
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1996-03

Discrete asynchronous Kalman filtering of navigation

data for the Phoenix autonomous underwater vehicle

McClarin, David W.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/32182

--

. .~

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

DISCRETE ASYNCHRONOUS KALMAN
FILTERING OF NAVIGATION DATA FOR THE

PHOENIX AUTONOMOUS UNDERWATER
VEHICLE

by

David W. McClarin

Thesis Advisor:
Co-Advisor:

March 1996

Robert McGhee
Anthony Healey

Approved for public release; distribution is unlimited.

19960620 115

REPORT DOCUMENTATION PAGE Fonn Approved OMB No. 0704-0188

Public reporting burden for this collection of infonnation is estimated to average I hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of infonnation. Send comments regarding this burden estimate or any
other aspect of this collection of infonnation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Infonnation
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Proiect (0704-018Sl Washington DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES
blank) March 1996 COVERED

Master's Thesis

4. TITLE AND SUBTITLE DISCRETE ASYNCHRONOUS KALMAN 5. FUNDING NUMBERS

FTI..,TERING OF NAVIGATION DATA FOR THE PHOENIX
AUTONOMOUS UNDERWATER VEHICLE

6. AUTHOR(S) David W. McClarin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORI
NG
AGENCY REPORT
NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

The Phoenix Autonomous Underwater Vehicle must be able to accurately determine its position at all times.
This requires: 1) GPS and differential GPS for surface navigation, 2) short baseline sonar ranging system for
submerged navigation, and 3) mathematical modeling of position.

This thesis describes a method of Kalman filtering to merge the GPS, differential GPS, short baseline sonar
ranging, and the mathematical model to produce a single state vector of vehicle position and ocean currents.
The filter operates in the extended mode for processing the non-linear sonar ranges, and in normal mode for the
linear GPS/DGPS data. This required installation of a GPS system and the determination of the different
variances and errors between these systems.

Phoenix now has a real time method of position determination using either position measuring system
separately or combined. The results of this work have been validated by real world testing of the vehicle at sea,
where position estimates accurate to within several meters were obtained.

14.

17.

SUBJECTTERMS NAVIGATION, KALMAN-FILTERING, AUTONOMOUS
UNDERWATER VEHICLES

SECURITY 18.
CLASSIFICATION
OF REPORT

Unclassified

SECURITY CLASSIFI- 19. SECURITY
CATION OF THIS CLASSIFICATION
PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

i

15. NUMBER OF

PAGES 140

16. PRICE CODE

20. LIMITATION
OF
ABSTRACT

UL

ii

Author:

Approved for public release; distribution is unlimited.

DISCRETE ASYNCHRONOUS KALMAN FILTERING OF
NAVIGATION DATA FOR THE PHOENIX AUTONOMOUS

UNDERWATER VEHICLE

David W. McClarin

Lieutenant, United States Navy

B.S., University of Florida, 1989

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1996 . 1

Approved by:

Ted Lewis, Chairman,

Department of Computer Science

iii

iv

ABSTRACT

The Phoenix Autonomous Underwater Vehicle must be able to accurately determine

its position at all times. This requires: 1) GPS and differential GPS for surface navigation,

2) short baseline sonar ranging system for submerged navigation, and 3) mathematical

modeling of position.

This thesis describes a method of Kalman filtering to merge the GPS, differential GPS,

short baseline sonar ranging, and the mathematical model to produce a single state vector of

vehicle position and ocean currents. The filter operates in the extended mode for processing

the non-linear sonar ranges, and in normal mode for the linear GPS/DGPS data. This

required installation of a GPS system and the determination of the different variances and

errors between these systems.

Phoenix now has a real time method of position determination using either position

measuring system separately or combined. The results of this work have been validated by

real world testing of the vehicle at sea, where position estimates accurate to within several

meters were obtained.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A BACKGROUND .. 1
B. THE PHOENIX AUV .. 2

1. Strategic Level .. 2
2. Tactical Level ... 2
3. Execution Level 4

C. NAVIGATION MODULE 4
1. Navigatorl.C ... 4
2. Kalman_filter.C 5
3. Readgps.C ... 5
4. Matrix.C ... 5

D. THESIS CHAPTER SUMMARY 5

IT. PHOENIX HARDWARE CHARACTERISTICS AND SHORTFALLS 7
A INTRODUCTION ... 7
B. PHOENIX AUV HARDWARE OVERVIEW 7
C. VOYAGER LAPTOP WORKSTATION 9
D. MOTOROLA GPS/DGPS UNIT 9
E. DIVETRACKER SYSTEM 10
F. SUMMARY ... 11

ill. KALMAN FII..TERIN'G .. 13
A INTRODUCTION .. 13
B. PHOENIX IMPLEMENTATION 13

1. Statistical Background . 14 ·
2. Movement Model 14

C. KALMAN FILTER FORMULAS 15
1. Motion and Measurement Models 15
2. Movement Step 17
3. Measurement Step 17

D. DIMENSIONLESS SHOCK 18
E. EXTENDED KALMAN FILTERING 19
F. SPEED/CURRENT ERROR MODEL 20
G. SUMMARY ... 22

IV. NAVIGATION ... 23
A INTRODUCTION .. 23
B. NAVIGATION OVERVIEW 23
C. NAVIGATION CO-ORDINATES 24
D. GPS/DGPS .. 25

1. Phoenix GPS/DGPS Variances 26

vii

...... ------------------------------ ···--·····

2. Kalman Filtering of GPS/DGPS Data 29
3. GPS/DGPS Navigation 36

E. DIVETRACKER RANGE UTJLIZATION 36
1. Divetracker Variance 37
2. Baseline Problem 37

F. FJLTER RESPONSE VS VEHICLE STABJLITY 38
G. FIX DETERMINATION 41
H. FIX POSITION TRANSLATION TO VEHICLE CENTER 42
I. NAVIGATION INITIALIZATION 43
J. OCEAN CURRENT (ERROR) ESTIMATION 43
K. WATER SPEED SENSOR CALIBRATION 44
L. SIMULATION MODE 44
M. SUMMARY ... 46

V. SOFTWARE ... 47
A. INTRODUCTION .. 47
B. NAVIGATORl.C .. 47

1. Navigation Module Operation 47
2. Navl_Initialize Function 50
3. My_Parse_Telemetry_String Function 50
4. Reset_Kalman Function 50

C. KALMAN_FJLTER.C 50
1. Kalman_Filter Operation 51
2. Navtorad Function 52
3. Mysquare Function 52

D. READGPS.C .. 52
1. Get_GPS_Data Function 53
2. CheckSumCheck Function 53
3. Getmilsec Function 53
4. Getgpstime Function : 54
5. Getgpsfixtype Function 54
6. Determine Fix Function 54
7. Gps_Serial_Read Function 55
8. lnitialize_Serial Function 55
9. Open_ Tty Function 55
10. Tty and Serial_Read Timeout Functions 56
11. Simulate_GPS_Data Function 56

E. MATRIX.C ... 56
1. Matrix_Multiply Function 57
2. Matrix_Add and Subtract Functions 57
3. Matrix_ Transpose Function 57
4. Matrix_Inverse Function 57
5. Gauss_Elimination Function 57

viii

6. Matrix_Rtransfonn Function 58

7. Output_Matrix Function 58

F. SUMMARY ... 58

VI. SUMMARY AND CONCLUSIONS 59

A. SUMMARY ... 59

B. FUTURE WORK ... 60

C. CONCLUSION .. 61

APPENDIX A. NAVIGATORl.C ... 63

APPENDIX B. KALMAN_FILTER.H 81

APPENDIX C. KALMAN_FILTER.C 85

APPENDIX D. READGPS.H ... 93

APPENDIX E. READGPS.C ... 95

APPENDIX F. MATRIX.H ... 111

APPENDIX G. MATRIX.C ... 113

LIST OF REFERENCES .. 121

INITIAL DISTRffiUTION LIST .. 125

ix

X

ACKNOWLEDGMENTS

During the course of my thesis work, there were many people who were instrumental

in helping me. Without their guidance, help and patience, I would have never been able to

accomplish the work of this thesis. I would like to take this opportunity to acknowledge

some of them.

I would like to thank my thesis advisors, Professor Robert McGhee and Professor

Anthony Healey, both of whom were driving factors to the successful completion of this

phase of Phoenix development. Professor Alan Washburn introduced me to Kalman

Filtering. A small MATLAB project required for his class served as the kernel of my entire

project.

My fellow members of the Phoenix software team were Brad Leonhardt, Mike

Campbell, Mike Burns and Duane Davis. Without their support, hard work and dedication

none of this work would have been possible. A special thanks to Russ Whalen for efforts

and support in this project.

I must give immense thanks to my wife Ruth and our children Lori, Jackie, Mark and

Christopher. Their love and support during long nights of work away at the lab was of

immeasurable value to me.

This research was supported in part by Grant BCS-9306252 from the National

Science Foundation to the Naval Postgraduate School.

xi

xii

I. INTRODUCTION

For any vehicle to be truly autonomous requires that it have knowledge of its local

world coordinate position. This thesis describes a method of discrete Kalman Filtering of

short baseline sonar range data (DiveTracker) and satellite navigation data (GPS) to achieve

accurate positioning of the NPS Phoenix AUV [MARC96].

A. BACKGROUND

An inherent difficulty in any precision navigation system is the accuracy of the

measurements. No measurement system is perfect, just the amount of error in the system

varies. Kalman Filtering is a method of filtering measurement data based on the known or

approximated variance of the measurements and vehicle movements. [GELB88]

Previous and continuing related work in this area includes the Shallow-Water AUV

Navigation System (SANS) [MCGH95],[BACH96]. SANS utilizes a twelve state

continuous Kalman (complementary) filter of inertial measurement unit (IMU) data with

differential GPS updating. SANS provides highly accurate dead reckoning utilizing IMU

data. The SANS position is updated using raw DGPS data as the "Truth". SANS has no

method of position updating other than dead reckoning when submerged, and only takes GPS

measurements when surfaced. This system was used as a background for the work of this

thesis.

Phoenix presently does not have an IMU, so all dead reckoning is performed using

speeds developed via mass motion formulas, a vertical and heading gyro, and a water wheel

speed measuring unit [MARC96]. Phoenix also has the DiveTracker system [FLAG94]

which allows position measurements while submerged, and GPS for measurements while

1

surfaced. The work of this thesis utilizes filtered GPS and Dive Tracker ranges for updating

dead reckoned positions, versus using raw data as SANS does.

B. THE PHOENIX AUV

The Phoenix autonomous underwater vehicle is a shallow-water mine warfare test

bed prototype (Figure 1). The vehicle is designed to act autonomously in searching for mine­

like objects and accurately reporting their positions. This requires a complex software suite

with a highly accurate method of navigation. The Phoenix runs on a unique three level

software architecture, consisting of strategic, tactical and execution levels called the

"Rational behavior Model" [BYRN96]. These levels are based on proven methods of actual

U. S. Submarine control [HOLD95].

1. Strategic Level

The strategic level acts as the vehicle's Commanding Officer. This level holds the

mission logic and controls the mission by giving orders to the tactical level. The strategic

level only gives commands and awaits reports that the commands are accepted or completed.

The tactical level responds with either a command accepted, command complete, or

command aborted message. The strategic level then takes actions depending upon the

command report. This level was written in Prolog, and treats the tactical level as a function

call [MARC96],[LEON96].

2. Tactical Level

The tactical level acts as the vehicle's Officer ofthe Deck (OOD). It receives orders

from the strategic level and takes the actions required to compete these actions, if possible.

The tactical level OOD runs in parallel with the Sonar [CAMP96] and Navigation sub-levels,

2

--~---~

DIVE TRACKER

64 .. ~-----------------------------~--~-- RADIOETHERNET
ANTENNA (FIXED
TO HULL OR FLOATING)

' __ _

-------------------- -..
POWER PLUG

TRANSDUCER --~~~----~~

SIDE VIEW

DIFFERENTIAL
GPS ANTENNA ---......_

E

THRUSTER

TOP VIEW

ACCESS HATCH

STlOOO SONAR

TIDN WIRE I RADIO
ETHERNET PORT

Drawn By D. Marco '96

and gives vehicle control commands to the execution level. Sonar and Navigation report

directly to the tactical level OOD. The tactical level uses the sonar inputs to determine if an

object has been encountered, and the navigation inputs to update the execution level's

estimate of the vehicle's position. [LEON96]

3. Execution Level

The execution level acts as the ships crew; ie., it drives the vehicle from point to

point, controls all control surfaces, and takes emergency actions [BYRN96]. The execution

level can hover at a given point, maintain ordered depth, and take all actions required to conn

the vehicle from point to point. The execution level communicates with the tactical level,

updating vehicle parameters and receiving new orders and vehicle positions [BURN96].

C. NAVIGATION MODULE

The navigation module utilizes both discrete normal and extended Kalman Filtering

of measured GPS/DGPS, or short baseline sonar ranges (Dive Tracker System), to produce

the best estimate of the vehicle's position. This level consists of four main functions:

Navigatorl.C, Kalman_Filter.C, ReadGps.C, and Matrix.C.

1. Navigatorl.C

Navigatorl.C is the driver of the navigation module. This section of code

communicates with the tactical level via piped communications. It receives basic

initialization information, and subsequent updated vehicle parameters, and returns the best

estimate of the vehicles current position and N/S, E/W (X,Y) current estimations. It calls the

Kalman filter routine to return the updated position estimate. This process also records to

data for later analysis.

4

2. Kalman_tilter.C

This code performs "dead-reckoning" (movement step) and filters the input

navigation data (measurement step) to create an updated vehicle position estimate. It filters

either linear data (GPS/DGPS) as a normal filter, or non-linear data (DiveTracker) as an

extended filter. It also develops a combined estimate of "Ocean Currents/Errors" and

determines if the filter has possibly lost track or has a bad measurement.

3. Readgps.C

This code reads the data from the Motorola GPS/DGPS receiver. It opens the Solaris

serial port for communications with the GPS unit and then decodes the GPS binary data. It

also has the routine that determines the best type of fix information to use based on input

data.

4. Matrix.C

This code performs the basic matrix operations required by the Kalman filter to

include addition, subtraction, and multiplication. It also computes a matrix inverse using

Gausian elimination and constructs the rotation matrices required for body speed

transformation to earth coordinates.

D. THESIS CHAPTER SUMMARY

Chapter ll overviews the Phoenix, GPS and Dive-Tracker hardware. Chapter ill

provides an in-depth description of Kalman filtering, describing this implementation and

variance determination. Chapter N describes the navigation problem and its solutions.

Chapter V covers pertinent factors of the developed software. Chapter VI summarizes the

conclusions and results of this work and discusses possible future work to be performed.

5

6

II. PHOENIX HARDWARE CHARACTERISTICS AND SHORTFALLS

A. INTRODUCTION

The Phoenix AUV possesses the precise position control and sensing systems

hardware required for mine hunting and localization. To achieve this capability requires

complex multiple computer capability, a sonar system, navigation equipment, and the

necessary position and control surface motors and controllers. The three major pieces of

hardware used in the implementation of the navigation module are the on-board Solaris

Voyager laptop workstation, the DiveTracker system, and a Motorola GPS/DGPS unit.

B. PHOENIX AUV HARDWARE OVERVIEW

The Phoenix AUV hardware layout is shown in Figure 2. The vehicle mission logic

operates on an installed Solaris (SUN) Voyager laptop work station. The vehicle control

systems operate on a GESP AC M68030 processor operating under an OS-9 system

[MARC96]. These computers operate together over a LAN. Phoenix has two screws for

forward propulsion, two vertical thrusters for depth control, two horizontal thrusters for

station keeping, and eight control fins for vehicle attitude control during forward motion.

To provide environmental data, the Phoenix has ST725 and STlOOO TRITECH sonars

[TRITEC]. Phoenix uses a depth cell and turbine flow meter for water depth and speed

determinations respectively. The Voyager has its own independent battery supply with a life

of 1 Y2 hours. All other vehicle power is supplied by four lead acid batteries, which provide

a vehicle life of approximately four hours.

7

- ---------------------~

Figure 2: Phoenix Hardware LayOut

8

C. VOYAGERLAYfOPWORKSTATION

The voyager Solaris laptop workstation is the software host for the strategic and

tactical levels. This is a new generation Solaris (SUN) workstation [SUN]. It has a 100

MHZ processor with 48 meg RAM and a 1.2 Gigabyte hard drive. It operates under the

UNIX operating system.

The major shortfalls of this system was the poor battery capability. Trials of only

short periods (a max of 1.5 hour) could be performed, with a two hour recharge rate. The

Voyager had no real on/off switch. On/Off switching was keyboard controlled and the

keyboard could not be installed due to space considerations in the vehicle. In addition, the

battery was designed to be inserted into the unit, and it could not be removed once the

VOYAGER was in the craft. The overall result was that upon a system lockup, there was

no alternative to waiting until the battery died to shut down the system (overnight). To

correct these problems the installed battery was removed and another battery was added in

parallel to extend Voyager useful life. The new battery system is now wired directly into the ·

Voyager with an on/off switch added. The SOLARIS system has the capability of serial port

communication with other non-terminal devices. However, the operating system

documentation did not include the required commands. After much trial and error, these

commands were found in a non-SOLARIS source [SCSI].

D. MOTOROLA GPS/DGPS UNIT

The Motorola Eight Channel PVT8 GPS receiver is capable of both GPS and

Differential GPS (DGPS) modes with a maximum speed of one fix per second [MOTORO].

This system is capable of simultaneously tracking up to eight satellites. The receiver output

9

data can be used in one of three formats: the MOTOROLA Binary Format, the National

Marine Electronics Association (NMEA)-0183 Format, or the LORAN Emulation Format

[MOTORO]. The GPS antenna is mounted on an four inch pedestal on the forward starboard

side of the vehicle. The Differential antenna was eight inches long and mounted opposite

on the port side. This system communicated to the VOYAGER serial port via a SCSI

interface.

The main shortfall of this system was in its use of the Differential correction signal.

In the absence of a new DGPS time correction, the receiver held the last DGPS time

correction signal received for ninety seconds before changing fix status to standard

(uncorrected) GPS. The Kalman filter requires that the variances of the system be known.

The DGPS variance was approximately 45 fe with uncorrected GPS variance being

approximately 27900 fe. However, after 30 seconds of no DGPS signal, the DGPS variance

increased to 207 ftz and after 60 seconds it grew to 17424 fe, while still reporting a DGPS

fix [MOTORO]. The commands to modify this hold time to five seconds did not appear to

work.

E. DIVETRACKER SYSTEM

The Dive Tracker system is produced for divers' use by providing navigation and

communications support [FLAG94]. On the Phoenix AUV, the DiveTracker hardware

utilizes two base station sonar transducers combined with an onboard processor and

transducer to provide independent ranges from each base station to the Phoenix. These

ranges are processed by the Execution level and sent to the Navigation Module via the

Tactical level. DiveTracker range standard deviation was determined to be approximately

10

six to eight inches by the manufacturer. Experimental data backed up this claim, but showed

an occasional error of one to two feet. The baseline separation was a primary factor in

determining the minimum and maximum useable navigation ranges. Ranges were reported

at an approximate interval of 1 to 3 seconds.

This system worked only when the vehicle transducer was submerged. Unfortunately

the Phoenix transducer was mounted on top of the vehicle. This caused a loss of

DiveTracker data while surfaced or gaining a GPS/DGPS fix. After a subsequent

submergence the system did not always restart. The system also had the problem of shadow

zones where the transducer did not receive any data at all. To correct these problems the

vehicle transducer has been mounted under the vehicle. Testing is in progress to determine

the effectiveness of this solution.

F. SUMMARY

The Phoenix hardware configuration is highly complex and uses nearly all of the

available space in the vehicle. There are still some hardware problems to work out and it

seems that whenever the boat is opened a new problem develops. However, the overall

hardware suite has proven to be very successful in meeting the requirements of supporting

student thesis research and developing basic knowledge about the use of AUVs in mine

hunting applications [BRUT96].

11

12

III. KALMAN FILTERING

A. INTRODUCTION

Kalman filtering is a method of recursively updating an estimate of a system state by

processing a succession of measurements. The Kalman filter is model-based; each cycle of

measured input data is compared with prior (model-based) estimates and are weighted by

Kalman gains to obtain updated (output) state estimates. Kalman gains are computed during

each cycle and are function's of the filter's covariances and models of the measurement

process [GELB88]. In this chapter Kalman filtering will be discussed as implemented in the

Phoenix AUV for navigation calculations.

B. PHOENIXIMPLEMENTATION

A discrete asynchronous Kalman Filter was used by the Phoenix navigation module.

The use of Dive Tracker range data required the addition of an Extended Kalman Filter mode

of operation due to the non-linearity of range measurements. The Kalman filter used a non­

zero mean p1ovement model, where the input vehicle speed is assumed truth, and results in

the filter solving for both an updated position data and estimates of ocean current. This filter

also computes a Dimensionless shock quantity based on the received measurements to

determine if the filter has possibly lost track or received bad measurements. The state vector

,U, was defined to be [Xpos Ypos Xdrift Ydrift]. The state was processed through the

movement and measurement steps based on the previous position, measurements, Kalman

gains, and system covariance.

13

1. Statistical Background

The Kalman computations are manipulations of (multi-variate) normal probability

distributions [W ASH94]. The computations are conducted in two separate stages consisting

of motion and measurement step calculations. The symbol X represents a system state

component and is a multi-variate normal with a mean of 11 and a covariance of I:, abbreviated

as X-N(I..l,I:). Vis the measurement noise, and is also a multi-variate normal with a mean

of Uv and a variance of R abbreviated V-N(Uv,R). W is the movement noise. It too is a

multi-variate normal with a mean ofUw and a variance of Q, abbreviated W-N(Uw,Q).

2. Movement Model

The movement model's X andY position is based on standard dead-reckoning; i.e.,

Distance = Rate * Time (3.1)

That is, Distance becomes the new X or Y position. Rates are computed using a rotational

transform [CRAI86] of Phoenix u (longitudinal), v (sway) and w (heave) speeds to arrive

with X (north/south), Y (east/west) and Z (up/down) speeds. The earth coordinates were set

according to a right hand rule with north, east and down directions being positive. The

movement model dead reckons in X and Y positions over a time A based on the following

equations.

Xi + 1 = Xi + Xdrift* A + Wx - N(Xspeed* A,Q) (3.2)

14

Y; + 1 = Y; + Ydrift* A+ Wy- N(Yspeed* A,Q) (3.3)

Xdrift; + 1 = Xdrift;+ WXdrift - N(O,Q) (3.4)

Ydrift; + 1 = Ydrift;+ WYdrift- N(O,Q) (3.5)

That is, The new X and Y positions are the sum of the old position, the distance covered by

drift speeds, and an approximately normal non-zero mean random variable W, where W has

a mean of Speed* A and a variance Q. The use of a non-zero mean random variable for the

calculations of the X and Y positions is the primary driver for the solution of X and Y drift

speeds. The X andY drift calculations use a zero mean random variable W, with variance

Q.

C. KALMAN FILTER FORMULAS

The Kalman filter uses Equations (3.6) and (3.7) for the motion modeling described

by Equations (3.2-3.5). Equations (3.8-3.11) are used in the calculation of the measurement

step. All operations are matrix operations. With the addition of <I> and Has movement and

measurement matrices, Equations 3.2 and 3.5 are transformed to the Kalman filter formulas.

For example ifXi+t= <I>Xi + Wx (simplification ofEq. 3.2) and X-N(!l,~), then,

lli+I = <l>!li+Uw as demonstrated in Equation (3.6).

1. Motion and Measurement Models

The motion formulas are:

(3.6)

15

The measurement and update formulas are:

U(+); + 1 = U(-); + 1 +K; + 1 *Shock; + 1

Shock;+ 1 = Z; + 1 -Uv-H; + 1 *U(-); + 1

where:

U,~ = The mean and covariance of the System State.

<P = The movement Matrix, which describes how the state changes.

Uw,Q =The mean and covariance of the movement noise.

H =The measurement matrix (how the measurement depends on the state).

Uv ,R = The mean and covariance of the measurement noise.

Z =The measurements (GPS/DGPS or DiveTracker).

K = Kalman Gains (a ratio of the filter Co variances)

I = Identity Matrix

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

and '+' indicates a measurement step while '-' indicates a movement step calculation.

16

2. Movement Step

The new movement step position given by Equation (3.6) is the sum of the product

of the movement matrix <I> and state vector U(+), as shown in Equation (3.12).

1 0 ll 0 X

0 1 0 ll y
(3.12) NewPosition =

0 0 1 0 Xdft

0 0 0 1 Ydft

The addition ofUw results in Equation (3.6). The new value of I: given by Equation (3.7)

also depends on the movement matrix <I> and the addition of the covariance of the movement

noise, and results in a new covariance matrix for the system state U.

3. Measurement Step

The measurement step computes a new state vector U based upon measurements and

Kalman gains. Kalman gains given by Equation (3.8) are computed as a ratio of the state

covariance, as it depends upon the measurement vector and the sum of the state covariance

and the measurement Equation (3.11). The gains indicate how much the state vector U

values depend upon the measurements Z1 and Z2. Specifically,

[X Zlgain X Z2gain

K=
YZlgain YZ2gain

(3.13)
Xdft Zlgain Xdft Z2gain

Ydft Zlgain Ydft Z2gain

The computed gains are used as weights on the amount of change in the system based on the

measurements. The difference between the estimated position based on the movement model

17

and the measured position Z is denoted as "Shock" [WASH94], or as equivalently to as

"innovation" and is given by Equation (3.9). Where a measured position is from

GPS/DGPS or is a position derived from DiveTracker ranges. The new system state U is a

sum of the previous state and a gain weighted shock given by Equation (3.10). The new

covariance, Equation (3.11), is the product of the "complement" of the state dependent gain

(a measure of truth) and the old covariance. The complement is derived by subtracting the

state dependent gain from an Identity matrix.

D. DIMENSIONLESS SHOCK

In a perfect system, the value of the shock would be zero. As the shock increases

and becomes large, then the probability that the system has lost track also increases. A

problem develops in determining what value of shock should be considered "large".

Dimensionless shock (Eq. 3.14) is used to determine what value of shock relates to "large".

DimensionlessShock = Shock T *(H*~(-)+R)- 1* Shock (3.14)

A large value of DimensionlessShock indicates a possible measurement problem or that the

filter has lost track. DimensionlessShock can be gauged against the degrees of freedom of

the shock [W ASH94]. However, it has been found in the research of this thesis that an order

of magnitude increase over the degrees of freedom provides better results.

An order of magnitude increase was determined to be required due to the shift in

measurement methods. When using a consistent measurement method, a large shift in the

DimensionlessShock value as gauged against the degrees of freedom of the shock does

18

indicated a possible loss of track. However, when shifting measurement methods it is

possible to get a change in position that results in a higher value than expected of

DimensionlessShock. To ensure that the new measurement is not ignored, an order of

magnitude increase in the DimensionlessShock threshold level is used. This enables the

filter to use the new measurement and maintain track.

E. EXTENDED KALMAN FILTERING

In the previous discussion of the Kalman Filter, the measurement was always a linear

function of the system state. In the non-linear case, the relationship between the system state

and the measurements must be linearized. In the Phoenix Kalman filter, the DiveTracker

ranges are a non-linear function of the state. The DiveTracker ranges are two independent

ranges from base station transducers to the Phoenix. In this case a non-linear filter (Extended

Kalman Filter) must be used [WASH94]. This linearization is performed by taking the

derivative of a calculated range, f(U), given by Equation (3.15). Where f(U) is a function of

the X and Y components of the system state vector U. If Dx and Dy are distances between

the Phoenix state position U and the Dive Tracker base transponder positions, then

(3.15)

Since the values of the measurements are non-linear with respect to the state, the

development of a new H (how the measurement depends upon the state) matrix is required.

This new H (Equation 3.16) is now composed of the first partial derivatives of calculated

measurements f(U), based upon the current values of the state, to form a Jacobian.

19

[
aRangel/ax aRangllay l

H = aRange21ax aRange2/ay
(3.16)

This H matrix represents a linearized relationship between the state and the measured

ranges. The new His used by Equations (3.8) and (3.9) to calculate Kalman gains and

covariances as they relate to the measurements. The shock calculations must also change to

reflect the amount of state change required. The new shock (Equation 3.17) is the difference

between the actual measurements Z and the calculated measurements f(U) as based on the

system state. Where Z holds the received ranges from the DiveTracker system.

Shock = Z- Fu - Uv (3.17)

F. SPEED/CURRENT ERROR MODEL

If a measured Phoenix position does not agree with the motion model's position, then

as the filter updates the system state the X and Y ocean current speed components will be

increased to explain the difference. The ocean current speed components of the system state

are actually a combination of ocean current and navigation errors caused by inaccurate

vehicle speed and heading inputs. In the absence of measurements, the speed variances will

slowly increase. In the long run, according to the movement model, vehicle speeds in excess

of 1000 knots are not only possible but likely [WASH94]. Modeling these speeds as a

discrete Ornstein-Uhlenbeck process (0-U) will correct this problem by exponentially

decreasing the value of the ocean current speeds over time. This is useful for long term

modeling of ocean or tidal currents. With this approach a value of C, where (0 :-:;; C :-:;; 1), is

20

used to decrease the value of the drift speed exponentially (Eq 3.18). That is,

C = exp(-~tr) (3.18)

In this equation, ~ is the time step between cycles and T is the drift relaxation time. As an

example for the case of Xdrift, the state component update equation changes to;

(3.19)

Consequently, the Xdrift variance changes to;

Var(Xdrift) = C 2 * Var(Xdrift) + Q (3.20)

The limit ofVar(Xdrift) as time approaches infinity is the average ofXdriftz, so Q reduces

to,

(3.21)

The final modification in the 0-U process involves the~ used in the <P matrix. Now,

the drift speeds not only fluctuate about zero, but they also decay toward zero at the rate

specified by C. This results in a new term o = T*(l-C), where o is always smaller than ~.

although there is very little difference when~ is small compared toT. The final result is

a modified <P matrix given by,

21

(3.22)

G. SUMMARY

Discrete Kalman filtering is a statistical method of calculating a new system state

based on a series of measurements. The Phoenix navigation module uses a system state of

[Xpos Ypos Xdrift Y driftf, and measurements of GPS position and DiveTracker ranges.

The use ofDiveTracker ranges requires an Extended Kalman filter due to non-lineararity of

the measured ranges. Drift speeds are modeled as a Omstein-Uhlenbeck process to keep the

calculated speeds in bounds.

22

IV. NAVIGATION

A. INTRODUCTION

For the Phoenix AUV to be effective in mine warfare requires precision navigation

with desired position estimates within several meters of actual positions. To solve this

problem, a discrete Kalman filter was used to filter the GPS/DGPS and DiveTracker

measurements and produce the most probable vehicle position. However, this filtering was

only a means of utilizing measurement and dead reckoning to provide new positions. The

Kalman-Filter by itself did not "solve" the navigation problem. Questions about

initialization, accuracy of position fixing methods, which fix type to use under which

conditions, and dead reckoning problems all must be solved before a fully functional filter

can be implemented.

B. NAVIGATION OVERVIEW

The Phoenix navigation module works in a continuous loop as a forked process of

the tactical level [LEON96]. The module receives the vehicle state string from the tactical

level. From the state string, the values of speeds, vehicle attitude, heading and Dive Tracker

ranges are obtained. If the Phoenix depth is less than one foot, then an attempt is made to

read GPS from the Motorola unit. If the Kalman filter has lost track for 15 seconds, the

tactical level is informed, and the vehicle will surface to gain a GPS fix and reset the filter

parameters. The Kalman filter is reset by re-initializing the gain and variance matrixes. Fix

types are compared, and the appropriate fix position data type is selected for use. If there

is no fix position data, the state vector drift values are manually updated using the computed

23

total drift resolved to Xdrift and Ydrift speed components using the vehicle's heading.

The Kalman filter routine is next called and passed the parameters for the selected

fix type. The Kalman filter first performs the dead reckoning movement step. If no fix data

was available, the filter returns the new dead reckoned state position estimate. If fix data was

available the measured data is filtered and new Kalman gains are computed. Dimensionless

Shock is calculated to determine if the measured data was reasonable. If the Dimensionless

shock value is low, the state vector is updated using the computed Kalman gains and

measurements. If the Dimensionless shock was too high, the measurements are ignored, the

state vector is not updated and a loss track flag is set. The value of the root mean squared

total drift is next calculated. The filter then returns the updated state, total drift and loss track

flag data. Finally, the navigation module sends the new fix data back to the tactical level and

records the fix data for later analysis, and the loop continues again. Loop timing is controlled

by the time stamp in the state string received from the tactical level OOD. If there was no

state string received, the loop performs a busy wait until a state string is received, if a state

string is received then data processed by the loop uses the time passed in the state string.

C. NAVIGATION CO-ORDINATES

A right hand rule system of X, Y and Z measured in feet was used for Phoenix

Navigation. In this system X is aligned along the North earth axis, withY along the East axis

and Z being down. This required the conversion of GPS/DGPS position data from latitude

and longitude to X and Y in feet. The GPS/DGPS system raw data stream reported position

data in milli-seconds of arc latitude and longitude. Before the GPS/DGPS data could be used

by the Kalman filter, the data had to be converted both to feet and to the local coordinate

24

system. This was performed by first determining an origin (starting location) during the filter

initialization phase. All subsequent fixes are referenced against this origin position to get

a calculated difference in latitude and longitude milli-seconds of arc from the fix position to

the origin position. The differences in milliseconds arc latitude are converted to feet by the

relationship of 10 milli-seconds of arc per foot latitude. To convert longitude data a

spherical world approximation was used (Eq. 4.1).

distancelongitude =longitude* cos(latitude) (4.1)

Distance longitude was then converted to feet using the same 10 milli-seconds of arc

per foot factor. These new X and Y distances in feet were then applied to the vehicles X, Y

starting position to arrive at a new fix position in X,Y coordinates.

D. GPS/DGPS

GPS is a world wide satellite based system that provides highly accurate position data

[MOTORO]. There are 26 satellites available, with a minimum of three satellites required

to compute a fix position. The U.S. Department of Defense runs this system and

intentionally perturbs the GPS signals so that accuracy of only approximately 180 feet RMS

error in position can be achieved without special equipment. GPS operates on the measured

time delays between the received satellite signals. To increase accuracy, a differential GPS

(DGPS) system has been developed and is now widely commercially available [MOTORO].

DGPS receives the GPS signal at a surveyed land based site, and then broadcasts a

correction time signal for GPS users to obtain accuracies of within 2 meters and more

recently using carrier phase inversion methods to within 2 centimeters [LACH96].

25

1. Phoenix GPS/DGPS Variances

The Phoenix AUV received GPS/DGPS at an average rate of one fix per second when

surfaced. This resulted in asynchronous data dependent upon the Phoenix depth and

satellites availability. To determine the noise variances of the GPS/DGPS system, static

(non-moving) testing of the unit was performed in the laboratory. Figures 3-6 detail the

results of a 17 hour GPS and 7 hour DGPS test. Positions are recorded at five second

intervals. Figure 3 shows the GPS latitude and longitude data (converted to feet)

fluctuations. The standard deviation of this data was 100 feet latitude and 66 feet longitude.

Figure 4 indicates the range of positions recorded over the 17 hour period. The pronounced

gap in the data received around time 14 indicates when the minimum of three satellites

apparently was not available.

Figure 5 and 6 show the same data for DGPS over a 7 hour period. The standard

deviations of DGPS in latitude and longitude was 19 and 11 feet latitude and longitude for

a tighter distribution. In this case the gap in data most probably resulted in a loss of DGPS

correction signals. There is a notable increase in error before the gap which is consistent

with the loss a correction signal.

Figures 5 and 6 also illustrate a loss of DGPS correction signal problem with our

receiver. The Motorola receiver holds a received differential correction signal for 90 seconds

before defaulting to uncorrected GPS mode. This results in increasing inaccuracies of up to

40.5 meters at ninety seconds [MOTORO]. These errors can be seen in Figure 6 as the

occasional loop out from the bulk of the positions and the long spikes in Figure 5. In real

world use, it is better to hold a correction signal as long as possible, because even the 40.5

26

GPS Lat/Lon vs Time
400.------.-------.------.------.-------.------.------.-------,---,

'af
~
Q)
"0 .a
1ii
...J -200

JJ~ ft ...
.... . l

-4QQL-----~~----~------~------~------~------~~----~----~~~
0 2 4 6 8 10 12 14 16

200

'af 100
~
~ 0 .a ·a,
§ -100

...J

-200

0

300

200

100

2

Time (hours)

4 6 8 10 12 14 16
Time (hours)

Figure 3: GPS Lat/Lon vs Time

GPS at 5 Second Intervals

~ .. ····-·· .•.
.. ' ~~.~··<~~·:··,.-···<~ .. ,

. ·· .·. ,..,..,. ..

Q) 0
= .a
~

-100

.. . ··-~-
. .. ·. ~ · .

. . ·:· .. :}
-200 .. - - .. "

. J .. -.:. :{: .· .(:~. . ~.
-300 ~ .: ..

...
-250 -200 -150 -100 -50 0 50 100 150 200 250

Longitude (feet)

Figure 4: Plot of Raw GPS data Positions over 17 Hours

27

DGPS Lat/Lon vs Time
200.--------.---------.--------.---------.---------.--------.--------,

100

'$ 0

~-100
<I>

"'0
.3-200
~
_J-300

-400

0

150

'$
100

~
<I>

50
"'0
.3 0 ·a,
c::
.9

-50

-100
0

..... -

. ,~ •. :: -~,Jif~~.-,r_.,-·,.,· ~~-~~ ... P\._N..,,_...._,~~-~.,._-.,....""""'..a•~•~
. _,_ ~ :. . . .l '

..... -:..

... -=~ -

2 3 4
Time (hours)

5

... -

6 7

.

-1-~---~l~~·~k~~---~~
: ! :H! I 1: '1 : : ~
. .::. : : . : . : :

:-

2 3 4 5
Time (hours)

Figure 5: DGPS Lat/Lon vs Time

DGPS at 5 Second Fix Intervals

6 7

100.------------.r------------.-------------.-------------.-------------,

Q5
~

0

-100

{g -200
.3
~

-300

-400

:.

. :.
~-·

-500L-----------~------------~------------~------------~-------------"
-100 -50 0 50 100 150

Longitude (feet)

Figure 6: Plot of Raw DGPS Positions Over 7 Hours

28

meter inaccuracy after 90 seconds is better than the 60 meter inaccuracy of uncorrected GPS.

However, the Kalman filter demands the knowledge of the measured variances, and after 30

seconds without correction, the estimated position error can exceed the calculated DGPS

standard deviations and result in solutions exceeding the expected accuracy of position

estimates.

2. Kalman Filtering of GPS/DGPS Data

The raw GPS/DGPS data shown in Figures 3-6 was input to the Kalman filter with

the following results. Using the square of standard deviations of the raw GPS/DGPS data

as variances for the Kalman filter proves the capability of this method. Figures 7 and 8 show

the results of the filtering of the GPS data. The standard deviation of the filtered GPS data

was reduced from 100 feet to 9 feet latitude and from 66 feet to 6 feet longitude. Increasing

the variance by 100 in Figures 9 and 10 show a reduction in standard deviation to 5 and 4

feet latitude and longitude. Increasing the variance by 1000 in Figures 11 and 12 show a

reduction in standard deviation to 3.8 feet and 2.5 feet latitude and longitude. The same type

of result can be seen for the DGPS data in Figures 13-18, where the DGPS variance by itself

produced standard deviations of 1.75 feet latitude and 1.1 feet longitude. Increasing these

variances by 100 produced standard deviations of 1.1 feet latitude and .88 feet longitude and

.78 feet latitude and .75 feet longitude for a 1000 fold increase. Of course these results apply

only to a stationary receiver. The long time constants associated with large variances would

not be suitable for use on a maneuvering vehicle such as Phoenix.

29

Filtered GPS Lat/Lon vs Time (Variance * 1)
40.------.------.------.------.------.------.------.------.------.------.

-40L_ ____ _L ______ L_ ____ _L ______ ~----~------~----~------~----~----~

0 2 4 6 8 1 0 12 14 16 18 20
Time (hours)

30.-----.------.------.------.------.-----.------.------.------.-----.

20

-----:-- ·····<.···· . .
. .
' '

;,, '
: .

-30L_ ____ _L ______ L_ ____ _L ______ ~----~------~----~------~----~----~

0 2 4 6 8 1 0 12 14 16 18 20
Time (hours)

Figure 7: Filtered GPS Lat/Lon vs Time

Filtered GPS Data (Variance* 1)
40

30

20

10

/T.· //~),·-····•J•·•·::·.-:~
..... -~-~

.. ?~·-·····
1?
~
Q) 0 "0
::I

~
....J

-10

-20 . · 4_~:-·=·:·

-30 ·:·~.:
. ·. ··-..... -~ ..

-40
-25 -20 -15 -10 -5 0 5 10 15 20 25

Longitude (feet)

Figure 8: Plot of Filtered GPS Positions Over 17 Hours

30

Filtered GPS Lat/Lon vs Time (Variance * 1 00)
20

15 10

~
Q) 0 -o
:::>

~
-' -10

-20
0 2 4 6 8 10 12 14 16 18 20

Time (hours)

15

10
15

5 ~
Q)
-o 0 .a ··J·~~··· ·rn

-5 t:::
0
-'

-10

-15L-----~------L------L------~----~------~----~------L-----~----__J
0 2 4 6 8 1 0 12 14 16 18 20

Time (hours)

Figure 9: Increased Variance Filtered GPS Lat/Lon vs Time (Variance* 100)

Filtered GPS Data (Variance * 1 00)
20

15

10

5
15
~
Q) 0 -o .a
~
-'

-5

-10

-15

-20L---------~----------~----------~----------~----------~--------__J
-15 -1 0 -5 0 5 1 0 1 5

Longitude (feet)

Figure 10: Plot of Increased Variance Filtered GPS Positions Over 17 Hours

31

Filtered GPS Lat/Lon vs Time (Variance * 1 000)

Q) 0
~
~
__. -10

: f ~~. . :· . . :_·

. -

-20L------L------~-----L------L------L------L-----~------~----~----~

0 2 4 6 8 1 0 12 14 16 18 20
Time (hours)

15

1?
10 .· -.:- ·.·.

~ 5
Q)
-o .a 0 ·a,
c:

....•• :. ••• f• ·)~ ·• •.
0 __.

-5

-10L-----~------~-----L------~-----L------L------L------~----~----~

0 2 4 6 8 1 0 12 14 16 18 20
Time (hours)

Figure 11: Increased Variance Filtered GPS Lat!Lon vs Time (Variance* 1000)

Filtered GPS Data (Variance * 1 000)
15

10

5

1? 0
~
Q)
-o .a
~ -5

• ·:
-20~----~------~------~------L-----~-------L------~------L-----~

-6 -4 -2 0 2 4 6 8 1 0 12
Longitude (feet)

Figure 12: Plot of Increased Variance GPS Positions Over 17 Hours

32

Filtered DGPS Lat/Lon vs Time (Variance * 1)
10

0
~
(J)

g-10

~
:€! -20 ."!' ••

<i'i
.....J

-30

-40
0 1 2 3 4 5 6 7 8

Time (hours)

15

~
10

(J) -=- 5
(J)
-o
~ 0 = c::
0

.....J
-5
~~ ••• ~~~j···

:-

-10
0 1 2 3 4 5 6 7 8

Time (hours)

Figure 13: Filtered DGPS Lat/Lon vs Time

Filtered DGPS Data (Variance * 1)
10.------------.------------.-------------.------------.------------~

5

0

-5

~-10
(J)

g
~ -15
.a
~
.....J -20

-25

-30

.. ···.·
. "·

. :.

: .

-40~----~----~------------~------------L------------J------------~
-10 -5 0 5 10 15

Longitude (feet)

Figure 14: Plot of Filtered DGPS Positions Over 7 Hours

33

Filtered Dgps Lat/Lon vs Time (Variance * 1 00)
5.--------.------~.-------.--------.--------,--------.--------.-------,

~
~

0

{!:l -5
2
~
......1-10

-15L_ ______ _L ______ ~L-------~------~--------~-------L--------L-------~

0 2 3 4 5 6 7 8
Time (hours)

6.--------.-------,,-------,---.-----.--------.--------.--------.-------,

4 f- . . . i .

t:"j~ ¥~;~r
-4L--------L--------L-------~------~--------~------~--------~------~

. -

0 2 3 4 5 6 7 8
Time (hours)

Figure 15: Increased Variance DGPS Lat/Lon vs Time (Variance* 100)

Filtered DGPS Data (Variance* 100)

. ~ ·~ .

. :

-6

-8
. :

-10 · .•.

-12~-----L------L------L------~----~------~----~-------L------~----~
-4 -3 -2 -1 0 1 2 3 4 5 6

Longitude (feet)

Figure 16: Plot of Increased Variance DGPS Positions Over 7 Hours

34

Filtered Dgps Lat/Lon vs Time (Variance * 1 000)

-4 ,, ..
-6L-------~-------L------~--------L-------~-------L------~~----~ 0 1 2 3 4 5 6 7 8

Time (hours)

4~--~----~----~~~--~----~----~----~----~

.j~ ... w-lf\.~ \I"W'

. :t

-4L-------~------~--------~------~--------~------~--------~------~ 0 2 3 4 5 6 7 8
Time (hours)

Figure 17: Increased Variance Filtered DGPS Lat!Lon vs Time (Variance* 1000)

Filtered DGPS Data (Variance * 1 000)
4r--------.-------,,-------.--------,--------.--------.--------.-------~

3

2

1
: .

. . .
·.: .• .•.

-2

.·
-3

-4
··\.

-5~------L-------~------J_------~-------L-------L------~------~ -4 -3 -2 -1 0 1 2 3 4
Longitude (feet)

Figure 18: Plot of Increased Variance DGPS Positions Over 7 Hours

35

3. GPS/DGPS Navigation

The Phoenix almost always received GPS signals, but the DGPS correction signal

could only be received during pier testing. When ready to launch, at sea level, a differential

signal was not received at all, a suspected cause was local waterfront interference consisting

of the pier itself or other ships in the vicinity. However, investigation revealed this problem

to be the result of electromagnetic interference caused primarily by the Phoenix gyros, which

are only started when ready to launch. Whenever the gyros were started the differential

signal was lost. This created a problem of GPS/DGPS fix accuracy. In our sea trial area of

operation, a raw GPS fix could position the Phoenix anywhere within the slip. The DGPS

raw position was much more accurate, with two meters accuracy depending upon the receipt

of the correction signal.

E. DIVETRACKER RANGE UTILIZATION

The Dive Tracker sonar ranging system provided two independent ranges from base

transducers to the Phoenix with accuracies within one foot. The DiveTracker data is

asynchronous, and is normally received in 1 to 3 second intervals. The filtered range

positions provided a much more accurate method for position fixing than our version of

GPSIDGPS. However, the system only worked for ranges of up to 1000 feet, and the fix

positions available were geometrically dependent upon the baseline locations of the

transducers. For the DiveTracker system to be reliably used, the set up for transducer

positions and calculations of optimum operating area must first be performed. This limits

the Phoenix missions to these areas. In addition, care must be taken to avoid position

ambiguity that can result from "crossing the baseline".

36

1. Divetracker Variance

DiveTracker variances were statically determined to be less than 1 foor2, depending

upon the range [SCRI96]. Figures 19 and 20 show an example of fix accuracy using a range

error of± 0.75 foot over 60 foot ranges with a 50 foot baseline. Figure 20 shows the

generated error area of 2.97 feet2
• The second plot in Figure 20 shows the same area

superimposed with the 2000 normally distributed positions based on the same range error.

The normally distributed positions had a mean of the absolute position arid a variance of 0.75

feee. In this example the normally distributed positions cover a larger area than the possible

geometric error. A Kalman filter is designed to control normally distributed error, so in this

case the possible geometric error is well under control. However, Figure 21 demonstrates

the dependence of geometry in possible position errors. In this case 120 foot ranges with the

same 50 foot base line is used to develop a geometric error area of 5.51 feer2. Now the

geometric error begins to grow larger than the normally distributed position errors. As

ranges from the baseline increase, the possible geometric error continues to grow and

exceeds the range of normally distributed position errors that the Kalman filter is designed

to control. This can cause problems with position errors as ranges from the baseline increase.

2. Baseline Problem

Dive Tracker range navigation introduced the problem of fix inconsistencies across

the baseline between the transducers. Position determination while crossing the baseline is

a problem because the ranges are identical from one side of the baseline to the other. This

is normally not a problem because the baseline is normally set up so the Phoenix mission

never crosses it. The Kalman filter may not be able to track which side of the baseline the

37

vehicle is on. Figure 22 illustrates an example of this problem that occurred during vehicle

testing. The figure shows a track denoted by the solid line provided by the Kalman filter.

The small dotted line segments show the dead reckoned movement. In this trial the vehicle

started on the baseline at approximately X = 26 and Y = 0. When the trial started the vehicle

proceeded as ordered along the positive Y axis, but as Figure 22 shows the filter tracked the

vehicle running towards the negative Y axis. The vehicle dead reckoning traces show the

vehicle moving in the desired direction, but every Dive Tracker fix reset the vehicle position

farther to the left.

F. FILTER RESPONSE VS VEHICLE STABILITY

The question of fix accuracy vice vehicle stability depends upon the actual variances

used in the Kalman filter. If the variances are small, then the filter tends to believe the

measurements more than the movement model. This results in a "high strung" behavior,

where the fixes jump from location to location. Such behavior can create a serious problem

in vehicle stability. For example; if the vehicle is attempting to hover at a designated point

and the fixes keep jumping around, the vehicle may never achieve that point. If the variances

are too high, the filter tends to ignore the measurements and follows the model. This gives

a sluggish behavior to the filter where it isn't really following the measured positions. This

has the least effect on vehicle stability, for it tends to believe its own model. Finding the

proper values of variance is an ongoing effort, which will be studied farther in the thesis

research of subsequent students working on Phoenix navigation and control. To overcome

the inaccuracy problems with GPS/DGPS, the variances used by the Kalman filter for these

measurements were increased a hundred fold from the experimental data. This kept the fix

38

Position with Error, Ranges = 60 feet
60~-----r------~----~------~------------,------.-------r----~r-----•

50

40

'if
,gs_3o
X

20

10

0
0 5 1 0 15 20 25 30 35 40 45 50

53.5

53

56

55.5

~ 55
Q)

~54.5
X 54

53.5

y (EIW)

Figure 19: Plot of Position with Error for 60 Foot DiveTracker Ranges

Error, Ranges 60 feet

L-~----~----~----~----~~--~~--~L-----~----~----~----~~
20 21 22 23 24 25 26 27 28 29 30

Y (feet)
Error vs Uniform Error Dist. Ranges = 60 feet

-·· - ·.

..
........ ·. . . . ' <· .•. '~ .

53
L-~--~~--~----~~~~~~~~~~~----~----~--~~

20 21 22 23 24 25 26 27 28 29 30
Y (feet)

Figure 20: Top: Expanded View of Figure 19 Error Area
Bottom: Same Error Area with Random Error Superimposed

39

15
,g

120

119

118

>< 117

116

115

114

Error vs Uniform Error Dist. Ranges= 120 feet

21 22 23 24 25 26 27 28 29
Y (feet)

FIGURE 21: Error Area for 120 Foot Range, with Random Error Superimposed

55

45

=-40
Q)

~
><

35

30

25

Run 2-2-1

20L---~------L-----~L-----~-------L------L-----~L-----~-------L----~
-40 -35 -30 -25 -20 -15 -10 -5 0

Y (feet)

Figure 22: Example of Baseline Crossing, Showing Wrong Direction Tracking

40

data stable, but resulted in sluggish behavior by the filter when using only GPS/DGPS data.

The variances for the Dive Tracker ranges was increased by a factor of five, which seems to

give good results.

G. FIX DETERMINATION

A fix determination routine was used to determine both what type of measurement

data was available and which one to use for position fixing using the following metrics. If

only one measurement was available, then it was selected. If no measurement was available,

the system would dead reckon. The case when multiple measurements were available

required the following metrics.

CASE 1: Both Dive Tracker and GPS/DGPS are available, the lost track flag is set,

and the last fix was by DiveTracker. In this case the system used DiveTracker as the last

measurement and the system lost track. Since the DiveTracker data resulted in a loss of

track, then fix data is switched to the GPS/DGPS (a more reliable but less accurate system).

CASE 2: Both DiveTracker and GPS/DGPS were available and the loss track flag

was not set. In this case the system will use DiveTracker which provides more accurate

· position fixing.

CASE 3: Both GPS/DGPS and DiveTracker were available, the loss track flag was

not set but the GPS/DGPS fix position is not within the State Estimate ± GPS/DGPS

Standard Deviations. In this case the system has not lost track, but the vehicle state position

vector U places the vehicle at a position more than the GPS fix plus it's standard deviations.

Since GPS/DGPS is a reliable world wide system, the vehicle position is reset to the

41

GPS/DGPS fix.

H. FIX POSITION TRANSLATION TO VEHICLE CENTER

The measurements received by the GPS/DGPS antenna and the DiveTracker

transducer result in fix positions at those locations rather than the center of the vehicle. This

results in a fix inaccuracy of approximately 2.5 feet for a DiveTracker and 1 foot for

GPS/DGPS fixes. This offset can cause a significant error when attempting to twist or rotate

the vehicle about its center because the fix update position is not at the vehicle center. To

correct this problem, the Phoenix state vector is centered on the vehicle. The motion model

calculates movements based on the vehicle center. When a measurement is received, the

vehicle center is translated to the antenna or transducer location as required. The vehicle

state is now updated based on the new measurement, then translated back to the vehicle

center. This translation (Eq 4.2 and 4.3) depends on two variables, the vehicle heading and

the distances to the transducers. Only the fore/aft Phoenix offset distances are used; the

slight athwart ships offset is ignored. Thus,

TranslatedX = OldX + Offset*sin('P) (4.2)

TranslatedY = OldY+ Offset*cos('P) (4.3)

where the offset is the distance from the center of the vehicle to the antenna or transducer.

Offset is a positive value for the GPS antenna and a negative value for the DiveTracker

transducer.

42

I. NAVIGATION INITIALIZATION

Before the navigation module could successfully run, it required the following data

inputs from the tactical level OOD. The Dive Tracker base station transducer locations were

needed for the Extended Kalman Filter module. The initial posture (starting location) of the

vehicle was required to convert GPS/DGPS data to the local co-ordinates. A gyro error input

was needed to compute accurate dead reckoning.

When a mission commenced the navigation initialization routine waited 30 seconds

before reporting "Initialized" to the tactical level OOD to allow the GPS/DGPS positions to

stabilize on first startup. When the tactical level OOD received reports that all modules had

initialized, the first command to the Phoenix is to submerge and wait for another 30 seconds

before transiting. This allowed the Kalman filter to stabilize and produce good fix data as

it had now shifted from primarily GPS/DGPS position data while surfaced, to DiveTracker

position data while submerged.

J. OCEAN CURRENT (ERROR) ESTIMATION

Accurate and efficient navigation from point to point requires the knowledge of the

local ocean currents to prevent a "tail chase" to the desired location. If the vehicle fix

position consistently does not agree with the modeled position, then current components are

generated to overcome the error. The computed ocean currents are actually the combined

sum of any ocean current, speed/heading, and model errors. Since the computed currents

also include errors, the values may change with the vehicle heading, but the RMS value of

the current will converge to a steady state number. This number is resolved into its X and

Y components for dead reckoning use.

43

K. WATER SPEED SENSOR CALIBRATION

The Dive Tracker system accuracy in position was used to calibrate the Phoenix water

speed sensor. Water speed is the relative speed that the Phoenix moves through the water.

The sensor is a small "water wheel" turbine, and speed is determined based on the wheel

rotational speed (frequency). A Phoenix straight line run over a set distance and time was

performed. By post processing, computed speeds were calculated based on the traveled

distance and times between Dive Tracker fixes. A graph of these calculated vehicle speeds

compared to the recorded speed sensor output was plotted vs time. Figure 23 shows the

result of the first speed sensor calibration run. The top figure shows the path followed by

Phoenix. The bottom figure shows a graph of the calculated speeds vs the model speeds and

the speed sensor speeds. An approximating polynomial describing the speed probe output

was then modified to match the calculated speed curve. A second run was then performed

to check the modification results. Figure 24 shows a much closer agreement between speed

sensor and computed speeds after the modifications were performed.

L. SIMULATION MODE

The simulate flag can be set to allow for developmental code testing utilizing the

Virtual World AUV simulator [BRUT94]. This simulator provides a full mathematical

simulation of the Phoenix AUV with estimated hydro-dynamic effects and a visual animated

display. The use of this simulator allowed all the developed AUV code to be run, debugged

and tested prior to the first Phoenix deployment. This was an enormous time saver.

However the simulator does not provide simulated GPS/DGPS data or Dive Tracker ranges.

44

32

0

~ 1
.S:?
15
1!1.0.5
UJ

50

75

55

kal.2-1-5

60
X feet

65

ka1.2-1-5 o = Calulated +=Wheel* .. Model

80 85 90 95
time in sec

70

100

Figure 23: Top: First Straight Line Speed Calibration Run
Bottom: Plot of Speed Calibration Run, o = Calculated Speeds Based on Measured

Position, + = Speed Wheel Output, * = Mathematical Model Calculated Speeds

kal.2-1-6
40~----~----~----~------r-----~----------------~----~

35
j
>-

30

c.>

~ 1
J!!
15
1!1.0.5
co

50

130

55 60 65 70 75 80 85
X feet

ka1.2-1-6 o = Calulated + = Wheel/Model

140 150 160 170 180
time in sec

Figure 24: Top: Second Straight Line Speed Calibration Run
Bottom: Plot of Speed Calibration Run, o = Calculated Speeds Based on

Measured Position, + = Speed Wheel Output

45

90

When the simulate flag is set, the Navigation module computes simulated

DiveTracker ranges and GPS/DGPS locations. To more accurately simulate the

DiveTracker, random uniformly distributed noise with a range of 0.75 feet is placed on

calculated Ranges, and the range arrival time is a random variable uniformly distributed from

1 to 4 seconds. The GPS/DGPS is simulated in the DGPS mode with uniformly distributed

random noise with a range of 6 feet placed on the positions, with fixes arriving randomly

from 1 to 2 seconds. The Kalman filter uses these simulated measurements to track the

vehicle in a simulated runs.

M. SUMMARY

The navigation module uses a discrete Kalman filter to process GPS/DGPS and

Dive Tracker measurements to produce updated estimates of position. The navigation module

is a forked process of the tactical level OOD and runs in a continuous loop. The module

can use either real or simulated measurements. The module is first initialized, then processes

measurements or dead reckons as required. Measurements are examined and the best

measurement method available to produce a position estimate is used. A local coordinate

system in feet aligned with the earths meridians is used for positioning. The GPS/DGPS and

DiveTracker standard deviations are converted to variations and were used in the filter with

good results. More work needs to be performed to optimize these variations for best

positioning. The navigation module fix determinations were used to calibrate the Phoenix

speed sensor to increase the position accuracy while dead reckoning.

46

V. SOFTWARE

A. INTRODUCTION

The navigation module software is written in C and consists of the following four

modules; Navigatorl.C, Kalman_Filter.C, ReadGps.C and Matrix.C. These modules define

global variables and set function prototypes in the files Kalman_Filter.H, ReadGps.H and

Matrix.H. A simulation flag can be set in Kalman_Filter.H which causes simulated

measurement to be calculated for test tank or bench testing. In addition, all trouble shooting

print statements are wrapped inside 'If' statements that require a local variable 'TRACE' to

be set to true before any print statements will be performed.

B. NAVIGATORl.C

Navigatorl.C was the main driver for the code. It receives system state inputs from

the tactical level, and GPS data from the Motorola GPS unit. It returns position data to the

tactical level and records this data in a file for later analysis. The Navigatorl.C module

consists of the following sub-routines; Navl_lnitialize, My_Parse_Telemetry_String and

Reset_Kalman. This module has function calls to Kalman_Filter.C, ReadGps.C and

Matrix.C. The Navigatorl.C code is located in Appendix A.

1. Navigation Module Operation

Navigatorl.C first declares and initializes the variables and Kalman filter matrices

required for operation. These matrices include three Kalman gains (K), three system

covariance matrices (Sigma) and three measurement covariances matrixes (R), one for each

measurement method (DGPS, DIVETRACKER and GPS). After the declarations, the file

47

'kal.dat' is opened for data recording. If simulate is FALSE, the GPS unit serial port

communications are initialized. This is followed by a function call to Nav1_Initialize which

reads inputs from the tactical level to properly set up the Kalman_Filter and navigation

parameters. The navigation module then enters an infinite 'For' loop for navigation data

processing. Once the loop is entered, the module reads data from the tactical level command

and telemetry data pipes. If a 'Quit' command is present, the module terminates. If an

'A UV _STATE' message is present, the filter process commences. If neither 'Auv _State' or

'Quit' has been read, then the loop performs 'busy' cycles and loops until either a Quit

command or an AUV _STATE message is received.

The AUV _STATE message provides all vehicle telemetry data to include roll, pitch,

azimuth, speeds, thruster rpm, Dive Tracker ranges, and a time stamp. If the Simulate flag

is set, then the DiveTracker data is overwritten with calculated ranges and the GPS data is

simulated. Both simulated measurements have uniform noise added. If Dive Tracker data

is available, the Dive Tracker timer flag is advanced 15 seconds. The Determine_Fix routine

is then called which takes the received measurements and returns the proper measurement

Fix type to use (0 = No_Fix, 1 = DGPS, 2 = DiveTracker and 3 = GPS), and sets flags

denoting what measurements were available.

The IOU velocity model values are now set. If the Fix type was 0, then the state X

andY drift speeds are computed and set, the No_Fix flag is set to TRUE, and the Fix_ Type

flag is set to the most recent Fix_ Type available. This ensures that the dead reckoning to be

performed by the Kalman filter movement step will use the state covariances of the last

measurement received.

48

The movement (ci>), movement noise covariance (Q), and mean movement noise

(Uw) matrices are now set with the IOU computed values. The local coordinate vehicle

speeds u, v and w are now converted using a rotational transformation matrix of Course,

Pitch and Roll to produce the Earth X, Y and Z speeds required for navigation.

The Loss_ Track flag is next checked. If the vehicle has lost track and a GPS or

DGPS fix is available, the Reset Kalman routine is called. The Reset Kalman routine resets

the DGPS or GPS system covariance matrix (Sigma) so track can be regained with the new

fix data. The Kalman filter can now be called, with the passed parameters depending upon

what Fix type was present. This routine returns updated values of the system state (U),

updates the appropriate Kalman gain and Sigma matrices, and sets the Loss_ Track flag. If

the Loss_ Track flag was not set, then the Loss_ Track timer is advanced thirty seconds. The

vehicle speed is now calculated using the state vector drift and vehicle speeds. The

calculated speed is used to determine if there is a measured speed error which must be

accounted for while dead reckoning.

The Loss_Track and DiveTracker timers are now checked. If the current time

exceeds either timer, then the system has lost track for 30 seconds or received no

DiveTracker data for 15 seconds. In this case the DiveTracker avail flag is set to 2, which

is used to indicate a problem to the tactical level. The tactical level uses this data to

determine if the Phoenix should surface to obtain a GPS fix.

Fix data is now sent to the tactical level in the form of the updated system state (U),

and the Flags indicating what measurement types were available. This fix data is recorded

in a file for analysis and the loop continues.

49

2. Navl_Initialize Function

The initialize function reads inputs from the tactical level and sets variables for

navigation use. This function runs as a 'Do' loop reading data from the tactical level and

only exits normally when all required inputs are received. The required inputs consist of an

initial vehicle posture (position and heading), the base DiveTracker transducer locations, a

Gyro Error input, and the receipt of a GPS/DGPS fix. If 45 seconds have elapsed and all

required inputs were not received, this function reports Initialization Failed to the tactical

level. The receipt of a GPS/DGPS fix is used to set origin position globals, all further

GPS/DGPS fixes are based on the origin position.

3. My _Parse_ Telemetry _String Function

This function parses the command and telemetry strings received through the tactical

level pipes into its component data. The receipt of a DiveTracker location command is used

to set the DiveTracker transducer location globals. The Gyro Error and Posture commands

set their associated globals.

4. Reset_Kalman Function

The reset Kalman function is used to reset the state covariance matrix,~. associated

with the received measurement. This function resets the covariance matrix to an identity

matrix to use as new starting point covariances.

C. KALMAN_FILTER.C

The Kalman_Filter function performed the movement and measurement steps for the

discrete Kalman filter in normal and extended modes. This function is called by

Navigatorl.C and returns the updated system state U, updates the Kalman gains and state

50

co variances, and sets the system Loss_Track flag. The majority of the function calls used by

this routine are matrix operations defined in Matrix.C. fucluded functions are the

Nav_to_Rad and My_Square functions. Kalman_Filter.H code is in Appendix B and

Kalman_Filter.C code is presented in Appendix C of this thesis.

1. Kalman_Filter Operation

This function first sets the variables and matrices required uniquely for the movement

and measurement steps that were not required for the Navigation module. The movement

step is now performed using the matrix operations defined in Matrix.C The measurement

step only takes place if No_Fix is set to FALSE. If it is TRUE, then the system state U is

returned.

The measurement step first checks if extended or normal filtering is required by

checking the Fix_Type. If the Fix_Type indicates DiveTracker measurements will be used,

then the extended Kalman filtering steps are taken. If the Fix_ Type indicates GPS/DGPS

measurements are used, then regular filtering takes place.

Extended filtering entails the calculation of Ranges from the system state estimate

U to the DiveTracker base transducer stations to be placed in the f(U) matrix. The first

partial derivatives of these calculated ranges are placed in the H matrix and the measured

ranges in the Z matrix. For non-extended filtering, the GPS values are just placed in the Z

matrix.

The Kalman gains are now calculated. The Shock value method of calculation

depends upon if extended or regular filtering is being conducted. The Dimensionless Shock

value is now calculated. If Dimensionless Shock exceeds 50, then the Loss_ Track flag is set

51

to true and the measurement steps are not performed, with an end result of ignoring the

measurement. Otherwise, the measurement step is performed, updating U and Sigma. In

addition the value of Total Drift is calculated which is used by the navigation module when

dead reckoning to update the Drift Components. Finally the new value of U is returned to

Navigator 1. C.

2. Navtorad Function

The NavtoRad function converts vehicle headings in degrees as used for navigation

to the proper radian values. This is used for the updating of the ocean current drift/error

components while dead reckoning.

3. Mysquare Function

This function performs a simple computation of the square of an input number. It is

used to save space and because somewhere in one of the Phoenix software modules the Pow

function was over written by other code not compatible with the needs of the navigation

software.

D. READGPS.C

The READGPS.C module opens the Voyager (Solaris/Sun) serial port for

communications with the Motorola GPS/DGPS. It decodes the Motorola data stream, and

contains the Determine Fix routine. This module utilized code from previous work with a

six channel Motorola GPS/DGPS for decoding the data stream [BACH95]. The functions

described below were included in this module. The ReadGps.H code is located in Appendix

D and the ReadGps.C code is in Appendix E.

52

1. Get_GPS_Data Function

This is the driving function for the GPS/DGPS data reading and decoding. It calls

the Gps_Serial_Read function to read the Motorola data. If there is new data read, then the

data stream is decoded. If not, then the GPS fix type is set to 0. This function returns the

GPS/DGPS data structure.

To fully decode the data stream, first the number of satellites detected was decoded

and the message checksum was computed. If there were three or more satellites available

and the checksum was valid, then the message was fully decoded. To fully decode the

message requires calls to GetMilSec for latitude and longitude information, GetGpsTime for

the fix time data, and GetGpsFixType which determines if the fix was computed using GPS

or DGPS data.

2. CheckSumCheck Function

This function computes the exclusive OR of bytes 2 through 73 of the Motorola data

stream. The XOR'd data is then compared to the data in byte 73. If equal then TRUE is

returned.

3. Getmilsec Function

This function extracts the Latitude and Longitude data from the Motorola data stream

in milliseconds of arc. Low level bit shifting is required to conduct this operation.

Specifically, the data in bytes 15- 18 are shifted and combined to produce the Latitude value.

The same calculation is performed on bytes 19 - 20 to produce the Longitude data.

53

4. Getgpstime Function

This function works along the lines of GetMilSec, where the data is shifted and

manipulated to decode the time values. Bytes 8 and 9 hold the hours and minutes values.

Byte 10 holds the integer value for seconds. However, milliseconds are held in bytes 10 -

14 which must be shifted and combined and then added to the value of byte 10 to arrive at

the total seconds value. This function returns the time of day in seconds, where hours and

minutes are converted to seconds and added to the seconds value. The computed time is not

used in the Navigation Module. It is used only for testing and data analysis.

5. Getgpsfixtype Function

This function performs bit level comparison of byte 72 of the data stream to check

for DGPS use. A logical AND of Byte 72 and bit stream 0100 is performed to check if bit

3 is set. If set, then the differential signal is used in fix computation.

6. Determine Fix Function

This function inputs were the system measurements, the Loss_ Track flag, the state ·

vector U, and the Dive Tracker timer variable. These inputs are used to set the Fix_By

variable for Navigatorl.C and Kalman_Filter.C use. In addition, this function sets flags for

determining which measurement types are available. The measurement type available flags

are first set by examining the Dive Tracker ranges and the GPS fix types. Fix Types are then

determined by comparing the GPS/DGPS, the DiveTracker, and the Loss_ Track flags. The

DiveTracker measurements are used if both DiveTracker and GPS/DGPS are available,

unless the DiveTracker Loss_ Track flag is set, in which case GPS/DGPS measurements will

be used. If the Loss_ Track flag is not set, and DiveTracker and GPS/DGPS are available,

54

then DiveTracker is used, unless the system state position places the vehicle outside the

standard deviation of the GPS/DGPS fix. In this case, Phoenix is assumed lost and

GPS/DGPS is used. If only a single measurement type is available, then that type is returned.

As a last check for stability purposes, if a GPS/DGPS fix is received and there has been a

DiveTracker measurement within the last 15 seconds, the GPS/DGPS fix is ignored. This

prevents bouncing that may occur between a GPS/DGPS fix and Dive Tracker fix when the

Phoenix is near the surface.

7. Gps_Serial_Read Function

This function actually reads the raw data message from the Motorola GPS through

the Voyager serial port. It uses blocking reads, with a signal alarm timeout to prevent system

lockup. This function first sets up the signal handler for the signal alarm timeout system.

The function can then perform reads without danger of lockup. The function reads to clear

the serial port until it reaches the beginning of a Motorola message. The first 4 bytes of this

message are then read in. If they are consistent with a data message header, the rest of the

message is read into the raw message data structure and returned. If the bytes indicate a

differential signal message, the differential message is read to clear the port.

8. Initialize_Serial Function

This function opens the serial port and sets the necessary flags for the Solaris/Sun

port. It also returns the serial port path number after the port has been successfully opened.

9. Open_ Tty Function

This function is called by Initialize_Serial to actually open the port. It uses a signal

alarm to prevent lockup while opening the port to prevent a system lockup if another process

55

is using the port (this will not happen in the Phoenix application as the Navigator is the only

process that uses the port).

10. Tty and Serial_Read Timeout Functions

These functions are used as alarm handlers for the Open_tty and the Read_serial

functions. Each simply provides an error message indicating a timeout has occurred. The

Serial_Read_Timeout also sets the T.Il\.fEOUT flag to true for use in the Serial Read function.

11. Simulate_GPS_Data Function

If the simulate flag is set in the Navigatorl.C function, then this function is called to

provide simulated GPS data. This function's inputs are the current vehicle X and Yposition.

Ten feet of uniformly distributed random noise is placed on this position, and the position

is converted to milliseconds of arc. The new simulated fix position is now returned in the

GPS fix structure.

E. MATRIX.C

The file Matrix.C provides all the required matrix operations used by the Kalman

filter. Matrix.H sets the matrix data structure. The matrix data structure consist of a double

4 X 4 array with row and column place holders. For example, the state vector U is a 4 X 1

vector, the data structure for U is a double 4 X 4 with row set to 4 and columns set to 1. All

matrix operations index through the input structure row and columns as set in their data

structure. The Matrix.H code is located in Appendix F and the Matrix.C code is in

Appendix G.

56

1. Matrix_Multiply Function

This function receives two matrices and returns their product. The returned matrix

will have the proper row and column values set.

2. Matrix_Add and Subtract Functions

These functions perform element by element addition and subtraction of two input

matrices and return the result.

3. Matrix_ Transpose Function

This function simply indexes through a matrix and returns its transpose.

4. Matrix_Inverse Function

This function returns the inverse of an input matrix by performing Gausian

elimination. The premise is that any matrix multiplied by its inverse results in an identity

matrix. This simplifies to the Gausian elimination problem of AX = I, where A is the input

matrix, I is the identity matrix and X is the inverse to be solved for. The function first creates

an identity matrix of the input matrix size. The identity matrix and the input matrix are now

used as inputs for the Gauss_Elimination function. The inverse matrix is returned upon

completion of the Gausian elimination.

5. Gauss_Elimination Function

The Gauss_Elimination function takes as inputs a matrix to be inverted and an

identity matrix of the same size. This function first concatenates the input matrix and the

identity matrix together. Row eliminations are performed on the new concatenated matrix,

followed by back substitution. The resulting answer is the desired inverse.

57

6. Matrix_Rtransform Function

This function constructs a rotation matrix for use in transforming body coordinates

into Earth coordinates. The inputs for this function are vehicle roll, pitch and azimuth. The

output is the required rotation matrix.

7. Output_Matrix Function

This function is used to print the contents of an input matrix. The output is printed

in row, column form.

F. SUMMARY

The navigation module is written in 'C' and consists of the following functions:

Navigatorl.C, Kalman_Filter.C, Kalman_Filter.H, ReadGps.C, ReadGps.H, Matrix.C and

Matrix.H.

Navigatorl.C is the main driver for the Phoenix navigation module, it initializes the

navigation system, reads and writes data from the tactical level OOD, calls the Kalman_Filter

functions, and records data for later analysis. Kalman_Filter.C performs the Kalman filter

movement and measurement to produce a new state position estimate. It determines if a

measurement was bad by using Dimensionless Shock and sets a Loss_ Track flag.

ReadGps.C and Matrix.C are support functions for the navigation module.

ReadGps.C opens the Voyager serial port, reads and decodes GPS/DGPS data. It also

contains the function that determines the best available measurement to use to compute a

position. Matrix.C functions perform all matrix mathematics required by a Kalman filter.

It includes addition, subtraction, multiplication, inverse and transpose. It also computes a

rotation matrix to resolve body coordinates to Earth coordinates.

58

VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

The overall conclusion of this thesis is that the method of Discrete Asynchronous

Kalman Filtering used in this implementation can provide accurate real time vehicle

positioning. To produce a common vehicle position state using different unrelated

measurements requires accurate data of the measurement systems, variances, and accurate

speed inputs. If any of the variances are wrong, or the input speeds are incorrect, the

resulting error grows fast and is hard to isolate. In this implementation, the GPS

measurements did not follow the Gaussian distribution required by Kalman filtering, and yet

produced excellent results.

The use of a simulator greatly reduces the development time of software. The

graphical simulator allowed for troubleshooting and tests that otherwise would have had to

be performed in the vehicle, in the water. However, as discovered during actual trials, the

real world is much noisier and more complicated than the clean simulated version of reality.

Trials that had been performed numerous times in the simulator did not work in reality.

Problems with the speed wheel calibration and vehicle control constants were readily visible

during actual testing. Only real world runs revealed these problems, they never appeared in

the Simulator.

The combination of local coordinates and global coordinates requires accurate

positioning. This was especially true for the-GPS and DiveTracker measurement systems.

To convert the Global position to the local position is error prone. These errors become very

visible when shifting from one form of measurement to another.

59

The use of manufacturer document's are not always complete or correct. This was

found while attempting to read from the Solaris/Sun serial ports.

B. FUTURE WORK

The addition of an IMU to provide accurate vehicle accelerations would greatly

increase the value of the motion model. Measured accelerations could be added to the

Kalman Filter process and be used to provide speed inputs. This addition would result in the

filter operating as an Extended Kalman Filter at all times. The system state, movement, and

measurement matrices would have to be modified to account for the additional inputs. The

motion and measurement models would also have to be changed to reflect the use of

accelerations.

The virtual world simulator needs to be modified to fully simulate both DiveTracker

and GPS data. In addition, the effect of simulated random noise on these simulated

measurements combined with updating the simulated vehicle position based on fix data

causes a random walk behavior of the simulated vehicle. At present the only solution to this

is having no noise on the simulated measurements. To totally simulate the effects of the

navigation module tracking would require the addition of a stable reference vehicle that

would not be updated with the solved for fix information.

Matrix multiplication analysis should be performed on the multiple series matrix

multiplications used in the Kalman Filter. This may lead to a reduction of the multiplications

required and consequently reduce the computation time.

More work with Differential GPS receiver is required. A DGPS fix was never

obtained on the water. This was due to high electromagnetic interference cause primarily by

60

the Phoenix gyros. Better shielding of the receiver and use of a double shielded coax antenna

cable are possible solutions to this problem.

C. CONCLUSION

Kalman filtering provides an accurate method of solving the navigation problem.

This thesis has proved that two dissimilar measurement systems can be combined and used

in one module to produce excellent results. It is important to note that the results produced

by this software are useable in 'real-time'. This is critical for close maneuvering where late

data can cause serious problems.

61

62

APPENDIX A. NAVIGATORl.C

/***
Fll..,ENAME: navigatorl.c

AUTHOR: Dave McClarin

DATE: 8 March 1996

PURPOSE: Performs kalman_filtering of dive_tracker, Gps and Dgps
data to create a valid state estimate of location, and
the ocean current estimates, initializes and resets the
Kalman_filter if required

FUNCTIONS: navigator!()
nav !_initialize()
my _parse_telemetry _string()
reset_kalman()

***/

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include "matrix.h"
#include "readgps.h"
#include "kalman_filter.h"
#include " . ./execution/globals.h"
#include " . ./execution/defines.h"
#include " . ./execution/statevector.h"

/***
FUNCTION: navigator l.c

AUTHOR: Dave McClarin

DATE: 5 March 1996

PURPOSE: Performs kalman_filtering of dive_tracker, Gps and Dgps
data to create a valid state estimate of location, and
the ocean current estimates.

63

RETURNS: none, sends nav data through socket comms to calling
function. (tactical.c)

***/
void navigator!(){

/*defines external pipes for socket corns to and from tactical.c */
extern int Navl_to_OOD_fd[2],00D_to_Navl_fd[2];
extern int Navl_telemetry_fd[2];
extern int Simulate;

I* strings used for socket corns *I
char Nav_Dat[MAXBUFFERSIZE];
char Nav _Read_to_clear[MAXBUFFERSIZE];
char N av _String_read[MAXBUFFERSIZE];

I* command string for gps initialization */
char Gpscmd_8[20] = {'@','@','E','a',1,25,13,10};

int Fix_ Type;
int No_Fix =FALSE;
int Most_Recent_Fix = 1;
int TRACE= FALSE;
int Path;
int ti = 0;

I* fix status flags */
int Dt_A vail = 0;
int Fix_By = 0;
int Dgps_A vail = 0;
int Gps_A vail = 0;
int Loss_ Track = 0;
int Fix_ Concur = 0;

double Del;
double Gps_X, Gps_ Y;
double Dt_X, Dt_Y;
double Cos_Lat;
double Qns,Qew,Qlat,Qlon;
double C;
double Gamma;
double Calc_Speed;
double Old_Time;

/*holds fix type flag*/
I* Current Fix Flag status */
/*Holds last fix type, init to DGPS */
I* flag for trouble-shooting printfs */
I* holds file Id for serial port opening* I

/*time between New AUV-States received*/
/* Gps Posits in X,Y feet*/
I* Dive-Track Posits in X,Y feet *I
I* cosine of present latitude *I
I* lat/lon and NS/EW drift covariance factors*/
I* shrinkage factor for IOU velocity model *I
I* velocity multiplier for IOU velocity model*/
I* calculated total speed*/
I* time of last auv-state */

64

double Pitch,Roll,Course; /* degree versions of theta, phi and psi */
double Last_R1 = 0.0; /*holder for last divetrack 1 range recieved*/
double Last_R2 = 0.0; /*holder for last divetrack 2 range recieved*/
double Speed_Sign = 1.0; I* used for Dead Reckoning */
double DriftNS = 0.0; /* NS drift speed in Feet/second*/
double DriftEW = 0.0; /* EW drift speed in Feet/second *I
double Total_Drift = 0.0; /* Total drift speed in Feet/second */
double DtSim_Time = 0.0; /* Used to simulate divetracker arrival time */
double GpsSim_Time = 0.0; I* Used to simulate Gps arrival times*/
double DT_Timer =99999.0; I* time in sees until a DT fix timeout*/
double LT_Timer = 99999.0; I* time in sees until a Loss of Track timeout*/
double DSim_Error = 0.0; I* Sets a holder for DT range error simulation*/
double FGps_X, Fgps_Y; /*filtered Gps Positions*/

gps Gps_Fix;
transponder Dt1, Dt2;

/*structure for GPS fix data*/
I* structures for Dive Tracker data*/

matrix K,Kdt,Kg; I* matrix's for kalman gains Dgps,dt and Gps *I

I* Matrix for speed vector Y speed, X speed and Z speed *I
matrix Speed_ Vect = { { {0.0} ,{0.0}, {0.0} },3,1 };

/* Matrix for holding state values X, Y, XDrift, YDrift *I
matrix U = { { {0.0}, {0.0}, {0.0}, {0.0} },4,1 };

/* means of movement noise (state values) */
matrix Uw = { { {0.0}, {0.0}, {0.0}, {0.0} },4,1 };

I* movement matrix, how state changes between measurements *I
matrix Phi={ { { 1.0, 0.0, 0.0, 0.0},

{ 0.0, 1.0, 0.0, 0.0}'
{ 0.0, 0.0, 0.0, 0.0}'
{ 0.0, 0.0, 0.0, 0.0} } ,4,4};

/* covariance matrix of movement noise *I
matrix Q = { { { 0.0, 0.0, 0.0, 0.0},

{ 0.0, 0.0, 0.0, 0.0}'
{0.0, 0.0, 0.0, 0.0},
{ 0.0, 0.0, 0.0, 0.0} } ,4,4};

65

I* covariance of DGPS, DiveTrack and Gps system state, *I
matrix Sigma = { { { 1.0, 0.0, 0.0, 0.0},

{ 0.0, 1.0, 0.0, 0.0}'
{0.0, 0.0, 1.0, 0.0},
{ 0.0, 0.0, 0.0, 1.0}} ,4,4};

matrix Sigma_dt = { { { 1.0, 0.0, 0.0, 0.0},
{ 0.0, 1.0, 0.0, 0.0}'
{ 0.0, 0.0, 1.0, 0.0}'
{ 0.0, 0.0, 0.0, 1.0}} ,4,4};

matrix Sigma_g = { { { 1.0, 0.0, 0.0, 0.0},
{ 0.0, 1.0, 0.0, 0.0},
{ 0.0, 0.0, 1.0, 0.0}'
{ 0.0, 0.0, 0.0, 1.0}} ,4,4};

I* covariance of Dgps, Dive Track and Gps measurement noise *I
matrix R = { { {Dgps_Lat_ Var, 0.0},

{ 0.0, Dgps_Lon_ V ar} } ,2,2};

matrix Rdt = { { {DvTrk_Rl_ Var, 0.0},
{ 0.0, DvTrk_R2_ V ar} } ,2,2};

matrix Rg = { { { Gps_Lat_ V ar, 0.0},
{0.0, Gps_Lon_ Var} },2,2};

I* file handling for data recording *I
FILE *Fw;
Fw == fopen("kal.dat","w");

I* if in Simulate Mode, do not perform any serial port comms. *I
if (!Simulate){
Path= initialize_serial();
if (write(Path,Gpscmd_8,8) != 8)

printf("Gpscmd write error \n");
printf("GPS initialized\n");

I* initialize filter, sets all globals from kalman_filter.h and
those imported from . ./execution/statevector.h"*l

nav l_initialize(Path,Simulate);
Dt1.Range = divetracker_range1;
Dt2.Range = divetracker_range2;

66

Dtl.Xloc = DTIX;
Dtl.Yloc = DTIY;
Dtl.Zloc = DTIZ;
Dt2.Xloc = DT2X;
Dt2.Yloc = DT2Y;
Dt2.Zloc = DT2Z;

I* gets initial fix and sets Gps_X andY *I
if (Simulate){

I* converts x y to milliseconds of arc and sets fix
type to 1 (dgps) *I
Gps_Fix = simulate_gps_data(x,y,l);

}else
Gps_Fix = get_gps_data(Path);

I* converts milliseconds of arc to feet X, Y *I
Cos_Lat = cos(DegToRad(Gps_Fix.lat/3600000));
Gps_X = (Feet_Conv * (Gps_Fix.lat- Orig_Lat)) + Posture_X;
Gps_ Y = (Feet_Conv * (Gps_Fix.lon- Orig_Lon) * Cos_Lat)

+ Posture_Y;

I* converts Degrees inputs to radians *I
Course = NavtoRad(psi,Init_Heading);

I* sets initial values for startup *I
Old_ Time= t;
U.m[O][O] = Posture_X;
U.m[l][O] =Posture_ Y;
Dt_X = Posture_X;
Dt_ Y = Posture_ Y;
FGps_Y = Posture_Y;
FGps_X = Posture_X;

for(;;){

I* Reads OOD command Strings via socket, Do nothing if no input *I
if (read(OOD_to_Navl_fd[O],Nav_String_read,MAXBUFFERSIZE)== -1){}
else{

if (strcmp (Nav_String_read,"QUIT") == 0){
printf("Terminating Navigator! Module \n");
exit(O);

}
else

67

my_parse_telemetry_string(Nav_String_read);

I* Reads the telemetry string, if AUV _STATE the process data,
otherwise skip everything 'busy wait' *I

if (read(Nav1_telemetry_fd[O],Nav_String_read,MAXBUFFERSIZE) == -1){}
else{

my _parse_telemetry _string(Nav _String_read);

if (strcmp (keyword,"AUV _STATE")== 0){

I* trouble-shooting only *I
if(TRACE)

printf("D1X %lfD1Y %lfD1z %lfD2X %lfD2Y %lfD2Z %lf\n",
Dt1.Xloc, Dt1.Yloc, Dt1.Zloc, Dt2.Xloc, Dt2.Yloc, Dt2.Zloc);

I* just for gps testing only, so only non-moving
gps tracking data is produced.

divetracker_range 1 = -1.0;
divetracker_range2 = -1.0;
z=O.O;
speed= 0.0;
u=O.O;
v=O.O;
*I

I* produces simulated Dt ranges with some noise for
bench testing *I

if ((Simulate) && (DtSim_Time < t) && (z > .60)){
DSim_Error = 0.0 * drand48();
if (DSim_Error > 0.5) DSim_Error *= -1.0;
Dtl.Range = sqrt(my_square(Dtl.Xloc- x)+

my_square(Dt1.Yloc- y)+
my_square(Dtl.Zloc- z)) + DSim_Error;

DSim_Error = 0.0 * drand48();
if (DSim_Error > 0.5) DSim_Error *= -1.0;

Dt2.Range = sqrt(my_square(Dt2.Xloc- x)+
my_square(Dt2.Yloc- y) +
my _square(Dt2.Zloc - z)) + DSim_Error;

DtSim_ Time = 4.0*drand48() + t;

68

I* this is required because the virtual world and the
real execution level don't work the same*/

else if ((Simulate) && (DtSim_Time > t)){
Dtl.Range = -1.0;
Dt2.Range = -1.0;

}
I* dive tracking ranges are only valid if they change

because execution sends last data until new data
comes in *I

else if ((!Simulate) &&
((Last_Rl != divetracker_range1) &&

(Last_R2 != divetracker_range2))){
Dt1.Range = divetracker_range1;
Dt2.Range = divetracker_range2;

}
else{

Dtl.Range = -1.0;
Dt2.Range = -1.0;

}
Last_R1 = divetracker_range1;
Last_R2 = divetracker_range2;

/*sets DT_Timer tot+ 15 sec ifthere was valid divetrack
data, or depth was less than 1 ft* I

if (((Dtl.Range >= 0.0) && (Dt2.Range >= 0.0)) II (z <= 1.0))
DT_Timer = t + 15.0;

I* get gps fix data* I
if (z <= 1.0){

I* if in simulate provides a fix about 1 per second *I
if ((Simulate) && (GpsSim_Time < t)){

}

I* converts x y to milliseconds of arc and sets fix
type to 1 (dgps) *I

Gps_Fix = simulate_gps_data(x,y,1);
GpsSim_Time = t + 1.5*drand48();

else if ((Simulate) && (GpsSim_Time > t))
Gps_Fix.type = 0;

else
Gps_Fix = get_gps_data(Path);

I* converts milliseconds of arc to feet X, Y *I
Cos_Lat = cos(DegToRad(Gps_Fix.lat/3600000));

69

Gps_X = (Feet_Conv * (Gps_Fix.lat- Orig_Lat)) + Posture_X;
Gps_ Y = (Feet_Conv * (Gps_Fix.lon- Orig_Lon) * Cos_Lat)

+ Posture_ Y;
I* for troubleshooting only *I
if(TRACE){

}

printf("GPSX =%If GPSY = %lf\n",
Gps_X,Gps_ Y);

printf("ORIG_LAT = %lfORIG_LON = %lf\n",
Orig_Lat,Orig_Lon);

printf("Gps_Lat =%If, GPS_Lon = %lf\n",
Gps_Fix.lat,Gps_Fix.lon);

printf("PostureX = %lfPostureY = %lf\n",
Posture_X, Posture_ Y);

}
else{

}

I* no gps available due to depth greater than 1 foot *I
Gps_Fix.type = 0;

I* determines fix type based on ranges, and gps fix data
also sets fix avail flags *I

Fix_Type = deterrnine_fix(Dtl.Range, Dt2.Range, Gps_Fix,
&Gps_A vail, &Dgps_A vail,
&Dt_Avail, &Fix_By, &Fix_Concur,
U, Gps_X, Gps_Y, Loss_Track,
t, DT_Timer);

I* for troubleshooting only *I
if(TRACE){

printf("X %If GPS_X %If GPS_Lat %If Orig Lat %lf\n",
x, Gps_X,Gps_Fix.lat, Orig_Lat);

printf("Y %lfGPS_Y %lfGPS_Lon %lf0rig_Lon %lf\n",
y,Gps_ Y,Gps_Fix.lon, Orig_Lon);

I* sets the time between received auv-states *I
Del= t- Old_Time;
Old_Time = t;

I* sets the shrinkage factor and velocity multiplier for
IOU velocity model *I
C = exp(-(Del/Tau));
Gamma= Tau* (1.0-C);

70

/* fix type = 0 then updates NS/EW drift number for any
new course, also sets no-fix flag, note .. fix_type
is set to the previous type for movement-step
considerations* I

if (Fix_ Type== 0){
Fix_Type = Most_Recent_Fix;
No_Fix =TRUE;
U.m[2][0] = Total_Drift * (Speed_Sign) * sin(Course);
U.m[3][01.= Total_Drift * (Speed_Sign) * cos(Course);

}
else

No_Fix =FALSE;

Most_Recent_Fix = Fix_Type;

I* sets movement noise covariance factors based on
the IOU velocity model Qlatllon 1 = (1 ft/sec)A2
variance for speed*/

Qns = DriftNS*DriftNS*(l.O-C*C);
Qew = DriftEW*DriftEW*(1.0-C*C);
Qlat = Gamma * Gamma * 1.0;
Qlon = Gamma * Gamma * 1.0;
Q.m[O][O] = Qlat;
Q.m[1][1] = Qlon;
Q.m[2][2] = Qns;
Q.m[3][3] = Qew;

I* sets movement matrix based on the IOU velocity model*/
Phi.m[O] [2] = Gamma;
Phi.m[1][3] =Gamma;
Phi.m[2][2] = C;
Phi.m[3][3] = C;

/*sets the mean movement noise*/
Uw .m[O][O] = Speed_ Vect.m[O][O] * Gamma;
Uw.m[1][0] =Speed_ Vect.m[1][0] *Gamma;

I* converts degrees in theta, phi, and psi to radians*/
Pitch = DegToRad(theta);
Roll = DegToRad(phi);
Course = N avtoRad(psi,lnit_Heading);

71

if (Simulate)
speed= u;

I* uses u, v. w for speeds if thrusters are on,
otherwise uses speed, v w. *I

if ((fabs(AUV _bow_vertical) + fabs(AUV _bow_lateral)
+ fabs(AUV _stem_ vertical) +

fabs(AUV _stem_lateral)) > 0.0){
Speed_ Vect.m[O][O] = u;
Speed_ Vect.m[1][0] = v;
Speed_ Vect.m[2][0] = w;

}
else{

}

Speed_ Vect.m[O] [0] = speed;
Speed_ Vect.m[1][0] = v;
Speed_ Vect.m[2] [0] = w;

I* converts the speed vector from local to earth co-ords,
result speed vect[1][0]=Y(E/W), [0][0] = X(NIS)
and [2][0] = z *I

Speed_ Vect = matrix_multiply(rtransform(DegToRad(psi),Pitch,Roll),
Speed_ Vect);

I* Resets the Kalman_Filter if There is a Loss track condition
and a Dgps or Gps fix available *I

if ((Loss_Track) && (Fix_By == 1))
reset_kalman(&Sigma);

else if ((Loss_ Track) && (Fix_By == 3))
reset_kalman(&Sigma_g);

I* decides which type of filtering extended or normal to perform
and what parameters to use based on fix type *I

switch (Fix_ Type) {
I* case 1 = DGPS Fix, normal filter *I
case 1 : U = kalman_filter(Q, U, No_Fix, &Total_Drift,

&Sigma, Phi, R, &K, Uw, Dtl,
Dt2, Fix_ Type, &Loss_Track,
Gps_X, Gps_Y,Course);

break;

72

I* case 2 = Dive Track Fix, extended filter*/
case 2 : U = kalman_filter(Q, U, No_Fix, &Total_Drift,

&Sigma_dt, Phi,Rdt, &Kdt, Uw, Dtl,
Dt2, Fix_ Type, &Loss_ Track,
Gps_X, Gps_Y,Course);

break;

I* case 3 = GPS Fix normal filter* I
case 3 : U = kalman_filter(Q, U, No_Fix, &Total_Drift,

&Sigma_g, Phi, Rg, &Kg, Uw, Dtl,
Dt2, Fix_Type, &Loss_Track,
Gps_X, Gps_Y,Course);

break;

I* sets loss track timer tot+ 30 if no loss of track*/
if (Loss_ Track == FALSE)

LT_Timer = t + 30.0;

I* keeps track of calculated speed to set the speed sign
used in dead-reckoning*/

Calc_Speed = sqrt(my_square(Speed_ Vect.m[O][O]+U.m[2][0])+
my _square(Speed_ Vect.m[1] [O]+U .m[3][0]));

if(TRACE)
printf("calc_speed = %lf speed= %lf\n",Calc_Speed, speed);

if (Calc_Speed > speed)
Speed_Sign = 1.0; else Speed_Sign = -1.0;

I* updates the drift speed after filtering *I
DriftNS = U.m[2][0];
DriftEW = U.m[3][0];

I* ift > Dt_Timer then there was no divetrack avail for 15
seconds or ift > LT_Timer there was loss oftrack for
30 seconds and Dt_Avail is set to 2 to indicate a problem*/

if ((t > DT_Timer) II (t > LT_Timer)) Dt_Avail = 2;

I* OUTPUT TO TACTICAL - "FIX X Y Z NSdrift EW drift Dt_A vail
Dgps_Avail Gps_Avail Loss_Track" */

sprintf(Nav_Dat,"FIX %lf%lf%lf%lf%lf%d %d %d %d\n",
U.m[O][O], U.m[1][0], z, U.m[2][0], U.m[3][0], Dt_Avail,
Dgps_A vail, Gps_A vail, Loss_ Track);

73

}
}

if(TRACE)
printf("FIX %If %If %If %If %If %If %d %d %d %d %d %d\n" ,t,

U.m[O][O], U.m[l][O], z, U.m[2][0], U.m[3][0], Dt_Avail,
Dgps_Avail,Gps_Avail, Loss_Track, Fix_By, Fix_Concur);

I* writes fix data to socket to OOD level*/
if (Dt_Avail && (!Loss_Track)){

if (TRACE)printf("%d navl fix time= %lt\n",ti++,t);
write(Navl_to_OOD_fd[l],Nav_Dat,MAXBUFFERSIZE);

}
else if (Dgps_A vail II Gps_A vail) {

write(Navl_to_OOD_fd[l],Nav_Dat,MAXBUFFERSIZE);
}

else if (Dt_A vail == 2)
write(Navl_to_OOD_fd[l],Nav_Dat,MAXBUFFERSIZE);

/*sets variable FGps_X and Fgps_ Y for data recording purposes */
if ((((Dgps_Avail) && (Fix_By == 1))

}

II ((Gps_Avail) && (Fix_By == 3))) && (!Loss_Track)){
FGps_X = U.m[O][O];
FGps_Y = U.m[l][O];

/*sets variable FGps_X and FGps_ Y for data recording purposes */
if ((Dt_Avail) && (Fix_By == 2) && (!Loss_Track)){

Dt_X = U.m[O][O];
Dt_ Y = U.m[l][O];

}
/*data recording information*/
fprintf(Fw, "%If %If %If %If %If %If %If %If %If %If %If %If',

t,x, y, z,
U.m[O][O], U.m[l][O], U.m[2][0], U.m[3][0],
Gps_Fix.lat, Gps_Fix.lon, FGps_X, FGps_ Y); ·

fprintf(Fw," %If %If %If %If %d %d %d %d %d %d \n",
Dtl.Range, Dt2.Range, Dt_X, Dt_Y,
Dt_A vail, Dgps_A vail, Gps_A vail, Loss_ Track,
Fix_By, Fix_Concur);

}
fclose(Fw);
close(Path);
exit(O);
}

74

I***
FUNCTION: nav !_initialize()

AUTHOR: Dave McClarin

DATE: 9 February 1996

PURPOSE: Reads initialization data from OOD via socket and set
the appropriate data to initialize the filter

RETURNS: none,
***I
void nav1_initialize(int Path, int Simulate){

I* data strings for socket comms *I
char Nav _String_read[MAXBUFFERSIZE];
char Nav _Read_to_clear[MAXBUFFERSIZE];

int Init_Posture =FALSE; I* init flag *I
int Dive1 =FALSE; I* init flag *I
int Dive2 =FALSE; I* init flag *I
int Gps =TRUE; I* init flag *I
int Time_ OK= FALSE; I* init flag *I
int Gyro_Error =FALSE; I* init flag *I
int Continue= TRUE; I* init flag *I
int Dgps =FALSE; I* init flag *I
int TRACE= FALSE; I* init flag *I
int Nav1_Time_Out =FALSE; I* init flag *I

gps First_Fix; I* first fix obtained *I

I* used for bench testing *I
if (Simulate){

}

srand48;
First_Fix.lat =. Orig_Lat;
First_Fix.lon = Orig_Lon;
First_Fix.type = 1;

75

I* loops until all init flags are true *I
do{

I* gets a gps fix *I
if (!Simulate){

First_Fix = get_gps_data(Path);
}
I* Reads the telemetry string from the tactical socket* I
if (read(Navl_telemetry_fd[O],Nav_String_read,MAXBUFFERSIZE)== -1){}
else{

}

my _parse _telemetry _string(N av _String_read);
if (t > 15.0){

printf("\n Nav 1 init time= %lf\n",t);
Time_ OK= TRUE;

if (t > 45.0)
Navl_Time_Out =TRUE;

}

I* reads the command strings from the tactical socket and
parsed commands for initialization *I

if (read(OOD_to_Navl_fd[O],Nav_String_read,MAXBUFFERSIZE) == -1){}
else{

if (strcmp (Nav_String_read,"QUIT") == 0){
printf("Terminating Navigator! Module \n");
exit(O);

}
else

my_parse_telemetry_string(Nav_String_read);

I* sets flags as keywords are recieved *I
if (strcmp(keyword,"POSTURE") == 0)

Init_Posture = TRUE;
if (strcmp(keyword, "DIVE-TRACKER I") == 0)

Divel =TRUE;
if (strcmp(keyword,"DIVE-TRACKER2") == 0)

Dive2 = TRUE;
if (strcmp(keyword,"GYRO-ERROR") == 0)

Gyro_Error = TRUE;

I* sets orig_lat and Ion from gps fixes, preference is
to Dgps fix *I

if ((First_Fix.type == 1) II (First_Fix.type == 3)){
Gps=TRUE;

76

}

if (First_Fix. type == 1)
Dgps =TRUE;

I* will only update orig_lat!lon if fix is Dgps
or if no Dgps was ever recieved *I

if ((Dgps) && (First_Fix.type == 1)){
Orig_Lat = First_Fix.lat;
Orig_Lon = First_Fix.lon;

}
else if (!Dgps) {

}
}

Orig_Lat = First_Fix.lat;
Orig_Lon = First_Fix.lon;

I* sets loop exit flag *I
if ((Divel) && (Dive2) && (Gps) &&

(Gyro_Error) && (Init_Posture) && (Time_OK)){
Continue = FALSE;

}while((Continue) && (!Nav1_Time_Out));

I* sends init success to OOD *I
if ((Time_OK) && (!Nav1_Time_Out)){

read(Nav1_to_OOD_fd[O],Nav_Read_to_clear,MAXBUFFERSIZE);
write(Nav1_to_OOD_fd[1],"NAV1_INITIALIZED",MAXBUFFERSIZE);
printf("NA V1 INITIALIZED ****************\n\n");

}
else if (!Gyro_Error){

printf("W ARNING: Gyro_Error not received, assume 0 \n");
Gyro_Error =TRUE;
read(Nav1_to_OOD_fd[O],Nav_Read_to_clear,MAXBUFFERSIZE);
write(Nav1_to_OOD_fd[1],"NAV1_INITIALIZED",MAXBUFFERSIZE);
printf("NA V1 INITIALIZED ****************\n\n");
}

else{
I* sends init fail to OOD and outputs reason *I
read(Nav1_to_OOD_fd[O],Nav_Read_to_clear,MAXBUFFERSIZE);
printf("NAV1 INITIALIZATION FAILED ON TIME OUT BECAUSE");
if (!Gps)

printf(" Gps not received \n");
if (!Divel)

77

printf(" Dive Track 1 position not received \n");
if (!Dive2)

printf(" Dive Track 2 position not received \n");
if (!Init_Posture)

printf(" Posture not received \n");
write(Nav1_to_OOD_fd[1],"Nav1_Init_Fail",MAXBUFFERSJZE);

}
}

I***
FUNCTION: my_parse_telemetry_string

AUTHOR: Dave McClarin

DATE: 8 February 1996

PURPOSE: Parses out data obtained in telemetry and command
strings from the OOD.

RETURNS: But does set the globals DT1 and DT2 X Y & Z
and gyro_error

***I
void my _parse_telemetry _string(char Nav _String_read[MAXBUFFERSJZE]) {

I* used for keyword uppercase conversions *I
int index;
char lower_key[MAXBUFFERSJZE];

I* parses keyword out of nav _string and converts it to upper case *I
sscanf(Nav_String_read,"%s",keyword);
for (index= 0; index<= (int) strlen (keyword); index++)

keyword [index]= toupper (keyword [index]);

I* parses dive-tracker1 command and set location globals *I
if (strcmp(keyword,"DIVE-TRACKER1 ") == 0){

sscanf(N av _String_read, "%s %If %If %If'' ,lower_key,&DT1X,&DT 1 Y ,&DT 1Z);
}
I* parses dive-tracker2 command and set location globals *I
else if (strcmp(keyword,"DIVE-TRACKER2") == 0){

sscanf(N av _String_read, "%s %If %If %If'' ,lower_key ,&DT2X,&DT2Y,&DT2Z);
}

78

I* parses gyro-error command and sets global *I
else if (strcmp(keyword,"GYRO-ERROR") == 0){

sscanf(Nav _String_read," %s %If" ,lower_ key ,&Init_Heading);
}
I* parses posture command and sets globals *I
else if (strcmp(keyword,"POSTURE") == 0){

sscanf(Nav _String_ read, "%s %If %If' ,lower_key,&Posture_X,&Posture_ Y);
}
else{

I* must be a telemetry string or something I don't care about
so use an external parse function *I

parse_telemetry _string(N av _String_read);
for (index= 0; index<= (int) strlen (keyword); index++)

keyword [index]= toupper (keyword [index]);
}
}

I***
FUNCTION: reset_kalman()

AUTHOR: Dave McClarin

DATE: 8 February 1996

PURPOSE: Resets the kalman filter when called with gps data

RETURNS: None, but resets the Sigma, State Covariance Matrix
passed in.

***I
void reset_kalman(matrix *Sigma){

if (TRACE) printf("** In RESET KALMAN **\n");

Sigma->m[O][O] = 1.0;
Sigma->m[l][O] = 0.0;
Sigma->m[2][0] = 0.0;
Sigma->m[3][0] = 0.0;

Sigma->m[O][l] = 0.0;
Sigma->m[l][l] = 1.0;
Sigma->m[2][1] = 0.0;
Sigma->m[3][1] = 0.0;

79

--------------~---------------------'

Sigma->m[0][2] = 0.0;
Sigma->m[1][2] = 0.0;
Sigma->m[2][2] = 1.0;
Sigma->m[3][2] = 0.0;

Sigma->m[0][3] = 0.0;
Sigma->m[1][3] = 0.0;
Sigma->m[2][3] = 0.0;
Sigma->m[3][3] = 1.0;

80

APPENDIX B. KALMAN_FILTER.H
I***

FlLENAME: Kalman_Filter.h

AUTHOR: Dave McClarin

DATE: 8 March 1996

PURPOSE: 'H' file for kalman_filter and navigator! routines
**I
#ifndef KALMAN_FlLTER_H
#define KALMAN_FlLTER_H

#include "matrix.h"
#include <math.h>
#include <time.h>

#define TRUE 1
#define FALSE 0
#define DegToRad(x) ((double) (x * M_PI/180.0))
#define RadToDeg(x) ((double) (x * 180.0/M_PI))

I* div-tracker measurement variances *I
#define DvTrk_Rl_ Var 10.0
#define DvTrk_R2_ V ar 10.0

I* dgps measurement variances *I
#define Dgps_Lat_ V ar 64000.0
#define Dgps_Lon_ V ar 36000.0

I* gps measurement variances *I
#define Gps_Lat_ V ar 62500000.0
#define Gps_Lon_ Var 14400000.0

I* dgps measurement standard deviations *I
#define Dgps_Lat_Dev 800.0
#define Dgps_Lon_Dev 600.0

I* gps measurement standard deviations *I
#define Gps_Lat_Dev 250.0
#define Gps_Lon_Dev 120.0

81

I* mili-seconds of arc to feet conversion factor *I
static double Feet_Conv = 0.1;

I* divetracker data storage structure *I
typedef struct {

double Xloc;
double Yloc;
double Zloc;
double Range;

} transponder;

I***** SIMULATE SET POINT*****/
int Simulate = TRUE;

I* divetracker location default values *I
double DT1X = 15.0;
double DT1 Y = 10.0;
double DT1Z = 40.0;
double DT2X = 15.0;
double DT2Y = -10.0;
double DT2Z = 40.0;

I* default values *I
double Orig_Lat = 130000000.0;
double Orig_Lon = -440000000.0;
double Init_Heading = 0.0;
double Posture_X = 0.0;
double Posture_ Y = 0.0;

/*Sensor Distances from Sensor to Center of Phoenix *I
DiveTrackerXducer_Dist = -2.3;
GpsAntenna_dist = 1.0;
To_Center = -1.0;
To_Sensor = 1.0;

I* setting for ocean current relaxation time 7200 seconds (2 hours) *I
const double Tau = 7200.0;

I* kalman_filter.c prototypes*/
matrix kalman_filter(matrix Q, matrix U, int No_Fix, double *Total_Drift,

matrix *Sigma, matrix Phi, matrix R, matrix *K,
matrix Uw, transponder Dt1, transponder Dt2, int Fix_ Type,
int *Loss_Track, double Gps_X, double Gps_Y, double Course);

82

double NavtoRad(double Degrees, double Init_Heading);
double my_square(double xx);
matrix translate_position(double Direction, matrix U, double Course, int Fix_Type);

I* navigatorl.c prototypes*/
void navigatorl(void);
void navl_initialize(int Path, int Simulate);
void reset_kalman(matrix *Sigma);
void my _parse_telemetry _string(char *Nav _String_read);

#endif

83

84

APPENDIX C. KALMAN_FILTER.C
/***

FILENAME: kalman_filter.c

AUTHOR: Dave McClarin

DATE: 7 February 1996

PURPOSE: Performs the movement and measurment steps for both the

extended and regular discrete kalman_filter.

FUNCTIONS: kalman_filter()
NavtoRad()
my _square()
translate_position();

***/

#include 11IDatrix.h11

#include 11kalman_filter .h II

#include <stdio.h>
#include <math.h>
#include <time.h>
#include II • ./executionlstatevector .h II

#include <stdlib.h>

/***
FUNCTION: kalman_filter()

AUTHOR: Dave Mcclarin

DATE: 7 February 1996

PURPOSE: Performs the movement and measurment steps for both a

extended and regular discrete kalman_filter. Determines
the dimensionless shock value and sets the loss_track
flag if the d-shock exceeds 50.

RETURNS: State Matrix U

***/

85

matrix kalman_filter(matrix Q, matrix U, int No_Fix, double *Total_Drift,
matrix *Sigma, matrix Phi, matrix R, matrix *K,
matrix Uw, transponder Dt1, transponder Dt2, int Fix_ Type,
int *Loss_ Track, double Gps_X, double Gps_ Y, double Course){

int Trace;
double Calc_Distl, Calc_Dist2;
matrix InverseMat, Ds;
matrix Shock;

I* matrix of actual measurments *I
matrix Z = { { {0.0}, {0.0} },2,1 };

I* extended filter calculated value of z *I
matrix Fu = { { {0.0}, {0.0} },2,1 };

I* ld matrix *I
matrix ID = { { { 1.0, 0.0, 0.0, 0.0},

{ 0.0, 1.0, 0.0, 0.0}'
{ 0.0, 0.0, 1.0, 0.0}'
{ 0.0, 0.0, 0.0, 1.0}} ,4,4};

I* measurment matrix, how the measurement depends on the state *I
matrix H = { { { 1.0, 0.0, 0.0, 0.0},

{ 0.0, 1.0, 0.0, 0.0} } ,2,4};

I* mean of the measurement noise *I
matrix Uv = { { {0.0},{0.0} },2,1 };

I* Trace feature allows for printing of various values for use
in trouble shooting, initilized to false *I

Trace = FALSE;
*Loss_ Track= FALSE;

I* conducting movement step 'Dead Reckoning'
U = Phi*U + Uw; ->updates state values via movement
Sigma= Phi*Sigma*Transpose(Phi) + Q ->updates state covariance *I

U = matrix_add(matrix_multiply(Phi,U),Uw);
*Sigma= matrix_add(matrix_multiply(matrix_multiply(Phi, *Sigma),

matrix_transpose(Phi)), Q);

if (Trace){

86

printf("DTlX %lfDT1Y %lfDTlZ %lfDT2X %lfDT2Y %lfDT2Z %lf\n",
Dtl.Xloc, Dtl.Yloc, Dt2.Zloc, Dt2.Xloc, Dt2.Yloc, Dt2.Zloc);

output_matrix(U);
printf("X %lfY %lfZ %lf\n",x,y,z);

}

/*measurement phase
K = Sigma*Transpose(H)*Inverse(H*Sigma*Transpose(H) + R) ->

Updates Kalman Gain
U = U + K(Z- Uv - H*U) ->

updates state for linear GPS non-extended K-filter
U = U + K(Z- Fu - Uv) ->

update state for non linear DT extended K-Filter
Sigma= (ld- K*H)*Sigma ->updates state covariance */

if (No_Fix ==FALSE){

I* translate position of center of Phoenix to the Sensor *I
U = translate_position(To_Sensor, U, Course, Fix_Type);

I* fix_type of 2 = dive track, which is non-linear and requires a
extended kalman_filtering */

if (Fix_ Type== 2){

/*calculated measurment function*/
Calc_Distl = sqrt(my_square(Dtl.Xloc- U.m[O][O])+

my_square(Dtl.Yloc- U.m[l][O])+
my_square(Dtl.Zloc- z));

Calc_Dist2 = sqrt(my_square(Dt2.Xloc- U.m[O][O])+
my_square(Dt2.Yloc- U.m[l][O]) +

my_square(Dt2.Zloc- z));

Fu.m[O][O] = Calc_Distl;
Fu.m[l][O] = Calc_Dist2;

I* 1st partial deriviatives of the measurment fuction with respect
to the associated state variable 'the Jacobian'*/

H.m[O][O] = -(Dtl.Xloc- U.m[O][O])/Calc_Distl;
H.m[O][l] = -(Dtl.Yloc- U.m[l][O])/Calc_Distl;
H.m[l][O] = -(Dt2.Xloc- U.m[O][O])/Calc_Dist2;
H.m[l][l] = -(Dt2.Yloc- U.m[l][O])/Calc_Dist2;

87

Z.m[O][O] = Dtl.Range;
Z.m[l][O] = Dt2.Range;

if (Trace){

}

printf("X = %lfY = %lfZ = %lf\n",x,y,z);
printf("DtlX = %lfDtly = %lfDtlz = %lf\n",Dtl.Xloc,

Dtl.Yloc, Dtl.Zloc);
printf("Dt2X =%If Dt2y =%If Dt2z = %lf\n",Dt2.Xloc,

Dt2.Yloc, Dt2.Zloc);
printf("Calcl %lfDTl-RANGE %lfCalc2 %lfDT2-RANGE %lf\n",

Calc_Distl,Dtl.Range ,Calc_Dist2, Dt2.Range);

}
else{

I* a gps fix which is linear and uses non-extened filtering *I
Z.m[O] [0] = Gps_X;
Z.m[l][O] = Gps_ Y;

I* K gain calculations *I
InverseMat = matrix_inverse(matrix_add(matrix_multiply(

matrix_multiply(H, * Sigma),matrix_transpose(H)),R));
K = matrix_multiply(matrix_multiply(Sigma,matrix_transpose(H)),

InverseMat);

I* calculate shock for extended or non extended filtering *I
if (Fix_ Type== 2)

Shock= matrix_subtract(matrix_subtract(Z,Fu),Uv);
else

Shock= matrix_subtract(matrix_subtract(Z,Uv),
matrix_multiply(H, U));

I* calculates dimensionless shock *I
Ds = matrix_multiply(matrix_multiply(matrix_transpose(Shock),

InverseMat),Shock);

if (Trace)
printf("Dimensionless Shock= %lf\n",Ds.m[O][O]);

I* only perform measurment steps if DS < 50, to ensure no bad
measurements *I

if (Ds.m[O] [0] < 50) {

88

if (Trace){

}

printf("shock \n");
output_matrix(Shock);
printf("k \n");
output_matrix(*K);
printf("k * Shock\n");
output_matrix(matrix_multiply(*K,Shock));

U = matrix_add(U,matrix_multiply(*K,Shock));
*Sigma= matrix_multiply(matrix_subtract(

ID,matrix_multiply(*K,H)), *Sigma);

I* updates the total amount of error or drift if the measurement
was good *I

*Total_ Drift = sqrt(U .m[2] [O]*U .m[2] [O]+U .m[3] [0] *U .m[3] [0]);
}
else {

}

I* sets loss track to TRUE for bad measurement *I
if (Trace) printf("DS = %lf Ignoring last measurement\n",

Ds.m[O][O]);
*Loss_ Track= TRUE;

I* Put translated fix from sensor back to center of Phoenix *I
U = position_translate(To_Center, U, Course, Fix_Type);

return U;
}

89

I***
FUNCTION: NavtoRad()

AUTHOR: Dave Mcclarin

DATE: 7 February 1996

PURPOSE: Computes the Radian equivilant of a Naval Degree
Measurement

RETURNS: Rads as a Double
***I
double NavtoRad(double Degrees, double Gyro_Error){

double Rad;

I* adds Gyro_Error to input degrees *I
Degrees= Degrees+ Gyro_Error;

I* normalizes degrees *I
if (Degrees < 0.0)

Degrees = Degrees + 360.0;
if (Degrees >= 360.0)

Degrees = Degrees - 360.0;

I* assigns the proper rads to Naval degrees *I
if ((0.0 <=Degrees) & (Degrees<= 90.0))

Rad = (90.0-Degrees)*M_PI/180.0;

else if ((90.0 <Degrees) & (Degrees<= 180.0))
Rad = M_PI/180.0*(180.0-Degrees)+ 3 .O*M_PI/2.0;

else if ((180.0 <Degrees) & (Degrees<= 270.0))
Rad = M_PI/180.0*(270.0-Degrees)+M_PI;

else if ((270.0 <Degrees) & (Degrees<= 360.0))
Rad = M_PI/180.0*(360.0-Degrees)+M_PI/2.0;

return Rad;
}

90

/***
FUNCTION: my_square()

AUTHOR: Dave Mcclarin

DATE: 7 February 1996

PURPOSE: Computes square of a double (for some reason Pow stopped
working when integrated with others code)

RETURNS: Double* Double
***/
double my_square(double xx){
return xx*xx;
}

/***
FUNCTION: translate_position()

AUTHOR: Dave Mcclarin

DATE: 7 February 1996

PURPOSE: Translates the Pheonix center to the DiveTracker transducer or the
Gps Antenna, or translate from sensor to center of Phenoex.

RETURNS: matrix
***/
matrix translate_position(double Direction, matrix U, double Course, int Fix_ Type){

I* translate the divetracker transducer to center and vice versa depending upon
The direction 1 = to transducer, -1 =to center */

if (Fix_ Type== 2){
U.m[O][O] += Direction*DiveTrackerXducer_Dist*sin(Course);
U .m[1][0] += Direction*DiveTrackerXducer_Dist*cos(Course);

else{ /*translates the GPS antenna to center and vice versa*/
U .m[O] [0] += Direction *GpsAntenna_Dist* sin(Course);
U .m[1] [0] += Direction*GpsAntenna_Dist*cos(Course);

91

92

APPENDIX D. READGPS.H
I***

FTI.,ENAME: readgps.h

AUTHOR: Dave McClarin

DATE: 15 March 1996

PURPOSE: 'H' file for Opens and reads of Gps Data through a Solaris
serial port,then parses and returns the desired gps data.

**I

#ifndef READGPS_H
#define READGPS_H

#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include "kalman_filter.h"
#include "matrix.h"

#define GPSBLOCKSIZE 76 I* size of motorola @ @Ea position message *I
#define New_Data 1
#define Old_Data 0
#define GPS_STR_SIZE GPSBLOCKSIZE-1
#define SATELITE_DATA 39

I* sets number of channels of the gps reciever *I
const int CHANNELS = 8;

I* used in raw gps data decoding *I
typedef long FOURBYTE;

I* defines the decoded gps data storage type *I
typedef struct {

double lat;
double Ion;
double time;
int type;

}gps;

93

I* defines the raw gps data storage type *I
typedef struct {

unsigned char GPSdata[2*GPSBLOCKSIZE];
int data_status;

}raw_gps;

/*Defines raw gps data storage 'GLOBAL'*/
raw_gps Gps_Message = {"none",Old_Data};

/*serial read timeout variable*/
int TIMEOUT =FALSE;

I* headers for 6 and 8 channel motorola messages *I
char header_6[5] = "@ @Ba"; /* 6 channel*/
char header_8[5] = "@ @Ea"; /* 8 channel */

I* function prototypes for readgps.c */
gps get_gps_data(const int path);
int CheckSumCheck(void);
gps GetMilSec(gps temp);
gps GetGpsTime(gps temp);
gps GetGpsFixType(gps temp);
int determine_fix(double Rangel, double Range2, gps Gps_Fix,

int *Gps_A vail,int *Dgps_A vail, int *Dt_A vail,
int *Fix_By, int *Fix_Concur, matrix U,
double Gps_X, double Gps_ Y, int Loss_ Track,
doublet, double DT_Timer);

int Gps_Serial_Read(int path);
int initialize_serial(void);
int open_tty(char *device_name);
void tty_open_timeout(int arg);
void serial_read_timeout(int arg);
gps simulate_gps_data(double x, double y, int fix_type);

#endif

94

APPENDIX E. READGPS.C
I***

FILENAME: readgps.c

AUTHOR: Dave McClarin

DATE: 15 March 1996

PURPOSE: Opens and reads Gps Data through a Solaris serial ports,
then parses and returns the desired gps data.

FUNCTIONS: get_gps_data()
CheckSum Check()
GetMilSec()
GetGpsTime()
GetGpsFixType()
determine_fix()
Gps_Serial_Read()
initialize_serial()
tty _open_timeout()
open_tty()
serial_read_timeout()
simulate_gps_data()

***I
#include <stdio.h>
#include <ctype.h>
#include <ermo.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "readgps.h"
#include <sysltypes.h>
#include <syslstat.h>
#include <fcntl.h>
#include <signal.h>
#include <unistd.h>
I* #include <sysltermiox.h> *I
#include "termiox.h"
#include <sysluio.h>
#include <termios.h>
#include <termio.h>
#include "matrix.h"
#include "kalman_filter.h"

95

I***
FUNCTION: get_gps_data()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Determines if an updated gps position message is available
and copies it into the input argument 'raw Message'. If the
message has a valid checksum and was obtained with at least
three satelites in view, a 'TRUE' is returned to the
caller, indicating that the message is valid.

RETURNS: GPS Data Structure.
***I
gps get_gps_data(const int path){

unsigned char tempchar;
int satelites;

I* returned gps values stored in temp and initialied to zeroes *I
gps temp;
temp.lat = 0.0;
temp.lon = 0.0;
temp.time = 0.0;
temp.type = 0;

I* Global that keeps track of the serial read has timed out *I
TIMEOUT = FALSE;

I* calls read that places data in Gps_Message global *I
Gps_Serial_Read(path);

if (Gps_Message.data_status ==New _Data){

I* finds the number of satelites available *I
tempchar = Gps_Message.GPSdata[39];
satelites = (int)tempchar;

I* ensures there is a valid checksum and 3 satelites for data
places data into the gps temp structure *I

96

if ((CheckSumCheck() ==TRUE) && (satelites > 3)){
temp= GetMilSec(temp);
temp= GetGpsTime(temp);
temp= GetGpsFixType(temp);

else
temp.type = 0;

I* sets flag to indicated data has been read *I
Gps_Message.data_status = Old_Data;

return temp;
}

/***
FUNCTION: checkSumCheck

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

MODIFIED: From code by Dave Gay and Eric Bachman 11 July 95

PURPOSE: Takes an exclusive or of bytes 2 through 78 in a Motorola
format (@@EA) position message and compares it to the
checksum of the message of the message.

-RETURNS: TRUE, if the message contains a valid checksum
***/
int CheckSumCheck()
{

unsigned short chkSum;
unsigned short temp;
inti;

I* gets first element of message *I
chkSum = Gps_Message.GPSdata[2];

97

I* XORs bytes 2 through 78 to get the checksum *I
for (i = 3; i < (GPS_STR_SIZE-2); i++) {

temp= Gps_Message.GPSdata[i];
chkSum = chkSum A temp;

}
I* returns a TRUE of valid checksum *I
return (chkSum == Gps_Message.GPSdata[GPS_STR_SIZE-2]);

}

I***
FUNCTION: getMilSec

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

MODIFIED: From code by Dave Gay and Eric Bachman 11 July 95

PURPOSE: Extracts position in mili-seconds of arc from a Motorola
(@@Ea) data string.

RETURNS: The latitude and longitude in milli-seconds arc
in a gps data structure

***I
gps GetMilSec(gps temp) {

FOURBYTE temps4byte;

I* gets the latitude from the raw data message *I
temps4byte = Gps_Message.GPSdata[15];
temps4byte = (temps4byte<<8) + Gps_Message.GPSdata[16];
temps4byte = (temps4byte<<8) + Gps_Message.GPSdata[17];
temps4byte = (temps4byte<<8) + Gps_Message.GPSdata[18];
temp.lat = temps4byte;

I* gets the longitude from the raw data message *I
temps4byte = Gps_Message.GPSdata[19];
temps4byte = (temps4byte<<8) + Gps_Message.GPSdata[20];
temps4byte = (temps4byte<<8) + Gps_Message.GPSdata[21];
temps4byte = (temps4byte<<8) + Gps_Message.GPSdata[22];
temp.lon = temps4byte;

return temp;}

98

I***
FUNCTION: getGpsTime

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

MODIFIED: From code by Dave Gay and Eric Bachman 11 July 95

PURPOSE: Extracts the position time in seconds from a Motorola (@ @ Ea)
data string.

RETURNS: The time of the gps message in seconds stored
in a gps data structure.

***I
gps GetGpsTime(gps temp) {

}

unsigned char tempchar, hours, minutes;
unsigned long tempu4byte;
double seconds;

I* gets hours and minutes from raw data message *I
hours = Gps_Message.GPSdata[8];
minutes= Gps_Message.GPSdata[9];

I* gets seconds from raw data message *I
tempchar = Gps_Message.GPSdata[lO];
tempu4byte = Gps_Message.GPSdata[11];
tempu4byte = (tempu4byte<<8) + Gps_Message.GPSdata[12];
tempu4byte = (tempu4byte<<8) + Gps_Message.GPSdata[l3];
tempu4byte = (tempu4byte<<8) + Gps_Message.GPSdata[14];

seconds= (double)tempchar + (((double)tempu4byte)ll.OE+9);

I* converts hours minutes and seconds to total seconds for the day *I
temp.time = (double)hours * 3600.0 + (double)minutes * 60.0 +seconds;
return temp;

99

I***
FUNCTION: GetGpsFixType

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Extracts the position type from a Motorola (@@ Ea)
data string, 1 = DGPS, 3 = GPS

RETURNS: The type of the gps fix stored in a gps data structure.
***I
gps GetGpsFixType(gps temp){

}

unsigned long tempu4byte, MASK;

tempu4byte = Gps_Message.GPSdata[GPS_STR_SIZE-3];
MASK=4;

I* checks bit 2 of tempu4byte, if set then DGPS avail, else GPS avail* I
if ((tempu4byte & MASK)== MASK){

temp.type = 1;

else {
temp.type = 3;

return temp;

I***
FUNCTION: determine_fix()

AUTHOR: Dave Mcclarin

DATE: 16 February 1996

PURPOSE: Determines the type of position fix to be used by the
kalman_filter.

RETURNS: The type of the position fix to be used 1 = DGPS, 2 =Dive
Track and 3 = GPS. Also sets Fix_By (what the fix was

100

computed by), sets the Dgps, Gps Dt avail flags and sets

the Fix_ Concur flag if a dive track fix and gps fix concur
in position

***/

int determine_fix(double Rangel, double Range2, gps Gps_Fix, int *Gps_Avail,

int *Dgps_Avail, int *Dt_Avail, int *Fix_By,

int *Fix_Concur, matrix U, double Gps_X, double Gps_Y,

int Loss_ Track, doublet, double DT_Timer){

/*Sets the fix availabilty flags*/

if((Rangel >= 0.0) && (Range2 >= 0.0))
*Dt_Avail =TRUE;

else
*Dt_Avail =FALSE;

if (Gps_Fix.type == 1){
*Dgps_Avail ==TRUE;
*Gps_Avail = FALSE;

}else
*Dgps_A vail == FALSE;

if (Gps_Fix.type == 3){
*Dgps_Avail ==FALSE;
*Gps_Avail =TRUE;

}else
*Gps_A vail = FALSE;

if (Gps_Fix.type == 0){
*Dgps_A vail = FALSE;
*Gps_A vail = FALSE;

}

I* determines what to use for the fix if both Dgps and

dive track is avail with a loss_track flag set*/

if((*Dgps_Avail && *Dt_Avail) && (Loss_Track)){

/*if last fix by DT then use DGPS, or vice versa*/
if (*Fix_By == 2){

*Fix_ Concur= FALSE;
*Fix_By = 1;
return *Fix_By;

101

else{

}
}

*Fix_Concur =FALSE;
*Fix_By= 2;
return *Fix_By;

/* determines what to use for the fix if both Gps and
dive track is avail with a loss_track flag set*/

if ((*Gps_Avail && *Dt_Avail) && (Loss_Track)){

/*if last fix by DT then use GPS, or vice versa*/
if (*Fix_By == 2){

else{

}
}

*Fix_ Concur = FALSE;
*Fix_By= 3;
return *Fix_By;

*Fix_Concur =FALSE;
*Fix_By= 2;
return *Fix_By;

/* determines what to use for the fix if both DGps and
dive track is avail with no loss_track flag set*/

if (*Dgps_Avail && *Dt_Avail){

I* if the difference between the DGPS posit and filter Posit
is > the STD DEV of the GPS Posits then reset fix to
Dgps Position, and set fix concur to false else vice versa*/

if ((fabs(U.m[O][O]- Gps_X) > Dgps_Lat_Dev) II

}else
{

(fabs(U.m[1][0]- Gps_Y) > Dgps_Lon_Dev)){
*Fix_ Concur = FALSE;
*Fix_By = 1;
return *Fix_By;

*Fix_ Concur= TRUE;
*Fix_By= 2;
return *Fix_By;

102

}
}

I* determines what to use for the fix if both Gps and

dive track is avail with no loss_track flag set *I
if (*Gps_Avail && *Dt_Avail){

I* if the difference between the DGPS posit and filter Posit

is > the STD DEV of the GPS Posits then reset fix to

gps Position, and set fix concur to false else vice versa *I
if ((fabs(U.m[O][O] - Gps_X) > Gps_Lat_Dev) II

(fabs(U.m[1][0]- Gps_ Y) > Gps_Lon_Dev)){

*Fix_ Concur= FALSE;

}

*Fix_By = 3;
return *Fix_By;

}else{

}

*Fix_ Concur= TRUE;
*Fix_By= 2;
return *Fix_By;

I* if none of the above are true then just return what

fix typs is avail and set fix_ concur to false *I
if (*Dt_Avail ==TRUE)

*Fix_By = 2;
else if (*Dgps_Avail ==TRUE)

*Fix_By= 1;
else if (*Gps_Avail ==TRUE)

*Fix_By = 3;
else

*Fix_By = 0;
*Fix_ Concur = FALSE;

if ((t < DT_Timer) && ((*Fix_By == 1) II (*Fix_By == 3)))
*Fix_By = 0;

return *Fix_By;}

/***

FUNCTION: Gps_Serial_Read()

103

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Reads the serial port for the raw gps Position

RETURNS: An integer to keep the compiler happy, and places the
Gps Raw data into the GLOBAL Gps_Message

***I
int Gps_Serial_Read(int npath)
{
unsigned char Gps_string[GPSBLOCKSIZE], ch[5];
intj;
char data_header[5];

I* set signal handler for open watchdog*/
signal(SIGALRM, serial_read_timeout);

/*set watchdog timer *I
alarm(2);

/* if old dat stored in message then get new data *I
if (Gps_Message.data_status == Old_Data){

ch[O] = 0;
j =0;

/*clears the port of all chars to beginning of data stream'@'
j counts to 5 for a differential gps data message *I

do{

if (read(npath,ch, 1) < 0)
perror("do read error");

if (TIMEOUT)
return 0;

j++;

}while ((ch[O] != '@') && (j < 5));

I* keeps first char *I

104

Gps_string[O] = ch[O];

I* reads message header *I
forG=1;j<=3;j++){

if (read(npath,ch,1)<0)
perror("main string error");

Gps_string[j] = ch[O];

if (TIMEOUT)
return 0;

I* puts global message header into local var data_header *I
strcpy(data_header ,header_8);

if ((Gps_string[O]==data_header[O])&&
(Gps_string[1]==data_header[1])&&
(Gps_string[2]==data_header[2])&&
(Gps_string[3]==data_header[3])){

I* if valid header reads the entire message string *I
forG=4;j<=GPS_STR_SIZE;j++) {

}

if (read(npath,ch,1)<0)
perror("main string error");

if (TIMEOUT)
return 0;

Gps_string[j]=ch[O];

I* copies data into the GLOBAL Gps_Message *I
forG=O;j<=GPS_STR_SIZE;j++) {

Gps_Message. GPSdata[j]=Gps_string[j];
Gps_Message.data_status = New _Data;

if (TIMEOUT)
return 0;

105

else{

}

I* clear the differential gps data string *I
if ((Gps_string[O]=='@ ')&&(Gps_string[1]=='@ ')

&&(Gps_string[2]=='C')&& (Gps_string[3]=='k')) {

for(j=O;j<=2;j++) {

}
}

if (read(npath,ch,1)<0)
perror("main string error");

if (TIMEOUT)
return 0;

I* clear the timer *I
alarm(O);

I* go back to default alarm handler *I
signal(SIGALRM, SIG_DFL);

return 0;
}

I***
FUNCTION: initialize_serial()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

MODIFIED: From Dinc.c Software source included in SCSIT hardware
package as an example of solaris serial port corns.

PURPOSE: Initilizes the serial port for reading the raw gps data

RETURNS: An integer that is used as the file descriptor
***I

106

int initialize_serial() {

}

int i, path, stat;
unsigned short flag = 6;
struct termiox *termsetup;
struct termios tty _termios;
termsetup = (struct termiox *)calloc(50,sizeof(short));

/*Get path number *I
path = open_tty("/dev/sts/ttyc50");
if (path< 0)

printf("error in initilization open tty, bad argument? \n");

I* sets the io-control flag *I
ioctl(path,TCGETX,termsetup);
termsetup->x_hflag =flag;
ioctl(path, TCSETX,termsetup);

I* sets the termios data structure to 'good' starting points*/
stat= tcgetattr(path,&tty_termios);
tty_termios.c_lflag = 0;
tty_termios.c_oflag &= -OPOST;
tty _termios.c_iflag &=
-(INPCK I PARMRK I BRKINT I INLCR I ICRNL IIUCLC I IXANY);

tty_termios.c_iflag I= IGNBRK;
tty_termios.c_cflag &= -(CSIZE I PARODD I PARENB I CSTOPB);
tty_termios.c_cflag I= (CREAD I CLOCAL);
tty_termios.c_cflag I= CS8;

tty_termios.c_iflag &= -(IXON I IXOFF);
stat= tcsetattr(path, TCSANOW, &tty_termios);

return path;

!***
FUNCTION: open_ tty()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

107

MODlFIED: From Dinc.c Software source included in SCSIT hardware
package as an example of solaris serial port corns.

PURPOSE: Opens the TTY port non-blocking style. Runs a watchdog
timer in case another process is blocking for carrier
preventing us from proceeding with open.

RETURNS: An integer that is used as the file descriptor
***I
int open_tty(char *tty_name){

int tty_fd;

I* set signal handler for open watchdog *I
signal(SIGALRM, tty_open_timeout);

I* set watchdog timer *I
alarm(lO);

I* open the tty port *I
tty_fd = open(tty_name,O_RDWR I O_NDELAY);
if(tty_fd < 0) {

perror(tty _name);

I* clear the timer *I
alarm(O);

I* go back to default alarm handler *I
signal(SIGALRM, SIG_DFL);

I* restore normal blocking operation on port *I
fcntl(tty_fd, F _SETFL, 0);

return tty _fd} ·

I***
FUNCTION: tty_open_timeout()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

108

MODJFJED: From Dinc.c Software source included in SCSII hardware

package as an example of solaris serial port corns.

PURPOSE: Just prints a message saying the device is busy.

RETURNS: Void

***/

void tty_open_timeout(int arg){

}

I* note: only passing 'arg' to shut up compiler*/

printf("Timed out: port busy path= %d\n",arg);
exit(l);

!***

FUNCTION: serial_read_timeout()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

MODIFIED: From Dinc.c Software source included in SCSII hardware

package as an example of solaris serial port corns.

PURPOSE: Just prints a message saying the device is busy, and

sets TIMEOUT to TRUE.

RETURNS: Void

***!

void serial_read_timeout(int arg){

}

printf(" Serial_read_ Timeout \n ");
TIMEOUT =TRUE;

/***

FUNCTION: simulate_gps_data()

AUTHOR: Dave Mcclarin

DATE: 9 February 1996

109

PURPOSE: Just prints a message saying the device is busy, and
sets TIMEOUT to TRUE.

RETURNS: Gps data structure containing simulated fix data
***!
gps simulate_gps_data(double x, double y, int fix_type){

}

gps Gps_Fix;

!* Computes simulated fix data in lat and Ion milliseconds of arc
and puts up to 10 feet of noise on the posit *I

x = x + (10.0 * drand48());
y = y + (10.0 * drand48());

Gps_Fix.lat = ((x-Posture_X)/Feet_Conv) + Orig_Lat;
Gps_Fix.lon = ((y-Posture_ Y) /(Feet_Conv *

cos(DegToRad(Gps_Fix.lat/3600000))))
+ Orig_Lon;

Gps_Fix.type = fix_type;
return Gps_Fix;

110

APPENDIX F. MA TRIX.H
I***

FILENAME: matrix.h

AUTHOR: Dave McClarin

DATE: 6 February 1996

PURPOSE: 'H' file for matrix operators to include addition,
subtraction, multiplication, and inverse.

**I

#ifndef MATRIX_H
#define MATRIX_H

I* defines the matrix data structure type *I
typedef struct {

double m[4][4];
int row, col;

}matrix;

I* function prototypes for matrix.c *I
matrix matrix_multiply(matrix matl, matrix mat2);
matrix matrix_add(matrix mat1, matrix mat2);
matrix matrix_subtract(matrix matl, matrix mat2);
matrix matrix_transpose(matrix matl);
matrix matrix_inverse(matrix mat1);
matrix gauss_elimination(matrix mat1, matrix mat2);
matrix rtransform(double azimuth, double pitch, double roll);
void output_matrix(matrix input_matrix);

#endif

111

112

APPENDIX G. MA TRIX.C
/***

FILENAME: matrix.c

AUTHOR: Dave McClarin

DATE: 19 February 1996

PURPOSE: Create matrix operators to include addition, subtraction,
multiplication, inverse and gauss_elimination, and
create a rotation matrix.

FUNCTIONS: matrix_multiply()
matrix_ add()
matrix_subtract()
matrix_transpose()
matrix_inverse()
gauss_ elimination()
matrix rtransform()
output_matrix()

***/

#include <stdio.h>
#include <math.h>
#include "matrix.h"
#include "kalman_filter.h"

!***
FUNCTION: matrix_multiply()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Multiplies two matrix's together

RETURNS: Matrix I* Matrix2 in a matrix data structure
***/
matrix matrix_multiply(matrix matl, matrix mat2)
{

113

int row, col, i;
matrix answer;

I* conducts multiplication *I
for (row=O; row<matl.row; row++) {

for (col=O; col<mat2.col; col++) {
answer.m[row][col]=O.O;
for (i=O; i <matl.col; i++){

answer.m[row][col] += matl.m[row][i] * mat2.m[i][col];

}
}

I* assigns new row and col number to matrix data structure *I
answer.row = matl.row;
answer.col = mat2.col;
return answer;
}

I***
FUNCTION: matrix_ add()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Adds two matrix's together

RETURNS: Matrix 1 + Matrix2 in a matrix data structure
***I
matrix matrix_add(matrix matl, matrix mat2)
{
int row, col;
matrix answer;

I* conducts addition *I
for (row=O; row<matl.row; row++) {

for (col=O; col<matl.col; col++) {
answer.m[row][col] = matl.m[row][col] + mat2.m[row][col];

114

I* assigns new row and col number to matrix data structure *I
answer.row = matl.row;
answer.col = matl.col;
return answer;
}

I***
FUNCTION: matrix_subtract()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Subtracts two matrix's from each other

RETURNS: Matrix 1 - Matrix2 in a matrix data structure

***I
matrix matrix_subtract(matrix mat1, matrix mat2)
{
int row, col;
matrix answer;

I* conducts subtraction *I
for (row=O; row<mat1.row; row++) {

for (col=O; col<matl.col; col++) {

answer.m[row][col] = matl.m[row][col]- mat2.m[row][col];

I* assigns new row and col number to matrix data structure *I
answer.row = matl.row;
answer.col = matl.col;
return answer;
}

115

I***
FUNCTION: matrix_transpose()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Creates the transpose of a matrix

RETURNS: transpose(Matrix) in a matrix data structure
***I
matrix matrix_transpose(matrix mat1)
{
int row, col;
matrix answer;

I* conducts transpose *I
for (row=O; row<matl.row; row++) {

for (col=O; col<mat1.col; col++) {
answer.m[col][row] = mat l.m[row][col];

I* assigns new row and col number to matrix data structure *I
answer.row = matl.col;
answer.col = matl.row;
return answer;

I***
FUNCTION: matrix_inverse()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Creates the inverse of a matrix using gausing elimination

RETURNS: inverse(Matrix) in a matrix data structure
***I
matrix matrix_inverse(matrix matl)
{
int row, col;

116

matrix Idmat;

/*creates ld matrix of size mat 1 */
for (row=O;row<mat 1.row;row++) {

for (col=O;col<mat 1.col;col++) {
if (row==col){

Idmat.m[row][col] = 1.0;
}else ldmat.m[row][col] = 0.0;

}

/*assigns new row and col number to matrix data structure *I
ldmat.row=mat 1.row;
ldmat.col=matl.col;

retum(gauss_elimination(mat1,Idmat));
}

!***
FUNCTION: gauss_elimination()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: returns the solution x of Ax=B

RETURNS: inverse(Matrix) in a matrix data structure

***/
matrix gauss_elimination(matrix mat1, matrix mat2)
{
int row, col, max, i ,j, k;
matrix answer;
double a[4][8], t;

/*copies the input matrix into the temp solution matrix*/
for (row=O; row<matl.row; row++) {

for (col=O; col<matl.col; col++) {
a[row][col] = matl.m[row][col];

/*tacks on a 2nd matrix into the temp solution matrix*/

117

for (row=O;row<mat2.row;row++) {
for (col=mat2.col;col<2*mat2.col;col++) {

a[row][col]=mat2.m[row][col-mat2.col];
}

I* performs row eliminations*/
for (i=O;i<mat l.row;i++){

max= i;
for G=i+l;j<matl.row;j++){

if (fabs(a[j][i]) > fabs(a[max][i]))
max =j;

for (k=i;k<2*matl.col;k++){
t = a[i][k];

}

a[i][k] = a[max][k];
a[max][k]= t;

for G=i+ 1 ;j<matl.row;j++){
for (k=2*matl.col;k>i-1;k--){

if (fabs(a[i][i]) < 0.000001){
printf("this is becomming a singular matrix");
exit(O);

}
else a[j][k] = a[j][k]-a[i][k]*a[j][i]/a[i][i];

}

/*performs back substitution*/
for (i=O;i<mat l.col;i++){

for G=matl.row-1;j>-l;j--){
t=O.O;
for (k=j+ 1 ;k<matl.row;k++){

t = t+a[j][k]*answer.m[k][i];
}
answer.m[j][i] = (a[j][(matl.col)+i]-t)/a[j][j];

}
}

I* assigns new row and col number to matrix data structure *I
answer.row = matl.row;
answer.col = matl.col;
return answer;

118

!***
FUNCTION: matrix rtransform()

AUTHOR: Dave Mcclarin

DATE: 19 February 1996

PURPOSE: Construct a rotation matrix to use in transforming
body co-ordinates into Earth co-ordinates, using right
hand rule.
body co-ords u = nose

v = right side
w = bottom (belly)

earch co-ords x = North
y =East
z=down

RETURNS: Rotation matrix in a matrix data structure

***!
matrix rtransform(double azimuth, double pitch, double roll)
{
matrix answer 1;

double spsi = sin(azimuth);
double cpsi =cos(azimuth);
double sphi = sin(pitch);
double cphi = cos(pitch);
double sth = sin(roll);
double cth = cos(roll);

answerl.row = 3;
answerl.col = 3;

answerl.m[O][O] = cpsi * cphi;
answerl.m[O][l] = cpsi * sphi * sth- spsi * cth;
answerl.m[0][2] = cpsi * sphi * cth + spsi * sth;
answerl.m[l][O] = spsi * cphi;
answerl.m[l][l] = spsi * sphi * sth + cpsi * cth;
answerl.m[1][2] = spsi * sphi * cth- cpsi * sth;
answerl.m[2][0] = -sphi;
answerl.m[2][1] = cphi * sth;
answerl.m[2][2] = cphi * cth;

119

return answerl;

!***
FUNCTION: output_matrix()

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

PURPOSE: Prints the contents of a matrix

RETURNS: Void
***/
void output_matrix(matrix input_matrix)
{
int i,j;

for (i=O;i<input_matrix.row;i++) {
forG=O;j<input_matrix.col;j++) {

printf(" %4.4 f ",input_matrix.m[i] [j]);

printf("\n");
}
printf("\n");
}

120

LIST OF REFERENCES

[BACH95] Bachmann, E.R. and Gay, D.L., "Design and Evaluation of an Integrated
GPSIINS System for Shallow-Water AUV Navigation," M.S. Thesis,
Naval Postgraduate School, Monterey, CA 93943, September, 1995.

[BACH96] Bachmann, E.R., et al., "Evaluation of an Integrated GPSIINS System for
Shallow-Water AUV Navigation (SANS)," Symposium on Autonomous
Underwater Vehicle Technology, Monterey, California, June 3-6, 1996

[BRUT92] Brotzman, Donald P. et al., "Autonomous Sonar Classification Using
Expert Systems," Proceedings of the IEEE Oceanic Engineering Society
Conference OCEANS 92, Newport Rhode Island, October 26-29, 1992, pp
554-559. Available at, ftp://tauros.cs.nps.navy.mil/pub/auv/oceans92.ps.Z

[BRUT95] Brotzman, Donald P., "Virtual World Visualization for an Autonomous
Underwater Vehicle," Proceedings of the IEEE Oceanic Engineering
Society Conference OCEANS 95, San Diego California, October 12-15
1995, pp 1592-1600. Available at,
ftp://tauros.cs.nps.navy.mil/pub/auv/oceans95.ps.Z

[BRUT96] Brotzman, Donald P., et al., "NPS Phoenix AUV Software Integration and
In-Water Testing," Center for Autonomous Underwater Vehicle Research,
Code UW/Br, Naval Postgraduate School, Monterey California.
Available at, http://www .cs.nps.navy.rnillresearch/auv

[BURN96] Bums, Mike, An Experimental Evaluation and Modification of Simulator­
based Vehicle Control Software for the Phoenix Autonomous Underwater
Vehicle (AUV)," M.S. thesis, Naval Postgraduate School, Monterey, CA
93943, March, 1996. Available at
http://www.cs.nps.navy.mil/research/auv

[BYRN96] Byrnes, R.B. et al., "The Rational Behavior Model Software Architecture
for Intelligent Ships," Naval Engineers Journal, March 1996, pp. 43-55

[CAMP96] Campbell, Mike, Real-Time Sonar Classification for Autonomous
Underwater Vehicles," M.S. Thesis, Naval Postgraduate School,
Monterey, CA 93943, March, 1996. Available at,
http://www .cs.nps.navy.mil/researchlauv

121

[CRAI86] Craig, John, J., "Introduction to Robotics, Mechanics and Control, Second
Edition," Addison-Wesley Publishing, Company, Reading, Massachusetts,
1986.

[FLAG94] Flagg, Marco, "Submersible Computer for Divers, Autonomous
Applications," Sea technology, vol. 35, February 1994, pp. 33-37.

[GELB88] Gelb, A., "Applied Optimal Estimation," MIT Press, 1988.

[HOLD95] Holden, Michael J., "ADA Implementation of Concurrent Execution of
Multiple Tasks in the Strategic and Tactical Levels of the Rational
Behavior Model for the NPS Phoenix Autonomous Underwater Vehicle
(AUV),"M.S. thesis, Naval Postgraduate School, Monterey, CA 93943,
September, 1995. Available at, http://www.cs.nps.navy.mil/research/auv

[LACH96] Lachapelle, G., et al., "Shipboard Attitude Determination During MMST-
93," IEEE Journal of Oceanic engineering, Vol21 January 1996, pp 100-
105.

[LEON96] Leonhardt, Bradley J., "Mission Planning and Mission Control software
for the Phoenix Autonomous Underwater Vehicle (AUV): Implementation
and Experimental Study," M.S. thesis, Naval Postgraduate School,
Monterey, CA 93943, March, 1996. Available at,
http://www .cs.nps.navy.mil/researchlauv

[MARC96] Marco, D.B., et al, "Autonomous Underwater Vehicles: Hybrid Control of
Mission and Motion," Journal of Autonomous Robots, 1996.

[MCGH95] McGhee, R.B., et al., "An Experimental Study of an Integrated
GPSIINS System for Shallow-Water AUV Navigation (SANS)",
Proceedings of the Ninth International Symposium on Unmanned
Untethered Submersible Technology (UUST), September 25-27 1995,
Durham, NH. pp 153-167.

[MOTORA] Anon., Oncore 8 Channel GPS Receiver, Motorola, Inc., Schaumburg, ll1
60196.

[SCRI96] Scrivener Art., "Acoustic Navigation of the Phoenix Autonomous
Underwater Vehicle using the DiveTracker System," M.S. Thesis, Naval
Postgraduate School, Monterey, CA 93943, March, 1996.

[SCSII] Anon., "scsiServer Solari 2 Software Installation Guide," Central Data
Corporation, Champaign, TIL, 1995.

122

[SUN] Anon., SPARCstation Voyager, Sun Microsystems, Inc., Mountain View,
CA., 94043.

[TRITEC] Anon., TriTech ST750, STlOOO Sonars, Tritech lnt'l Ltd., Aberdeen AB32
6JL, UK.

[WASH94] Washburn, Alan, OA4607: Lecture Notes, A Short Introduction to Kalman

Filters, Naval Postgraduate School, Monterey California, July 1994.

123

124

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library . 2

Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Computer Technology Programs, Code CS 1

Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Ted Lewis, Code CS/Lt . 1

Chair, Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

5. Dr. Robert McGhee, Code CS/Mz 2

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

6. Dr. Donald P. Brotzman, Code UW/Br 2

Undersea Warfare Academic Group
Naval Postgraduate School
Monterey, CA 93943-5100

7. Dr. Anthony J. Healey, Code ME/Hy 1

Mechanical Engineering Department
Naval Postgraduate School
Monterey CA, 93943-5100

8. CDR Michael J. Holden, USN, Code CS/Hm. 1

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

125

9. Dr. Alan Washburn, Code ORIWS 1
Operation Research Department
Naval Postgraduate School
Monterey CA, 93943-5100

10. David Marco, Code ME/MA . 1
Mechanical Engineering Department
Naval Postgraduate School
Monterey, California 93943-5000

11. Russell Whalen, Code CS . 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

12. Dr. Richard Blidberg, Director . 1
Marine Systems Engineering Laboratory, Marine Science Center
Northeastern University
East Point, Nahant, Massachusetts 01908

13. Dr. James Bellingham......... 1
Underwater Vehicles Laboratory, MIT Sea Grant College Program
292 Main Street
Massachusetts Institute of Technology
Cambridge Massachusetts 02142

14. Mr. Norman Caplan... 1
National Science Foundation

15.

BES, Room 565
4201 Wilson Blvd.
Arlington, Virginia 22230

LT Eric Bachmann, USN, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

1

16. Dr. James Eagle, Code ORJER 1
Chair, Undersea Warfare Department
Naval Postgraduate School
Monterey, CA 93943-5100

126

17. LT, David McClarin . 1
3605 E. Florence
P.O. Box 163
Mead, Washington, 99201

127

