away from heavy reliance on the mainframe

for computing power. Some mission-critical accounting and registrar applications still

reside on the mainframe. Transaction volumes of these applications are fairly modest, and

could easily be moved to a smaller machine if software conversion were possible.

b. Processor-Intensive computing

This type of computing is used extensively in modeling for meteorology

and oceanography. Such computing will remain an essential element ofNPS' computing

portfolio. The Cray 190 has just been recently installed in a no-cost swap of the previous

Cray. This gives NPS a modem machine that incorporates contemporary technology and

low maintenance costs; it also provides considerable growth potential. With relatively

modest additional upgrades, the 190 should be capable of meeting the School's need for

high-performance computing over the next few years.

3. Administrative Applications

Existing administrative applications require reengineering in order to achieve

minimum efficiency and accuracy. Currently, almost all automated applications were

developed as "stovepipe" applications without considering the strategic implications. The

applications vary greatly in their functionality, quality of implementation, and adherence to

contemporary design practices. NPS continues or plans to install new stovepipe

applications that conflict with enterprise-wide needs. This will result in excessive labor

costs and the inability of managers and staff to obtain accurate and timely information

needed to perform their functions. NPS will not realize the savings of effective data

management because current administrative systems cannot share mission-critical data.

This leads to highly inefficient and costly duplicate data entry and storage.

49

B. BACKGROUND- DOD ACCOUNTING

This section provides general information concerning the accounting requirements

at NPS. The information presented in the following subsections was derived from the text

used in the NayY Comptrollers Course taught at NPS [Ref 14].

1. Official vs. Unofficial Accounting Records

Most activities establish and maintain three sets of accounting records. The official

records, maintained by the activity's Defense Accounting Office (DAO), are the source of

standardized accounting reports to higher authority. The activity comptroller maintains

unofficial records for the entire activity. Finally, each cost center within the activity, such

as an academic department in the case ofNPS, maintains another set of unofficial records

for its own use. The unofficial records in the latter two categories are sometimes referred

to as memorandum records.

Activity memorandum records are normally locally designed and administered by

the Comptroller Department. They are used as a medium to provide near real-time

financial status of the activity and as an independent source of data to reconcile against the

official DAO records. Official DAO records can sometimes be inaccurate and dated due

to input errors, processing delays, and computer down time. Without locally maintained

memorandum records, activity comptrollers would be vulnerable to miscalculation of their

true financial standing and over-obligation of funding authority.

Cost center accounting records (PC spread sheets, manual ledger books/OPT AR

logs) are used by cost centers to provide near real-time financial status and to reconcile

against activity memorandum and official DAO records. Since obligations originate at the

50

cost center leve~ it is crucial that these records be kept current and accurate at all times.

These records are the focus of our case study and the prototype system we designed.

2. Legal Requirements

There are three primary limits of an appropriation: time limits, purpose limits, and

dollar limits. Time limitations (obligational/ expenditure availability periods) are based on

the type of appropriation and determine when all unspent funds "expire" by law. The

other two limits, purpose and dollar limit, are part of United States law as follows:

31 U. S. Code Section 1301(a)- requires that appropriated

funds only be used for programs and purposes for which the

appropriation is made. Currently, there are no reporting

requirements associated with these violations. However,

when a violation has been determined, adjustments must be

recorded. If the adjustment results in an over obligation or

over expenditure of the appropriation of fund charged, a 31

U.S. Code Section 1517 has occurred, and a report of

violation must then be prepared. Commanding Officers

must ensure that violations do not occur by having adequate

controls.

31 U.S. Code Section 1517 - prohibits any officer or

employee from making or authorizing an obligation in

excess of the amount available in an appropriation or

subdivision thereof(operating budget/allotment) or in

excess of the amount permitted by agency regulations. It

also requires that the person who caused the violation may

be subjected to discipline which may include suspension

without pay or removal from office. If action is done

knowingly and willfully, that person may be subject to

criminal penalties of a fine up to $5,000 or imprisonment for

not more than two years, or both.

The U.S. Code also states that Congress can further limit how money is spent in

any way it wishes. Examples of this type oflimit are setting caps on how much money can

be put into Morale Welfare, and Recreation (MWR) activities, limiting the hiring of

51

civilian employees, or limiting how much can be spent in Operation and Maintenance,

Navy (O&M,N).

This information is provided to emphasize the importance of maintaining accurate

accounting records. It further emphasizes the need for real-time balance information and

reporting of discrepancies as early as possible.

3. Job Order Cost System

The Navy's Job Order Cost System is a detailed cost accounting tool used to

facilitate proper recording and classification of costs. Costs are classified and accumulated

by assignment of job order numbers which are related to the various categories into which

costs are classified. Our focus is on labor and project job order numbers.

Job order numbers are structured to provide information as to who has spent funds

and for what purpose. They provide details at the subactivity group, functional category,

subfunctional category, cost account code, and, when necessary, the expense element

level. Figure 9 provides an example of a typical job order number.

-
---.L-E __.JVTvl. Tl234!6 SAG------------- _

FlSFC
CAC
Fiscal Yr ------------
Expense Element ---------.....1
Cost Center/
Sub Cost Center

Figure 9. Breakdown of a job order number from [Ref 14]

Job order numbers (codes) are annotated on all documentation for procurement,

consumption/application and accounting for operating resources at NPS.

52

When assigning job order numbers on documentation, input accuracy is critical.

Input personnel must be competent and they must be motivated to go through the trouble

oflooking up the correct code. Potential accounting code input problems can be

overcome through awareness and proficiency training, supervisor interest and oversight,

and with the help of validation systems.

When dealing with reimbursable funds, it is very important that germane

reimbursable job order numbers be charged for actual work performed/expenses incurred

in connection with that specific reimbursable order. Failure to charge appropriate

reimbursable job order numbers can result in erroneously charging direct funding job order

numbers. The majority of job order numbers utilized in the academic departments are for

reimbursable funds.

C. STRATEGY APPLIED TO NAVAL POSTGRADUATE SCHOOL

Now that we have provided necessary background information on NPS and DoD

accounting, we can begin the illustration of our strategy.

1. Step One: Baseline Analysis

Many systems are currently under review because ofNPS' status as a reinvention

lab. However these studies are not of the type we advocate in this step. Here NPS would

conduct a cursory review of its major systems, concentrating on the openness

infrastructure. This is a macro-level analysis, not requiring extensive resources or time.

The goal of this step is to gain a feel for characteristic trends and systems that may

require migration.

53

2. Step Two: Identify Systems That Require Migration

The memorandum accounting system at NPS is a leading candidate for migration.

The current system actually consists of several disparate legacy systems. These systems

range from manual pen and paper systems to more sophisticated desktop computer

systems such as DBase, and Paradox. However, none of these systems work together.

The current system is highly ineffective, extremely costly to maintain, and incapable of

growth.

The Comptroller's office uses a DBase III+ application developed by a former

employee several years ago. As the business environment changed over the years, this

program was modified with great difficulty. One of the reasons is that the system contains

virtually no documentation. Each of the modifications were performed by other

employees to fix a short-term crisis that would allow the office to continue to function. In

other words, the modifications were not part of a planned and coordinated effort to move

the system into a more productive role.

Besides the poor maintenance record, the system is simply not meeting the needs

of the users that depend on it - the customers at the academic departments. Because of a

poorly designed original system, data entry is extremely time intensive. Every field in the

flat file database requires at least one keystroke by data entry personnel, even though only

10-20% of the original fields are being used. The user interface is antique- a character­

based environment, requiring cryptic key combinations to perform even the simplest task.

Because of this poor design and the recent acquisition ofPublic Works and

Presidio of Monterey labor accounting into the NPS system, the Comptroller's data entry

staff cannot keep up with the work flow. Seven full-time technicians, many working long

54

overtime hours, are dedicated to simply transferring the data from timecards into this

primitive system. This workforce seems excessive to perform its function. However,

consider the potential number of labor charges for a single Public Works employee. For

Public Works to accurately charge customers, they must account for worker labor down

to 30 minute increments. This could result in as many as 160 separate labor records per

pay period for each employee. The office is often weeks to months behind schedule,

despite the workers' hard and long work. This means that users at the department level do

not get accurate representations of their account status. The situation is especially chaotic

at the end of the fiscal year when users attempt to spend exactly what is left in their

accounts, without breaking the law and overspending.

The current system is also plagued by duplication of data entry and redundant

storage. For cost center accounting, each academic department maintains its own set of

data. This data is not shared and must be manually entered on several counts so that all

sub-systems get updated. In addition, the data that is input at the cost center level and

then again at the Comptroller's office- for memorandum accounting- must again be

entered to update the official accounting records. Not only is this practice prone to errors,

it is labor intensive, and therefore extremely costly. Because all ofthese sub-systems act

independently, at any given point the users are presented with conflicting figures on

account balances.

Still another shortfall of the current system is its inflexible reporting capability.

Poor database design inhibits ad hoc queries on specific accounts during a particular time

period. The original system design called for a set of standard reports that, today, are

highly obsolete.

55

In short, the current memorandum accounting system at NP S does not meet the

requirements, is difficult and costly to maintain, and does not take advantage of the

School1s technology infrastructure. What is needed is a modern, more open system that

will evolve with changing business requirements. Because of the labor-intensive nature of

the existing system, and the high costs associated with it, it is quite possible that a new

system would be able to pay for itself in a relatively short period of time.

3. Step Three: System Requirements Analysis

The accounting system is in serious need of migration to a more open environment

that will permit change and evolve with changing business requirements. Before the issue

of openness is addressed, however, NPS must analyze the functional requirements the

system must meet. These requirements are listed in Appendix B. A system that meets

these requirements is not necessarily guaranteed to endure the certain changes that will

challenge NPS and the DoD in the future. What is needed is a detailed analysis from an

openness perspective.

4. Step Four: Openness Analysis

This step of the strategy requires detailed analysis using the Openness Continuum

Model. Each characteristic down the model is analyzed for available alternatives across

the model (from least open alternative to most open alternative).

a. Identify competing alternatives

(1) Applications. As we stated in Chapter II, the applications

characteristic is perhaps the most critical in the model. If developed properly, the

application can take full advantage of the open qualities of the other characteristics. If

developed improperly, the new system will not be capable of its potential openness.

56

Our discussion in the previous step of the strategy showed that the

existing system application is extremely closed. NPS is currently considering several

alternative applications.

FastData is a DOS-based, mid 80's technology product that would

be provided "free of charge" by DoD. It was designed to meet the needs of a specific

organization. It was not developed with a view toward making it the DoD standard; as a

result, it is not adaptable, transportable, or capable of meeting all ofNPS accounting

requirements. The user interface is arcane, it relies on excessive use of keyboard codes,

and would be a step backwards from the existing systems. While this system would be an

improvement in the transfer of data from the Comptroller's office to the official records, it

does nothing to improve the duplication of data from the academic departments to the

Comptroller's office and the inaccuracy of account balances would still be a problem.

The other "free" DoD software package is Electronic Time and

Attendance Certification (ETAC), which is being developed locally (at considerable cost).

This software is focused entirely on labor accounting processing within the Comptroller's

office. It does improve upon the current user interface of the DBASE III application.

However, it is simply replacing one stovepipe system with another more aesthetic

stovepipe system and does not address the problems we have discussed thus far.

NPS is seriously considering commercial off the shelf (COTS)

products to fulfill the needs of this mission-critical system. We suggest that the majority

of these products would not be a step in the right direction. Most offer proprietary and

closed data formats. Most are also generic in nature and would not be capable of

57

performing in the unique environment imposed by government regulation. Some,

however, show promise and deserve a closer look.

One such product is Solomon IV. This product appears to offer a

high level of configurability. In addition, the company claims the data can be stored in a

number of DBMS products, such as Oracle, giving it a high degree of openness. The test

for Solomon IV is the ease with which the data can be accessed and manipulated.

The most open alternative would be a custom built application

using a modern, robust development tool. This approach would allow the School to build

a system that (a) meets exactly its requirements, (b) permits development of a system that

could be scaled upward, and (c) takes advantage of existing infrastructure and available

technology. A commitment to a specific development environment would almost ensure

long-term growth potential.

Because of the importance of the applications characteristic, we

have developed a prototype labor accounting system using Borland Delphi Client/Server

Version 2.0, an object oriented rapid application development tool. This application

embodies the principles of open systems and distributed applications. The package also

comes with a fully integrated set of tools for data management and manipulation,

reporting, and data migration.

Our prototype is an illustration of what a modern, robust

development environment can yield. This application was developed by two part-time

developers in about one month. Although this is only a prototype and addresses only

labor accounting, we believe similar results can be achieved for the other modules

necessary to make this a mission-critical enterprise information system. Interface samples

58

and full source code are included in Appendix C. Database specifications are included in

Appendix D.

Of course, this approach would require an investment in qualified

programmers, administrators, and tools. This expertise does not come cheaply. Many

organizations simply cannot afford to recruit and then retain the necessary personnel. This

is especially true in DoD, where organizations are constrained by hiring and compensation

regulations. In essence, DoD is priced out of the market for professional developers

because of the high demand and superior opportunities that exist in the corporate world.

(2) Hardware. The current system runs predominately on mid­

range PCs. Despite their relatively low processor speeds and memory, in terms of

openness, they are quite adequate for the task. This hardware base permits the target

system to be written for a multitude of platforms. Currently, all systems are capable of

running Windows 3 .x operating system, and most are capable of running more powerful

operating systems in the PC arena. The alternatives that permit a more open system are

merely upgrades to the existing hardware. These upgrades would permit the system to

run more efficiently from Windows 95 and Windows NT. Recommended minimum

requirements for hardware upgrades include at least a 486 microprocessor for both

operating systems and 16 megabytes memory for Windows 95 and 32 megabytes memory

for Windows NT.

(3) Network. The existing system relies very little on the network

characteristic. The Comptroller's office runs its DBase III application over an office LAN.

This is only so that several technicians can work simultaneously. They are not, however,

accessing the same data. The application has been apportioned and each technician works

59

on a separate portion of the workload. As stated before, academic departments use stand­

alone systems and are in no way connected to the Comptroller•s office. The existing

system is essentially a closed system when it comes to the network characteristic. The

target system will certainly rely more heavily on network technology.

Unfortunately, the Schoors existing network infrastructure may be

incapable of supporting the openness requirements of the accounting system. Its problems

are well documented in the NPS document, Strategic Plan for Computing at the Naval

Postgraduate School, which outlines existing network deficiencies in four major areas:

the cable plant, the network operating system, network access, and network management.

This document offers a specific and realistic vision of a reliable and

open network infrastructure that will serve the Schoors mission well into the next century.

The future NPS network is an example of the cooperative environment discussed in

Chapter III. The target accounting system will be the beneficiary of network

infrastructure improvements brought on by the overarching needs of the entire campus.

The system requirements essentially dictate a server-based network

that would permit access from any machine on the campus. The alternatives would come

down to using the existing network infrastructure and patching together fixes to support

the system or waiting for the proposed upgrades to be completed and using it. These two

alternatives essentially mean the same thing for the target system; it will be supported by

the necessary network infrastructure.

(4) Operating System. The existing system runs on several

operating systems. The Comptrollds office uses MS-DOS Version 5.0. The academic

departments run various operating systems from DOS to Windows 3 .x to Macintosh. The

60

use of DOS and the fact that incompatible operating systems are used, puts the existing

system at the low end openness spectrum.

One alternative to a more open operating system would be

standardization on Windows 3.x. While this would be a step in the right direction and

could most likely meet the current requirements, its future as a viable operating system for

mission-critical systems is questionable.

Windows 95 would be even more open. This operating system is

capable of running more modern, 32-bit applications and includes a full TCPIIP stack on

every client. It is fully backward compatible to all Windows 3 .x and DOS applications. It

has yet to gain the full acceptance of corporate America, however, partly because of the

required hardware investment, and partly because of its vendor's (Microsoft's) long-term

commitment to its powerful Windows NT. Microsoft has publicly stated its intention to

migrate Windows 95 to this operating system.

Because of this long-term commitment to Windows NT, and

Microsoft's status as industry leader, we would consider NT to be towards the open end of

the operating system spectrum.

(5) Data. The data characteristic ofthe existing system again falls

toward the closed end of the continuum. Documentation of data structures in all

subsystems is non-existent or very poor at best. Data is not relationally stored and cannot

be accessed from outside different sub-systems. This requires duplication of data entry

several times over.

A more open solution would be to standardize throughout the

School on a COTS desktop database package for data entry. Academic departments

61

could then complete data entry at their worksite, transfer the data to floppy disk, and the

Comptroller's office could simply copy the data to their system. While this would solve

the problem of duplication of effort, it would not solve the problem of giving timely,

accurate, and flexible reporting down at the department level. It also does not take

advantage of the existing infrastructure or the available technology. Finally, it also goes

against the principles of distributed computing discussed in Chapter III.

The existing system and the alternative just discussed are extremely

shortsighted. These systems require the use of data that is maintained elsewhere in the

organization, but because they are stovepipe in nature, they require duplicate copies of the

data that most likely will not be accurate or timely. For example, the accounting system

will require extensive use of data on employees such as personal data and pay information.

This data is and should be maintained by the Human Resources Office.

A more open solution would be for the accounting system to use

the same data that HRO uses. One way to do this is through the use of a distributed

database. Both the Solomon IV and custom-developed application solutions would be

capable of such a data model.

A third, and most open alternative, is the use of the School's

existing industrial-strength relational database management system, Oracle 7, within a

campus-wide federated database. This would permit the exploitation of intranet

technologies discussed in Chapter III. Both Solomon IV and a custom-developed

application solution are capable of this data model.

62

(6) Skills Set. The users of the existing system have the requisite

skills to perform the required tasks. In fact, the users' skills are overburdened by the

manual and tedious nature of the existing system.

That will not be the case if the School migrates to a modern, open,

enterprise system. Regardless of the target system, the School will require investment in

database administration, network, and Windows 95/NT expertise. If a custom-developed

application is chosen, the School should make a long-term commitment to training and

supporting a modern, powerful development environment. Naturally, skills in the tools to

support that environment should also get the same commitment.

(7) Tools. The existing system requires virtually no tools to

perform its mission. A move to a more open system would require tools that would assist

developers in rapidly producing, testing, and deploying workable solutions to the users'

needs. Once it is deployed, these systems will aid in the modification and maintenance of

code and the database. Several products offer all of these tools in an integrated package.

The application development environment chosen would dictate which tools to purchase.

b. Pare Down the Alternatives

Within the applications characteristic, several alternatives can be removed

from further consideration. The two DoD applications, FastData and ET AC, fall well

short in several system requirements (character-based, lack of ad hoc reporting, duplicate

data entry, etc.) and do not meet even the minimal open system goals (open data

standards, client access of data from any platform, etc.). Any COTS product that does not

support open data standards can also be eliminated. To date, the only affordable COTS

alternative is Solomon IV.

63

In the data characteristic, the alternative to use COTS databases and floppy

disks to transfer data can also be eliminated. This solution will not provide a solution to

the requirement of reliable, accurate access of funds status by system users.

c. Define Competing "Packages" of Alternatives

This system's success will be driven by the strength of the applications and

data characteristics. The hardware and operating system characteristics are not critical

because the school's existing computer base is sufficient to support any solution. The

network characteristic is essentially dictated by requirements. The skills set and tools

heavily depend on the applications and data alternatives chosen.

Four packages that deserve further analysis are: Solomon IV with a COTS

DBMS using either a distributed database model or a federated database model, and a

custom-developed application using either a distributed database model or a federated

database model. These packages are represented in Figures 10, 11, 12, and 13.

Characteristic Alternative

Applications Solomon IV

Hardware Existing hardware or upgrades

Network Server-based with or without TCPIIP

Operating System Windows 3.1, Windows 95, or Windows NT

Data Distributed database w/COTS DBMS

Skills Set Existing workforce and either consultants or additional hires

Tools COTS DBMS, Network Management Tools

Figure 10. Package 1

64

Characteristic Alternative

Applications Solomon IV
Hardware Existing hardware or upgrades

Network Server-based with or without TCPIIP

Operating System Windows 3.1, Windows 95, or Windows NT

Data Oracle 7 within a campus-wide federated database

Skills Set Existing workforce and either consultants or additional hires

Tools Application environment integrated tools, Oracle 7 tools,
Network Management Tools

Figure 11. Package 2

Characteristic Alternative

Applications Custom-developed

Hardware Existing hardware or upgrades

Network Server-based with or without TCPIIP
Operating System Windows 3 .1, Windows 95, or Windows NT

Data Distributed database w/COTS DBMS

Skills Set Existing workforce and either consultants or additional hires

Tools COTS DBMS, Network Management Tools

Figure 12. Package 3

Characteristic Alternative

Applications Custom-developed
Hardware Existing hardware or upgrades

Network Server-based with or without TCPIIP
Operating System Windows 3.1, Windows 95, or Windows NT

Data Oracle 7 within a campus-wide federated database

Skills Set Existing workforce and either consultants or additional hires

Tools Application environment integrated tools, Oracle 7 tools,
Network Management Tools

Figure 13. Package 4

5. Step Five: Cost/Benefit Analysis and Selection of Target System

As we have previously stated, a formal cost/benefit analysis is beyond the scope of

this research. We do, however, offer some critical considerations.

65

Either solution using a COTS DBMS in a distributed database scenario would be

short lived. It would not permit exploitation of intranet technologies.

At the present, industry leader Oracle would provide the most open alternative in

the data characteristic. This powerful DBMS should be the cornerstone of all future

enterprise systems at NPS. As we have found out, however, development using this asset

is not trivial. The school must be prepared to make a substantial investment in quality

personnel to administer it.

The Solomon IV solution may cost less in the short term. However, the School

should seriously consider how this solution will fit into its long-term goals. For example,

other administrative systems will require migration to a more open environment in the

future. Solomon IV must be further analyzed to determine how well its data can be

integrated with other enterprise systems.

Any custom-developed solution will require the acquisition of qualified

programmers. The School must consider if it can support a long-term commitment to this

approach. NPS should also realize that this commitment will only require a small team

(two to three) of developers.

6. Step Six: Implement the Plan

The School's network infrastructure should be the top priority. Without this

critical element, any new system's potential openness will never be realized.

At the same time, the school should make a commitment to a standard custom

application development environment. This may require another independent cost/benefit

analysis to determine the best tool to meet the School's needs. If and when a commitment

is made, it should come in the form of a qualified core of programmers and a training plan

66

to retain them. Their role would include the development and maintenance of new

enterprise systems and support to departments that develop in this standard environment.

The target accounting system should initially be developed so that it can be run

over the existing network infrastructure. It should provide the flexibility to easily scale up

to the more modem network the School envisions. With the properly chosen development

environment, this should not be a major dilemma.

Although we have not discussed organizational issues to this point, we reiterate

that these problems will be the most difficult to overcome. It will be important to sell the

benefits of this paradigm shift, educate and train personnel, and include them in the

development process.

D. CONCLUSIONS

The goal of this strategy is to include the notion of open systems across the entire

range of a system's development. By doing so, an organization is able to deploy systems

that will better cope with changing business requirements and provide lasting residual

value.

67

68

VI. CONCLUSIONS!RECOMMENDA TIONS

A. SUMMARY

Traditionally, organizations have dealt with changing business requirements by

building a stovepipe system that addresses only the immediate problem. This practice of

deploying legacy systems is no longer a viable solution in today's fiscally constrained

business environment. This is especially true in DoD, which faces a 20-30% budget

reduction over the next five years.

The drastic corporate downsizing of the past decade has pushed decision making

away from centralized control. A flatter, leaner organizational structure is the norm for

today and the immediate future. This has led to the same decentralized structure in the IS

world as well.

In the late '80s and early '90s, client/server was the preferred method of

downsizing information systems. Large mainframe applications were broken into separate

applications and moved onto PCs . This migration provided many benefits such as shorter

development cycles, improved Ul, more efficient use of computing power, and flexibility.

However, organizations soon discovered the hidden costs and difficulty in this approach.

Client/server without open standards required complex middleware which proved costly to

implement and manage.

The current movement toward open systems makes client/server computing easier

to accomplish. Better yet, it facilitates the use of distributed systems and modern

technologies. Open standards reduce an information system to a set of commodity

components that are better suited for replacement when they become obsolete. Paul

Strassmann refers to this approach as a "snap-in, snap-out, disposable type of economy,"

69

which leads to the preservation of an organization's long-term assets - data and software

[Ref 3].

However, the prospect of developing an open system is a daunting task This

research provides a methodology to tackle this effort. We propose a bottom-up review of

all characteristics of an open system as defined by the organization. Through use of the

Openness Continuum Model, organizations define competing packages of characteristics.

Cost/benefit analysis of these packages will then lead to the system that best meets the

desired degree of openness.

In conjunction with this research, we developed a prototype labor accounting

program. Building this application provided valuable lessons and insight into development

challenges for enterprise systems.

B. OVERVIEW OF PROTOTYPE APPLICATION

1. What Is it?

The prototype labor accounting system we developed, D-Books, is a 32-bit, multi-

threaded Windows 95/NT application. It also demonstrates the use of intranet

technologies for universal data access in a mission-critical application. We developed it

using Delphi version 2.0, an object-oriented rapid application development tool from

Borland.

2. What Can it Do?

D-Books provides the following functionality:

• Add/Edit/Delete of employees, departments, pay history, job orders, funds, and
labor records

• Compliance with essential labor accounting business rules as determined by an
in-depth requirements analysis

70

• Data integrity through two-phased commit transaction processing

• Proof of concept reporting capability

• Scalable from the department level to the Comptroller's office

3. How Is it Open?

D-Books was designed using Local InterBase Server and then ported to Oracle.

This facilitates open data access. It also capitalizes on the School's large investment in

and commitment to Oracle.

Though D-Books is limited to Windows 95 and Windows NT, portions of the

application were ported to an intranet platform. Intranet D-Books was designed using

HREF Tool's WebHub technology and Microsoft's Internet Information Server. This

effectively permits enterprise-wide access to the data.

D-Books implements a logical three-tier architecture. The three tiers are the

database server, the business logic, and the client UI. The business logic exists on the

client but is logically separated from the UI code in the form of Delphi's new data module

component (See Figure 14.). The use of this powerful component enabled us to easily

port this application to its intranet implementation. We simply replaced the UI code with

HTML. No modification ofbusiness logic was necessary. This is critical as it will enable

D-Books to scale upwards as application server technology matures.

71

qryTimecard qryLaborRec qryHoursType qryEmpPayHist qryEmployee stpGetTimecardiD

dtsTimecard dtsLaborRec dtsHourType dtsEmpPayHist dtsEmployee

Figure 14. ExampleD-Books Data Module

4. Lessons Learned

a. Small Development Teams Using Modern Tools Can Achieve
Extraordinary Productivity

D-Books was developed in about two man-months using Delphi and

WebHub. Although this application is only a prototype and only fulfills a portion of the

School's needs, we strongly believe that this project can be completed to production-

quality standards in less than ten man-months by a team of two to three competent

developers with only a familiarity ofDelphi and fundamental skills in programming and

database design.

b. A Sound Database Design Is Essential to Application Success

We originally developed D-Books using Delphi version 1.0. Before setting

out to port our application to a 32-bit architecture, we resolved to ensure our data model

was sound because we discovered that data changes were increasingly more difficult to

deal with the further along in development we were. By taking the time up front to ensure

we had a 90% solution, our development effort was infinitely more productive.

72

c. Early Adoption of Coding Standards Is Key to Effective
Teamwork

Our first attempt at D-Books was hampered by confusion about

naming of components and variables. Our code was difficult to read, especially that which

was written by the other partner. At the outset of our second attempt, we developed a

coding standard that outlined coding format and naming of components and variables. As

a result, our code was easier to read, and, more importantly, we could pick up where our

partner left off with no loss in efficiency.

C. RECOMMENDATIONS

1. Investment in the Campus Network Should Be the School's Top
Infrastructure Priority

Successful deployment of modern, open systems is heavily dependent on the

network infrastructure. Without it, the School will never be capable of capitalize on

current technologies that leverage the network to permit open data access and sharing.

We recommend wholesale adoption of the network upgrades as outlined in the Strategic

Planfor Computing at NPS.

2. Further Analyze Solomon IV as a Viable Solution

The Solomon IV solution shows great promise. However, this product and the

vendor have no experience with government accounting. The performance of this product

has yet to be proven. We recommend careful analysis into all costs associated with this

solution. Potential hidden costs must be investigated prior to its adoption. The vendor

has yet to work out licensing arrangements with Oracle. In light of Oracle's expensive

history, this factor cannot be overlooked. Because the product will require extensive

configuration to meet the School's needs, this solution will require a considerable

73

investment in consultation and support from the vendor. Finally, this solution may require

upgrades in the School's existing hardware base.

3. Investigate the Requirements of Establishing an In-House Custom
Development Environment

We have previously discussed the difficulties with custom application

development. However, our prototype application also demonstrates the extraordinary

results that can be achieved with a small, skilled development team using modem tools.

The School should investigate if this is a feasible solution. We submit that the School

would be well served to assemble a core team of three personnel: an application

developer with experience in a modem tool such as Delphi, a database administrator with

experience in Oracle, and a web master to manage the intranet.

D. PROSPECTIVE AREAS OF RESEARCH

1. Cost/Benefit Analysis of Solomon IV

This is an excellent opportunity for a thesis student. This research should answer

the following questions:

• In light of Solomon IV s lack of experience in government accounting, can the
package meet fundamental requirements?

• Can the data be exported to Oracle 7 as the vendors purport?

• Does the documentation of the data model facilitate easy access to the data?

• What are all of the costs (licensing, consultation fees, required hardware
upgrades, etc.) associated with this approach?

• Would it enable the School to capitalize on intranet technologies?

74

2. Organizational Issues

Evaluation of any new enterprise system will bring with it organizational

challenges. These challenges are most likely to be more difficult and more costly than the

development of the system itself Each package will produce a unique set of

organizational issues. Analysis of them will provide a rich source of research.

3. Continuation of Enterprise Accounting System Development

While the School may not be able to assemble the necessary staff to complete D­

Books, this would be an excellent opportunity for a thesis student and it would greatly

benefit the School. This research could investigate techniques that would reduce life-cycle

support. Perhaps through this research the School would obtain a mission-critical system

that requires considerably less maintenance.

75

76

LIST OF REFERENCES

I. Gartner Group conference presentation, Client/Server Computing: Where Does it
Lead?, Gartner Group, 1994.

2. Brodie, Michael L., Migrating Legacy Systems, Morgan Kaufinann Publishers, Inc.,
1995.

3. Strassmann, Paul A., Change Management Through Open Systems,
http://www. strassmann. com/pubs/ open-systems.html, 1996.

4. Institute of Electrical and Electronic Engineers (IEEE), Draft Guide for Information
Technology -Portable Operating System Interface (POSIX) - The Open Systems
Environment, P 1003. OlD 16, Portable Applications Standards Committee of the IEEE
Computer Society, August 1993.

5. Sprague Jr., Ralph H. and McNurlin, Barbara C., Information Systems Management in
Practice, Prentice Hall, 1993.

6. Orfali, Robert, Harkley, Dan, and Edwards, Jeri, Essential Client/Server Survival
Guide, John Wiley & Sons, Inc., 1994.

7. Berson, Alex. Client/server Architecture, McGraw-Hill, 1992.

8. Sarna, David E., and Febish, George J., Client/Server Scalability Myth,
DATAMATION, September 15, 1994.

9. Hicks, J., D., N-tier Client/Server Architecture, http://www.vsol.com/jdart.html, 1996.

10. Strom, David, Creating Private Intranets: Challenges and Prospects for IS,
http://www.strom.com/pubwork/intranetp.html, November 16, 1995.

11. Derfler, Frank J., "The Intranet Platform: A Universal Client?," PC Magazine,
April23, 1996.

12. Defense Information Infrastructure, http://dubhe.cc.nps.navy.mil/-interop/dii.html,
August 10, 1996.

13. Emery, James, Strategic Plan for Computing at the Naval Postgraduate School,
unpublished report, Naval Postgraduate School, Monterey, California, November 2,
1995.

14. Practical Comptrollership, Naval Postgraduate School, Monterey, California,
September 1994.

77

78

API
CASE/I-CASE
CGI
CORBA
COTS
CPU
DBMS
DII
DoD
ETAC
FTP
GUIIUI
HTML
110
IDAPI
IEEE
IS
IS API
ISO
JON
LAN
NPS
ODBC
OLE
OSI
PC
RAD
RAM
SMTP
SQL
TCPIIP
TKAL
TP Monitor
WAN
www

APPENDIX A. ACRONYMS AND TERMS

Application Programming Interface
Computer Aided Software Engineering/Integrated-CASE
Common Gateway Interface
Common Object Request Broker Architecture
Commercial Off The Shelf
Central Processing Unit
Database Management System
Defense Information Infrastructure
Department of Defense
Electronic Time and Attendance Certification
File Transfer Protocol
Graphical User Interface/User Interface
Hypertext Markup Language
Input/Output
Integrated Database Application Programming Interface
Institute of Electrical and Electronics Engineers
Information System(s)
Internet Server Application Programming Interface
International Standards Organization
Job Order Number
Local Area Network
Naval Postgraduate School
Open Database Connectivity
Object Linking and Embedding
Open Systems Interconnection
Personal Computer
Rapid Application Development
Random Access Memory
Simple Mail Transport Protocol
Structured Query Language
Transport Control Protocol/Internet Protocol
Time Keeping and Labor
Transaction Processing Monitor
Wide Area Network
World Wide Web

79

80

APPENDIX B. MEMORANDUM ACCOUNTING SYSTEM REQUIREMENTS

Item Number REQUIREMENT DESCRIPTION
1 Must meet all legal and government accounting requirements.
2 Must utilize an open data system where accounting information is stored

so that other applications can be quickly developed as requirements
change.

3 Provide core relational data model to support command-wide accounting
requirements.

4 Provide necessary security for safeguarding information :from outside
intrusion or to prevent unauthorized access :from within NPS.

5 Support existing infrastructure for central system:

• Network connections and protocols

• Database Server
6 Ability to conduct spot checks on data entered at departmental level.
7 Ability to generate reports required by Mezzanine.
8 Ability to update central database as funding allocation changes.
9 Ability to easily inform departmental accounting technicians of changes.
10 Ability to process timecards :from academic departments automatically.
11 Automatic exception reporting for any business rule violations, i.e.

obligating over funding levels.
12 Provide department-specific data model linked to central data model.
13 Control access to data within the academic department.
14 Provide real time reporting to project managers.
15 Process timecards automatically.
16 Provide audits of project expenditures.
17 Ability to quickly enter information on all accounts.
18 Ability to check data entry automatically for business rule violation.
19 Ability to modify software so that new business rules can be added.
20 Ability to provide paper reports required by academic chairman/staff
21 Ability to make corrections easily.
22 Ability to submit timecards to comptroller electronically.
23 Ability to perform drill down queries on account information based on

account, accounting period, and types of items charged.
24 Ability to access accounting information for accounts responsible for

independent of geographical location.
25 Accurate, timely, reporting.
26 Ability to submit time card information electronically to department

accounting personnel.
27 Client access must be platform independent.
28 Track all types of accounts-Reimbursable Research, Direct Research,

Direct Teach
29 Provide security to the field level.

81

30 Ability to manage security from multiple levels-i.e. campus wide or

with an academic department.

31 Provide electronic signature on all submissions:

• From end-user to accounting technician .

• From accounting technician to academic department chairman

• From academic department chairman to Comptroller .

32 Comply with Privacy Act.

33 Use electronic reporting with drill down query capability.

34 Com_Q].y with DoD civilian pay manual.

35 Provide interface to Human Resource Services to ensure no changes to

civilian pay and grade data without the authorization from the SF50B.

82

APPENDIX C. ACCOUNTING APPLICATION FORMS AND SOURCE CODE

File Name: DBooks32.dpr
{***
D-Books 0.1 Prototype; Naval Postgraduate School Begun 07111/96
Written by LT Rob Cameron and CPT Ken Carrick

Module: Program file
Notes: This program requires the following non-standard

Delphi 2.0 components:
TfslformSizeLimit,
TCalendarDialog,
TISGMap~
TSendKey.

***}
program DBooks32;

uses
Forms,
main in 'main. pas' { frmMain},
ChildEmployee in 'ChildEmployee. pas' { frmEmployee},
About in 'About. pas' {frmAboutBox},
dmdDbooks in 'dmdDbooks. pas' { dmlDBooks: TDataModule},
dmdProjects in 'dmdProjects. pas' { dmlProjects: TDataModule},
dmdTimecards in 'dmdTimecards. pas' { dmlTimecards: TDataModule},
dmdJobOrder in 'dmdJobOrder.pas' { dmlJobOrders: TDataModule},
dmdContracts in 'dmdContracts. pas' { dmlContracts: TDataModule},
dmdOPTARin 'dmdOPTAR.pas' {dmlOPTAR: TDataModule},
dmdTravel in 'dmdTravel.pas' {dmlTravel: TDataModule},
dmdEmployees in 'dmdEmployees. pas' { dmlEmployees: TDataModule},
login in 'login. pas' { fhnLogin},
dmdFund in 'dmdFund. pas' { dmlFund: TDataModule},
dmdDepartment in 'dmdDepartment. pas' { dmlDepartments: TDataModule},
Child TimeCard in 'Child TimeCard. pas' {fun TimeCard},
dmdEmpContactAndLocation in 'dmdEmpContactAndLocation. pas'

{ dmlEMPContactAndLocation: TDataModule},
ChildDepartment in 'ChildDepartment. pas' { frmDepartment},
ChildEmpPayHist in 'ChildEmpPayHist. pas' { frmEmpPayHist},
dmdEmpPayHist in 'dmdEmpPayHist. pas' { dmlEmpPayHist: TDataModule},
Splash in 'Splash. pas' {frmSplash},
qryThread in 'qryThread.pas';

{$R *.RES}

begin

83

Application. Title:= 'Dbooks32';
Application. CreateForm(TfrmMain, frmMain);
Application.CreateForm(TdmlDBooks, dmlDBooks);
Application. CreateF orm(T dmlProjects, dmlProjects);
Application. CreateF orm(T dmlTimecards, dmlTimecards);
Application. CreateF orm(T dmU obOrders, dmlJobOrders);
Application. CreateF orm(T dmlContracts, dmlContracts);
Application. CreateForm(TdmlOPT AR, dmlOPT AR);
Application. CreateF orm(T dmlTravel, dmlTravel);
Application. CreateForm(TdmlEmpPayHist, dmlEmpPayHist);
Application. CreateForm(TdmlEmployees, dmlEmployees);
Application. CreateF orm(TdmlFund, dmlFund);
Application. CreateF orm(T dmlDepartments, dmlDepartments);
Application. CreateF orm(TdmlEMPContactAndLocation,

dmlEMPContactAndLocation);
Application.Run ;

end.

84

File Name: main. pas
{***~***************

D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11/96

Written by LT Rob Cameron and CPT Ken Carrick

Module: Main l\IDI Frame Form
Notes: Child form menus merge into the main form menu.

Defaults for quarter screen form: height:= 251 width:= 388
***}
unit Main;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, Menus,
StdCtrls, Dialogs, Buttons, Messages, ExtCtrls, ComCtrls, SendKey,
Frmszlmt, Quickrep;

const
strVERSION_NUMBER = '0.5 Prototype';
strBUILD NUMBER = '3' ·

- '

{Delcare an enumerated type used to indicate which type of child form is

being created or manipulated. It is delcared here for visibility
reasons.}

85

type TEnumChildFrm = (enumBudgetPage, enumTimecard,enumJobOrder,

enumContract, enumOPT AR,enumTravel,enumEmployee ,enumDepartment,

enumEmpPayHist, enumFund) ;

type
TfrmMain = class(TForm)

opdMain: TOpenDialog;
SpeedPanel: TPanel;
spbCut: TSpeedButton;
spbCopy: TSpeedButton;
spbPaste: TSpeedButton;
spbExit: TSpeedButton;
StatusBar: TStatusBar;
mnuDBooks: TMainMenu;
mniSystemAs: TMenultem;
mniSLoginAl: TMenultem;
mniSLogoutAo: TMenultem;
Nl: TMenultem;
mniSExitAx: TMenultem;
mniNavigateAn: TMenultem;
mniVBudgetPageAb: TMenultem;
mniVTimecardsAt: TMenultem;
mniVJobOrdersAj: TMenultem;
mniVContractsAc: TMenultem;
mniVOPTARAo: TMenultem;
mniVTravelAr: TMenultem;
mniVEmployeesAe: TMenultem;
mniVDepartmentsAd: TMenultem;
mniEditAe: TMenultem;
Cutltem: TMenultem;
Copyltem: TMenultem;
Pasteltem: TMenultem;
mniReportsAr: TMenultem;
mniWindowAw: TMenultem;
mniWCascadeAc: TMenultem;
mniWTileAt: TMenultem;
mniW ArrangelconsAa: TMenultem;
mniWMinimizeAIIAm: TMenultem;

· mniHelpAh: TMenultem;
mniHAboutAa: TMenultem;
skyDBooks32: TSendKey;
fslF ormMain: TfslF ormSizeLimit;
mniVOptionsAi: TMenultem;
mniDividerV: TMenultem;
mniVFundsAf: TMenultem;

86

mniRProjectLaborAp: TMenultem;
mniREmployeeListAe: TMenultem;
procedure FormCreate(Sender: TObject);
procedure mniCascadeAcClick(Sender: TObject);
procedure UpdateMenultems(Sender: TObject);
procedure mniTileAtClick(Sender: TObject);
procedure mniArrangelconsAaClick(Sender: TObject);
procedure mniExitAxClick(Sender: TObject);
procedure CutltemClick(Sender: TObject);
procedure CopyltemClick(Sender: TObject);
procedure PasteltemClick(Sender: TObject);
procedure mniMinimizeAllAmClick(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure mniSLoginAIClick(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure mniVDepartmentsAdClick(Sender: TObject);
procedure mniVEmployeesAeClick(Sender: TObject);
procedure mniVTravelArClick(Sender: TObject);
procedure mniVOPT ARAoClick(Sender: TObject);
procedure mniVContractsAcClick(Sender: TObject);
procedure mniVJobOrdersAjClick(Sender: TObject);
procedure mniVTimecardsAtClick(Sender: TObject);
procedure mniSLogoutAoClick(Sender: TObject);
procedure mniVBudgetPageAbClick(Sender: TObject);
procedure mniVFundsAfClick(Sender: TObject);
procedure mniHAboutAaClick(Sender: TObject);
procedure mniSExitAxClick(Sender: TObject);
procedure mniREmployeeListAeClick(Sender: TObject);
procedure mniRProjectLaborApClick(Sender: TObject);

private
{ Private declarations }
aReport : TQuickReport ;
procedure ShowHint(Sender: TObject);
function OKToCreate(const DesiredChild : TEnumChildFrm) : boolean ;

public
{ Public declarations }
procedure CreateMDIChild(ChildType : TEnumChildFrm);
function GetMDIChild(const DesiredChild: TEnumChildFrm): TForm;

end;

var
frmMain: TfrmMain;

implementation

87

{$R *.DFM}

uses About, dmdDbooks, ChildEmployee, ChildDepartment, login,
dmdEmpPayHist, ChildEmpPayHist, Splash, ChildFund, ChildTimecard,
ChildJobOrder, ChildBudgetPage, ReportEmployeeList, dmdReports,
ReportProjectDetails;

{Returns the desired form, if it is showing }
function TfrmMain. GetMDIChild(const Desired Child : TEnumChildfrm) :
TForm;
var
i: integer;

begin
result :=nil ;
case DesiredChild of

enumBudgetPage:begin
for i := 0 to l\IDIChildCount - 1 do
begin {walk l\IDI children array }

ifl\IDIChildren[i] is
TfrmBudgetPage then {if one exists then }
begin {make the current one active}

Result := :MDIChildren[i] ;
end;

end;
end;

enumTimecard: begin
fori := 0 to l\IDIChildCount - 1 do
begin

ifl\IDIChildren[i] is TfrmTimecard then
begin

Result := :MDIChildren[i] ;
end;

end;
end;

enumJobOrder: begin
fori := 0 to :MDIChildCount - 1 do
begin

if:MDIChildren[i] is TfrmJobOrder then
begin

Result := :MDIChildren[i] ;
end;

end;
end;

enumContract : begin

88

(* for i := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmContract then
begin

Result := MDIChildren[i] ;
end;

end; *)
end;

enumOPT AR : begin
(* for i := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmOPT AR then
begin

Result := MDIChildren[i] ;
end;

end;*)
end;

enumTravel : begin
(* fori := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmTravel then
begin

Result := MDIChildren[i] ;
end;

end;*)
end;

enumEmployee : begin
fori:= 0 to MDIChildCount- 1 do
begin

ifMDIChildren[i] is TfrmEmployee then
begin

Result := MDIChildren[i] ;
end;

end;
end;

enumDepartment: begin
fori := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmDepartment then
begin

Result := MDIChildren[i] ;
end;

end;
end;

enumEmpPayHist : begin

89

fori := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmEmpPayHist then
begin

Result:= MDIChildren[i];
end;

end;
end;

enumFund : begin

end;
end;

for i := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmFund then
begin

Result := MDIChildren[i] ;
end;

end;
end;

function TfrmMain.OkToCreate(const DesiredChild: TEnumChildFrm):
Boolean;
var
i: integer;

begin
Result := true ; {default variable name for the return value}
case Desired Child of {set to true for default}

enumBudgetPage : begin
fori := 0 to MDIChildCount - 1 do
begin {walk MDI children array}

ifMDIChildren[i] is TfrmBudgetPage then
begin {if one exists then }

Result := false ; {return false }
MDIChildren[i].BringToFront ;

end;
end;

end;
· enumTimecard : begin

for i := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmTimecard then
begin

Result := false ;
MDIChildren[i].BringToFront ;

90

end;
end;

end;
enumJobOrder : begin

fori:= 0 to MDIChildCount- 1 do
begin

ifMDIChildren[i] is TfrmJobOrder then
begin

Result:= false;
MDIChildren[i].BringToFront;

end;
end;

end;
enumContract : begin

(*fori:= 0 to MDIChildCount- 1 do
begin

ifMDIChildren[i] is TfrmContract then
begin

Result := false ;
MDIChildren[i].BringToFront ;

end;
end; *)

end;
enumOPTAR :begin

(* for i := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmOPTAR then
begin

Result :=false;
MDIChildren[i].BringToFront ;

end;
end;*)

end;
enumTravel : begin

(* fori := 0 to MDIChildCount - 1 do
begin

ifMDIChildren[i] is TfrmContract then
begin

Result := false ;
MDIChildren[i].BringToFront ;

end;
end·*) ' /

end;
enumEmployee : begin

for i := 0 to MDIChildCount - 1 do

91

begin
ifMDIChildren[i] is TfrmEmployee then
begin

Result:= false;
MDIChildren[i].BringToFront;

end;
end;

end;
enumDepartment : begin

fori:= 0 to MDIChildCount- 1 do
begin

ifMDIChildren[i] is TfrmDepartment then
begin

Result := false ;
MDIChildren[i].BringToFront ;

end;
end;

end;
enunruEmpPayffist : begin

fori := 0 to MDIChildCount- 1 do
begin

ifMDIChildren[i] is TfrmEmpPayffist then
begin

Result :=false;
MDIChildren[i].BringToFront ;

end;
end;

end;
enumFund : begin

end;
end;

fori:= 0 to MDIChildCount- 1 do
begin

ifMDIChildren[i] is TfrmFund then
begin

Result :=false;
MDIChildren[i].BringToFront ;

end;
end;

end;

procedure TfrmMain.F ormCreate(Sender: TObject);
begin

Application. Onffint := Show flint;

92

(*Screen. OnActiveF ormChange := UpdateMenultems; *)
ShortDateFormat := 1mm/dd/yyyy1

;

Height := 599 ;
Width := 772 ;

end;

procedure TfrmMain.ShowHint(Sender: TObject);
begin

StatusBar.SimpleText := Application.Hint;
end;

procedure TfrmMain.Createl\IDIChild(ChildType: TEnumChildFrm);
{ create a new l\1D I child window }

var
ChildEmployee : TfrmEmployee ;
ChildDepartment : TfrmDepartment ;
ChildEmpPayHist : TfrmEmpPayHist ;
ChildTimecard : Tfrm.Timecard ;
ChildFund : Tfrm.Fund ;
ChildJobOrder: Tfrm.JobOrder;
ChildBudgetPage : TfrmBudgetPage ;

begin
{ create a new l\IDI child window }
case ChildType of

enumBudgetPage : begin
ifOKToCreate(ChildType) then
begin

try
ChildBudgetPage:=
TfrmBudgetPage. Create(Application);

except
on ExceptionRaised : Exception do
begin

messagedlg('Error1+1111+
ExceptionRaised.Message+
1111 mtError [mbOK] O)·

' ' ' '
end;

end;
end;

end;
enumTimecard: begin

ifOKToCreate(ChildType) then
begin
try

93

ChildTimecard :=
TfrmTimecard. Create(Application);

except
on ExceptionRaised : Exception do
begin

messagedlg('Error'+'"'+
ExceptionRaised.Message+'"',mtError
,[mbOK],O);

end;
end;

end;
end;

enumJobOrder : begin
ifOKToCreate(ChildType) then

begin
try

ChildJobOrder :=
TfrmJ obOrder. Create(Application);

except
on ExceptionRaised : Exception do
begin

messagedlg('Error'+'"'+
ExceptionRaised.Message+'"',mtError
,[mbOK],O);

end;
end;

end;
end;

enumContract : begin
(* ifOKToCreate(ChildType) then
begin
try

ChildContract :=
TfrmContract. Create(Application) ;

except
on ExceptionRaised : Exception do
begin

messagedlg('Error'+'"'+
ExceptionRaised.Message+'"',mtError
,[mbOK],O);

end;
end;
end; *)

end;
enumOPT AR : begin

94

(* ifOKToCreate(ChildType) then
begin

try
ChildOPTAR := TfrmOPTAR.Create(Application);

except
on ExceptionRaised : Exception do
begin

messagedlg('Error'+'"'+
ExceptionRaised.Message+'"',mtError
,[mbOK],O);

end;
end;

end; *)
end;

enumTravel : begin
(* ifOKToCreate(ChildType) then
begin

try
ChildTravel := TfrmTravel.Create(Application);

except
on ExceptionRaised : Exception do
begin

messagedlg('Error'+'"'+
ExceptionRaised.Message+'"',mtError
,[mbOK],O);

end;
end;

end; *)
end;

enumEmployee : begin
ifOKToCreate(ChildType) then
begin

try
ChildEmployee
TfrmEmployee. Create(Application) ;

except
on ExceptionRaised : Exception do
begin

messagedlg('Unable to Create Employee form.'+
'Error: '+'"'+ExceptionRaised.Message+'"',
mtError,[mbOK],O);

end;
end;

end;
end;

95

enumDepartment : begin
if OKT oCreate(Child Type) then
begin

try
ChildDepartment -
TfrmDepartment. Create(Application) ;

except
on ExceptionRaised : Exception do
begin

messagedlg('Unable to Create Employee form. '+
'Error: '+""+ExceptionRaised.Message+"",
mtError,[mbOK],O);

end;
end;

end;
end;

enumEmpPayHist : begin
ifOKToCreate(ChildType) then
begin

try
ChildEmpPayHist :=
TfrmEmpPayHist. Create(Application) ;

except
on ExceptionRaised : Exception do
begin

messagedlg('Unable to Create Employee form.'+
'Error: '+"''+ExceptionRaised.Message+"'',
mtError, [mbOK], 0);

end;
end;

end;
end;

enumFund : begin
ifOKToCreate(ChildType) then
begin

try
ChildFund := Tfrm.Fund.Create(Application);

except
on ExceptionRaised : Exception do
begin

messagedlg('Unable to Create Employee form.'+
'Error: '+'"'+ExceptionRaised.Message+'"',
mtError, [mbOK], 0);

end;
end;

96

end;
end;

end;
end;

procedure TfrmMain.mniExitAxClick(Sender: TObject);

begin
Close;

end;

procedure TfrmMain.CutltemClick(Sender: TObject);

begin
{cut selection to clipboard}

end;

procedure TfrmMain.CopyltemClick(Sender: TObject);

begin
{copy selection to clipboard}

end;

procedure TfrmMain.PasteltemClick(Sender: TObject);

begin
{paste from clipboard}

end;

procedure TfrmMain.mniCascadeAcClick(Sender: TObject);

begin
Cascade;

end;

procedure TfrmMain.mniTileAtClick(Sender: TObject);
begin

Tile;
end;

procedure TfrmMain.mniArrangelconsAaClick(Sender: TObject);

begin
Arrangelcons;

end;

procedure TfrmMain.mniMinimizeAllAmClick(Sender: TObject);

var
I: Integer;

begin
{Must be done backwards through the MDIChildren array}

97

for I := :MDIChildCount - 1 downto 0 do
:MDIChildren[I].WindowState := wsMinimized;

end;

procedure TfrmMain.UpdateMenultems(Sender: TObject);

begin

'
end;

procedure TfrmMain.FormDestroy(Sender: TObject);

begin
Screen.OnActiveFormChange :=nil;

end;

procedure TfrmMain.mniSLoginAlClick(Sender: TObject);

begin
with dmlDbooks do

try {Connect to database, triggers password box}

dbsDBooks. Connected := true ;
if dbsDBooks.Connected then {Ensure proper connection exists}

OpenDBooksDM ; {Open the lookup tables in the datamodel.
This is why it takes some time to log in.}

except
on ExceptionRaised : Exception do

messagedlg('Unable to Open database. Error: '+""+
ExceptionRaised.Message+'"',mtError,[mbOK],O);

end;
end;

procedure TfrmMain.F ormShow(Sender: TObject);

var
wrdModalResult : word ;

begin
try

frmLogin := TfrmLogin.Create(Application);
wrdModalResult := frmLogin.ShowModal
ifwrdModalResult = mrOK then
begin

try
frmSplash := TfrmSplash.Create(Application);

try
frmSplash. Show ;
frmSPlash.Update;
with dmlDBooks do
begin

98

dbsDbooks.Connected :=false;
dbsDBooks.params.Clear;
dbsDBooks.Params.Add('USER NAME='+
frmLogin.edtUserName.Text);
dbsDBooks.Params.Add('PASSWORD='+
frmLogin.edtPassword.Text);
OpenDBooksDM ;

end;
except

on E : exception do
if E is EDatabaseError then

messagedlg('Error Connecting to database. Please contanct'+
' the DBA.'+# 13+'ERR.OR: '+E.message,mtError, [mbOK], 0) ;

else
messagedlg('Error creating form. Please contact '+
'technical support.',mtError,[mbOK],O);

end;
finally

frmSplash.Free ;
end;

end
else
begin

ifwrdModalResult = mrAbort then
messagedlg('Logon failure. Please contact the DBA.',
mtError, [mbOK],O);
Close;

end;
finally

frmLogin.Free ;
end;

end;

procedure TfrmMain.mniVDepartmentsAdClick(Sender: TObject);

var
DesiredChildFrm: TEnumChildFrm; {User defined enum type}

begin
if dmlDbooks. dbsDbooks. Connected then

begin
DesiredChildFrm := enumDepartment ;
try

CreateMDIChild(DesiredChildFrm);
except

on ExceptionRaised : Exception do
begin

99

messagedlg('Error Could not create Department Form'+'"'+
ExceptionRaised.Message+"'',mtError,[mbOK], 0);

end;
end;

end
else
begin

Ifmessagedlg('Not Logged in Database--Click on "OK" to Login',
mtConfirmation,[mbOK,mbCancel],O) = mrOK then

begin
mniSLoginAlClick(Sender);
mniVDepartmentsAdClick(Sender);

end;
end;

end;

procedure TfrmMain.mniVEmployeesAeClick(Sender: TObject);

var
DesiredChildFrm: TEnumChildFrm; {User defined enum type}

begin
if dmlDbooks.dbsDbooks. Connected then

begin
DesiredChildFrm := enumEmployee ;

try
CreateMD IChild(DesiredChildFrm);

except
on ExceptionRaised : Exception do
begin

messagedlg('Error Could not create Employee Form'+'"'+
ExceptionRaised.Message+"",mtError,[mbOK],O);

end;
end;

end
else
begin

Ifmessagedlg('Not Logged in Database--Click on "OK" to Login',
mtConfirmation,[mbOK,mbCancel],O) = mrOK then

begin
· mniSLoginAlClick(Sender);

mniVEmployeesAeClick(Sender);
end;

end;

end;

100

procedure TfrmMain.mniVTravelArClick(Sender: TObject);
var

DesiredChildFrm : TEnumChildFrm ; {User defined enum type }
begin
if dmlDbooks.dbsDbooks.Connected then

begin
DesiredChildFrm := enumTravel ;
try

Createl\.IDIChild(DesiredChildFrm);
except

on ExceptionRaised : Exception do
begin

messagedlg('Error Could not create Travel Form'+""+
ExceptionRaised.Message+"'',mtError,[mbOK], 0);

end;
end;

end
else
begin

Ifmessagedlg('Not Logged in Database--Click on "OK" to Login',
mtConfirmation,[mbOK,mbCancel],O) = mrOK then
begin

mniSLoginAIClick(Sender);
mniVTravelArClick(Sender);

end;
end;

end;

procedure TfrmMain.mniVOPT ARAoClick(Sender: TObject);
var

DesiredChildFrm : TEnumChildFrm ; {User defined enum type }
begin
if dmlDbooks.dbsDbooks.Connected then

begin
DesiredChildFrm := enumOPT AR ;
try

Createl\.IDIChild(DesiredChildFrm);
except

on ExceptionRaised : Exception do
begin

messagedlg('Error Could not create OPTAR Form'+""+
ExceptionRaised.Message+"'',mtError, [mbOK], 0);

end;
end;

101

end
else
begin

Ifmessagedlg(Not Logged in Database--Click on "OK" to Login',
mtCon:firmation,[mbOK,mbCancel],O) = mrOK then

begin
mniSLoginAIClick(Sender);
mniVOPT ARAoClick(Sender);

end;
end;

end;

procedure TfrmMain.mniVContractsAcClick(Sender: TObject);

var
DesiredChildFrm : TEnumChildFrm ; {User defined enum type }

begin
if dmlDbooks.dbsDbooks. Connected then

begin
DesiredChildFrm := enumContract ;
try

Create:MDIChild(DesiredChildFrm);
except

on ExceptionRaised : Exception do
begin

messagedlg('Error Could not create Contracts Form'+""+
ExceptionRaised.Message+"",mtError,[mbOK],O);

end;
end;

end
else
begin

Ifmessagedlg(Not Logged in Database--Click on "OK" to Login',
mtCon:firmation,[mbOK,mbCancel],O) = mrOK then
begin

mniSLoginAIClick(Sender);
mniVContractsAcClick(Sender);

end;
·end;

end;

procedure TfrmMain.mniVJ obOrdersAjClick(Sender: TObject);

var
DesiredChildFrm: TEnumChildFrm; {User defined enum type}

102

begin
if dmlDbooks.dbsDbooks. Connected then

begin
DesiredChildFrm := enumJobOrder;
try

CreateMD IChild(DesiredChildFrm);
except

on ExceptionRaised : Exception do
begin

messagedlg('Error Could not create Job Order Form'+'"'+
ExceptionRaised.Message+"" ,mtError, [mbOK], 0);

end;
end;

end
else
begin

Ifmessagedlg('Not Logged in Database--Click on "OK" to Login',
mtConfirmation,[mbOK,mbCancel],O) = mrOK then
begin

mniSLoginAlClick(Sender);
mniVJ obOrdersAjClick(Sender);

end;
end;

end;

procedure TfrmMain.mniVTimecardsAtClick(Sender: TObject);
var

DesiredChildFrm: TEnumChildFrm; {User defined enum type}
begin
if dmlDbooks.dbsDbooks. Connected then

begin
DesiredChildFrm := enumTimecard ;
try

Create MD IChild(DesiredChildFrm);
except

on ExceptionRaised : Exception do
begin

messagedlg('Error Could not create Timecard Form'+""+
ExceptionRaised.Message+"",mtError, [mbOK], 0);

end;
end;

end
else
begin

103

Ifmessagedlg('Not Logged in Database--Click on "OK" to Login',
mtConfirmation,[mbOK,mbCancel],O) = mrOK then

begin
mniSLoginAlClick(Sender);
mniVTimecardsAtClick(Sender);

end;
end;

end;

procedure TfrmMain.mniSLogoutAoClick(Sender: TObject);

begin
try

dmlDbooks.dbsDbooks.Connected :=false;

except
on ExceptionRaised : Exception do

messagedlg('Database Error: '+""+ExceptionRaised.Message+"",

mtError,[mbOK],O);
end;

end;

procedure TfrmMain.mniVBudgetPageAbClick(Sender: TObject);

var
DesiredChildFrm: TEnumChildFrm; {User defined enum type}

begin
if dmlDbooks.dbsDbooks.Connected then

begin
DesiredChildFrm := enumBudgetPage ;
try

CreateMDIChild(DesiredChildFrm);
except

on ExceptionRaised : Exception do
begin

messagedlg('Error Could not create Budget Pages Form'+""+
ExceptionRaised.Message+'"',mtError,[mbOK], 0);

end;
end;

end
"else
begin

Ifmessagedlg('Not Logged in Database--Click on "OK" to Login',
mtConfirmation,[mbOK,mbCancel],O) = mrOK then

begin
mniSLoginAlClick(Sender);
mniVBudgetPageAbClick(Sender);

104

end;
end;

end;

procedure TfrmMain.mniVFundsA:fClick(Sender: TObject);
var

DesiredChildFrm: TEnumChildFrm; {User defined enum type}
begin
if dmlDbooks.dbsDbooks. Connected then

begin
DesiredChildFrm := enumFund ;
try

Create:MDIChild(DesiredChildFrm);
except

on ExceptionRaised : Exception do
begin

messagedlg('Error Could not create Fund Form'+'11 '+
ExceptionRaised.Message+"",mtError, [mbOK], 0);

end;
end;

end
else
begin

lfmessagedlg('Not Logged in Database--Click on 110K11 to Login',
mtConfirmation,[mbOK,mbCancel],O) = mrOK then
begin

mniSLoginAlClick(Sender);
mniVFundsA:fClick(Sender);

end;
end;

end;

procedure TfrmMain.mniHAboutAaClick(Sender: TObject);
begin
try

frm.AboutBox := Tfrm.AboutBox. Create(Application) ;
try

· frm.AboutBox.ShowModal;
finally

frm.AboutBox.Free;
end;

except
on ExceptionRaised : Exception do
begin

105

messagedlg('Error'+'"'+ExceptionRaised.Message+'"',
mtError, [mbOK], 0);

end;
end;

end;

procedure TfrmMain.mniSExitAxClick(Sender: TObject);

begin
Close;

end;

procedure TfrmMain.mniREmployeeListAeClick(Sender: TObject);

begin
try

frmEmpListing := TfrmEmpListing.Create(Self);
aReport := frmEmpListing.Report ;
aReport.Preview ;

finally
frmEmpListing.Free ;

end;
end;

procedure TfrmMain.mniRProjectLaborApClick(Sender: TObject);

begin
try

frmProjectDetails := TfrmProjectDetails.Create(Self) ;
aReport := frmProjectDetails.Report ;
aReport.Preview;

finally
frmProjectDetails.Free ;

end;
end;

end.

106

File Name: ChildEmployee.pas
{***
D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11/96

Written by Rob Cameron and Ken Carrick

Module: Employees
Notes:

***}
unit ChildEmployee;

interface

uses Windows, Classes, Graphics, Forms, Controls, Frmszlmt, Buttons, SysUtils,

ExtCtrls, ComCtrls, StdCtrls, Mask, Grids, DBGrids, DBCtrls, DB, DBTables,

SendKey, Menus, Calndar, Dialogs;

type
TfrmEmployee = class(TForm)

pgcEmployee: TPageControl;
pnlDepartment: TPanel;
fslEmployee: TfslFormSizeLimit;
tblEmpList: TTabSheet;
tbsEmpData: TTabSheet;
dgrEmployees: TDBGrid;
lblQuicjSearch: TLabel;
medSSN: TMaskEdit;

107

lblDept: TLabel;
dlcDepartment: TDBLookupComboBox;
lblTitle: TLabel;
dlcTitle: TDBLookupComboBox;
tbsRemarks: TTabSheet;
dmmRemarks: TDBMemo;
lblEmpType: TLabel;
dlcEmpType: TDBLookupComboBox;
lblService: TLabel;
dlcService: TDBLookupComboBox;
dlcTenure: TDBLookupComboBox;
lblTenure: TLabel;
lblDateOb: TLabel;
dedDateOnboard: TDBEdit;
lblDateTerminated: TLabel;
dlcDateTerm: TDBEdit;
bbnContact: TBitBtn;
spbJump: TSpeedButton;
lblRemakrs: TLabel;
btnPayHist: TButton;
dngEmployee: TDBNavigator;
lblSSN: TLabel;
dedSSN: TDBEdit;
lblStatus: TLabel;
dlStatus: TDBLookupComboBox;
lblLastName: TLabel;
dedLastName: TDBEdit;
lblFirstName: TLabel;
dedFirstName: TDBEdit;
lblMI: TLabel;
ded:MI: TDBEdit;
cldEmployee: TCalendarDialog;
spbDateOnboard: TSpeedButton;
spbDateTerminated: TSpeedButton;
mnuEmployees: TMainMenu;
mniEmployeesAe: TMenultem;
mniEinsertAi: TMenultem;
mniEDeleteAd: TMenultem;

· mniECanceRecAc: TMenultem;
mniEApplyAa: TMenultem;
mniECancelAllAn: TMenultem;
mniEShowAs: TMenultem;
mniESStandardAs: TMenultem;
mniESDeletedAd: TMenultem;
mniESModifi.edAm: TMenultem;

108

mniESinsertedAi: TMenultem;
m.niSeperator: TMenultem;
mniECloseAl: TMenultem;
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure FormShow(Sender: TObject);
procedure spbJumpClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure btnPayHistClick(Sender: TObject);
procedure dmmRemarksDblClick(Sender: TObject);
procedure SendKeyClick(Sender : TObject) ;
procedure dngEmployeeClick(Sender: TObject; Button: TNavigateBtn);
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure spbDateOnboardClick(Sender: TObject);
procedure spbDateTerminatedClick(Sender: TObject);
procedure mniESinsertedAiClick(Sender: TObject);
procedure mniESModifiedAmClick(Sender: TObject);
procedure mniESDeletedAdClick(Sender: TObject);
procedure mniESStandardAsClick(Sender: TObject);
procedure mniECancelAllAnClick(Sender: TObject);
procedure mniECanceRecAcClick(Sender: TObject);
procedure mniEApplyAaClick(Sender: TObject);
procedure mniEDeleteAdClick(Sender: TObject);
procedure mniEinsertAiClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

implementation

uses dmdEmployees, dmdDepartment, dmdEmpPayHist, main, dmdDbooks;

{$R *.DFM}

procedure TfrmEmployee.SendKeyClick(Sender: TObject);

begin
if sender is TDBEdit then
· with dmlEmployees do

with Sender as TDBEdit do
if qryEmployee.FieldByName(DataField).AsString = 11 then

frmMain.skyDBooks32.SendKeys ('{HOME}');
if sender is TMaskEdit then

with Sender as TMaskEdit do
if Text= 11 then

109

frmMain.skyDBooks32.SendKeys ('{HOME}');

end;

procedure TfrmEmployee.FormClose(Sender: TObject; var Action: TCloseAction);

begin
Action:= caFree;

end;

procedure TfrmEmployee.FormShow(Sender: TObject);

begin
Left:= 0;
Top:= 0;

end;

procedure TfrmEmployee.spbJumpClick(Sender: TObject);

begin
with dmlEmployees, qryEmployee do

Locate('SSN' ,medS SN. Text, [loCaselnsensitive]) ;

end;

procedure TfrmEmployee.FormCreate(Sender: TObject);

begin
pgcEmployee.ActivePage := tblEmpList ;
with dmlEmployees do
begin

Menu := mnuEmployees ;
end;

end;

procedure TfrmEmployee. btnPayHistClick(Sender: TObject);

var
DesiredChildFrm : TEnumChildFrm ;

begin
with dmlEmployees, dmlEmpPayHist do

ifqryEmployeeEMPLOYEE_ID.AsString <>"then

qryEmpPayHist.Filter := 'EMPLOYEE _ID =
'+qryEmployeeEMPLOYEE _ ID .As String ;

DesiredChildFrm := enumEmpPayHist ;
· frmMain. CreateMD IChild(DesiredChildFm1);

end;

procedure TfrmEmployee.dmrnRemarksDblClick(Sender: TObject);

begin
with dmlEmployees do

110

:---------------------------------~-----

begin
if not (qryEmployee. State in [dsEdit, dslnsert]) then {Check to see if all ready editing}

begin
qryEmployee.Edit ; {If not then start an edit }

end;
with Sender as TDBMemo do
begin

Lines.Add(DateToStr(Now) +'- '); {Add a line}
SelStart := SelStart - 1 ; {Reposition cursor to end of line }

end;
end;

end;

procedure TfrmEmployee.dngEmployeeClick(Sender: TObject;
Button: TNavigateBtn);

begin
if Button = nblnsert then
begin

pgcEmployee.ActivePage := tbsEmpData ;
dedLastName.SetFocus ;

end;
end;

procedure TfrmEmployee.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
mniEApplyAaClick(Selt);
CanClose := true ;

end;

procedure TfrmEmployee.spbDateOnboardClick(Sender: TObject);
begin

with dmlEmployees do
begin

cldEmployee.Date := {Initialize with current Date }
FormatDateTime('mm/dd/yyyy',qryEmployeeDATE_ONBOARD.asDateTime);

if cldEmployee.Execute then
begin

if not (qryEmployee. State in [dsEdit, dslnsert]) then
begin

qryEmployee.Edit ;
end;
qryEmployeeDATE_ONBOARD.AsString := cldEmployee.Date; {Store value into

field}
end;

Ill

end;
end;

procedure TfrmEmployee. spbDateTerminatedClick(Sender: TObject);

begin
with dmlEmployees do
begin

cldEmployee.Date := {Initialize with current Date }
FormatDateTime('mm/dd/yyyy',qryEmployeeDATE_TERMINATED.asDateTime);

if cldEmployee.Execute then
begin
if not (qryEmployee.State in [dsEdit,dslnsert]) then
begin

qryEmployee.Edit ;
end;
qryEmployeeDATE_TERMINATED.AsString := cldEmployee.Date; {Store value

into field}
end;

end;
end;

procedure TfrmEmployee.mniESinsertedAiClick(Sender: TObject);

begin
with dmlEmployees, qryEmployee do

UpdateRecordTypes := [rtlnserted] ;
with Sender as TMenultem do Checked := true ;
mniEmployeesAe.Items[2].Caption :='&Delete New Employee';
dgrEmployees.Font.Color := clNavy;

end;

procedure TfrmEmployee.mniESModi:fiedAmClick(Sender: TObject);
begin

with dmlEmployees, qryEmployee do
UpdateRecordTypes := [rtModi:fied] ;

with Sender as TMenultem do Checked := true ;
mniEmployeesAe.ltems[2].Caption :='&Undo Changes';
dgrEmployees.Font.Color := clMaroon;

end;

procedure TfrmEmployee.mniESDeletedAdClick(Sender: TObject);

begin
with dmlEmployees, qryEmployee do

UpdateRecordTypes := [rtDeleted];
with Sender as TMenultem do Checked := true ;
mniEmployeesAe.Items[2].Caption :='&Undelete Employee';

112

dgrEmployees.Font.Color := clRed;
end;

procedure TfrmEmployee.mniES StandardAsClick(Sender: TObject);
begin

with dmlEMployees, qryEmployee do
UpdateRecordTypes := [rtModified, rtlnserted, rtUnmodified];

mniEmployeesAe.Items[5].1tems[O].Checked :=true;
mniEmployeesAe.Items[2].Caption :='&Cancel Record Updates';
dgrEmployees.Font.Color := clWindowText;

end;

procedure TfrmEmployee.mniECancelAIIAnClick(Sender: TObject);
begin

dmlEmployees.qryEmployee. CancelUpdates ;
mniESStandardAsClick(Sender); {Go back to standard view if not there.}

end;

procedure TfrmEmployee.mniECanceRecAcClick(Sender: TObject);
begin

ifmessagedlg('Are you sure?',mtWarning,[mbYes,mbNo],O) = mrYes then
dmlEmployees. qryEmployee.RevertRecord ;

end;

procedure TfrmEmployee.mniEApplyAaClick(Sender: TObject);
begin

with dmlEmployees, qryEmployee, dmlDBooks do
begin

dbsDBooks. StartTransaction ;
try

ApplyUpdates ;
dbsDBooks.Commit;

except
dbsDBooks.Rollback ;
raise;

end;
CommitUpdates ;
mniESStandardAsClick(Sender); {Go back to standard view if not there.}

·Close;
Open;

end;
end;

procedure TfrmEmployee.mniEDeleteAdClick(Sender: TObject);
begin

113

dmiEmployees.qryEmployee.Delete ;
end;

procedure TfrmEmployee.mniEinsertAiClick(Sender: TObject);
begin

pgcEmployee.ActivePage := tbsEmpData ;
dedLastName.SetFocus;
dmiEmployees. qryEmployee.Insert ;

end;

end.

114

File Name: ChildEmpPayHist.pas
{***

D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11/96 ·

Written by L T Rob Cameron and CPT Ken Carrick

Module: Employee Pay History Form

Notes:
***}
unit ChildEmpPayHist;

interface

uses Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

Frmszlmt, ComCtrls, Buttons, ExtCtrls, StdCtrls, Mask, DBCtrls, Grids, DBGrids,

SendKey, Calndar, Menus;

type
TfrmEmpPayHist = class(TForm)

pnlNavigator: TPanel;
pgcEmpPayHist: TPageControl;

fslEmpPayHist: TfslFormSizeLimit;

tbsPayHist: TTabSheet;
dgrEmpPayHist: TDBGrid;
tbsDetails: TTabSheet;
Label9: TLabel;
dedHourlyRate: TDBEdit;

115

dedDailyRate: TDBEdit;
dedAnnualRate: TDBEdit;
dedOTRate: TDBEdit;
dedRegAccelRate: TDBEdit;
dedOTAccelRate: TDBEdit;
lblQuickSearch: TLabel;
medPPE: TMaskEdit;
spbJump: TSpeedButton;
cldEmpPayHist: TCalendarDialog;
dngEmpPayHist: TDBNavigator;
tbsRemarks: TTabSheet;
lblRemarks: TLabel;
dmmRemarks: TDBMemo;
dedBeginDate: TDBEdit;
dedEndDate: TDBEdit;
dlcGrade: TDBLookupComboBox;
dlcStep: TDBLookupComboBox;
dlcOCCCode: TDBLookupComboBox;
lblDailyRate: TLabel;
lblAnnualRate: TLabel;
lblOTRate: TLabel;
lblRegAccelRate: TLabel;
lblOTAccelRate: TLabel;
lblBeginDate: TLabel;
lblEndDate: TLabel;
lblGrade: TLabel;
lblStep: TLabel;
lblOCCCode: TLabel;
spbBeginDate: TSpeedButton;
spbEndDate: TSpeedButton;
mnuEmpPayHist: TMainMenu;
mniPayHistory Ap: TMenultem;
mniPinsertAi: TMenultem;
mniPDeleteAd: TMenultem;
mniPCancelRecAc: TMenultem;
mniP ApplyAa: TMenultem;
mniPCancelAn: TMenultem;
mniPShowAs: TMenultem;

· mniPSStandardAs: TMenultem;
mniPSDeletedAd: TMenultem;
mniPSModifiedAm: TMenultem;
mniPSinsertedAi: TMenultem;
mniDivider: TMenultem;
mniCloseEmpPayHistP Al: TMenultem;
procedure FormClose(Sender: TObject; var Action: TCloseAction);

116

procedure FormShow(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure dedHourlyRateExit(Sender: TObject);
procedure dmmRemarksDblClick(Sender: TObject);
procedure SendKeyClick(Sender: TObject);
procedure dngEmpPayHistClick(Sender: TObject; Button: TNavigateBtn);
procedure dgrEmpPayHistEditButtonClick(Sender: TObject);
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure spbBeginDateClick(Sender: TObject);
procedure spbEndDateClick(Sender: TObject);
procedure mniPSinsertedAiClick(Sender: TObject);
procedure mniPSDeletedAdClick(Sender: TObject);
procedure mniPSModifiedAmClick(Sender: TObject);
procedure mniPSStandardAsClick(Sender: TObject);
procedure mniPCancelRecAcClick(Sender: TObject);
procedure mniPCancelAnClick(Sender: TObject);
procedure mniP ApplyAaClick(Sender: TObject);
procedure mniPDeleteAdClick(Sender: TObject);
procedure mniPinsertAiClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

implementation

uses dmdEmpPayHist, main, dmdDbooks;
{$R *.DFM}

procedure TfrrnEmpPayHist.SendKeyClick(Sender: TObject);

begin
with dmlEmpPayHist do

if qryEmpPayHist.FieldByName(TDBEdit(Sender).DataField).AsString = " then
frmMain.skyDBooks32.SendKeys ('{HOME}');

end;

procedure TfrrnEmpPayHist.FormClose(Sender: TObject; var Action: TCloseAction);

begin
Action := caFree ;

end;

procedure TfrrnEmpPayHist.FormShow(Sender: TObject);
begin

left:= 0;

117

Top:= 250;
end;

procedure TfrmEmpPayHist.FormCreate(Sender: TObject);
begin

pgcEmpPayHist.ActivePage := tbsPayHist ;
end;

procedure TfrmEmpPayHist.dedHourlyRateExit(Sender: TObject);
begin

dmiEmpPayHist. CalcPayRates ;
end;

procedure TfrmEmpPayHist.dmmRemarksDblClick(Sender: TObject);

begin
with dmlEmpPayHist do
begin

if not (qryEmpPayHist. State in [dsEdit, dslnsert]) then {Check to see if all ready
editing}

begin
qryEmpPayHist.Edit ; {If not then start an edit }

end;
with Sender as TDBMemo do
begin

Lines.Add(DateToStr(Now) +'- '); {Add a line}
SelStart := SelStart- 1 ; {Reposition cursor to end of line}

end;
end;

end;

procedure TfrmEmpPayHist. dngEmpPayHistClick(Sender: TObject;
Button: TNavigateBtn);

begin
if Button= nblnsert then
begin

pgcEmpPayHist.ActivePage := tbsDetails ;
dedBeginDate.SetFocus;

end;
end;

procedure TfrmEmpPayHist. dgrEmpPayHistEditButtonClick(Sender: TObj ect);
begin

with dmlEmpPayHist, dgrEmpPayHist do
begin

cldEmpPayHist.Date := {Initialize with current Date }

118

F ormatDateTime('mm/ dd/yyyy', SelectedField.asDateTime) ;
if cldEmpPayHist.Execute then
begin
if not (qryEmpPayHist.State in [dsEdit,dsinsert]) then
begin

qryEmpPayHist.Edit ;
end;
SelectedField.AsString := cldEmpPayHist.Date; {Store value into field}

end;
end;

end;

procedure TfrmEmpPayHist.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
mniP Apply AaClick(Self) ;
CanClose := true ;

end;

procedure TfrmEmpPayHist. spbBeginDateClick(Sender: TObject);
begin

with dmlEmpPayHist do
begin

cldEmpPayHist.Date := {Initialize with current Date }
FormatDateTime('mm/dd/yyyy',qryEmpPayHistBEGIN _ DATE.asDateTime) ;

if cldEmpPayHist.Execute then
begin
if not (qryEmpPayHist.State in [dsEdit,dsinsert]) then
begin

qryEmpPayHist.Edit ;
end;
qryEmpPayHistBEGIN_DATE.AsString := cldEmpPayHist.Date; {Store value into

field}
end;

end;
end;

procedure TfrmEmpPayHist. spbEndDateClick(Sender: TObject);
begin
with dmlEmpPayHist do
begin

cldEmpPayHist.Date := {Initialize with current Date}
FormatDateTime('mm/dd/yyyy',qryEmpPayHistEND _DATE.asDateTime) ;

if cldEmpPayHist.Execute then
begin

119

if not (qryEmpPayHist.State in [dsEdit,dslnsert]) then
begin

qryEmpPayHist.Edit ;
end;
qryEmpPayHistEND _DATE.AsString := cldEmpPayHist.Date; {Store value into

field}
end;

end;
end;

procedure TfrmEmpPayHist.mniPSinsertedAiClick(Sender: TObject);

begin
with dmlEmpPayHist, qryEmpPayHist do

UpdateRecordTypes := [rtlnserted];
with Sender as TMenultem do Checked := true ;
mniPayHistoryAp.ltems[2].Caption :='&Delete New Pay History';
dgrEmpPayHist.Font.Color := clNavy;

end;

procedure TfrmEmpPayHist.mniPSDeletedAdClick(Sender: TObject);

begin
with dmlEmpPayHist, qryEmpPayHist do

UpdateRecordTypes := [rtDeleted];
with Sender as TMenultem do Checked := true ;
mniPayHistoryAp.Items[2].Caption :='&Undelete Pay History';
dgrEmpPayHist.Font.Color := clRed;

end;

procedure TfrmEmpPayHist.mniPSModifiedAmClick(Sender: TObject);

begin
with dmlEmpPayHist, qryEmpPayHist do

UpdateRecordTypes := [rtModified] ;
with Sender as TMenultem do Checked := true ;
mniPayHistoryAp.Items[2].Caption :='&Undo Changes' ;
dgrEmpPayHist.Font.Color := clMaroon;

end;

procedure TfrmEmpPayHist.mniP S StandardAsClick(Sender: TObject);

begin
with dmlEmpPayHist, qryEmpPayHist do

UpdateRecordTypes := [rtModified, rtlnserted, rtUnmodified];
mniPayHistoryAp.Items[5].ltems[O].Checked :=true;
mniPayHistoryAp.Items[2].Caption :='&Cancel Record Updates' ;
dgrEmpPayHist.Font.Color := clWindowText;

end;

120

procedure TfrmEmpPayHist.mniPCancelRecAcClick(Sender: TObject);

begin
ifmessagedlgCAre you sure?',mtWarning,[mbYes,mbNo],O) = mrYes then

dmlEmpPayHist.qryEmpPayHist.RevertRecord ;
end;

procedure TfrmEmpPayHist.mniPCancelAnClick(Sender: TObject);

begin
dmlEmpPayHist.qryEmpPayHist. CancelUpdates ;
mniPSStandardAsClick(Sender); {Go back to standard view if not there.}

end;

procedure TfrmEmpPayHist.mniP Apply AaClick(Sender: TObject);

begin
with dmlEmpPayHist, qryEmpPayHist, dmlDBooks do
begin

dbsDBooks. StartTransaction ;
try

ApplyUpdates ;
dbsDBooks.Commit;

except
dbsDBooks.Rollback ;
raise;

end;
CommitUpdates;
mniPSStandardAsClick(Sender); {Go back to standard view if not there.}
Close;
Open;

end;
end;

procedure TfrmEmpPayHist.mniPDeleteAdClick(Sender: TObject);
begin

dmlEmpPayHist.qryEmpPayHist.Delete ;
end;

procedure TfrmEmpPayHist.mniPinsertAiClick(Sender: TObject);

he gin
pgcEmpPayHist.ActivePage := tbsDetails ;
dedBeginDate.SetFocus;
dmlEmpPayHist.qryEmpPayHist.Insert ;

end;

end.

121

File Name: ChildDepartment.pas
{***
D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11/96

Written by Rob Cameron and Ken Carrick

Module: Departments
Notes:

***}
unit ChildDepartment;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,

StdCtrls, Buttons, ExtCtrls, DBCtrls, ComCtrls, Grids, DBGrids, Mask,

Frmszlmt, SendKey, DB, DBTables, Menus;

type
TfrmDepartment = class(TForm)
pgcDepartment: TPageControl;
tbsDepartment: TTabSheet;
pnlDept: TPanel;
bbnContact: TBitBtn;
tbsDetails: TTabSheet;
lblQuicj Search: TLabel;
dgrDepartment: TDBGrid;

122

cboDeptName: TComboBox;
lblDistCode: TLabel;
dedDistCode: TDBEdit;
lblUIC: TLabel;
dedUIC: TDBEdit;
gboFincancialStatus: TGroupBox;
lblTotAuth: TLabel;
dedTotalAuth: TDBEdit;
lblTotCharges: TLabel;
dedTotalCharges: TDBEdit;
lblBalanceAvail: TLabel;
dedBalAvail: TDBEdit;
fslDepartment: TfslF ormSizeLimit;
lblCostCenter: TLabel;
lblSubCostCenter: TLabel;
lblActivityGroup: TLabel;
dlcActivityGroup: TDBLookupComboBox;
lblSubActivityGroup: TLabel;
dlcSubActivityGroup: TDBLookupComboBox;
dlcSubCostCenter: TDBLookupComboBox;
dlcCostCenter: TDBLookupComboBox;
lblName: TLabel;
dedName: TDBEdit;
lblOrgCode: TLabel;
dedOrgCode: TDBEdit;
lblMailStop: TLabel;
dedMailStop: TDBEdit;
dngDepartment: TDBNavigator;
mnuDepartments: TMainMenu;
mniDepartmentsAd: TMenultem;
mniDinsertAi: TMenultem;
mniDDeleteAd: TMenultem;
mniDCanceiRecAc: TMenultem;
mniDApplyAa: TMenultem;
mniDCancelAn: TMenultem;
mniDShowAs: TMenultem;
mniDSStandardAs: TMenultem;
mniDSDeletedAd: TMenultem;

· mniDSModi:fiedAm: TMenultem;
mniDSinsertedAi: TMenultem;
mniDivider: TMenultem;
mniDCloseAl: TMenultem;
procedure FormCreate(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

123

procedure dngDepartmentClick(Sender: TObject; Button: TNavigateBtn);
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure SendKeyClick(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure mniDSinsertedAiClick(Sender: TObject);
procedure mniDSModifiedAmClick(Sender: TObject);
procedure mniDSDeletedAdClick(Sender: TObject);
procedure mniDSStandardAsClick(Sender: TObject);
procedure mniDCancelRecAcClick(Sender: TObject);
procedure mniDCancelAnClick(Sender: TObject);
procedure mniDApplyAaClick(Sender: TObject);
procedure mniDDeleteAdClick(Sender: TObject);
procedure mniDinsertAiClick(Sender: TObject);

private
{ Private declarations }
procedure UpdateDeptComboBox ;

. public
{ Public declarations }

end;

implementation

uses dmdDepartment, main, qryThread, dmdDbooks;

{$R *.DFM}
var

sesDept: TSession;
dbsDept : TDatabase ;
qryDept : TQuery ;

procedure TfrmDepartment. UpdateDeptComboBox ;
begin

TQueryThread.Create(false, qryDept,'NAME',cboDeptName.Items);
end;

procedure TfrmDepartment.SendKeyClick(Sender: TObject);
begin
if sender is TDBEdit then

with dmlDepartments do
with Sender as TDBEdit do

if qryDepartment.FieldByName(DataField).AsString = " then
frmMain. skyDBooks32. SendKeys ('{HOME}');

end;

124

procedure TfimDepartment.FormCreate(Sender: TObject);
begin

pgcDepartment.ActivePage := tbsDepartment ;

sesDept := TSession. Create(Self) ;
sesDept.SessionName :='session!' ;
dbsDept := TDatabase.Create(Self);
with dbsDept do
begin

AliasName := 'DBookslnterbase' ;
DatabaseName :='Database I' ;
LoginPrompt := false ;
Params := dmlDbooks.dbsDbooks.params;
SessionName := sesDept.SessionName;

end;
qryDept := TQuery.Create(Self);
with qryDept do
begin

SessionName := sesDept.SessionName;
DatabaseName := dbsDept.DatabaseName;
SQL.Clear;
SQL.Add('Select *from TBL_DEPARTMENT');

end;
end;

procedure TfimDepartment.FormShow(Sender: TObject);
begin

Left:= 386;
Top:= 0;
UpdateDeptComboBox ;

end;

procedure TfimDepartment.F ormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caFree;

end;

procedure TfimDepartment.dngDepartmentClick(Sender: TObject;
Button: TNavigateBtn);

begin
if Button= nblnsert then
begin

pgcDepartment.ActivePage := tbsDetails;
dedName.SetFocus;

125

end;
end;

procedure TfimDepartment.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
mniDApplyAaClick(Self) ;
CanClose := true ;

end;

procedure TfimDepartment.FormDestroy(Sender: TObject);
begin

qryDept.Free ;
dbsDept.Free ;
sesDept.Free;

end;

procedure TfimDepartment.mniDSinsertedAiClick(Sender: TObject);
begin

with dmlDepartments, qryDepartment do
UpdateRecordTypes := [rtlnserted];

with Sender as TMenultem do Checked := true ;
mniDepartmentsAd.Items[2].Caption := 1&Delete New Department';
dgrDepartment.Font.Color := clNavy;

end;

procedure TfimDepartment.mniDSModifiedAmClick(Sender: TObject);
begin

with dmlDepartments, qryDepartment do
UpdateRecordTypes := [rtModified];

with Sender as TMenultem do Checked := true ;
mniDepartmentsAd.Items[2].Caption := 1&Undo Changes1

;

dgrDepartment.Font.Color := clMaroon;
end;

procedure TfimDepartment.mniDSDeletedAdClick(Sender: TObject);
begin

with dmlDepartments, qryDepartment do
· UpdateRecordTypes := [rtDeleted] ;
with Sender as TMenultem do Checked := true ;
mniDepartmentsAd.Items[2].Caption := 1&Undelete Department';
dgrDepartment.Font.Color := clRed;

end;

procedure TfrmDepartment.mniDS StandardAsClick(Sender: TObject);

126

begin
with dmlDepartments, qryDepartment do

UpdateRecordTypes := [rtModified, rtlnserted, rtUnmodified];
mniDepartmentsAd.Items[5] .ltems[O]. Checked := true ;
mniDepartmentsAd.Items[2].Caption := 1&Cancel Record Updates1

;

dgrDepartment.Font.Color := clWindowText;
end;

procedure TfrmDepartment.mniDCancelRecAcClick(Sender: TObject);
begin

ifmessagedlg('Are you sure?1,mtWarning,[mbYes,mbNo],O) = mrYes then
dmlDepartments.qryDepartment.RevertRecord ;

end;

procedure TfrmDepartment.mniDCancelAnClick(Sender: TObject);
begin

dmlDepartments. qryDepartment. CancelUpdates ;
mniDSStandardAsClick(Sender); {Go back to standard view if not there.}

end;

procedure TfrmDepartment.mniD Apply AaClick(Sender: TObject);
begin
with dmlDepartments, qryDepartment, dmlDBooks do
begin

dbsDBooks. StartTransaction ;
try

ApplyUpdates ;
dbsDBooks.Commit;

except
dbsDBooks.Rollback ;
raise;

end;
CommitUpdates ;
mniDSStandardAsClick(Sender); {Go back to standard view if not there.}
Close;
Open;

end;
end;

procedure TfrmDepartment.mniDDeleteAdClick(Sender: TObject);
begin

dmlDepartments.qryDepartment.Delete ;
end;

procedure TfrmDepartment.mniD InsertAiClick(Sender: TObject);

127

begin
pgcDepartment.ActivePage := tbsDetails ;
dedName.SetFocus;
dmlDepartments. qryDepartment.Insert ;

end;

end.

128

File Name: ChildTimecard.pas
{***
D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11196
Written by Rob Cameron and Ken Carrick

Module: Time Cards
Notes:
***}
unit ChildTimeCard;

interface

129

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Buttons, ExtCtrls, DBCtrls, Grids, DBGrids, StdCtrls,
ComCtrls, Mask, Frmszlmt, Menus, DB, DBTables, QryThread, Calndar;

type
TfrmTimecard = class(TForm)

pnlTimeCard: TPanel;
pgcTimeCard: TPageControl;
tbsTimeCard: TTabSheet;
fslTimecard: TfslF ormSizeLimit;
mnuTimeCards: TMainMenu;
mniTimeCardsAt: TMenultem; .
mniTinsertAi: TMenultem;
mniTDeleteAd: TMenultem;
mniTCancelRecAc: TMenultem;
mniTApplyAllAa: TMenultem;
mniTCanceWlAn: TMenultem;
mniTShowAs: TMenultem;
mniTSStandardAs: TMenultem;
mniTSDeletedAd: TMenultem;
mniTSEditedAe: TMenultem;
mniTSinsertedAi: TMenultem;
mniSeperator: TMenultem;
mniTCloseAl: TMenultem;
pnlUpper: TPanel;
cboDeptName: TComboBox;
lblDeptName: TLabel;
lblBegindate: TLabel;
dedBeginDate: TDBEdit;
lbiEndDate: TLabel;
dedEndDate: TDBEdit;
lblRegHrs: TLabel;
dedRegHours: TDBEdit;
lblOTHrs: TLabel;
dedOTHours: TDBEdit;
spbDateOnboard: TSpeedButton;
spbEndDate: TSpeedButton;

· pnlEmpGrid: TPanel;
hdcEmployeeList: THeaderControl;
dgrEmployees: TDBGrid;
tbsNotes: TTabSheet;
lblNotes: TLabel;
dmmNotes: TDBMemo;
btnNextEmp: TButton;

130

cldTimecard: TCalendarDialog;
pnlWages: TPanel;
dblHourly: TDBText;
lblHrly: TLabel;
lblWeely: TLabel;
dblDaily: TDBText;
lblY early: TLabel;
dblAnnual: TDBText;
lblRegular: TLabel;
bvlAccel: TBevel;
lblWages: TLabel;
lblAccel: TLabel;
bvlReg: TBevel;
dblOT: TDBText;
lblOTRate: TLabel;
lblOT: TLabel;
bvlOT: TBevel;
dblRegAccel: TDBText;
dblRegOT: TDBText;
lblAccelRegHrs: TLabel;
lblAccelOTRate: TLabel;
lblAccelOT: TLabel;
lblAccelReg: TLabel;
dgrLaborRec: TDBGrid;
dngLaborRec: TDBNavigator;
dngEmployee: TDBNavigator;
dngTimecard: TDBNavigator;
procedure FormShow(Sender: TObject);
procedure mniTinsertAiClick(Sender: TObject);
procedure mniTDeleteAdClick(Sender: TObject);
procedure mniTCancelRecAcClick(Sender: TObject);
procedure mniT Apply AllAaClick(Sender: TObject);
procedure mniTCancelAllAnClick(Sender: TObject);
procedure mniTSStandardAsClick(Sender: TObject);
procedure mniTSEditedAeClick(Sender: TObject);
procedure mniTSDeletedAdClick(Sender: TObject);
procedure mniTSinsertedAiClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

· procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure cboDeptNameChange(Sender: TObject);
procedure spbDateOnboardClick(Sender: TObject);
procedure spbEndDateClick(Sender: TObject);
procedure btnNextEmpClick(Sender: TObject);

131

procedure ApplyTimecardUpdates ;
procedure ApplyLaborRecordUpdates ;

private
{ Private declarations }
procedure UpdateDeptComboBox ;

public
{ Public declarations }

end;

var
frmTimecard: TfrmTimecard;

implementation

uses dmdTimecards, dmdDbooks, dmdEmployees, dmdEmpPayHist, dmdJobOrder;

{$R *.DFM}

var
sesTimeCard : TSession ;
dbsTimeCard : TDatabase ;
qryDeptl : TQuery;
qryDept2 : TQuery ;
Closing : boolean ;

procedure TfrmTimecard.ApplyTimecardUpdates ;
var

bmk.Employee : TBookmark ;
begin

with dmlTimecards, qryTimecard, dmiDBooks do
begin

dbsDBooks. StartTransaction ;
try

bmk.Employee := qryEmployee.GetBookmark;
ApplyUpdates ;
dbsDBooks.Commit;

except
dbsDBooks.Rollback ;

· raise;
end;
CommitUpdates;
Close;
Open;
try

qryEmployee. GotoBookmark(bmk.Employee) ;

132

except
on E : exception do

'
end;
qryEmployee.Freebookmark(bmkEmployee) ;
if not Closing then

UpdateDeptComboBox ;
end;

end;

procedure TfrmTimecard.ApplyLaborRecordUpdates ;
begin

with dmlTimecards, qryLaborRec, dmlDBooks do
begin

dbsDBooks. StartTransaction ;
try

ApplyUpdates ;
dbsDBooks.Commit;

except
dbsDBooks.Rollback ;
raise;

end;
CommitUpdates;
Close;

Open;
end;

end;

procedure TfrmTimecard.FormShow(Sender: TObject);
begin

Left:= 386;
Top:= 0;
UpdateDeptComboBox ;
dedBeginDate.SetFocus;

end;

procedure TfrmTimecard.mniTinsertAiClick(Sender: TObject);
begin

dmlTimecards.qryTimecard.lnsert;
end;

procedure TfrmTimecard.mniTDeleteAdClick(Sender: TObject);
begin

133

ifmessagedlg('You must delete all labor records associated with'+#13+

'this time card listed in the grid before deleting'+#13+
'the timecard. Continue?',mtConfirmation,[mbYes,mbNo],O)= mrYes Then

dmlTimecards. qryTimecard.Delete
else

messagedlg('Timecard not deleted.',mtlnformation,[mbOK],O);

end;

procedure TfrmTimecard.mniTCancelRecAcClick(Sender: TObject);

begin
ifmessagedlg('Are you sure?',mtWarning,[mbYes,mbNo],O) = mrYes then

begin
dmlTimecards.qryTimecard.RevertRecord ;

end;
end;

procedure TfrmTimecard.mniTApply AllAaClick(Sender: TObject);

begin
dmlTimecards.UpdateJobOrderCharges ;{Apply Labor charges to Job Orders}

ApplyTimecardUpdates;
ApplyLaborRecordUpdates ;

end;

procedure TfrmTimecard.mniTCancelAllAnClick(Sender: TObject);

begin
dmlTimecards.qryTimecard. CancelUpdates ;

end;

procedure TfrmTimecard.mniTSStandardAsClick(Sender: TObject);

begin
(* with dmlTimecards, qryTimecard do

UpdateRecordTypes := [rtModified, rtlnserted, rtUnmodified];
mniTimecardsAt.Items[S].Items[O].Checked :=true;
mniTimecardsAt.Items[2].Caption :='&Cancel Record Updates';

dgrTimecards.Font.Color := clWindowText; *)
end;

procedure TfrmTimecard.mniTSEditedAeClick(Sender: TObject);

begin
(* with dmlTimecards, qryTimecard do

UpdateRecordTypes := [rtModified];
with Sender as TMenultem do Checked := true ;
mniTimecardsAt.Items[2].Caption :='&Undo Changes';

dgrTimecards.Font.Color := clMaroon; *)
end;

134

procedure TfimTimecard.mniTSDeletedAdClick(Sender: TObject);
begin
(* with dmlTimecards, qryTimecard do

UpdateRecordTypes := [rtDeleted];
with Sender as TMenultem do Checked := true ;
mniTimecardsAt.Items[2].Caption :='&Undelete Timecard';
dgrTimecards.Font.Color := clRed; *)

end;

procedure TfimTimecard.mniTSinsertedAiClick(Sender: TObject);
begin
(* with dmlTimecards, qryTimecard do

UpdateRecordTypes := [rtlnserted];
with Sender as TMenultem do Checked := true ;
mniTimecardsAt.Items[2].Caption :='&Delete New Timecard';
dgrTimecards.Font.Color := clNavy; *)

end;

procedure TfimTimecard.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
Action := caFree;

end;

procedure TfimTimecard.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
Closing := true ;
if dmlTimecards. qryTimecard. UpdatesPending then

mniT Apply AllAaClick(Selt) ;
CanClose := true ;

end;

procedure TfimTimecard.F ormCreate(Sender: TObject);
begin

pgcTimecard.ActivePage := tbsTimecard ;
Closing := false ;
sesTimecard := TSession.Create(Selt);
sesTimecard. SessionName := 'sesTimecard 1' ;
dbsTimecard := TDatabase. Create(Self) ;
with dbsTimecard do
begin

AliasName := 'DBooksOracle' ;
DatabaseName := 'dbsTimecardl';

135

LoginPrompt := false ;
Params := dmiDbooks.dbsDbooks.params;
SessionName := sesTimecard.SessionName;

end;
qryDeptl := TQuery.Create(Self);
with qryDept 1 do
begin

SessionName := sesTimecard.SessionName;
DatabaseName := dbsTimecard.DatabaseName ;
SQL.Clear;
SQL.Add('Select *from TBL_DEPARTMENT');

end;
end;

procedure TfrmTimecard.UpdateDeptComboBox;

begin
TQueryThread. Create(false, qryDept 1, 'NAME',cboDeptName.Items) ;

end;

procedure TfrmTimecard.F ormDestroy(Sender: TObject);
begin

try
qryDept l.Free ;
dbsTimecard.Free ;
sesTimecard.Free ;

except
on E : exception do

'
end;

end;

procedure TfrmTimecard.cboDeptNameChange(Sender: TObject);

var
strDeptiD: String;

begin
with dmlTimecards.qryLookupiD do
begin

Close;
· Params[O].AsString := cboDeptName. Text ;
Open;
strDeptiD := FieldByName('DEPARTl\1ENT_ID').AsString;

end;
with dmlTimeCards do

qryEmployee.Filter := 'DEPARTl\1ENT_ID =' +strDeptiD;

end;

136

procedure TfrmTimecard. spbDateOnboardClick(Sender: TObject);
begin
with dmlTimecards do
begin

cldTimecard.Date := {Initialize with current Date }
FormatDateTime('mm/ddlyyyy',qryTimecardBEGIN_PAY_DATE.asDateTime);

if cldTimecard.Execute then
begin
if not (qryTimecard.State in [dsEdit,dslnsert]) then
begin

qryTimecard.Edit ;
end;
qryTimecardBEGIN _PAY_ DATE.AsString := cldTimecard.Date ; {Store value into

field}
end;

end;
end;

procedure TfrmTimecard.spbEndDateClick(Sender: TObject);
begin

with dmlTimecards do
begin

cldTimecard.Date := {Initialize with current Date }
FormatDateTime('mm/dd/yyyy',qryTimecardEND _PAY_ DATE.asDateTime) ;

if cldTimecard.Execute then
begin
if not (qryTimecard.State in [dsEdit,dslnsert]) then
begin
qryTimecard.Edit ;

end;
qryTimecardEND _PAY_ DATE.AsString := cldTimecard.Date ; {Store value into

field}
end;

end;
end;

procedure TfrmTimecard. btnNextEmpClick(Sender: TObject);
begin

mniTApplyAllAaClick(Sender);
dmlTimecards.qryEmployee.Next;

end;

end.

137

aReport:=SimpForm.SimpRep;
1 : aReport:=Bioform.BioRep;
2: aReport:=mdform.mdRep;
3: aReport:=LabelForm.Rep;
4 : aReport:=TextRep.Rep;

end;
aReport.DisplayPrintDialog:=PrintDialogChk. Checked;
if OrientationCombo. Itemlndex=O then

aReport. Orientation:=poPortrait
else

aReport. Orientation:=poLandscape;
end;

procedure TTQuickReportDemo.PrintBtnClick(Sender: TObject);
begin

PickReport;
aReport.Print;

end;

138

File Name: ChildFund.pas
{***
D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11/96
Written by Rob Cameron and Ken Carrick

Module:
Notes:
***}
unit ChildFund;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Frmszlmt, ComCtrls, Buttons, ExtCtrls, SendKey, Grids,
DBGrids, Menus, DBCtrls, StdCtrls, Mask, Calndar, DB, DBTables ;

type
TfrmFund = class(TForm)

pnlFund: TPanel;
pgcFund: TPageControl;
fsl: TfslF ormSizeLimit;
skyFund: TSendKey;
dngFund: TDBNavigator;
mnuFunds: TMainMenu;
tbsFundList: TTabSheet;

139

mniFundsAf: TMenultem;
tbsDetails: TTabSheet;
lblName: TLabel;
dedName: TDBEdit;
lblAuthorization: TLabel;
dedAuthorization: TDBEdit;
lblBeginDate: TLabel;
dedBeginDate: TDBEdit;
lblEndDate: TLabel;
dedEndDate: TDBEdit;
lblType: TLabel;
lblStatus: TLabel;
lbllnitBal: TLabel;
dedlnitBalance: TDBEdit;
lblT otalCharges: TLabel;
dedTotalCharges: TDBEdit;
cboFundName: TComboBox;
lblJump: TLabel;
dlcType: TDBLookupComboBox;
dlcStatus: TDBLookupComboBox;
mniFinsertAi: TMenultem;
mniFDeleteAd: TMenultem;
mnniFCancelAc: TMenultem;
mniF ApplyAa: TMenultem;
mniFCancelAn: TMenultem;
mniFShowAs: TMenultem;
mniFDividerl: TMenultem;
mniFCloseAI: TMenultem;
mniFSStandardAs: TMenultem;
mniFSDeletedAd: TMenultem;
mniFSEditedAe: TMenultem;
mniFSinsertedAi: TMenultem;
dgrFunds: TDBGrid;
cldFund: TCalendarDialog;
spbBeginDate: TSpeedButton;
spbEndDate: TSpeedButton;
lblAmountAvailable: TLabel;
dedAmountAvail: TDBEdit;

·procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure mniFinsertAiClick(Sender: TObject);
procedure mniFDeleteAdClick(Sender: TObject);
procedure mnniFCancelAcClick(Sender: TObject);
procedure mniF Apply AaClick(Sender: TObject);
procedure mniFCancelAnClick(Sender: TObject);
procedure mniFS StandardAsClick(Sender: TObject);

140

procedure mniFSDeletedAdClick(Sender: TObject);
procedure mniFSEditedAeClick(Sender: TObject);
procedure mniFSinsertedAiClick(Sender: TObject);
procedure Form.Show(Sender: TObject);
procedure spbBeginDateClick(Sender: TObject);
procedure spbEndDateClick(Sender: TObject);
procedure Form.Create(Sender: TObject);
procedure UpdateFundComboBox ;
procedure Form.Destroy(Sender: TObject);
procedure cboFundNameChange(Sender: TObject);
procedure Form.CloseQuery(Sender: TObject; var CanClose: Boolean);
procedure dngFundClick(Sender: TObject; Button: TNavigateBtn);

private
{ Private declarations }

public
{ Public declarations }

end;

implementation

uses dmdFund, qryThread, dmdDbooks;

{$R *.DFM}

var
sesFund : TSession ;
dbsFund : !Database ;
qryFund : TQuery ;
Closing : boolean ;

procedure TfimFund. UpdateFundComboBox ;
begin

TQueryThread.Create(false, qryFund,'NAME1,cboFundName.Items);
end;

procedure TfimFund.Form.Close(Sender: TObject; var Action: TCloseAction);
begin

Action:= caFree;
end;

procedure TfimFund.mniFinsertAiClick(Sender: TObject);
begin

pgcFund.ActivePage := tbsDetails ;
dedName.SetFocus ;
dmlFunds.qryFund.Insert;

end;

141

procedure TfrmFund.mniFDeleteAdClick(Sender: TObject);
begin

dmlFunds.qryFund.Delete ;
end;

procedure TfrmFund.mnniFCancelAcClick(Sender: TObject);

begin
ifmessagedlg('Are you sure?',mtWaming,[mbYes,mbNo],O) = mrYes then

dmlFunds. qryFund.RevertRecord ;
end;

procedure TfrmFund.mniFApplyAaClick(Sender: TObject);

begin
with dmlFunds, qryFund, dmlDBooks do
begin

dbsDBooks. StartTransaction ;
try

ApplyUpdates ;
dbsDBooks.Commit;

except
dbsDBooks.Rollback ;
raise;

end;
Commit Updates ; {Go back to standard view if not there.}

mnifSStandardAsClick(Sender) ;
Close;
Open;
if not Closing then

UpdateFundComboBox ;
end;

end;

procedure TfrmFund.mniFCancelAnClick(Sender: TObject);

begin
dmlFunds.qryFund. Cancel Updates ;
mniFSStandardAsClick(Sender) ;{Go back to standard view ifnot there.}

end;

procedure TfrmFund.mniFSStandardAsClick(Sender: TObject);

begin
with dmlFunds, qryFund do

UpdateRecordTypes := [rtModified, rtlnserted, rtUnmodified] ;

mniFundsAfltems[S].Items[O].Checked :=true;
mniFundsAfltems[2].Caption :='&Cancel Record Updates';

142

dgrFunds.Font.Color := clWindowText;
end;

procedure TfrmFund.mniFSDeletedAdClick(Sender: TObject);
begin

with dmlFunds, qryFund do
UpdateRecordTypes := [rtDeleted];

with Sender as TMenultem do Checked := true ;
mniFundsAfltems[2].Caption :='&Undelete Fund' ;
dgrFunds.Font.Color := clRed ;

end;

procedure TfrmFund.mniFSEditedAeClick(Sender: TObject);
begin

with dmlFunds, qryFund do
UpdateRecordTypes := [rtModified];

with Sender as TMenultem do Checked := true ;
mniFundsAfltems[2].Caption :='&Undo Changes';
dgrFunds.Font.Color := clMaroon;

end;

procedure TfrmFund.mniFSinsertedAiClick(Sender: TObject);
begin

with dmlFunds, qryFund do
UpdateRecordTypes := [rtlnserted];

with Sender as TMenultem do Checked := true ;
mniFundsAfltems[2].Caption :='&Delete New Fund';
dgrFunds.Font.Color := clNavy;

end;

procedure TfrmFund.FormShow(Sender: TObject);
begin

Left:= 386;
Top:= 0;
UpdateFundComboBox ;

end;

procedure TfrmFund. spbBeginDateClick(Sender: TObject);
begin

with dmlFunds do
begin

cldFund.Date := {Initialize with current Date}
FormatDateTime('mm/dd/yyyy',qryFundEND _ DATE.asDateTime) ;

if cldFund.Execute then
begin

143

if not (qryFund.State in [dsEdit,dslnsert]) then
begin

qryFund.Edit ;
end;
qryFundEND _DATE.AsString := cldFund.Date ;{Store value into field}

end;
end;

end;

procedure TfrmFund.spbEndDateClick(Sender: TObject);
begin

with dmlFunds do
begin

cldFund.Date := {Initialize with current Date }
FormatDateTime('mm/dd/yyyy',qryFundEND _DATE.asDateTime) ;

if cldFund.Execute then
begin

if not (qryFund.State in [dsEdit,dslnsert]) then
begin

qryFund.Edit ;
end;
qryFundEND _DATE.AsString := cldFund.Date ; {Store value into field}

end;
end;

end;

procedure TfrmFund.FormCreate(Sender: TObject);
begin

pgcFund.ActivePage := tbsFundList ;
Closing := false ;
sesFund := TSession.Create(Self);
sesFund.SessionName := 'sesFund1';
dbsFund := TDatabase. Create(Self) ;
with dbsFund do
begin

AliasName := 'DBooksOracle';
DatabaseName := 'DbsFund 1' ;
LoginPrompt := false ;

· Params := dmlDbooks.dbsDbooks.params;
SessionName := sesFund.SessionName;

end;
qryFund := TQuery.Create(Self);
with qryFund do
begin

SessionName := sesFund.SessionName;

144

DatabaseName := dbsFund.DatabaseName;
SQL.Clear;
SQL.Add('Select * from TBL _FUND•) ;

end;
end;

procedure TfrmFund.FormDestroy(Sender: TObject);
begin

try
qryFund.Free ;
dbsFund.Free ;
sesFund.Free ;

except
on E : exception do

' end;
end;

procedure TfrmFund.cboFundNameChange(Sender: TObject);
begin

dmlFunds.qryFund.Locate(NAME•,cboFundName. Text, [loCaselnsensitive]);
end;

procedure TfrmFund.FormCloseQuery(Sender: TObject; var
CanClose: Boolean);
begin

Closing := true ;
if dmlFunds.qryFund.UpdatesPending then

mniF Apply AaClick(Self) ;
CanClose := true ;

end;

procedure TfrmFund.dngFundClick(Sender: TObject; Button: TNavigateBtn);
begin

if Button = nblnsert then
begin

pgcFund.ActivePage := tbsDetails ;
dedName.SetFocus;

end;
end;

end.

145

File Name: ChildJobOrder.pas
{***
D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11/96

Written by Rob Cameron and Ken Carrick

Module: Job Order
Notes:
***}
unit ChildJobOrder;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,

Dialogs, Frmszlmt, ComCtrls, Buttons, ExtCtrls, SendKey, Grids,

DBGrids, Menus, DBCtrls, StdCtrls, Mask, Calndar, DB, DBTables ;

type
TfrmJobOrder = class(TForm)

pnlJobOrder: TPanel;
pgcJ obOrder: TPageControl;
fslJobOrder: TfslFormSizeLimit;
skyJobOrder: TSendKey;
dngJobOrder: TDBNavigator;
mnuJobOrder: TMainMenu;
tbsJobOrderList: TTabSheet;

146

dgrJobOrder: TDBGrid;
tbsDetails: TTabSheet;
cboJobOrder: TComboBox;
mniJobOrderAj: TMenultem;
mnillnsertAi: TMenultem;
mniJDeleteAd: TMenultem;
mniJCancelAc: TMenultem;
mniJApplyAa: TMenultem;
mniJCancelAll: TMenultem;
mniJShowAs: TMenultem;
mniJDivider: TMenultem;
mniCloseAl: TMenultem;
mniJSStandardAs: TMenultem;
mniJSDeletedAd: TMenultem;
mniJSEdit: TMenultem;
mniJSinserted: TMenultem;
lbUON: TLabel;
lbUONEdit: TLabel;
dedJON: TDBEdit;
lblExpirationDate: TLabel;
dedExpireDate: TDBEdit;
lblCharges: TLabel;
dedCharges: TDBEdit;
dlcType: TDBLookupComboBox;
dlcStatus: TDBLookupComboBox;
dlcFund: TDBLookupComboBox;
lblType: TLabel;
lblStatus: TLabel;
lblFund: TLabel;
lbllnitBal: TLabel;
dedlnitBal: TDBEdit;
dedAmountAvail: TDBEdit;
lblAmountAvailable: TLabel;
spbBeginDate: TSpeedButton;
cldJobOrder: TCalendarDialog;
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure mnillnsertAiClick(Sender: TObject);
procedure mniJDeleteAdClick(Sender: TObject);

·procedure mniJCancelAcClick(Sender: TObject);
procedure mniJApplyAaClick(Sender: TObject);
procedure mniJCancelAIIClick(Sender: TObject);
procedure mniJSStandardAsClick(Sender: TObject);
procedure mniJSDeletedAdClick(Sender: TObject);
procedure mniJSEditClick(Sender: TObject);
procedure FormShow(Sender: TObject);

147

procedure spbBeginDateClick(Sender: TObject);
procedure dngJobOrderClick(Sender: TObject; Button: TNavigateBtn);
procedure dgrJobOrderEditButtonClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure UpdateJobOrderComboBox ;
procedure cboJobOrderChange(Sender: TObject);
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure FormDestroy(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

implementation

uses dmdJobOrder, qryThread, dmdDbooks, dmdFund;

{$R *.DFM}

var
sesJobOrder: TSession;
dbsJobOrder: TDatabase;
qryJobOrder: TQuery;
Closing : boolean ;

procedure TfrmJobOrder.UpdateJobOrderComboBox;
begin

TQueryThread. Create(false, qryJobOrder, 'JOB_ ORDER_ NUMBER',
cboJobOrder.Items) ;

end;

procedure TfrmJobOrder.FormClose(Sender: TObject; var Action:
TCloseAction);
begin

Action := caFree ;
end;

procedure TfrmJ obOrder .mniflnsertAiClick(Sender: TObject);
begin

pgcJobOrder.ActivePage := tbsDetails;
dedJON.SetFocus ;
dmlJ obOrders. qry J obOrder. Insert ;

end;

148

procedure TfrmJobOrder.mniJDeleteAdClick(Sender: TObject);
begin

dmlJobOrders.qryJobOrder.Delete ;
end;

procedure TfrmJobOrder.mniJCancelAcClick(Sender: TObject);
begin

ifmessagedlg('Are you sure?',mtWaming,[mbYes,mbNo],O) = mrYes then
dmlJ obOrders. qry JobOrder.RevertRecord ;

end;

procedure TfrmJobOrder.mniJApplyAaClick(Sender: TObject);
begin

with dmlJobOrders, qryJobOrder, dmlDBooks do
begin

dbsDBooks. Start Transaction ;
try

ApplyUpdates ;
dbsDBooks.Commit;

except
dbsDBooks.Rollback ;
raise;

end;
CommitUpdates;
mniJSStandardAsClick(Sender);{Go back to standard view if not there}
Close;
Open;
if not Closing then

UpdateJobOrderComboBox ;
end;

end;

procedure TfrmJobOrder.mniJCancelAllClick(Sender: TObject);
begin

dmlJ obOrders. qry J obOrder. CancelUpdates ;
mniJSStandardAsClick(Sender); {Go back to standard view if not there}

end;

procedure TfrmJobOrder.mniJSStandardAsClick(Sender: TObject);
begin

with dmlJobOrders, qryJobOrder do
UpdateRecordTypes := [rtModified, rtlnserted, rtUnmodified];

mniJobOrderAj.Items[5].Items[O].Checked :=true;
mniJobOrderAj.Items[2].Caption :='&Cancel Record Updates';
dgrJobOrder.Font.Color := clWindowText;

149

end;

procedure Tfi:mJobOrder.mniJSDeletedAdClick(Sender: TObject);

begin
with dmlJobOrders, qryJobOrder do

UpdateRecordTypes := [rtDeleted];
with Sender as TMenultem do Checked := true ;
mniJobOrderAj.Items[2].Caption :='&Undelete Job Order' ;

dgrJobOrder.Font.Color := clRed;
end;

procedure Tfi:mJobOrder.mniJSEditClick(Sender: TObject);

begin
with dmlJobOrders, qryJobOrder do

UpdateRecordTypes := [rtModified] ;
with Sender as TMenultem do Checked := true ;

mniJobOrderAj.ltems[2].Caption :='&Undo Changes';

dgrJobOrder.Font.Color := clMaroon;
end;

procedure Tfi:mJobOrder.FormShow(Sender: TObject);

begin
Left:= 386;
Top:= 250;

II UpdateJobOrderComboBox;
end;

procedure T:frmJ obOrder. spbBeginDateClick(Sender: TObject);

begin
with dmlJobOrders do
begin

cldJobOrder.Date := {Initialize with current Date }

FormatDateTime('mm/dd/yyyy',
qryJobOrderEXPIRATION_DATE.asDateTime);

if cldJobOrder.Execute then
begin
if not (qryJobOrder.State in [dsEdit,dslnsert]) then

begin
qryJobOrder.Edit;

end ; {Store value into field}
qryJobOrderEXPIRATION_DATE.AsString := cldJobOrder.Date;

end;
end;

end;

150

procedure TfrmJ obOrder. dngJ obOrderClick(Sender: TObject;
Button: TNavigateBtn);

begin
ifButton = nblnsert then
begin

pgcJobOrder.ActivePage := tbsDetails;
dedJON.SetFocus;

end;
end;

procedure TfrmJobOrder.dgrJobOrderEditButtonClick(Sender: TObject);
begin

with dmlJobOrders, dgrJobOrder do
begin

cldJobOrder.Date := {Initialize with current Date }
FormatDateTime('mrn/ddlyyyy',SelectedField.asDateTime) ;

if cldJobOrder.Execute then
begin
if not (qryJobOrder.State in [dsEdit,dslnsert]) then
begin

qryJobOrder.Edit ;
end ; {Store value into field}
SelectedField.AsString := cldJobOrder.Date ;

end;
end;

end;

procedure TfrmJobOrder.FormCreate(Sender: TObject);
begin

pgcJobOrder.ActivePage := tbsJobOrderList;
Closing := false ;
sesJobOrder := TSession.Create(Self);
sesJobOrder.SessionName := 'sesJobOrderl';
dbsJobOrder := TDatabase.Create(Self);
with dbsJ obOrder do
begin

AliasName := 'DBooksOracle' ;
DatabaseName := 'dbsJobOrderl';

· LoginPrompt := false ;
Params := dmlDbooks. dbsDbooks. params ;
SessionName := sesJobOrder.SessionName;

end;
qryJobOrder := TQuery.Create(Self);
with qryJobOrder do
begin

151

SessionName := sesJobOrder.SessionName;
DatabaseName := dbsJobOrder.DatabaseName ;
SQL.Clear;
SQL.Add('Select * from TBL _JOB_ ORDER') ;

end;
end;

procedure TfrmJ obOrder. cboJ obOrderChange(Sender: TObject);
begin

dmlJobOrders.qryJobOrder.Locate('JOB _ORDER_ NUMBER',
cboJobOrder. Text, [loCaselnsensitive]);

end;

procedure TfrmJobOrder.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
Closing := true ;
if dmlJ obOrders. qry J obOrder. UpdatesPending then

mniJApplyAaClick(Selt);
CanClose := true ;

end;

procedure TfrmJ obOrder .F ormDestroy(Sender: TObject);
begin
try

qryJobOrder.Free ;
dbsJobOrder.Free ;
sesJobOrder.Free ;

except
on E : exception do

'
end;

end;

end.

152

File Name: ChildBudgetPage. pas
{***
D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11/96
Written by Rob Cameron and Ken Carrick

Module:
Notes:
***}
unit ChildBudgetPage;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Frmszlmt, ComCtrls, Buttons, ExtCtrls, SendKey, Grids,
DBGrids, Menus, DBCtrls, StdCtrls, Mask, Calndar, DB, DBTables;

type
TfrmBudgetPage = class(TForm)

pnlBudgetPage: TPanel;
pgcBudgetPage: TPageControl;
fslBudgetPage: TfslF ormSizeLimit;
skyBudgetPage: TSendKey;
dngBudgetPage: TDBNavigator;
tbsList: TTabSheet;
tbsDetails: TTabSheet;

153

cboTitle: TComboBox;
lbUump: TLabel;
lblTitle: TLabel;
dedTitle: TDBEdit;
lblSerialNumber: TLabel;
dedSerialNumbers: TDBEdit;
lblApproval: TLabel;
dedApprovalDate: TDBEdit;
spbApproval: TSpeedButton;
lblExpirationDate: TLabel;
dedExpirationDate: TDBEdit;
spbExpiration: TSpeedButton;
LabelS: TLabel;
dlcDepartment: TDBLookupComboBox;
Label6: TLabel;
dlcSponsor: TDBLookupComboBox;
lblPIEmployee: TLabel;
dlcPIEmployee: TDBLookupComboBox;
lblFiscalY ear: TLabel;
dlcFiscalY ear: TDBEdit;
tbsFinacial: TTabSheet;
lblJON: TLabel;
lblLaborJON: TLabel;
dlcJON: TDBLookupComboBox;
dlcLaborJON: TDBLookupComboBox;
tbsNotes: TTabSheet;
Labell I : TLabel;
DBMemo 1: TDBMemo;
lblFacultyauth: TLabel;
dedFacultyAuth: TDBEdit;
lblSupportauth: TLabel;
dedSupportLabAuth: TDBEdit;
lblOPT ARauth: TLabel;
dedOPT ARAuth: TDBEdit;
lblTravelAuth: TLabel;
dedTravelAuth: TDBEdit;
lblFacultyCosts: TLabel;
dedFacultyLaborCosts: TDBEdit;

· lblSupportCosts: TLabel;
dedSupportLaborCosts: TDBEdit;
lblOPT ARCosts: TLabel;
dedOPT ARCosts: TDBEdit;
lblTravelCosts: TLabel;
dedTravelCosts: TDBEdit;
lblContractAuth: TLabel;

154

dedContractAuth: TDBEdit;
lblContractCosts: TLabel;
dedContractCosts: TDBEdit;
mnuBudgetPages: TMainMenu;
mniBudgetPagesAe: TMenultem;
mniBinsertAi: TMenultem;
mniBDeleteAd: TMenultem;
mniBCanceRecAc: TMenultem;
mniBApplyAa: TMenultem;
rn.niBCancelAIIAn: TMenultem;
mniBShowAs: TMenultem;
mniBSStandardAs: TMenultem;
mniBSDeletedAd: TMenultem;
mniBSEditedAe: TMenultem;
mniBSinsertedAi: TMenultem;
mniSeperator: TMenultem;
mniBCloseAl: TMenultem;
dgrBudgetPages: TDBGrid;
cldBudgetPage: TCalendarDialog;
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure rn.niBinsertAiClick(Sender: TObject);
procedure mniBDeleteAdClick(Sender: TObject);
procedure rn.niBCanceRecAcClick(Sender: TObject);
procedure mniBApplyAaClick(Sender: TObject);
procedure mniBCancelAllAnClick(Sender: TObject);
procedure mniBSStandardAsClick(Sender: TObject);
procedure mniBSDeletedAdClick(Sender: TObject);
procedure mniBSEditedAeClick(Sender: TObject);
procedure rn.niBSinsertedAiClick(Sender: TObject);
procedure dngBudgetPageClick(Sender: TObject; Button: TNavigateBtn);
procedure spbApprovalClick(Sender: TObject);
procedure spbExpirationClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormShow(Sender: TObject);
procedure cboTitleChange(Sender: TObject);
procedure F ormDestroy(Sender: TObject);
procedure UpdateBudgetPageComboBox ;
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);

private
{ Private declarations }

public
{ Public declarations }

end;

implementation

155

uses dmdBudgetPage, dmdDepartment, dmdDbooks, qryThread, dmdEmployees,
dmdJobOrder ;

{$R *.DFM}

var
sesBudgetPage : TSession ;
dbsBudgetPage : TDatabase ;
qryBudgetPage : TQuery ;
Closing : boolean ;

procedure TfrmBudgetPage. UpdateBudgetPageComboBox ;
begin

TQueryThread. Create(false, qryBudgetPage, 'TITLE', cbo Title.ltems) ;

end;

procedure TfrmBudgetPage.FormClose(Sender: TObject; var Action:
TCloseAction);
begin

Action := caFree ;
end;

procedure TfrmBudgetPage.mniBinsertAiClick(Sender: TObject);
begin

pgcBudgetPage.ActivePage := tbsDetails ;
dedTitle.SetFocus;
dmlBudgetPages. qryBudgetPage. Insert ;

end;

procedure TfrmBudgetPage.mniBDeleteAdClick(Sender: TObject);
begin

dmlBudgetPages.qryBudgetPage.Delete ;
end;

procedure TfrmBudgetPage.mniBCanceRecAcClick(Sender: TObject);
begin

ifmessagedlg('Are you sure?',mtWarning,[mbYes,mbNo],O) = mrYes then
dmlBudgetPages. qryBudgetPage.RevertRecord ;

end;

procedure TfrmBudgetPage.mniBApplyAaClick(Sender: TObject);
begin

with dmlBudgetPages, qryBudgetPage, dmlDBooks do
begin

dbsDBooks. StartTransaction ;

156

try
ApplyUpdates ;
dbsDBooks.Commit;

except
dbsDBooks.Rollback ;
raise;

end;
CommitUpdates ;
mniBSStandardAsClick(Sender);{Go back to standard view if not there}

Close;
Open;
if not Closing then

UpdateBudgetPageComboBox ;
end;

end;

procedure TfrmBudgetPage.mniBCancelAllAnClick(Sender: TObject);

begin
dmlBudgetPages.qryBudgetPage. CancelUpdates ;
mniBSStandardAsClick(Sender) ;{Go back to standard view if not there}

end;

procedure TfrmBudgetPage.mnffi S StandardAsClick(Sender: TObject);

begin
with dmlBudgetPages, qryBudgetPage do

UpdateRecordTypes := [rtModified, rtlnserted, rtUnmodified];
mnffiudgetPagesAe.Items[5].Items[O].Checked :=true;
mnffiudgetPagesAe.Items[2].Caption :='&Cancel Record Updates';
dgrBudgetPages.Font.Color := clWindowText;

end;

procedure TfrmBudgetPage.mniB SDeletedAdClick(Sender: TObject);

begin
with dmlBudgetPages, qryBudgetPage do

UpdateRecordTypes := [rtDeleted];
with Sender as TMenultem do Checked := true ;
mnffiudgetPagesAe.Items[2].Caption :='&Undelete BudgetPage';
dgrBudgetPages.Font.Color := clRed;

end;

procedure TfrmBudgetPage.mnffi SEditedAeClick(Sender: TObject);
begin

with dmlBudgetPages, qryBudgetPage do
UpdateRecordTypes := [rtModified] ;

with Sender as TMenultem do Checked := true ;

157

mniBudgetPagesAe.Items[2].Caption :='&Undo Changes';
dgrBudgetPages.Font.Color := clMaroon;

end;

procedure TfrmBudgetPage.mniBSinserted.AiClick(Sender: TObject);

begin
with dmlBudgetPages, qryBudgetPage do

UpdateRecordTypes := [rtlnserted] ;
with Sender as TMenultem do Checked := true ;
mniBudgetPagesAe.Items[2].Caption :='&Delete New BudgetPage';

dgrBudgetPages.Font.Color := clNavy;
end;

procedure TfimBudgetPage.dngBudgetPageClick(Sender: TObject;

Button: TNavigateBtn);

begin
if Button= nblnsert then
begin

pgcBudgetPage.ActivePage := tbsDetails;
dedTitle.SetFocus;

end;
end;

procedure TfrmBudgetPage. spbApprovalClick(Sender: TObject);
begin

with dmlBudgetPages do
begin

cldBudgetPage.Date := {Initialize with current Date }

FormatDateTime('mm/dd/yyyy',
qryBudgetPageAPPROV AL_DATE.asDateTime);

if cldBudgetPage.Execute then
begin
if not (qry BudgetPage. State in [dsEdit, dslnsert]) then
begin

qryBudgetPage.Edit ;
end;
qryBudgetPageAPPROV AL _DATE.AsString := cldBudgetPage.Date ;

end ; {Store value into field}
end;

end;

procedure TfimBudgetPage. spbExpirationClick(Sender: I Object);

begin
with dmlBudgetPages do
begin

158

cldBudgetPage.Date := {Initialize with current Date}
FormatDateTimeCmm/dd/yyyy',

qryBudgetPageEXPIRA TION _ DATE.asDateTime) ;
if cldBudgetPage.Execute then
begin
if not (qryBudgetPage.State in [dsEdit,dslnsert]) then
begin

qryBudgetPage.Edit ;
end;
qryBudgetPageEXPIRA TION _pATE.AsString := cldBudgetPage.Date ;

end ; {Store value into field}
end;

end;

procedure TfrmBudgetPage.FormCreate(Sender: TObject);
begin

pgcBudgetPage.ActivePage := tbsList ;
Closing:= false;
sesBudgetPage := TSession.Create(Selt);
sesBudgetPage.SessionName := 'sesBudgetPagel' ;
dbsBudgetPage := TDatabase.Create(Selt);
with dbsBudgetPage do
begin

AliasName := 'DBooksOracle' ;
DatabaseName := 'dbsBudgetPage 1' ;
LoginPrompt := false ;
Params := dmlDbooks.dbsDbooks.params;
SessionName := sesBudgetPage.SessionName;

end;
qryBudgetPage := TQuery.Create(Selt);
with qryBudgetPage do
begin

SessionName := sesBudgetPage.SessionName;
DatabaseName := dbsBudgetPage.DatabaseName ;
SQL.Clear;
SQL.Add('Select * from TBL _BUDGET _PAGE') ;

end;
end;

procedure TfrmBudgetPage.F ormShow(Sender: TObject);
begin

Left:= 0;
Top:= 0;
UpdateBudgetPageComboBox ;

end;

159

procedure TfrmBudgetPage.cboTitleChange(Sender: TObject);
begin

dm.IBudgetPages.qryBudgetPage.Locate('TITLE',cboTitle. Text,
[loCaselnsensitive]);

end;

procedure TfrmBudgetPage.FormDestroy(Sender: TObject);
begin

qryBudgetPage.Free ;
dbsBudgetPage.Free ;
sesBudgetPage.Free ;

end;

procedure TfrmBudgetPage.F onnCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
Closing := true ;
if dm.IBudgetPages. qryBudgetPage. UpdatesPending then

mniBApplyAaClick(Selt);
CanClose := true ;

end;

end.

160

File Name: Main. pas
{***
D-Books 0.1 Prototype; Naval Postgraduate School Begun 07/11/96
Written by Rob Cameron and Ken Carrick

Module: Dbooks Web main form.
Notes:
***}
unit main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
ADEM03, WebBase, WebCore, WebSend, WebApp, htWebApp, tWebDemo,

Web Types,
WebVars, TpApplic, CGiVarS, APiStat, ApiBuilt, ApiCall, WebCall,
WebBrows, HtmlBase, HtmlCore, HtmlSend, CGiServ, WebServ, UpdateOk,
WeblniFL, Weblnfo, Restorer, RestEdit, GridRest, IniLink, ebutton,
Combobar, WebMemo, StdCtrls, TpMemo, Buttons, Toolbar, Grids, TxtGrid,
ComCtrls, ExtCtrls, DB, Menus, TpMenu, WebMenu, DBTables, WdbLink,
WdbScan, WdbGrid, WebLink, WdbSorce, WebPage, WebPHub, htDbWApp, weblist;

type
TfrmMain = class(ThtWebDemoForm)

DoMenuBarFile: TtpD:finMenultem;
DoExit: TtpD:finMenultem;

161

DoMenuBarHelp: TtpDfmMenultem;
DoContents: TtpDfmMenultem;
DoTopicSearch: TtpDfmMenultem;
DoHowtouseHelp: TtpDfmMenultem;
DoTtpDfmMenultem: TtpDfmMenultem;
DoAbout: TtpDfmMenultem;
DoActionComponents: TtpMenultem;
DoWebPages: TtpMenultem;
DoMenultem View: TtpMenultem;
DoMenultemTool: TtpMenultem;
DoMenultem Verb: TtpMenultem;
DoMenultemidle: TtpMenultem;
DoMenuitemStatus: TtpMenuitem;
WebMenu 1: TWebMenu;
DBooks _BUDGETP AGE: TWebPage;
wdgBudgetPage: TWebDataGrid;
wdsBudgetPage: TW ebDataSource;
wdsJobOrderDetails: TW ebDataSource;
DBooks _JOBORDERDET Ail-S: TW ebPage;
wdgEmployeeListing: TW ebDataGrid;
wdsEmployeeListing: TWebDataSource;
DBooks_EMPLOYEELISTING: TWebPage;
DBooks_ VALIDA TED: TWebPage;
procedure wdgDBooksHotField(Sender: TW ebDataScan; aField: TField;

var s: string);
procedure TablelAfterOpen(DataSet: TDataSet);
procedure FormShow(Sender: TObject);
procedure WebAppDbooksEventMacro(Sender: TWebOutputApp; const aMacro,

aParams, aiD: string);
procedure wdgBudgetPageHotField(Sender: TWebDataScan; aField: TField;

var s: string);
procedure DBooks _JOBORDERDET ATI.-SSection(Sender: TObject;

Section: Integer; var Chunk, Options: string);
procedure DBooks _EMPLOYEELISTINGSection(Sender: TObject;

Section: Integer; var Chunk, Options: string);
procedure DBooks_ V ALIDATEDSection(Sender: TObject; Section: Integer;

var Chunk, Options: string);
private
· { Private declarations }
public

{ Public declarations }
end;

var
frmMain: TfrmMain;

162

implementation

uses dmdDbooksWeb, dmdBudgetPage, dmdJobOrder, dmdDepartment;

{$R *.DFM}

procedure TfrmMain.wdgDBooksHotField(Sender: TWebDataScan; aField: TField;

var s: string);
begin

inherited;
ifCompareTex:t(aField.FieldName, 'Species Name')= 0 then

begin
s := '%=JUMPidetail,' + aField.DataSet.Fields[O].AsString + 'I' +

aField.DataSet.FieldByName('Species Name').AsString + '=%' ;

end;
end;

procedure TfrmMain.TablelAfterOpen(DataSet: TDataSet);

begin
inherited;
with TTable(Dataset) do

FieldByName('Species Name'). Tag:= HotFieldTag;

(* Dataset['Species Name']. Tag:= HotFieldTag; *)

end;

procedure TfrmMain.FormShow(Sender: TObject);

begin
inherited;

dmlDbooksWeb.OpenDM;
end;

procedure TfrmMain.WebAppDbooksEventMacro(Sender: TWebOutputApp;
const aMacro, aParams, aiD: string);
var
sltDepartments : TStringList;
strTemp: string ;
wltTemp : TWebList ;
begin
inherited;
ifCompareTex:t(aMacro,'gridbuttons') = 0 then

begin
wdsBudgetPage.Activate ;

163

if wdsBudgetPage.DataSet.RecordCount < 5 then
wdgBudgetPage.ButtonsWhere := dsbNone;

end;
ifCompareText(aMacro,'employeebuttons') = 0 then

begin
wdsEmployeeListing.Activate;
WebAppDBooks.literal['RecordN o'] :=inttostr(

wdsEmployeeListing. dataset.recordcount) ;
ifwdsEmployeeListing.DataSet.RecordCount < 5 then

wdgEmployeeListing.ButtonsWhere := dsbNone;

end;
With WebAppDbooks.WebOutput do

begin
ifCompareText(aMacro,'getfield') = 0 then

begin
Send(dmlJobOrders.qryJobOrder.FieldByName(aParams).AsString);

end;
end;
if comparetext (amacro, 'DeptSearch')=O then

begin
sltDepartments := TStringlist.createO;
dmlDepartments.qryDepartment.first ;
While not dmlDepartments.qryDepartment.eof do

begin
strTemp := dmlDepartments.qryDepartment.fieldbyname('Name').AsString + '=';

strTemp := strTemp +
dmlDepartments. qryDepartment. fieldbyname('Department _ ID') .As String ;

sltDepartments.Add(strTemp);
dmlDepartments.qryDepartment.next ;

end;
wit Temp :=Tweblist. create(self);
with webappoutput do
begin
filldropdown(wltTemp,sltDepartments, 11

, 'DeptSearch',
11

, ddmvalueasvalue);
sendstringlist(wltTemp,false);

end;
wltTemp.free;
sltDepartments.free;
end

end;

procedure TfrmMain.wdgBudgetPageHotField(Sender: TWebDataScan;

aField: TField; var s: string);
begin

164

inherited;
ifCompareText(aField.FieldName, 'Job_Order_id') = 0 then

begin
s := '%=JUMP\Job0rderDetails,' +

aField.DataSet.FieldByName('JOB _ORDER_ ID').AsString + '\' +
aField.DataSet.FieldByName('Job _Order _id').AsString + '=%' ;

end;
end;

procedure TfrmMain.DBooks _JOBORDERDET .AILSSection(Sender: TObject;
Section: Integer; var Chunk, Options: string);

begin
inherited;
With dmlJobOrders,qryJobOrder do
begin

Close;
Open;

end;
end;

procedure TfrmMain.DBooks _ EMPLOYEELISTINGSection(Sender: TObject;
Section: Integer; var Chunk, Options: string);

begin
inherited;
with dmlDBooksWeb do
begin

qryemployeelisting. open ;
end;

end;

procedure TfrmMain.DBooks_ V ALIDATEDSection(Sender: TObject;
Section: Integer; var Chunk, Options: string);

begin
inherited;
dmlDbooksWeb.qrylogin.close;
dmlDbooksWeb.qrylogin. open;
if dmlDbooksWeb.qryLogin.recordcount=O then
begin
· WebAppoutput. send('%=errMessage=%') ;

WebAppDBooks.weboutput.close;
exit;

end;
end;

end.

165

166

APPENDIX D. DATA MODEL SPECIFICATION

CREATE DATABASE "F:\DATA\THESIS\D-Books32\Database\Interbase\D­

BOOKS32. GDB II PAGE-SIZE 4096

I* Table: TBL_ACTIVITY_GROUP, Owner: SYSDBA *I
CREATE TABLE TBL _ACTIVITY_ GROUP (ACTIVITY_ GROUP _ID INTEGER

NOT NULL,
ACTIVITY_ GROUP V ARCHAR(l 0),

PRIMARY KEY (ACTIVITY_GROUP _ID));

I* Table: TBL_BUDGET_PAGE, Owner: SYSDBA *I
CREATE TABLE TBL_BUDGET_PAGE (BUDGET_PAGE_ID INTEGER NOT

NULL,
TITLE V ARCHAR(SO),
DEPARTMENT_ID SMALLINT,

SPONSOR _ID INTEGER,

PI_EMP _ID SMALLINT,

APPROV AL_DATE DATE,

EXPIRATION_DATE DATE,

JOB_ORDER_ID INTEGER,

LABOR _JOB_ ORDER _ID INTEGER,

FISCAL YEAR INTEGER,

NOTES BLOB SUB_ TYPE TEXT SEGMENT SIZE 80,

TOTAL_FACULTY_LABOR_COSTS DOUBLE PRECISION,

TOTAL_SUPPORT_LABOR_COSTS DOUBLE PRECISION,

TOTAL_ OPT AR _COSTS DOUBLE PRECISION,

TOTAL_ CONTRACT_ COSTS DOUBLE PRECISION,

TOTAL_ TRAVEL_ COSTS DOUBLE PRECISION,

FACULTY _LABOR_AUTHORIZED DOUBLE PRECISION,

SUPPORT _LABOR _AUTHORIZED DOUBLE PRECISION,

OPT AR _AUTHORIZED DOUBLE PRECISION,

TRAVEL _AUTHORIZED DOlJBLE PRECISION,

CONTRACT _AUTHORIZED DOUBLE PRECISION,

SERIAL_NUMBERS VARCHAR(12),

PRIMARY KEY (BUDGET_PAGE_ID));

I* Table: TBL COST CENTER, Owner: SYSDBA *I
- -

CREATE TABLE TBL_COST_CENTER (COST_CENTER_ID INTEGER NOT

NULL,
COST_CENTER V ARCHAR(IO),

PRIMARY KEY (COST_CENTER_ID));

167

I* Table: TBL_DBOOKS32_DICTIONARY, Owner: SYSDBA *I
CREATE TABLE TBL_DBOOKS32_DICTIONARY (OBJID INTEGER,

VERSION SMALLINT,
NAME V ARCHAR(31),
ALIASNAME V ARCHAR(31),
TYPEID INTEGER,
MISCINFO 1 INTEGER,
MISCINF02 INTEGER,
SRCOBJID INTEGER,
SRCVERSION SMALLINT,
DESTOBJID INTEGER,
DESTVERSION SMALLINT,
OUTOFDATE VARCHAR(1),
CREATEDATE DATE,
LASTUPDATE DATE,
INFO BLOB BLOB SUB_ TYPE 0 SEGMENT SIZE 80,
MISCINF03 INTEGER);

I* Table: TBL_DEPARTMENT, Owner: SYSDBA */
CREATE TABLE TBL_DEPARTMENT (DEPARTMENT_ID SMALLINT NOT

NULL,
NAME V ARCHAR(30),
DIST_CODE VARCHAR(6),
MAIL_STOP VARCHAR(IO),
UIC V ARCHAR(IO),
ORGANIZATIONAL_CODE V ARCHAR(10),
COST_ CENTER_ ID INTEGER,
SUB_ COST_ CENTER_ ID INTEGER,
ACTIVITY_ GROUP _ID INTEGER,
SUB_ ACTIVITY_ GROUP_ ID INTEGER,

PRIMARY KEY (DEPARTMENT_ID));

I* Table: TBL_DEPT_POC, Owner: SYSDBA *I
CREATE TABLE TBL_DEPT_POC (DEPT_POC_ID SMALLINT NOT NULL,

DEPARTMENT_ ID SMALLINT,
EMPLOYEE_ID SMALLINT,

PRIMARY KEY (DEPT_POC_ID));

I* Table: TBL_EMPLOYEE, Owner: SYSDBA *I
CREATE TABLE TBL_ EMPLOYEE (EMPLOYEE _ID SMALLINT NOT ~ULL,

DEPARTMENT_ID SMALLINT,
SSN V ARCHAR(9),
LAST _NAME V ARCHAR(20),
FIRST_NAME VARCHAR(15),

168

:MI V ARCHAR(l),
DATE_ONBOARD DATE,
DATE_ TERMINATED DATE,
TITLE _ID SMALLINT,
TYPE_ ID SMALLINT,
SERVICE_ID SMALLINT,
STATUS_ID SMALLINT,
REMARKS BLOB SUB_ TYPE TEXT SEGMENT SIZE 80,
TENURE_ID SMALLINT,

PRIMARY KEY (EMPLOYEE_ID));

I* Table: TBL_EMP _CONTACT_INFO, Owner: SYSDBA *I
CREATE TABLE TBL _ EMP _CONTACT _INFO (EMP _CONTACT_ INFO _ID
SMALLINT NOT NULL,

EMP _LOCATION_ID SMALLINT,
CONTACT _TYPE_ID SMALLINT,
PHONE_NUMBER_ V ARCHAR(lO),
E_MAIL_ADDRESS V ARCHAR(40),
PRIORITY SMALLINT,

PRIMARY KEY (EMP _CONTACT_ INFO_ ID));

I* Table: TBL_EMP_CONTACT_TYPE, Owner: SYSDBA *I
CREATE TABLE TBL_EMP _CONTACT_ TYPE (CONTACT_ TYPE_ID SMALLINT

NOT NULL,
CONTACT_ TYPE V ARCHAR(20),

PRIMARY KEY (CONTACT_TYPE_ID));

I* Table: TBL_EMP _LOCATION, Owner: SYSDBA *I
CREATE TABLE TBL_EMP _LOCATION (EMP _LOCATION_ID SMALLINT NOT

NULL,
EMPLOYEE_ ID INTEGER,
EMP _LOCATION_ TYPE_ ID SMALLINT,
PRIORITY SMALLINT,
BLDG VARCHAR(12),
ROOM V ARCHAR(6),
STREET_ ADDRESS V ARCHAR(20),
CITY V ARCHAR(I5),
STATE_ID VARCHAR(2),
ZIP_CODE VARCHAR(IO),

PRIMARY KEY (EMP _LOCATION_ID));

I* Table: TBL_EMP _LOCATION_TYPE, Owner: SYSDBA *I
CREATE TABLE TBL _ EMP _LOCATION_ TYPE (LOCATION_ TYPE_ ID
SMALLINT NOT NULL,

LOCATION V ARCHAR(20),

169

PRIMARY KEY (LOCATION_TYPE_ID));

I* Table: TBL_EMP _PAY_IDSTORY, Owner: SYSDBA *I
CREATE TABLE TBL_EMP_PAY_IDSTORY (EMP_PAY_IDSTORY_ID

SMALLINT NOT NULL,
EMPLOYEE_ID SMALLINT,
OCCUPATIONAL_CODE_ID SMALLINT,
BEGIN_DATE DATE,
END _DATE DATE,
HOURLY _RATE DOUBLE PRECISION,
DAILY _RATE DOUBLE PRECISION,
ANNUAL RATE DOUBLE PRECISION,
OVERTIME_RATE DOUBLE PRECISION,
REGULAR_ACCEL_RATE DOUBLE PRECISION,

OVERTIME_ACCEL_RATE DOUBLE PRECISION,

REMARKS BLOB SUB_ TYPE TEXT SEGMENT SIZE 80,

GRADE ID INTEGER,
STEP_ ID INTEGER,

PRIMARY KEY (EMP_PAY_IDSTORY_ID));

I* Table: TBL_EMP _STATUS, Owner: SYSDBA *I
CREATE TABLE TBL_EMP _STATUS (EMP _STATUS_ID SMALLINT NOT NULL,

STATUS VARCHAR(IS),
PRIMARY KEY (EMP _STATUS_ID));

I* Table: TBL_EMP _TITLE, Owner: SYSDBA *I
CREATE TABLE TBL_EMP _TITLE (EMP _TITLE_ID SMALLINT NOT NULL,

TITLE V ARCHAR(30),
PRIMARY KEY (EMP _TITLE_ID));

I* Table: TBL_EMP _TYPE, Owner: SYSDBA *I
CREATE TABLE TBL_EMP _TYPE (EMP _TYPE_ID SMALLINT NOT NULL,

TYPE VARCHAR(I2),
PRIMARY KEY (EMP _TYPE_ID));

I* Table: TBL FUND, Owner: SYSDBA *I
CREATE TABLE TBL_FUND (FUND _ID SMALLINT NOT NULL,

NAME V ARCHAR(20),
AUTHORIZATION V ARCHAR(20),
BEGIN_DATE DATE,
END_DATEDATE,
TYPE_ ID SMALLINT,
STATUS_ID SMALLINT,
INITIAL_BALANCE DOUBLE PRECISION,
TOTAL_ CHARGES DOUBLE PRECISION,

170

PRIMARY KEY (FUND _ID));

I* Table: TBL_FUND_STATUS, Owner: SYSDBA *I
CREATE TABLE TBL_FUND_STATUS (FUND_STATUS_ID SMALLINTNOT

NULL,
STATUS_ TEXT V ARCHAR(20),

PRIMARY KEY (FUND_STATUS_ID));

I* Table: TBL_FUND_TYPE, Owner: SYSDBA *I
CREATE TABLE TBL _FUND_ TYPE (FUND _TYPE_ID SMALLINT NOT NULL,

TYPE V ARCHAR(15),
PRIMARY KEY (FUND_ TYPE _ID));

I* Table: TBL_GRADE, Owner: SYSDBA *I
CREATE TABLE TBL_GRADE (GRADE_ID INTEGER NOT NULL,

GRADE V ARCHAR(8),
PRIMARY KEY (GRADE_ID));

I* Table: TBL_HOURS_TYPE, Owner: SYSDBA *I
CREATE TABLE TBL_HOURS_TYPE (HRS_TYPE_ID SMALLINT NOT NULL,

HOURS_TYPE V ARCHAR(lO),
PRIMARY KEY (HRS_TYPE_ID));

I* Table: TBL _JOB_ ORDER, Owner: SYSDBA *I
CREATE TABLE TBL_JOB _ORDER (JOB_ ORDER_ID INTEGER NOT NULL,

STATUS_ID SMALLINT,
TYPE_ ID SMALLINT,
FUND_ ID INTEGER,
JOB_ ORDER _NUMBER V ARCHAR(20),
EXPIRATION_DATE DATE,
TOTAL_ CHARGES DOUBLE PRECISION,
INITIAL_ BALANCE DOUBLE PRECISION,

PRIMARY KEY (JOB_ORDER_ID));

I* Table: TBL_JON_STATUS, Owner: SYSDBA *I
CREATE TABLE TBL_JON_STATUS (JON_STATUS_ID SMALLINT NOT NULL,

STATUS VARCHAR(20),
PRIMARY KEY (JON_STATUS_ID));

I* Table: TBL_JON_TYPE, Owner: SYSDBA *I
CREATE TABLE TBL_JON_TYPE (JON_TYPE_ID SMALLINT NOT NULL,

TYPE V ARCHAR(20),
PRIMARY KEY (JON_TYPE_ID));

I* Table: TBL_LABOR_RECORD, Owner: SYSDBA *I

171

\..,.. __

CREATE TABLE TBL_LABOR_RECORD (LABOR_RECORD _ID INTEGER NOT

NULL,
TIMECARD ID INTEGER,
JON_ ID INTEGER,
HRS_TYPE_ID SMALLINT,
NUMBER_OF _HOURS FLOAT,

PRIMARY KEY (LABOR _RECORD _ID));

I* Table: TBL_OCCUPATIONAL_CODE, Owner: SYSDBA *I
CREATE TABLE TBL_OCCUPATIONAL_CODE (OC_CODE_ID SMALLINT NOT

NULL,
CODE V ARCHAR(l 0),

PRIMARY KEY (OC_CODE_ID));

I* Table: TBL_SERVICE, Owner: SYSDBA *I
CREATE TABLE TBL_SERVICE (SERVICE_ID SMALLINT NOT NULL,

SERVICE VARCHAR(IO),
PRIMARY KEY (SERVICE_ID));

I* Table: TBL _SPONSOR, Owner: SYSDBA *I
CREATE TABLE TBL_SPONSOR (SPONSOR_ID INTEGER NOT NULL,

NAME V ARCHAR(30),
TYPE_ID SMALLINT,
STATUS_ID SMALLINT,

PRIMARY KEY (SPONSOR_ID));

I* Table: TBL _SPONSOR_ STATUS, Owner: SYSDBA *I
CREATE TABLE TBL_SPONSOR_STATUS (SPONSOR_STATUS_ID SMALLINT

NOT NULL,
STATUS V ARCHAR(20),

PRIMARY KEY (SPONSOR_STATUS_ID));

I* Table: TBL _SPONSOR_ TYPE, Owner: SYSDBA *I
CREATE TABLE TBL _SPONSOR_ TYPE (SPONSOR_ TYPE_ ID SMALLINT NOT

NULL,
TYPE V ARCHAR(20),

PRIMARY KEY (SPONSOR_TYPE_ID));

I* Table: TBL_STATE, Owner: SYSDBA *I
CREATE TABLE TBL_STATE (STATE_ID V ARCHAR(2) NOT NULL,

STATE V ARCHAR(30),
PRIMARY KEY (STATE_ID));

I* Table: TBL_STEP, Owner: SYSDBA *I
CREATE TABLE TBL_STEP (STEP_ID INTEGER NOT NULL,

172

• - J

STEP V ARCHAR(8),
PRIMARY KEY (STEP _ID));

I* Table: TBL_SUB_ACTIVITY_GROUP, Owner: SYSDBA *I
CREATE TABLE TBL _SUB _ACTIVITY_ GROUP (SUB_ ACTIVITY_ GROUP_ ID

INTEGER NOT NULL,
SUB_ ACTIVITY_ GROUP V ARCHAR(l 0),

PRIMARY KEY (SUB_ACTIVITY_GROUP _ID));

I* Table: TBL _SUB_ COST_ CENTER, Owner: SYSDBA *I
CREATE TABLE TBL_SUB_COST_CENTER(SUB_COST_CENTER_ID INTEGER

NOT NULL,
SUB_ COST_ CENTER V ARCHAR(l 0),

PRIMARY KEY (SUB_COST_CENTER_ID));

I* Table: TBL_TENURE, Owner: SYSDBA *I
CREATE TABLE TBL_ TENURE (TENURE _ID SMALLINT NOT NULL,

TENURE V ARCHAR(ll),
PRIMARY KEY (TENURE_ID));

I* Table: TBL_TIMECARD, Owner: SYSDBA *I
CREATE TABLE TBL_TIMECARD (TIMECARD _ID INTEGER NOT NULL,

EMP _PAY_IDST_ID INTEGER,
BEGIN_PAY_DATE DATE,
END _PAY _DATE DATE,
NOTES BLOB SUB_TYPE TEXT SEGMENT SIZE 80,

PRIMARY KEY (TIMECARD_ ID));

I* Index definitions for all user tables *I
CREATE INDEX OALIASNAME ON TBL_DBOOKS32_DICTIONARY(TYPEID,

ALIASNAME);
CREATE UNIQUE INDEX OBJID ON TBL_DBOOKS32_DICTIONARY(OBJID,

VERSION);
CREATE INDEX ONAME ON TBL_DBOOKS32_DICTIONARY(TYPEID, NAME);

CREATE INDEX RELDEST ON TBL_DBOOKS32 _DICTIONARY(DESTOBJID,

DESTVERSION, TYPEID, SRCOBJID, SRCVERSION);
CREATE INDEX RELSRC ON TBL_DBOOKS32_DICTIONARY(SRCOBJID,

SRCVERSION, TYPEID, DESTOBJID, DESTVERSION);
CREATE INDEX TYPEID ON TBL_DBOOKS32_DICTIONARY(TYPEID);

ALTER TABLE TBL_EMPLOYEE ADD FOREIGN KEY (DEPARTMENT_ID)

REFERENCES TBL_DEPARTMENT(DEPARTMENT_ID);
ALTER TABLE TBL_EMPLOYEE ADD FOREIGN KEY (TITLE_ID) REFERENCES

TBL_EMP _TITLE(EMP _TITLE_ID);
ALTER TABLE TBL_EMPLOYEE ADD FOREIGN KEY (TYPE_ID) REFERENCES

TBL_EMP _TYPE(EMP _TYPE_ID);

173

ALTER TABLE TBL_EMPLOYEE ADD FOREIGN KEY (SERVICE_ID)
REFERENCES TBL _ SER VICE(SERVICE _ ID);
ALTER TABLE TBL_EMPLOYEE ADD FOREIGN KEY (STATUS_ID)
REFERENCES TBL_EMP _STATUS(EMP _STATUS_ID);
ALTER TABLE TBL_DEPT_POC ADD FOREIGN KEY (DEPARTMENT_ID)
REFERENCES TBL_DEPARTMENT(DEPARTMENT_ID);
ALTER TABLE TBL_DEPT_POC ADD FOREIGN KEY (EMPLOYEE_ID)
REFERENCES TBL _EMPLOYEE(EMPLOYEE _ ID);
ALTER TABLE TBL_EMP _LOCATION ADD FOREIGN KEY (EMPLOYEE_ID)
REFERENCES TBL_EMPLOYEE(EMPLOYEE_ID);
ALTER TABLE TBL EMP LOCATION ADD FOREIGN KEY - -
(EMP _LOCATION_TYPE_ID) REFERENCES
TBL_EMP _LOCATION_TYPE(LOCATION_TYPE_ID);
ALTER TABLE TBL _EMP _CONTACT _INFO ADD FOREIGN KEY
(EMP _LOCATION_ID) REFERENCES
TBL_EMP _LOCATION(EMP _LOCATION_ !D);
ALTER TABLE TBL_EMP _CONTACT_INFO ADD FOREIGN KEY
(CONTACT_TYPE_ID) REFERENCES
TBL _ EMP _CONTACT_ TYPE(CONTACT:_ TYPE_ ID);
ALTER TABLE TBL_EMP _PAY_IDSTORY ADD FOREIGN KEY (EMPLOYEE_ID)
REFERENCES TBL _ EMPLOYEE(EMPLOYEE _ ID);
ALTER TABLE TBL EMP PAY IDSTORY ADD FOREIGN KEY - - -
(OCCUPATIONAL_CODE_ID) REFERENCES
TBL_OCCUPATIONAL_CODE(OC_CODE_ID);
ALTER TABLE TBL_TIMECARD ADD FOREIGN KEY (EMP _PAY_IDST_ID)
REFERENCES TBL_EMP_FAY_IDSTORY(EMP_PAY_IDSTORY_ID);
ALTER TABLE TBL_FUND ADD FOREIGN KEY (TYPE_ID) REFERENCES
TBL _FUND_ TYPE(FUND _TYPE_ ID);
ALTER TABLE TBL_FUND ADD FOREIGN KEY (STATUS_ID) REFERENCES
TBL_FUND _STATUS(FUND _STATUS_ID);
ALTER TABLE TBL _JOB_ ORDER ADD FOREIGN KEY (TYPE_ID) REFERENCES
TBL _JON_ TYPE(JON _TYPE_ ID);
ALTER TABLE TBL_JOB_ORDERADD FOREIGN KEY (STATUS_ID)
REFERENCES TBL_JON_STATUS(JON_STATUS_ID);
ALTER TABLE TBL _JOB_ ORDER ADD FOREIGN KEY (FUND_ ID) REFERENCES
TBL_FUND(FUND _ID);
ALTER TABLE TBL_LABOR_RECORD ADD FOREIGN KEY (TIMECARD_ID)
REFERENCES TBL _ TIMECARD(TIMECARD _ ID);
ALTER TABLE TBL_LABOR_RECORD ADD FOREIGN KEY (JON_ID)
REFERENCES TBL _JOB_ ORDER(JOB _ORDER_ ID);
ALTER TABLE TBL_LABOR_RECORD ADD FOREIGN KEY (HRS_TYPE_ID)
REFERENCES TBL _HOURS_ TYPE(HR.S _TYPE_ ID);
ALTER TABLE TBL_SPONSOR ADD FOREIGN KEY (TYPE_ID) REFERENCES
TBL _SPONSOR_ TYPE(SPONSOR_ TYPE_ ID);

174

ALTER TABLE TBL_SPONSOR ADD FOREIGN KEY (STATUS_ID) REFERENCES
TBL_SPONSOR_STATUS(SPONSOR_STATUS_ID);
ALTER TABLE TBL_BUDGET_PAGE ADD FOREIGN KEY (DEPARTMENT_ID)
REFERENCES TBL_DEPARTMENT(DEPARTMENT_ID);
ALTER TABLE TBL_BUDGET_PAGE ADD FOREIGN KEY (SPONSOR_ !D)
REFERENCES TBL _ SPONSOR(SPONSOR _ ID);
ALTER TABLE TBL_BUDGET_PAGE ADD FOREIGN KEY (PI_EMP _ID)
REFERENCES TBL _ EMPLOYEE(EMPLOYEE _ ID);
ALTER TABLE TBL_BUDGET_PAGE ADD FOREIGN KEY (JOB_ORDER_ID)
REFERENCES TBL _JOB_ ORDER(JOB _ORDER_ ID);
ALTER TABLE TBL_BUDGET_PAGE ADD FOREIGN KEY
(LABOR _JOB_ ORDER_ ID) REFERENCES TBL _JOB_ ORDER(JOB _ORDER_ ID);
ALTER TABLE TBL_EMPLOYEE ADD FOREIGN KEY (TENURE_ID)
REFERENCES TBL _ TENURE(TENURE _ ID);
ALTER TABLE TBL_EMP_PAY_IDSTORY ADDFOREIGNKEY(GRADE_ID)
REFERENCES TBL_GRADE(GRADE_ID);
ALTER TABLE TBL_EMP_PAY_IDSTORY ADDFOREIGNKEY(STEP_ID)
REFERENCES TBL_STEP(STEP _ID);
ALTER TABLE TEL _DEPARTMENT ADD FOREIGN KEY
(ACTIVITY_GROUP _ID) REFERENCES
TBL _ACTIVITY_ GROUP(ACTIVITY_ GROUP_ ID);
ALTER TABLE TBL_DEPARTMENT ADD FOREIGN KEY
(SUB_ACTIVITY_GROUP _ID) REFERENCES
TBL _SUB_ ACTIVITY_ GROUP(SUB_ ACTIVITY_ GROUP_ ID);
ALTER TABLE TBL_DEPARTMENT ADD FOREIGN KEY (COST_CENTER_ID)
REFERENCES TBL _COST_ CENTER(COST_ CENTER_ ID);
ALTER TABLE TBL_DEPARTMENT ADD FOREIGN KEY
(SUB_COST_CENTER_ID) REFERENCES
TBL _SUB_ COST_ CENTER(SUB_ COST_ CENTER_ ID);

CREATE GENERATOR DEPARTMENT_ID _GEN;
CREATE GENERATOR EMPLOYEE_ ID _ GEN;
CREATE GENERATOR BUDGET_PAGE_ID _GEN;
CREATE GENERATOR DEPT_POC_ID _GEN;
CREATE GENERATOR EMPLOYEE_LOCATION_ID _ GEN;
CREATE GENERATOREMPLOYEE_CONTACT_INFO_ID_GEN;
CREATE GENERATOR FUND _ID _ GEN;
CREATE GENERATORJOB_ORDER_ID_GEN;
CREATE GENERATOR SPONSOR _ID _ GEN;
CREATE GENERATOR SCREENING_CAND_ID_GEN;
CREATE GENERATOREMP _PAYJIIST_GEN;
CREATE GENERATOR TIMECARD _ID _ GEN;
CREATE GENERATOR LABOR_RECORD _ GEN;

COMMIT WORK;

175

SET AUTODDL OFF;
SET TERM 1\;

/* Stored procedures *I
CREATE PROCEDURE GET_NEXT_TIMECARD_ID AS BEGIN EXIT; END 1\

ALTER PROCEDURE GET _NEXT _TIMECARD _ID RETURNS
(NEW_ TIMECARD_ ID INTEGER)
AS

BEGIN
NEW_ TIMECARD_ ID = GEN _ ID(TIMECARD _ ID _ GEN, I) ;

END

SET TERM; 1\

COMMIT WORK;
SET AUTODDL ON;
SET TERM/\;

I* Triggers only will work for SQL triggers *I
CREATE TRIGGER CREATE_EMPLOYEE_CONTACT_INFO_ID FOR
TBL_EMP _CONTACT _INFO
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN

NEW.EMP _CONTACT _INFO _ID = GEN_ID
(EMPLOYEE_ CONTACT_ INFO_ ID _ GEN, I) ;
END

CREATE TRIGGER CREATE_EMPLOYEE_ID FOR TBL_EMPLOYEE
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN

NEW.EMPLOYEE_ID = GEN_ID (EMPLOYEE_ID_GEN, 1);
END

CREATE TRIGGER CREATE_DEPARTMENT_ID FOR TBL_DEPARTMENT
ACTIVE BEFORE INSERT POSITION 0
AS·
BEGIN

NEW.DEPARTMENT_ID = GEN_ID (DEPARTMENT_ID_GEN, I);
END

CREATE TRIGGER CREATE_BUDGET_PAGE_ID FOR TBL_BUDGET_PAGE
ACTIVE BEFORE INSERT POSITION 0

176

AS
BEGIN

NEW.BUDGET_PAGE_ID = GEN_ID (BUDGET_PAGE_ID_GEN, 1);
END
1\

CREATE TRIGGER CREATE DEPT POC ID FOR TBL DEPT POC - - - - -
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN

NEW.DEPT_POC_ID = GEN_ID (DEPT_POC_ID_GEN, 1);
END
1\

CREATE TRIGGER CREATE_EMPLOYEE_LOCATION_ID FOR
TBL EMP LOCATION - -
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN

NEW.EMP _LOCATION_ID = GEN_ID (EMPLOYEE_LOCATION_ID_GEN, I);
END
1\

CREATE TRIGGER CREATE_FUND _ID FOR TBL_FUND
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN

NEW.FUND_ID = GEN_ID (FUND_ID_GEN, 1);
END
1\

CREATE TRIGGER CREATE_JOB_ORDER_ID FOR TBL_JOB_ORDER
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN

NEW.JOB_ORDER_ID = GEN_ID (JOB_ORDER_ID_GEN, 1);
END
1\

CREATE TRIGGER CREATE_SPONSOR_ID FOR TBL_SPONSOR
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN

NEW. SPONSOR_ ID = GEN _ ID (SPONSOR_ ID _ GEN, 1) ;
END
1\

CREATE TRIGGER CREATE_EMP _PAY_HIST FOR TBL_EMP _PAY_HISTORY
ACTIVE BEFORE INSERT POSITION 0
AS BEGIN

NEW.EMP_PAY_HISTORY_ID = GEN_ID (EMP_PAY_HIST_GEN, 1);

177

END

CREATE TRIGGER CREATE_LABOR_RECORD _ID FOR TBL_LABOR_RECORD
ACTIVE BEFORE INSERT POSITION 0
AS BEGIN

NEW.LABOR_RECORD_ID = GEN_ID (LABOR_RECORD_GEN, 1);

END
1\

CO:M:MIT WORK 1\

SET TERM; 1\

178

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center ... 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library ... 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5000

3. Professor James C. Emery, Code 05 .. 2
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Barry Frew, Code SM/Fw .. 1
Naval Postgraduate School
Monterey, CA 93943-5000

5. Judy Harr, Code 01B4 .. 1
Naval Postgraduate School
Monterey, CA 93943-5000

6. LCDR Dale Courtney, Code 05 ... 1
Naval Postgraduate School
Monterey, CA 93943-5000

7. Mr. R. Jay, Code 21 .. 1
Naval Postgraduate School
Monterey, CA 93943-5000

8. Megan Reilly, Code 21D ... 1
Naval Postgraduate School
Monterey, CA 93943-5000

9. Michael Nichols, Code 2231 .. 1
Naval Postgraduate School
Monterey, CA 93943-5000

10. LT Warren Yu .. 1
1275 Leahy Roadl
Monterey, CA 93940-4872

179

11. L T Robert A. Cameron .. 2
3 711 Azalea Drive
Philadelphia, PA 19136

12. CPT Kenneth G. Carrick .. 2
331 Metz Road
Seaside, CA 93955

180

