
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1996-03

Design and implementation of a prototype database

system for the operational activity schedule of the

Hellenic Navy

Marinos, Evangelos Pavlos.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/32180

"•'

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN AND IMPLEMENTATION OF A
PROTOTYPE DATABASE SYSTEM FOR THE

OPERATIONAL ACTIVITY SCHEDULE OF THE
HELLENIC NAVY

by

Evangelos Pavlos Marinos

March 1996

Thesis Advisor: James C. Emery

Approved for public release; distribution is unlimited.

19Yifl?08 038

·.

THIS DOCUMENT I·S BEST

QUALITY AVAILABLE. THE

COPY FURNISHED· TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instruction, searching existing data
ources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
~pect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and
~eports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

~ashington DC 20503

l. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1996 Master's Thesis

4. TITLE AND SUBTITLE: DESIGN AND IMPLEMENTATION OF A 5. FUNDINGNUMBERS
PROTOTYPE DATABASE SYSTEM FOR THE OPERATIONAL
ACTIVITY SCHEDULE OF THE HELLENIC NAVY

6. AUTHOR: Evangelos P. Marinos

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING
ADDRESS(ES) AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
pr position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for 12b. DISTRIBUTION CODE
public release; distribution unlimited.

13. ABSTRACT (maximum 200 words)

The Hellenic Navy General Staff has a difficult mission which encompasses tactical, operational, and administrative tasks.

~he most important operational task for the General Staff is to prepare the Operational Activity Schedule for every ship,
ubcommand, and command in the Hellenic Navy. In order to more effectively prepare this schedule, an automated database is
equired. This system would contain all operational activity records for the Hellenic Navy units and other pertinent information.

Furthermore, the system would produce ad hoc reports, as well as a variety of other reports designed by the user to support ship
maintenance schedule. This thesis designs and implements an automated database system that can be used from the Hellenic
Navy General Staff. The methodology followed is the standard systems' development life cycle (SDLC). The requirements for
he system are obtained, and the database and application are designed and implemented. Paradox 5.0 for Windows is used for

the database management system software. Special issues like training, conversion, and maintenance are taken into
consideration. The result of this thesis is a functional applicatioa named "OADS" (Operational Activity Database System) that
will fulfill users' requirements, keeps track of the operational activities of the Hellenic Navy units, and help in performing the
desired tasks.

14. SUBJECT TERMS DESIGN IMPLEMENTATION DATABASE MANAGEMENT
SYSTEM SUPPORT OPERATIONAL ACTIVITY SCHEDULE

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

NSN 7540-01-280-5500
2-89)

18. SECURITY 19. SECURITY
CLASSIFICATION CLASSIFICATION
OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

15. NUMBEROFPAGES

148
16. PRICE CODE

20. LIMITATION OF ABSTRACT
UL

Standard Form 298 (Rev.

Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited.

DESIGN AND IMPLEMENTATION OF A PROTOTYPE DATABASE SYSTEM
FOR THE OPERATIONAL ACTIVITY SCHEDULE OF THE HELLENIC NAVY

Evangelos Pavlos Marinos
Lieutenant, Hellenic Navy

B.S., Hellenic Naval Academy, 1986

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
March 1996

Author·._-------

Approved by.·_-----,

g - I -..

Reuben T. Harris, Chairman
Department of Systems Management

111

or

IV

ABSTRACT

The Hellenic Navy General Staff has a difficult mission which encompasses

several tactical, operational, and administrative tasks. The most important operational

task for the General Staff is to prepare the Operational Activity Schedule for every ship,

subcommand, and command in the Hellenic Navy. In order to more effectively prepare

this schedule, an automated database system is required. This system would contain all

operational activity records for the Hellenic Navy units and other pertinent information.

Furthermore, the system would produce ad hoc reports, as well as a variety of other

reports designed by the user to support ship maintenance schedule.

This thesis designs and implements an automated database system that can be

used from the Hellenic Navy General Staff. The methodology followed is the standard

systems' development life cycle (SDLC). The requirements for the system are obtained,

and the database and application are designed and implemented. Paradox 5.0 for

Windows is used for the database management system software. Special issues like

training, security, conversion, and maintenance are taken into consideration.

The result of this thesis is a functional application named "OADS" (Operational

Activity Database System) that will fulfill users' requirements, keeps track of the

operational activities of the Hellenic Navy units, and help in performing the desired tasks

accurately.

v

Vl

TABLE OF CONTENTS

I. INTRODUCTION .. !

A. OBJECTIVE ... l

B. BACKGROUND ... I

C. METHODOLOGY .. 3

D. CHAPTER OUTLINE .. 4

II. DATABASE DEVELOPMENT PROCESS ... ?

A. DATABASE DEFINITIONS ... ?

B. DATABASE DEVELOPMENT METHODOLOGY. I 0

C. REQUIREMENTS ANALYSIS I SPECIFICATIONS II

1. Data Requirements ... 11

2. Entity-Relationship Model.. ... l2

3. Data Dictionary .. 14

4. Process Requirements .. IS

D. DATABASE DESIGN .. l8

1. Logical Database Design ... 18

2. Application Design20

E. DATABASE IMPLEMENTATION ... 21

Vll

III. REQUIREMENTS ANALYSIS FOR OADS ... 23

A. DATAREQUIREMENTS .. 23

1. Entities ... 23

2. Relationships .. 25

B. DATA DICTIONARY .. 26

C. PROCESS REQUIREMENTS .. 27

1. Update Subsystem .. 27

2. Retrieval Subsystem ... 29

D. HARDWARE REQUIREMENTS .. 30

IV. LOGICAL DATABASE AND APPLICATION DESIGN FOR OADS 31

A. LOGICAL DATABASE DESIGN ... 31

B. APPLICATION DESIGN ... 35

V. IMPLEMENTATION FOR OADS .. 37

A. DATA IMPLEMENTATION ... 38

B. APPLICATION IMPLEMENTATION39

VI. OTHER ISSUES .. 41

A. SECURITY ... 41

B. TRAINING .. 42

vm

C. CONVERSION ... 43

D. MAINTENANCE ... 44

E. FUTURE ENHANCEMENTS44

VII. CONCLUSIONS AND LESSONS LEARNED45

APPENDIX A: DATA DICTIONARY.47

APPENDIX B: DATA FLOW DIAGRAMS .. 51

APPENDIX C: RELATIONS AND RELATIONAL MODEL. .. 67

APPENDIX D: BUSINESS RULES ... 69

APPENDIX E: PROCEDURES FOR INSTALLING AND OPERATING OADS 77

APPENDIX F: APPLICATION CODE .. 79

APPENDIX G: APPLICATION MENUS ... l27

LIST OF REFERENCES ... l33

lX

BIBLIOGRAPHY .. l35

INITIAL DISTRIBUTION LIST ... l37

X

I. INTRODUCTION

A. OBJECTIVE

This thesis designs and implements a database system for the General Staff of the

Hellenic Navy. The purpose of the system is to keep track of all the operational activities

of the commands, subcommands, and ships in the Hellenic Navy during a specific period

of time. The implementation of the database system would greatly reduce the work hours

spent on the preparation of operational programs that are instrumental in accomplishing

the principal tasks of commands, subcommands, and ships in the Hellenic Navy. The

database design takes into consideration the Hellenic Navy General Staffs functional

requirements. The primary function of the database system is to maintain the records of

operational activities by command/subcommand/ship and other relevant information.

From this database, standard reports are generated and ad hoc queries and reports are

created.

B. BACKGROUND

Each year the General Staff of the Hellenic Navy prepares the Operational

Activity Schedule for every ship, subcommand, and command in the Hellenic Navy,

without taking into consideration the operational activities of these elements in the

previous year. Nowadays, the Operational Activity Schedule is being prepared manually

1

by an office in the General Staff of the Navy. This office keeps data about the

operational activities of the ships, subcommands, and commands. Although the system

works, it has a number of deficiencies:

· A constant stream of paperwork (in the form of memos, reports, and so on) and

telephone calls is required to update the data in the files.

The system cannot easily provide answers to complex operational questions.

For example, answering the question, "Which ship(s) have used over three

torpedoes in the drill no. 26?" would probably require some research.

· Senior officers in the General Staff of the Hellenic Navy cannot easily obtain

summary information required for decision making.

All the above entail some problems in preparing the Operational Activity

Schedule. Many ships, subcommands, and commands that had many activities in the

previous year are scheduled to continue having many activities in the following year,

leaving other ships, subcommands, and commands relatively idle for two consecutive

years. This situation makes the personnel of the busy commands feel that they are

unfairly treated by the General Staff of the Navy.

The Operational Activity Database System (OADS) tries to remedy this situation

by capturing the operational activities of all the ships, subcommands, and commands,

during a one-year period. Reports are generated at the end of the year that include the

total hours for each individual ship, subcommand, and command spent in exercises and

2

individual drills, as well as the hours that a specific ship was at a port. Reports also

include information about whether a ship has performed maintenance activities in a port,

or if a ship has used any missiles or torpedoes during a drill time.

The General Staff of the Navy will first analyze the OADS's reports and then will

prepare the Operational Activity Schedule for the activities of the next year.

C. METHODOLOGY

There are different methodologies for developing application systems. The

process that will be followed in this thesis captures the essence of most development

methodologies, as they are described in the text of Kroenke [Ref. 1]. The fundamental

phases are:

· Definition phase. During the definition phase, the tasks are to form the

working team, define the problem, establish the scope, and access feasibility

issues.

• Requirements phase. During the requirements phase, the tasks are to create the

user's data model; determine the update, display, and control mechanisms; and

determine the functional components of the application. This is accomplished

by interviewing the users and by using prototypes to help determine user

requirements.

3

• Evaluation phase. During the evaluation phase, the tasks are to select the

system's architecture, and reassess feasibility issues.

· Design phase. During the design phase, the tasks are to develop the database

design and the application design. The database design consists of structuring

the relations and establishing the relationships among them. The application

design deals with the design of the menus, reports, and forms, as well as to

specifying update, display, and control mechanisms.

· Implementation phase. During the implementation phase, the tasks are to

construct the database, build the application, and install it.

This System's Development Life Cycle was utilized in the development of the

Operational Activity Database System (OADS) of this thesis. The organization of this

thesis is identical to the organization that was used in the development of a Database

System for the Hellenic Navy by Tsongas [Ref. 2], due to the similarity of the scope of

the two applications and the common limitations of the infrastructure in the Hellenic

Navy units.

D. CHAPTER OUTLINE

In this thesis, Chapters II - VI have the same organization and emphasize the same

issues as the thesis ofTsongas [Ref. 2]. Specifically, this thesis is organized as follows:

4

Chapter II is a general description of the database development process, as it is

described in Kroenke [Ref. 1]. It reviews database concepts and describes the database

development phases. These phases are detailed in the following chapters as they apply to

the OADS application.

Chapter III discusses the requirements analysis for the application system. The

operating environment is studied by means of the user's descriptive list of requirements

for the system's functionality, data manipulation, and production of specific information.

The requirements and accompanying entity-relationship data flow diagrams are provided.

The chapter concludes with a description of the requirements specifications as they

pertain to data, hardware, and software issues.

Chapter IV describes the design process followed in developing the Operational

Activity Database System (OADS). The data and process models developed in the

previous chapters are transformed into a relational and application design, respectively.

The last section provides commentary about the data dictionary and its benefits to the

database system design.

Chapter V is a discussion of the final phases involved in developing the database

system. These phases are the implementation portion of the data and process design, and

include programming and planning for the system's implementation.

Chapter VI deals with other important issues in developing the system, such as

database security, personnel training, system conversion, maintenance, and future

upgrades.

5

Chapter VII is the concluding chapter. It provides a short summary of the thesis

and addresses future enhancements to the system developed. Also included are lessons

learned in developing the system.

Appendices A through G supplement the previously described text. The

appendices are: Data Dictionary, Data Flow Diagrams, Relations and Relational Schema,

Business Rules, Application Code, Application Menus, and Procedures for installing and

operating OADS.

6

II. DATABASE DEVELOPMENT PROCESS

Basic database definitions as well as the database development methodology are

presented in this chapter. Each step of the system's development methodology is

described in some detail. The discussion of this chapter is largely based on the texts of

Kroenke [Ref. 1] and Whitten [Ref. 3], and follows the same organization ofthe thesis of

Tsongas [Ref. 2].

A. DATABASE DEFINITIONS

Database is a set of related records. The term database has been used to refer to

everything from a collection of index cards to the volumes of data that a government

collects about its citizens. In the following, we shall use this term with a specific

meaning, as it is indicated in Kroenke [Ref. 1]: A database is a self-describing collection

of integrated records.

1. A Database Is Self-Describing

As Kroenke points out in [Ref. 1], a database contains a description of its own

structure, in addition to the user's source data This description is called the data

dictionary (or data directory, or metadata), and makes program/data independence

possible. By examining the database itself, it is easy to determine its structure and its

components; no external documentation of file and record formats is needed. In addition

to that, if we change the structure of the data in the database (such as jnserting new data

7

items to an existing record), we enter only that change in the data dictionary. Few, if any,

programs will need to be changed. In most cases, only those programs that process the

altered data items must be changed.

2. A Database Is a Collection of Integrated Records

The standard hierarchy of data is as follows: Bits are aggregated into bytes or

characters; characters are aggregated into fields; fields are aggregated into records; and

records are aggregated into files. Following the pattern of that statement, files are

aggregated into databases. [Ref. 1: p.14]

A database includes files of user and other data. As mentioned earlier, a database

contains a description of itself in the form of metadata. In addition, a database can

include indexes that are used to represent relationships among the data and also to

improve the performance of database applications. Finally, the database often contains

data about the applications that use the database. The structure of a data entry form, or a

report, is sometimes part of the database. This last category of data is called application

metadata. Thus a database contains the four types of data: files of user data, metadata,

indexes, and application metadata (data about the applications that use the database).

8

_ _r~ LFom~f-L;::..
Indexes
+
Application
~

Figure 1: Hierarchy of data elements in database processing

3. Components of a Database Processing System

Figure 2 shows the main components of a database system. The database is

processed by the DBMS, which is used by both developers and users. They can use the

DBMS either directly or indirectly via application programs.

DBMS

Figure 2: Components of a database system

9

B. DATABASE DEVELOPMENT METHODOLOGY

The database development methodology described here consists of four phases:

definition, requirements, evaluation, and design. Each phase includes a number of tasks,

as they are presented in Whitten [Ref. 3].

During the definition phase the tasks are to form the working team, define the

problem, establish the scope, and assess feasibility issues.

During the requirements phase, the tasks are to create the user's data model, as

well as the functional components of the application. This is accomplished by

interviewing the users and by using prototypes to help determine user requirements.

During the evaluation phase, the tasks are to select the system's architecture and

reassess feasibility issues.

During the design phase, the tasks are to develop the database design and the

application design. The database design consists of structuring the relations and

establishing relationships among them. The application design deals with the design of

the menus, reports, and forms.

During the implementation phase, the tasks are to construct the database, build the

application, and install it.

The requirements, design, and implementation phases are detailed in the

following sections.

10

C. REQillREMENTS ANALYSIS I SPECIFICATIONS

The first step in application dedvelopment is to accurately obtain the system's

information requirements from the potential users. No system can be designed without

first understanding the current processes intended for improvement. After the system's

definition and primary analysis phase, where the general goals of the system are

determined, the requirements phase follows. The purpose of this phase is to determine, as

specifically as possible, what the system must do. Many times, this is difficult to be

accomplished because the users do not know what they really want. There are two tasks

in this phase. The first task is to develop a user's data model and the second task is to

determine the functional components of each application that will use the database.

1. Data Requirements

During the data requirements phase, the major goals are to build a data model that

documents the "things" that are going to be represented in the database, determine the

characteristics of those "things" that need to be stored, and determine the relationships

among them. The user's data model describes the objects that must be stored in the

database, along with their structure and the relationships that they have with one another.

The output of the data requirements phase is a statement of requirements. This statement

can take a variety of forms: a verbal description, an entity-relationship or objects

diagrams, one or more prototypes, or any combination of the above. [Ref 1]

11

The "things" that are represented in the database are referred to as either entities or

semantic objects (in some cases just objects) depending on the modeling technique that

the designer follows. In this thesis the entity-relationship model will be followed.

2. Entity - Relationship Model

An entity is something that can be identified in the user's work environment;

something important to the users of the system that is to be built [Ref. 1]. Entities are

grouped into entity classes, or collections of entities of the same !Jpe. An entity class is

the general form or description of a thing, such as PRODUCT, whereas an instance of an

entity class is the representation of a particular entity, such as PRODUCT B1234. The

terms entity and entity class are often used interchangeably. There are usually many

instances of an entity in an entity class. For example, within the class PRODUCT, there

are many instances - one for each product represented in the database.

Entities have attributes or properties which describe the entity's characteristics.

The E-R model assumes that all instances of a given entity class have the same attributes.

Entity instances have names that identify them. The identifier of an entity instance is one

or more of its attributes.

Entities can be associated with one another by using relationships. The E-R

model contains both relationship classes and relationship instances. Relationship classes

are associations among entity classes, and relationship instances are associations among

entity instances. Relationships can have attributes. A relationship can include many

entities; the number of entities in a relationship is the degree of the relationship.

12

In entity-relationship diagrams, the entities are shown in rectangles, and the

relationships are shown by the lines that connect the entities. The maximwn and

minimwn nwnber of entities that can participate in a relationship is also shown on the

diagram. The maximwn nwnber of entities that can participate in a relationship, or

maximum cardinality, is usually shown by using a crow foot (if it is many) or by a hash

mark (if it is one). The minimum cardinality, minimwn nwnber of entities that can occur

on one side of the relationship, is usually indicated by a hash mark (if it is one) or an oval

(if it is zero).

In Figure 3 we can see an example of an E-R diagram. In this example, ENTITY

No 1 can relate to ENTITY No 2 with a minimwn of one instance and a maximwn of

many instances. ENTITY No 2 can relate to ENTITY No 1 with a minimum of zero

instances and a maximum of many instances.

I

I ENTITY I

Min: I
Max: many

Min:O I

Max: many

l No!
Kelates to

ENTITY
No2

!Vim: 1

Max: I

Min: I
Max: man~

~elates to

I

ENTITY
No3

I

Min: I
Max: I

Relates to

Figure 3: Example of an E-R diagram

13

Min: I
Max:!

6Min:O .J Max: many

Relates t4

l Min:O

¥Max: I

ENTITY
No4

After the data model has been developed, the designer should consider business

rules that may restrict processing against entities. Business rules may or may not be

enforced by the DBMS or by the application program. As Kroenke points out in [Ref. 1:

p. 65], some business rules are written in manual procedures that the users of the database

application are to follow. At this point, the way in which the rules are to be enforced is

not important. What is important is to document these rules so that they become part of

the system's requirements.

Databases do not model the real world, although it is a common misconception

that they do. Rather, databases are models of the users' model of their business world.

The appropriate criterion for judging a data model is whether the model fits the users'

mental conception of their world.

3. Data Dictionary

A data dictionary (or project dictionary, as it is sometimes called) is a catalog of

requirements and specifications for a new information system. [Ref. 3: p. 331] It

provides definitions of all the data items in the database. During the definition phase, the

analysts try to capture and store data about the system, and specify the inputs and outputs

that the system will generate. These are represented with pictorial models such as data

flow diagrams, entities, data stores, etc. The data dictionary expands this pictorial model

and captures the detailed requirements for every input, output, and data store. The

suggested approach for building the data dictionary should be in terms of "what" data are

captured and not in terms of "how" data are formatted or presented.

14

4. Process Requirements

All application systems process data to produce information and maintain stored

data. These requirements should be logically modeled. In order to implement processes

as programs, a process model is needed. A process model is a picture of the flow of data

through the system and the processing that must be performed on the data. These

processes interact or interface with one another. These interactions take the form of data

flows between processes, which is the reason that they are sometimes called data flow

models. One of the most popular system modeling tools for capturing process

requirements is the data flow diagrams (DFDs).

Data flow diagrams are very different from flow charts, in the following ways:

· Processes on a DFD can operate in parallel; several processes may be working

simultaneously. This is a key advantage over flowcharts, which tend to show

only sequences of processes.

• DFDs show the flow of data through a system unlike flowcharts that show

steps in an algorithm.

• DFDs can show processes that have dramatically different timing while

flowcharts cannot.

The following describes the basic components of a data flow diagram as they

appear in Whitten [Ref. 3]. A sample DFD model is shown in Figure 4.

15

a. Internal or External Entity

Every system has a boundary. This boundary is defined by the internal or

external entities that provide the net input to the system and receive the net output from

the system. The entities sometimes are called sources or destinations, depending on

whether they are inputs or outputs, respectively. Names and titles can be used to describe

the label of the entities. Entities never interact directly with data stores, and relationships

between entities are not modeled.

b. Process

The emphasis on any DFD is given to the processes, sometimes called

activities. Processes transform inputs into outputs and transform the structure of data into

information contained in the data. The logic or the procedure that a process uses to

complete its task is not shown. Processes are titled by using verb-clause form.

c. Data Store

A data store, as the name implies, shows the logical storage of the

information. Data flow from a data store represents the "usage" of data. This is the place

where the data are stored after a process, or from where they are retrieved to be

processed.

d. DataFlow

Data flows represent inputs or outputs that move from or to processes and

from or to data stores. They are titled by a noun-clause form. Data transferred together

16

must be shown as a single data flow no matter how many documents are physically

involved.

e. Leveling of Data Flow Diagrams

When studying, analyzing, and designing a system, it is good to have a

generic pictorial outline of what the system does or will do when it is implemented. This

pictorial outline, which is called "Decomposition Diagram", or "hierarchy chart", shows

the top-down functional decomposition or structure of a s~stem. Decomposition

diagrams also provide an outline for drawing the DFDs. Only the processes are presented

on decomposition diagrams, and they are connected to form a treelike structure. Process

names conform with the ones that are referred to in the DFDs. The top process is called

the root; it is exploded or factored out to subsystems, functions, or tasks. It defines the

scope and boundary of the system to be developed.

17

Figure 4: Sample DFD Model

D. DATABASE DESIGN

I. !.II

Sample Data
Flow

Sample
Process

i
i Sample Data

i FJow

!

Sample
Data
Store

This part addresses the logical database design and the application design. [Ref. 2]

1. Logical Database Design

After the E-R model is developed, the next step is to transform the entities into a

relational design. The relational model is important for two reasons. First, since the

constructs of the relational model are general, it can be used to express

DBMS-indipendent designs. Second, the relational model is the basis for an important

category of DBMS products. Being familiar with this model helps implement databases

using one of these products. [Ref. 1: p. 125]

18

a. Relational Model

A relation is a two-dimensional table. Each row, or tuple, in the table

holds data that pertains to something or a portion of something in the user's environment.

Each column, or attribute, of the table contains data regarding an attribute. For a table to

be a relation, it must meet certain restrictions:

• The cells of the table must be single valued; neither repeating groups nor arrays

are allowed as values.

· All of the entries in any column must be of the same kind.

· Each column has a unique name, and the order of the columns in the table is

insignificant.

• No two tuples in a table may be identical, and the order of the tuples is

insignificant.

Not all relations are equal. Some are better than others. Normalization is a

process for converting a relation that has certain update problems to two or more relations

that do not have these problems. Even more important, as Kroenke indicates [Ref. 1: p.

125], normalization can be used as a guideline for checking the desirability and

correctness of relations.

b. Classes of Relations

Relations can be classified by the types of modification anomalies

(deletion anomaly, insertion anomaly, and referential integrity constraint) to which they

19

are vulnerable. These classes of relations and the techniques for preventing anomalies are

called norma/forms. The normal forms are:

· First Normal Form (INF)

· Second Normal Form (2NF)

· Third Normal Form (3NF)

• Boyce-Codd Normal Form (BCNF)

• Fourth Normal Form (4NF)

· Fifth Normal Form (5NF)

· Domain I Key Normal Form (DK/NF)

Each of the higher normal forms contains the lower ones. This means, for

example, that a relation that is in the third normal form is also in both first and second

normal forms. Therefore the steps in the normalization process are progressive, and one

normal form follows another. In each step only certain anomalies are eliminated. It is

mandatory for relational database designers to satisfy the requirements of all the normal

forms to ensure that all anomalies have been eliminated, although in practice relations are

usually normalized to the Third Normal Form.

2. Application Design

The design phase includes the design of both the database and the application. An

application is the collection of menus, forms, reports, and programs that provide a means

20

to update, display, and control the objects of the data model. During the application

design, the specific structure of forms, reports, menus, and query facilities are defined.

Also, the logic of transaction programs is developed. The application design will be

discussed further in Chapter IV.

E. DATABASE IMPLEMENTATION

The system's implementation is the set of activities following the logical design,

and consists of the production of a working system that accepts inputs from the user,

processes data, and produces the desired outputs. One very important task during the

development of a software application is the development of the user's manual and the

documentation of the development process.

21

22

III. REQUIREMENTS ANALYSIS FOR OADS

In this chapter we present both the data and the process requirements for the

OADS application. We describe the data model and the corresponding data flow

diagrams that represent the data flow that create, update, and display the entities of the

data model.

A. DATA REQUIREMENTS

Data requirements are captured m the form of entities, attributes, and

relationships, and the associated data dictionary. This application consists often entities.

They are shown in the E-R diagram of Figure 5.

1. Entities

a. Command Entity

A command has a Command Name, which uniquely identifies it, is

commanded by a Commander Name, who has a Commander Rank, and the base of the

command is located in a Base Location. The command is organized into subcommands.

b. Subcommand Entity

A subcommand has a Subcommand Name, which uniquely identifies it, is

commanded by a Subcommander Name, who has a Subcommander Rank, and the base of

the subcommand is located in a Base Location. The subcommand controls a set of ships.

23

c. Ship Entity

A ship has a Hull Number, which uniquely identifies it, and a Name,

belongs to a specific Type of ships, and has a Number of personnel in it. The ship is

commanded by a CO_ Name, who has a CO Rank. Every ship belongs to a specific

subcommand.

d. Port Entity

Each port has a Port Number, which uniquely identifies it, and a Port

Name, and it is located in a general geographical Location. Each port may has Watering,

Fueling, and Maintenance Capabilities.

e. Exercise Entity

An exercise has an Exercise Number, which uniquely identifies it , and an

Exercise Name. The date that the exercise begins is the Date begins and the date that the

exercise finishes is the Date ends. Each exercise has a Geographical Location where the

exercise took place. The exercise consists of a number of drills.

f. Drill Entity

A drill has a Drill Number, which uniquely identifies it, and it belongs to

a specific Drill Type. It is performed in a Drill Date at a specific Time begins, and it

finishes at a specific Time ends. Also, each drill describes a specific Objective.

24

g. Ship-Port Entity

Each ship that has visited a port has gone to that port at a Date begins, and

has remained there for a number of Hours. The ship, while in port, was in a specific

Ship's state (maintenance or readiness) and may have taken an Amount of Fuel in lt.

h. Command-Exercise Entity

Each exercise was performed by a command for some Hours.

i. Subcommand-Drill Entity

A subcommand may performed a drill for some Hours.

j. Ship-Drill Entity

A ship may participated to a drill for some Hours. During that drill, the

ship may have some Torpedoes used, AlA Missiles used or AIS Missiles used. Also, the

ship may detected a number of Submarines detected.

2. Relationships

The E-R diagram contains contains eleven one to many relationships. These

relationships and their cardinalities are shown in Figure 5.

25

Is controlled Is commanded

}--b-y----+HI SUBCOMMAND~ by II i COMMAND

=j= I

. Participates T
Participates I

I

SHIP

I Prunoip.re.

' j ~oob 6
~~

I I SHIP-DRILL I

\V

COMMAND-EXERCISE

Has

I SmP;ORT I
Has

? 1 Includes l
I

PORT DRU ~ Boloog.to II I EXERCISE I

Figure 5: Application's E-R Diagram

B. DATA DICTIONARY

The OADS application data dictionary is shown in Appendix A. It describes each

entity, each attribute in the entities, the data type, and definition of eacn attribute.

26

C. PROCESS REQUIREMENTS

In this application, the decomposition diagram and the data flow diagrams that

describe the system's functionality are shown in Appendix B. The system has four levels.

The zero level is the overall system picture named Operational Activity System. It is

factored out into two different subsystems, Update Subsystem and Retrieval Subsystem.

The system's hierarchical outline form is shown in Figure 6.

Figure 6: Application's Process Outline

1. Update Subsystem

This subsystem has ten processes: Update Command Process, Update

Subcommand Process, Update Ship Process, Update Exercise Process, Update Drill

Process, Update Port Process, Update Exercise Per Command Process, Update Drill Per

27

Subcommand Process, Update Drill Per Ship Process, and Update Port Per Ship

Process. Each of these processes consists of three subprocesses: Addition Process,

Deletion Process, and Modification Process. Update Subsystem's process hierarchy is

shown in Figure 7.

• Update Subsystem
- Update Command Process

• Command Addition Process
• Command Deletion Process
• Command Mcxlification Process

- Update Subcommand Process
• Subcommand Addition Process
• Subcommand Deletion Process
• Subcommand Mcxlification Process

- Update Ship Process
• Ship Addition Process
• Ship Deletion Process
• Ship Mcxlification Process

_ Update Exercise Process
• Exercise Addition Process
• Exercise Deletion Process
• Exercise Mcxlification Process

_ Update Drill Process
• Drill Addition Process
• Drill Deletion Process
• Drill Mcxlification Process

- Update Port Process
• Port Addition Process
• Port Deletion Process
• Port Mcxlification Process

- Update Exercise Per Command Process
• Exercise/Command Addition Process
• Exercise/Command Deletion Process
• Exercise/Command Mcxlification Process

- Update Drill Per Subcommand Process
• DriiVSubcommand Addition Process
• DriiVSubcommand Deletion Process
• DriiVSubcommand Mcxlification Process

- Update Drill Per Ship Process
• DriiVShip Addition Process
• DriiVShip Deletion Process
• DriiVShip Mcxlification Process

_ Update Port Per Ship Process
• Port/Ship Addition Process
• Port/Ship Deletion Process
• Port/Ship Mcxlification Process

Figure 7: Update Subsystem

28

2. Retrieval Subsystem

The retrieval subsystem has three processes: Report Retrieval Process, Record

Retrieval Process, and Query Retrieval Process. The Report Retrieval Process consists

of five subprocesses: Process Exercises Per Command, Process Drills Per Exercise,

Process Ships Per Subcommand, Process Drills Per Ship, and Process Ships Per Port.

The Record Retrieval Process consists of five subprocesses: Process Drills Per Exercise,

Process Subcommands Per Command, Process Drills Per Ship, Process Activity Hours,

and Process Ships Per Port. The Query Retrieval Process consists of four subprocesses:

Process Activity Hours Queries, Process Drill Queries, Process Organization Queries,

and Process Ship Activity Queries. The user in the General Staff of the Hellenic Navy

will be able to produce any report that will help the General Staff in preparing the

operational activity schedule for commands, subcommands, and ships. Any query can be

performed to the existing data and the query results can be displayed in the user's desired

format. Retrieval Subsystem's process hierarchy is shown in Figure 8.

29

• Retrieval Subsystem
- Report Retrieval Process

• Process Exercises Per Command
• Process Drills Per Exercise
• Process Ships Per Subcommand
• Process Drills Per Ship
• Process Ships Per Port

_ Record Retrieval Process
• Process Drills Per Exercise
• Process Subcommands Per Command
• Process Drills Per Ship
• Process Activity Hours
• Process Ships Per Port

-Query Retrieval Process
• Process Activity Hours Queries
• Process Drill Queries
• Process Organization Queries
• Process Ship Activity Queries

Figure 8: Retrieval Subsystem

D. HARDWARE REQUIREMENTS

The system being developed will be implemented on an IBM compatible PC

platform found on many sites in the General Staff of the Hellenic Navy. The minimum

hardware configuration is a 386 SX (16 bit architecture) processor running Windows 3.1

at 50 MHz, with 16 Mb of RAM (32 Mb recommended) and 540 Mb of hard drive. Also,

a mouse or other Windows pointing device is required, in order to effectivelly utilize the

capabilities of the system.

30

IV. LOGICAL DATABASE AND APPLICATION DESIGN FOR

OADS

In this chapter we discuss the logical database and application design for OADS.

In logical database design, the E-R model developed in the previous chapter is

transformed into a relational schema in preparation for implementation using a specific

DBMS. In application design, the data flow diagrams are used as a basis for developing

the menus, forms, and reports for OADS. [Ref. 2]

A. LOGICAL DATABASE DESIGN

The ten entities, describing the user's environment, are transformed into ten

relations. Relationships are presented using foreign keys; the primary keys are

underlined and the foreign keys are indicated in italics. The complete relational diagram

is shown in Appendix C.

1. Command Relation

This relation contains information about a command. It is derived from the

COMMAND entity. Its primary key is Command Name. Other attributes are Base

Location, Commander Name, and Commander Rank. It has a 1:M mandatory

relationship to Subcommand relation, and a 1 :M relationship to the Command-Exercise

relation.

31

2. Subcommand Relation

This relation contains information about a subcommand. It is derived from the

SUBCOMMAND entity. Its primary key is Subcommand Name. Other attributes are

Command Name (foreign key), Subcommander Name, Subcommander Rank and Base

Location. The Subcommand relation has a M: 1 relationship with the Command relation,

a 1 :M relationship with the Ship relation, and a 1 :M relationship with the

Subcommand-Drill relation.

3. Ship Relation

This relation contains information about a ship. It is derived from the SHIP entity

and its primary key is Hull Number. Other attributes are Name, Subcommand Name

(foreign key), Type, CO_Name, CO_Rank and Number of personnel. It has a M:1

relationship to Subcommand relation, a 1 :M relationship to Ship-Port relation, and a 1 :M

relationship to Ship-Drill relation.

4. Exercise Relation

This relation contains information about an exercise. It is derived from the

EXERCISE entity. Its primary key is Exercise Number. Other attributes are Exercise

Name, Date begins, Date ends and Geogr. Location. It has a 1 :M mandatory relationship

to Drill relation and a 1 :M relationship to Command-Exercise relation.

32

5. Drill Relation

This relation contains information about a drill. It is derived from the DRILL

entity. Its primary key is Drill Number. Other attributes are Exercise Number (foreign

key), Drill Date, Time begins, Time ends, Drill Type and Objective. It has a 1 :M

relationship to Ship-Drill relation, a M: 1 relationship to Exercise relation, and a 1 :M

relationship to Subcommand-Drill relation.

6. Port Relation

This relation contains information about a port. It is derived from the PORT

entity. Its primary key is Port Number. Other attributes are Port Name, Location,

Watering Capability, Fueling Capability and Maintenance Capability. It has a 1 :M

relationship to Ship-Port relation.

7. Ship-Port Relation

This relation contains information about a ship and its visit to a port. It is an

intersection relation that represents the many to many relationship between the SHIP and

PORT entities. Its primary key is a composite one and it consists of the attributes: Hull

Number, Port Number and Date begins. Other attributes in this relation are Amount of

Fuel in lt., Hours, and Ship's state. It has a M: 1 relationship to Port relation and a M: 1

relationship to Ship relation.

33

8. Subcommand-Drill Relation

This relation contains information about a subcommand and the drills that the

subcommand has performed. Alternatively one can say that this relation contains

information about a drill and the subcommands that participated in it. The primary key of

this relation is a composite one and it consists of the attributes Drill Number and

Subcommand Name. Other attribute of this relation is Hours. It has a M:1 relationship to

Drill relation and a M: 1 relationship to Subcommand relation.

9. Command-Exercise Relation

This relation contains information about a command and the exercises that the

command has performed. Alternatively one can say that this relation contains

information about an exercise and the commands that participated to it. The primary key

of this relation is a composite one and it consists of the attributes Exercise Number and

Command Name. Other attribute of this relation is Hours. It has a M: 1 relationship to

Exercise relation and a M: 1 relationship to Command relation.

10. Ship-Drill Relation

This relation contains information about a ship and the drills that the ship has

performed. Alternatively one can say that this relation contains information about a drill

and the ships that participated to it. The primary key of this relation is a composite one

consisting of the attributes Drill Number and Hull Number. Other attributes of this

relation are Hours, Torpedoes used, AlA Missiles used, A/S Missiles used, and

34

Submarines detected. It has a M: 1 relationship to Drill relation and aM: 1 relationship to

Ship relation.

B. APPLICATION DESIGN

In application design, the data flow diagrams developed in the requirements phase

are used as the basis for designing the system's menus, forms, queries, and reports. The

following section provides a brief explanation of each.

1. Menus

OADS is a menu-driven application. The reason for using menus is because they

are self explanatory and are therefore easy to use by the Hellenic Navy General Staff

users. The menu structure of OADS follows closely the decomposition diagram

developed during process requirements.

2. Forms

Forms are the user's primary interface with the database. They are used for

entering, modifying, and displaying data retrieved from the database. Special care was

paid in designing the forms for OADS. Every effort was made in designing them to be

easy to use and less prone to errors.

3. Queries

Queries results are an output of the system. The user can choose from a

predetermined set of queries and the results can be sent to the screen, or to the printer. In

35

designing of the set of queries, every effort was made to be close to the queries that are

currently asked.

4. Reports

Reports are the main output that the system generates for distribution to a variety

of users. Reports can be sent to the screen, to a file, or to the printer. Similar to

designing forms, special care was paid in designing the reports for OADS. Every effort

was made in designing them to be natural, logical, close to the format that is currently in

use and less prone to misinterpretation.

36

V. IMPLEMENTATION FOR OADS

In this chapter we will discuss the implementation of the OADS application and

the construction of the database, as well as the installation of both the database and the

OADS application. The Paradox 5.0 database management system for windows 1s

introduced and used as the DBMS of choice for OADS implementation.

As it is indicated to Paradox User's Guide [Ref. 4], Paradox is a fast, full-featured,

and easy to use relational database program designed to meet data management needs.

Paradox can be used by computer users with all levels of experience from beginning

database users to advanced developers. Paradox can be used either on a single computer

(standalone) in the Hellenic Navy General Staff or on a Local Area Network (LAN). To

use Paradox 5.0 on a stand-alone computer, you will need at a minimum:

A 100% IBM compatible, protected mode capable 80386 or higher personal

computer with a hard disk and a floppy drive.

· 6MB RAM (8MB is recommended.) Performance will increase with more

memory.

· At least 20 MB of free hard disk space.

· EGA or higher video monitor.

· Microsoft Windows version 3.1 or later.

· Although not required, a mouse is strongly recommended.

37

The user interface for Paradox supports multiple windows, pull-down menus,

speed bars, dialog boxes, and other graphical user interface components. Also, Paradox

provides mouse support. For instance, you can change directories when loading tables by

pointing and clicking at a directory tree with the mouse. Paradox's Query By Example

(QBE) capability is one of the product's strong features. Complex queries can be run

against single or joined tables, and query images can be saved for later use. A variety of

exact and inexact queries can be performed, and there is support for wildcards, data

ranges, pattern searches, and logical conditions. Phonetic searches can be done with

Paradox's "Like" operator.

Paradox 5.0 has ObjectPAL, which is a high-level, event-driven, object-based,

visual programming language. You can use ObjectP AL to create a completely

customized application, one with entirely new buttons, menus, dialog boxes, prompts,

warnings, and help. ObjectPAL is the user's tool for creating the user interface for a

database application.

A. DATA IMPLEMENTATION

In data implementation, the relations and their attributes developed during logical

database design are transformed into tables and data fields, respectively. Table structures

are created in Paradox 5.0 by choosing File/New/Table, or right clicking the Open Table

Toolbar button and choosing New. The structure of the new empty table, which matches

the corresponding relation developed during the design phase, is then specified. For each

38

field of the table, its name, field type, and whether it is a key field are entered. The data

types supported by Paradox 5.0 and their abbreviations are:

· Alpha (A), for alphanumeric fields up to 255 characters in length.

· Number (N).

· Money ($), for currency amounts.

· Memo (M), for a memo up to 240 characters in table view.

· Date (D).

· Time (T).

· Timestamp (@), for both a date and time value.

· Graphic (G), for pictures in .BMP format.

· Logical (L), for values representing true or false.

Once the definition of a table is completed, a user can enter values in the table

directly or through a form.

B. APPLICATION IMPLEMENTATION

In general, Paradox 5.0 applications are built in the following stages:

· Get your data together. Build and populate tables.

39

. Create the forms. Although you can write scripts and store code in libraries,

the vast majority of ObjectP AL code is attached to objects in forms. The best

way to start is to create the forms, place the objects, and run the forms.

• Attach ObjectP AL code to the object's built-in methods. Modify an object's

behavior by attaching code to the appropriate built-in method. Built-in

methods execute in response to events, so to select the appropriate built-in

method, you should determine what the object should do and when it should do

it.

Test and refine the application. Paradox makes it easy to develop an

application one piece at a time. You do not have to code the entire application

before you can run a form and make sure things are happening as you expect.

The above procedure was followed in the implementation of the OADS

application. First, the tables were built and populated, the forms were created, system's

reports were produced, and specific queries were performed. Next, the menu hierarchy

was built, and ObjectP AL code was attached. The system was tested one form at a time,

and system's code was debugged. After implementation, the system was tested as a

whole.

The next chapter discusses other issues that need to be taken into consideration

before OADS can be fully operational.

40

VI. OTHER ISSUES

This chapter discusses important issues concerning the development of the

"OADS" application, such as security, training, conversion, maintenance, and future

upgrades. The issues that this chapter presents are the same issues that have been covered

in Tsongas' thesis [Ref. 2], but customized for the OADS application.

A. SECURITY

Paradox 5.0 offers a very flexible password scheme with table-by-table,

script-by-script, and option-by-option password protection. Access to a given table can

be limited on a field-by-field basis.

OADS users will have some access control authorities depending on their rank,

their name, and their duties in the General Staff. The database administrator of the

General Staff is responsible for assigning these duties and for determining each user's

access control.

OADS physical security falls under the Navy's policy and procedures that enforce

rules and activities for the General Staffs physical security. Moreover, the General Staff

has to take proper measures to protect the hardware resources as well as the software and

the applications.

41

B. TRAINING

One of the most important aspects of the implementation phase is the training

plan. The training plan is designed to ensure that every user of the system knows the

system's basic functions and how to perform them. The success of any information

system depends on the skills of the operators. In the OADS system, the operators are

officers, petty officers, and sailors who are familiar with the operational activities of

commands, subcommands, and ships, currently run the system manually; and who need

to be taught how the new system operates. The system itself is designed to be friendly

and easy to use, and does not require the operator to have any advanced interpersonal

skills. However, matching basic human characteristics and skills with a job's

requirements is essential, especially when an automated system is to replace a manual old

one.

The designer's proposal for the training is to start with the main users of the

system and train them in the system's environment as well as its functions and operations.

The main users of the system are defined as personnel working in the General Staff

Operational Activity Schedule office. They are led by a Captain whose team normally

consists of a Lieutenant Commander, two Lieutenants, three Petty Officers, and three

sailors. As soon as the trained core learn how to operate the system, training for the rest

of the personnel of the General Staff can be held.

42

C. CONVERSION

The future success of the new system depends on how well and quickly it is

accepted by the users. With OADS application, it is hoped that the system is rather small

and the users are already familiar with the environment; proper training will minimize

these problems. Another way to minimize implementation problems is to select the

correct conversion strategy.

1. Conversion Strategy

For the OADS application conversion strategy, the phased approach is proposed.

The new system is easy to be implemented as soon as the data for a specific period of

time have been collected. The transition from the old system to the new one is expected

to last two months at most. With the phased conversion approach, the Hellenic Navy will

have the following advantages:

· Elimination of risk involved with implementing the new system.

· Demands for extra manpower can be controlled.

Shift from the old system to the new one is quite smooth.

· User resistance is minimized.

The period of three months is a reasonable interval for checking all the system's

reports and making the users familiar with the OADS.

43

D. MAINTENANCE

Once the system passes the acceptance test, it is ready for delivery. Any

modifications or enhancements after delivery is called maintenance. Attention should be

paid to the fact that after a few years of operating the original system, maintenance

becomes extremely tedious, error-prone, and expensive. In this case, management should

recognize the problem and do a feasibility study on replacing the old system with a new

one.

E. FUTURE ENHANCEMENTS

The OADS system design offers a flexible way for future upgrades. Paradox

itself can be distributed on a network (LAN in the Hellenic Navy General Staff, or WAN

between the Hellenic Navy commands) and allow applications to be shared among

different users. The OADS system is able to produce all the designed reports in file

format. This facility allows General Staff to electronically transfer their reports as soon as

all the commands are connected to a common network.

44

VII. CONCLUSIONS AND LESSONS LEARNED

This thesis presented the design, development, and implementation of the

Operational Activity Database System (OADS) application on a standalone computer in

the Hellenic Navy General Staff. The OADS system will provide the General Staff with

an automated system to create its primary operational activity schedules. OADS supports

this mission by keeping track of all the operational activity records, maintaining them,

producing reports, and providing the General Staff with ad hoc information. [Ref. 2]

No automated system is currently in use in the Genaral Staff and all the

operational activity schedules are prepared by a manual filing system, which is slow,

inaccurate, and prone to errors. The main goal of developing the system is to increase

effectiveness, efficiency, and accuracy of operational activity management. After OADS

implementation, it is hoped that most of the current problems will be eliminated, and

future enhancements will result in even greater efficiency in preparing the operational

activity schedules.

System analysis and design tools and techniques were used to develop the system

by modeling the user data and process requirements. Paradox for windows 5.0 was used

as the database management system for the implementation because it is not only

powerful but also meets the system's developmental requirements. The menu-driven

environment is easy to use and quick to learn. The user friendly environment will

hopefully eliminate the cultural resistance of the user that will result from the requirement

to switch from the manual system to an automated one.

45

It is hoped that this thesis will be the motivation for other efforts to develop new

systems and expand or update existing ones, in the Hellenic Navy. [Ref. 2]

Author's expectation is that the Hellenic Navy General Staff will adopt the OADS

and utilize it in its maximum capabilities in order to effectively prepare the Operational

Activity Schedule of the Hellenic Navy units. First of all, senior Officers of the General

Staff must be convinced for the benefits of OADS and the easy of its use.

The main idea of this thesis and the thesis of Tsongas [Ref. 2] is to offer to the

Hellenic Navy a set of applications that will easy the administrative, operational, and

tactical functions. Hoping that the future Greek Officers, who are going to attend the

ITM Curriculum in NPGS, will adopt this idea, we can make our Navy a technologically

updated and "ready to go".

46

APPENDIX A: DATA DICTIONARY

ELEMENT

COMMAND

Command Name

Commander Name

Commander Rank

Base Location

SUBCOMMAND

Subcommand Name

Subcommander Name

Subcommander Rank

Base Location

EXERCISE

Exercise No

Exercise Name

Date begins

Data ends

Geogr. Location

DRILL

Drill No

Drill Type

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Number

Alpha

Date

Date

Alpha

Number

Alpha

WIDTH

20

30

20

30

10

30

20

20

20

40

10

47

DESCRIPTION

Command's name.

Commander's name.

Commander's rank.

Command's base location.

Subcommand's name.

Subcommander's name.

Subcommander's rank.

Subcommand's base location.

Exercise's #.

Exercise's name.

Date the exercise begins.

Date the exercise ends.

Exercise's location.

Drill's #.

Drill's type.

Drill Date

Time begins

Time ends

Objective

SHIP

Hull No

Name

Type

CO Name

CO Rank

Number of personnel

PORT

Port No

Port Name

Location

Watering Capab.

Fueling Capab.

Maintenance Capab.

SHIP-PORT

Hull No

Port No

Date begins

Date

Time

Time

Alpha

Alpha

Alpha

Alpha

Alpha

Alpha

Number

Number

Alpha

Alpha

Logical{Yes,No}

Logical {Y es,No}

Logical {Yes,No}

Alpha

Number

Date

48

60

5

20

20

30

20

30

30

5

Date drill begins.

Time drill begins.

Time drill ends.

Drill's objective.

Ship's Hull #.

Ship's name.

Ship's type.

CO's name.

CO's rank.

Number of ship's personnel.

Port's #.

Port's name.

Port's location.

If port has watering

capability.

If port has fueling capability.

If port has any maintenance

capability.

Ship's Hull #.

Port's #.

Date ship arrived to port.

Hours

Ship's State

Amount of Fuel in lt

ship

COMMAND-EXERCISE

Exercise No

Command Name

Hours

SUBCOMMAND-DRILL

Subcommand Name

Drill No

Hours

SHIP-DRILL

Drill No

Hull No

Hours

Torpedoes used

AI A Missiles used

Number

Alpha

Number

Number

Alpha

Number

Alpha

Number

Number

Number

Alpha

Number

Number

Number

49

20

20

10

5

Hours ship remained to port

in the same condition.

The condition of the ship.

The amount of fuel that a

received in a port.

Exercise's #.

Command's name.

Hours that the Command

participated in the Exercise.

Subcommand's name.

Drill's #.

Hours that the Subcommand

participated in the drill.

Drill's #.

Ship's Hull#.

Hours that the Ship

participated in the drill.

Number of torpedoes used by

the ship during the drill.

Number of AlA missiles used

by the ship during the drill.

A/S Missiles used Number

Submarines detected Number

50

Number of A/S missiles used

by the ship during the drill.

Number of submarines

detected by the ship during

the drill.

APPENDIX B: DATA FLOW DIAGRAMS

Request

Data to retrieve

USER

OPERATIONAL
ACTIVITY
SYSTEM

OPERATIONAL
'------[> ACTIVITY

DATABASE

51

Data return

x1stmg data

Update request

Data to update

USER

OPERATIONAL
ACTIVITY
DATABASE

52

Retrieval
request

RETRIEVAL
SUBSYSTEM

Data to retrieve

Request for
command

Request for
exercise

Request for
subcommand

UPDATE
SUBCO.MMAND u comman

USER
k~~~---::0:~\ Suboo::::drill

\~:~~ND Jp_®_te ~---j
OPERATIONAL
ACTIVITY
DATABASE

I
I

I

I

I Request for
i ship

l, .. ~''"'
I dl .

1

Fomman exercise

~~quest or
drill

OPERATIONAL
ACTIVITY

DATABASE Drill update
I

1.1.6~
UPDATE Port update

PORT

1.1.9

53

Ship/port
update

Ship update

I

hlpldrilll
update

USER

!Command to
1 add

I

I

l
~~
r COMMAND\
. ADDITION 1

1

~~E:;
I

i

i New command

USER

~-I
I Command to

delete

1.1.1.2

COMMAND 1

I
I DELETION I

~

Command to
delete data

'----------_JS> COMMAND

54

to

1.1.1.3

COMMAND

(
MODIFICATION

y
I

I

command data
Modified

I

I

Subcommand to
add

~
(SUBCOMMAND
I ADDITION

PROCESS

ew subcommand

USER

I L ____ _

Subcommand to

1.1.2.2

SUBCOMMAND\
DELETION I
PROCESS

'------------i> SUBCOMMAND

55

Subcommand to
modify

1.1.2.3

UBCOMMAND

(
MODIFICATION I

~

Modified
subcommand

I

56

EXERCISE

~ ~~g~~~~;) ;:::/
I

I

l

i

! New exercise
!

I

I

i
I
I

Exercise to
add

L ___ ______,

USER

I

I

bxercise to
~elete
,

1.1.4.2

EXERCISE
DELETION
PROCESS

Exercise to
delete data

EXERCISE

57

exercise to
modify

1.1.4.3

(

XERCISE
MODIFICATION
PROCESS

Modified
exercise data

7
/fl.s.r

(DRILL
I ADDITION

\::~ss

~ew drill

USER

I

i
I
[)rill to delete

i

DRILL
DELETION
PROCESS

I

~rill to delete

rata

Dnll to moQilYl

I

~~~ 
~~ 

I 

Modified d1 
data 

DRILL 
~r-~~~~~~-

58 



i Project Name: Activities 
i Project Path: c:\ecwin\ 

I 

Chart File: dfd00007.dfd 
Chart Name: UPDATE PORT 

i Created On: Nov-04-1995 
i Created By: Evangelos MARINOS 
I Modified On: Nov-04-1995 
1 Modified By: Evangelos MARINOS I 

1.1.6.1 

; PORT 

Port to add 

( ADDITION 

~oc:; 
I 

~ewport 
I 
I 

I 
j 

USER 

1.1.6.2 

PORT 
DELETION 
PROCESS 

ort to delete 

59 

Port to mod1ty 

1.1.6.3 

ORT 

PROCESS 

Modified port 
data 



I 

I 

Report retrieval 
request 

Report display 

~I 
~~~~;~- \ 
(RETRIEVAL !

\~/
I

I

Report to
retrieve

USER

~--1'---,-------,c---____j~-----Q-ue-ry-re---,qluest
ZS Query's results

I II I
Record retrievf
request · I I

/Roo"d di•pl•y

I I

1.2.2

RECORD

PROCESS

I ,

j I Record to
Existing data

I

retrieve

I

1.2.3

QUERY
RETRIEVAL
PROCESS

Query to
perform

OPERATIONAL
'-----------,[> ACTIVITY

DATABASE
Ex1stmg data Ex1xtmg data

60

Exercises/command Exercises per
request 1.2.1. I command req_l!_e_sJ~---------,

~ROCESS xerc1ses comman J I

~XERCISES
I \ER COMMAND

I

t bxercises/command
teport

i
I

I .

II

I

I

I

Drills/exercise
request

i

1.2.1.2

PROCESS
DRILLS PER
EXERCISE

prills/exercise
report

I

I

Ships/command
request

SHIPS PER
COMMANDS

rills/exercise
OPERATIONAL
ACTIVITY
DATABASE

fn s s 1p

Drills/ship I I"'""'
I

I I

I ~I
hips/comman

I I S:Z_-'--'L
i

LJ
I

I

USER

I

I

Ships/port~

request

Drills/ship

61

PROCESS
DRILLS
PER SHIP

Ships/port
report

request

I

1.2.1.5

PROCESS
SHIPS
PER PORT

I
I

Ships/porl

ifiours request
I rours d1splay
I .

I ' ~ I

I '
Subcommands/command

1.2.2.1

PROCESS
ACTIVITY
HOURS

! i request

:j ~ I ,

I I ~~ubcommands/command ~UBCOMMANDS<J

1

.!: .1 lrisplay p~MAND)
. c~

)li~ ---~~~ 1.2.2.3

Subcommands
re uest

act1v1ty

ours per
command/exerci e

i I
I .

Subcommands/command I / i

I

! I

I [I

F."'"'cy P" I I i I
hip request ~

I I n s s 'P PROCESS
! j request (DRILLS OPERATIONAL

USER : ~~=nco-==---- ACTIVITY
k. . PER nils per DATABASE

D 1 s p SHIP ship

61

I ~hip&port
request

1

prills/exercise
I request

Ships/port
dis Ia

display

1ps port
, ours request

1.2.2.4
PROCESS
SHIPS
PER
PORT

1.2.2.5
PROCESS
DRILLS
PER
EXERCISE

62

i

I
Drills/exercise'

request
ours

1.2.3.1
PROCESS
ACTIVITY

· HOURS

~--"-==~=----
I

I
'! -A,.--c~t:-;-lv"'!t""'y-.oh~ou=r_js

pnn request -- ----~

1.2.3.2

PROCESS
DRILL
QUERIES

r--
===c-c--1 !Dnlls/exerc!se

Ship-subcommand-command
request

I

USER
DnS!rcl q=u=ery=c---i[> OPERATIONAL

ACTIVITY

i

V\ctivity/ship
request

request DATABASE

an,

;, 33 ~mmmW<-<ubrommmdJJ TI
ROCESS =J

\
ORGANIZATION I I

~
ERIES

rgan1zat10n

query request i I

Ship's activity 1

1

!

~ results
1 7 ~;~~-~~- \ I !

'-------=+:===--_j !~JIVITY I
QUERIES ;-----------.-====---Ship query

request

63

lflours per
fommand request

USER

OPERATIONAL

'---lEf:'x<ee;r;rc"'tso;;e;--------- ACTIVITY

hours/command DATABASE

results

1.2.3. 1.2

PROCESS
DRILLS PER fJ
SUBCOMMANd

Drills per :
subcommand I

I

llTI
Drills/subcommand I :

I I '

q ""'"""
1
" I I I •

nils/subcommand
query

I

I

i

I

I

I

I I'
Drills/ship

-----;~ query results
/1.2.3.1.3 ;---

11

1

(PROCESS

--um~'P DRILLS ,
PER SHIP)

1

_________ D_n·-ll-s/-sh-ip _ __jl
_/- query

64

1ps su comman
request

i

I

I 1

, I

j_~
. I

i I

LUSER_J

1.2.3.3.1

PROCESS
SHIPS
PER
SUBCOMMAND

I

! I Subcommands/comman 1.2.3.3.2

! ~- PROCESS
Subcommands/command SUBCOMMANDS
~equest PER
I COMMAND

65

OPERATIONAL
ACTIVITY
DATABASE

Subcommands/commanf
results

66

APPENDIX C: RELATIONS AND RELATIONAL MODEL

RELATIONS

COMMMAND (Command Name1
, Commander Name, Commander Rank, Base

Location)

SUBCOMMAND (Subcommand Name, Command name2
, Subcommander Name,

Subcommander Rank, Base Location)

EXERCISE (Exercise No, Exercise Name, Date begins, Date ends, Geogr. Location)

DRILL (Drill No, Exercise No, Drill Type, Drill Date, Time begins, Time ends,

Objective)

SHIP (Hull No, Subcommand Name, Name, Type, CO_Name, CO_Rank, Number of

personnel)

PORT (Port No, Port Name, Location, Watering Capab., Fueling Capab., Maintenance

Capab.)

SHIP-PORT (Hull No, Port No, Date begins, Hours, Amount of Fuel in It, Ship's state)

COMMAND-EXERCISE (Exercise No, Command Name, Hours)

SUBCOMMAND-DRILL (Subcommand Name, Drill No, Hours)

SHIP-DRILL (Hull No, Drill No, Hours, Torpedos used, A/A Missiles used, A/S Missiles

used, Submarines detected).

1 All the underlined Attributes are the key Attributes for the Relations

2 All the Italic Attributes are the foreign key Attributes for the Relations

67

RELATIONAL MODEL

COMMAND

Commander Name Commander Rank Base Location

COMMAND-EXERCISE

Subcommander Name

Date begins Date ends Geogr. Location

68

APPENDIX D : BUSINESS RULES

ENTITY COMMAND

Unigueness Null Surmort Domain

Command Name Must be unique Non-null Command name

Commander Name Nonunique May be null Name

Commander Rank Nonunique May be null Rank

Base Location Nonunique May be null Location

ENTITY SUBCOMMAND

Unigueness Null Sunnort Domain

Subcommand Name Must be unique Non-null Subcommand name

Command Name Non unique Non-null Command name

Subcommander NameNonunique May be null Name

Subcommander Rank Nonunique Maybe null Rank

Base Location Nonunique May be null Location

User rule: SUBCOMMAND.Subcommander Rank not exceed COMMAND. Commander

Rank

Event: Insert

Condition: SUBCOMMAND.Subcommander Rank> COMMAND.Commander Rank

Where SUBCOMMAND.Command Name= COMMAND.Command Name

Action: Reject the insert transaction

User rule: SUBCOMMAND.Command Name exists in COMMAND.Command Name

Event: Insert

Condition: SUBCOMMAND.Command Name not in {COMMAND.Cgmmand Name}

Action: Reject the insert transaction

69

ENTITY EXERCISE

Unigueness Null Surmort

Exercise No Must be unique Non-null

Exercise Name Nonunique May be null

Geogr. Location Nonunique May be null

Date begins Nonunique May be null

Date ends Nonunique May be null

ENTITY DRILL

Unigueness Null Su12120rt

Drill No Must be unique Non-null

Exercise No Nonunique Non-null

Drill Type Nonunique May be null

Drill Date Nonunique Maybe null

Time begins Nonunique May be null

Time ends Nonunique May be null

Objective Nonunique May be null

User rule: DRILL.Drill Date not exceed EXERCISE.Date ends

Event: Insert

Condition: DRILL.Drill Date> EXERCISE.Date ends

Where DRILL.Exercise No = EXERCISE.Exercise No

Action: Reject the insert transaction

User rule: DRILL.Drill Date not precede EXERCISE.Date begins

Event: Insert

Condition: DRILL.Drill Date < EXERCISE.Date begins

70

Domain

Exercise#

Exercise name

Location

Date

Date

Domain

Drill#

Exercise#

Drill type

Date

Time

Time

Objective

Where DRILL.Exercise No= EXERCISE.Exercise No

Action: Reject the insert transaction

User rule: DRILL.Exercise No exists in EXERCISE.Exercise No

Event: Insert

Condition: DRILL.Exercise No not in {EXERCISE.Exercise No}

Action: Reject the insert transaction

ENTITY SHIP

Unigueness Null Su12120rt

Hull No Must be unique Non-null

Subcommand Name Nonunique Non-null

Name Nonunique May be null

Type Non unique May be null

CO Name Nonunique May be null

CO Rank Nonunique May be null

Number of personnel Nonunique May be null

Domain

Hull#

Subcommand Name

Ship Name

Ship Type

Name

Rank

Number

User rule: SHIP.CO_Rank not exceed SUBCOMMAND.Subcommander Rank

Event: Insert

Condition: Ship.CO _Rank> SUBCOMMAND.Subcommander Rank

Where SHIP.Subcommand Name= SUBCOMMAND.Subcommand Name

Action: Reject the insert transaction

User rule: SHIP.Subcommand Name exists in SUBCOMM.Subcommand Name

Event: Insert

Condition: SHIP.Subcommand Name not in {SUBCOMMAND.Subcommand Name}

Action: Reject the insert transaction

71

ENTITY PORT

Unigueness Null Su:tmort

Port No Must be unique Non-null

Port Name Non unique May be null

Location Nonunique Maybe null

Watering Capab. Nonunique May be null

Fueling Capab. Nonunique May be null

Maintenance capab. Nonunique May be null

ENTITY SHIP-PORT

Unigueness Null Su:~mort

Port No Nonunique Non-null

Hull No Nonunique Non-null

Date begins Nonunique Non-null

Hours Nonunique May be null

Amount of Fuel in lt Nonunique May be null

Ship's state Nonunique May be null

User rule: SHIP-PORT.Hull No exists in SHIP.Hull No

Event: Insert

Condition: SHIP-PORT.Hull No not in {SHIP.Hull No}

Action: Reject the insert transaction

User rule: SHIP-PORT.Drill No exists in DRlLL.Drill No

Event: Insert

Condition: SHIP-PORT.Drill No not in {DRlLL.Drill No}

Action: Reject the insert transaction

72

Domain

Port#

Port name

Location

Logical{Y,N}

Logical {Y,N}

Logical {Y,N}

Domain

Port#

Hull#

Date

Number

Number

Ship state

ENTITY COMMAND-EXERCISE

Unigueness Null Surmort Domain

Exercise No Nonunique Non-null Exercise#

Command Name Nonunique Non-null Command name

Hours Non unique May be null Number

User rule: COMMAND-EXERCISE.Command Name exists in COMMAND.Command

Name

Event: Insert

Condition: COMMAND-EXERCISE.Command Name not in {COMMAND.Command

Name}

Action: Reject the insert transaction

User rule: COMMAND-EXERCISE.Exercise No exists in EXERCISE.Exercise No

Event: Insert

Condition: COMMAND-EXERCISE.Exercise No not in {EXERCISE.Exercise No}

Action: Reject the insert transaction

ENTITY SUBCOMMAND-DRILL

Unigueness Null Surmort

Drill No Non unique Non-null

Subcommand Name Nonunique Non-null

Hours Nonunique Maybe null

User rule: SUBCOMMAND-DRILL.Subcommand Name exists in

SUBCOMMAND.Subcommand Name

Event: Insert

73

Domain

Drill#

Subcommand name

Number

Condition: SUBCOMMAND-DRILL. Subcommand Name not in

{SUBCOMMAND.Subcommand Name}

Action: Reject the insert transaction

User rule: SUBCOMMAND-DRILL.Drill No exists in DRILL.Drill No

Event: Insert

Condition: SUBCOMMAND-DRILL.Drill No not in {DRILL.Drill No}

Action: Reject the insert transaction

ENTITY SHIP-DRILL

Unigueness Null Surmort

Hull No Nonunique Non-null

Drill No Nonunique Non-null

Hours Nonunique May be null

T orpedos used Nonunique May be null

AI A Missiles used Nonunique May be null

A/S Missiles used Nonunique May be null

Submarines detected Nonunique May be null

User rule: SHIP-DRILL.Drill No exists in DRILL.Drill No

Event: Insert

Condition: SHIP-DRILL.Drill No not in {DRILL.Drill No}

Action: Reject the insert transaction

User rule: SHIP-DRILL.Hull No exists in SHIP.Hull No

Event: Insert

Condition: SHIP-DRILL.Hull No not in {SHIP.Hull No}

Action: Reject the insert transaction

74

Domain

Hull#

Drill#

Number

Number

Number

Number

Number

User rule: SHIP-DRILL.Hull No not same with SHIP-PORT.Hull No

Event: Insert

Condition: SHIP-DRILL.Hull No= SHIP-PORT.Hull No

Where DRILL.Drill Date= SHIP-PORT.Date begins

and DRILL.Drill No = SHIP-DRILL.Drill No

Action: Reject the insert transaction

75

76

APPENDIX E: PROCEDURES FOR INSTALLING AND

OPERATING OADS

A. INSTALLATION PROCEDURE

To run any Paradox for Windows 5.0 application, Paradox 5.0 itself must be

installed. To install Paradox for Windows 5.0 the user has to run the Paradox 5.0

installation program. Instructions for installing Paradox 5.0 can be found in Paradox 5.0

manuals.

B. SETTING UP THE OADS APPLICATION

After installing Paradox for Windows 5.0 you need to setup the OADS

application. Your OADS application disk includes all the required files for setting up the

OADS application. The user has to perform the following steps:

· Make sure that you are in the Windows environment.

· In the Windows click the File Manager icon

· In the File Manager environment, insert the OADS application disk, and copy

the files of the disk to C:lpdoxwin\working directory

Exit the File Manager, and click the Paradox for Windows icon to enter the

Paradox for Windows environment

· In the Paradox for Windows environment, go to the working-directory

77

· In the working directory, open the Setup.fsl file, in order to go to the OADS

main menu screen

C. USING THE OADS APPLICATION

Using the mouse, you can choose the Update Submenu, or the Retrieval Submenu.

If you want to update (add, delete, or modify) data ofthe OADS application, you

have to click the Update Subsystem button, which bring you to a list of buttons

(Command, Subcommand, Ship, Exercise, Drill, etc.). By pressing the appropriate button

of the list, you are transferred to the data that you want to update.

If you want to retrieve data from the OADS application, you have to click the

Retrieval Subsystem button, which brings you to a selection list of Reports, Records, and

Queries. By pressing the appropriate button, you are transferred to the data that you want

to retrieve.

1. Help Screens

Help screens are included in the OADS application and are designed to help the

user follow the right steps for each procedures. In this way the user can respond correctly

to data entry and updates and eliminate potential mistakes.

2. Printing Outputs

After performing a report operation from the Reports selection of the Retrieval

Subsystem, there is the opportunity to print the results to the printer.

78

APPENDIX F: APPLICATION CODE

Main Menu

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custForm.open("Fl8")

formReturn("OK")

endmethod

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custF orm.open("F7")

formReturn("OK")

endmethod

Update Subsystem

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custF orm.open("F8 ")

endmethod

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custForm.open("Fll ")

endmethod

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

79

custForm.open("F1 0")

endmethod

method pushButton(var eventlnfo Event)

var custForm Form endV ar

custForm.open("F12")

endmethod

method pushButton(var eventlnfo Event)

var custForm Form endVar

custF orm.open("F 13 ")

endmethod

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custF orm.open("F 16")

endmethod

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custF orm.open("F 14")

endmethod

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custF orm.open("F 15")

endmethod

80

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custF orm.open("F9")

endmethod

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custForm.open("F17")

endmethod

method pushButton(var eventlnfo Event)

var custF orm Form endV ar

custF orm.open(" startup")

close()

formReturn("OK")

endmethod

Command Update

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

endvar

filePop.addText ("New")

filePop.addText ("Exit")

mainMenu.addPopUp("File", filePop)

editPop.addText ("Cut")

editPop.addText ("Copy")

81

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

mainMenu.show ()

endmethod

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo .setErrorCode(U serError)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataEndEdit)

82

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString = "Enter the Command Name here."

userlnput = promptString

userlnput.view("What is the Command Name?")

if userlnput <> promptString then

if not Command_Name.locate("Command Name", userlnput) then

beep()

message(" Couldn't find", userlnput)

sleep(lOOO)

endlf

endlf

endmethod

Subcommand Update

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

endvar

83

filePop.addText ("New")

filePop.addText ("Exit")

mainMenu.addPopUp("File", filePop)

editPop.addText ("Cut")

editPop.addText ("Copy")

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

mainMenu.show ()

endmethod

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo. setErrorCode(U serError)

endlf

endlf

endmethod

method open(var eventlnfo Event)

84

do Default

self.DataSource = "[COMMAND.Command Name]"

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataEndEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString ="Enter the Subcommand Name here."

userlnput = promptString

userlnput.view("What is the Subcommand Name?")

if userlnput <> promptString then

if not Subcommand_Name.locate("Subcommand Name", userlnput) then

beep()

message(" Couldn't find", userlnput)

sleep(l 000)

85

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Ship Update

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

endvar

filePop.addText ("New")

filePop.addText ("Exit")

mainMenu.addPopUp("File", filePop)

editPop.addText ("Cut")

editPop.addText ("Copy")

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

86

mainMenu.show ()

endmethod

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

if msgQuestion ("Delete?", "Delete this record?") = "Yes" then

do Default

else

eventlnfo.setErrorCode(U serError)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataEndEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

87

endVar

promptString = "Enter the Hull Number here."

userlnput = promptString

userlnput.view("What is the Hull Number?")

if userlnput <> promptString then

if not Hull_No.locate("Hull No", userlnput) then

beep()

message(" Couldn't find", userlnput)

sleep(l 000)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Port Update

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo .setErrorCode(U serError)

endlf

endlf

endmethod

88

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

endvar

filePop.addText ("New")

filePop.addText ("Exit")

mainMenu.addPopUp("File", file Pop)

editPop.addText ("Cut")

editPop.addText ("Copy")

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

mainMenu.show ()

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataEndEdit)

89

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString = "Enter the Port Number here."

userlnput = promptString

userlnput.view("What is the Port Number?")

if userlnput <> promptString then

if not Port_No.locate("Port No", userlnput) then

beep()

message(" Couldn't find", userlnput)

sleep(l 000)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Ship Per Port Update

method action(var eventlnfo ActionEvent)

90

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo .setErrorCode(U serError)

endlf

endlf

endmethod

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo .setErrorCode(U serError)

endlf

endlf

endmethod

method changeValue(var eventlnfo ValueEvent)

if eventlnfo.newValue() >Today() then

eventlnfo .setErrorCode(CanN otDepart)

message("Date can't be later than today's date.")

sleep(l 000)

endlf

endmethod

method pushButton(var eventlnfo Event)

91

action(DataBeginEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataEndEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput 1, promptString 1 String

userlnput2, promptString2 String

endVar

promptString1 ="Enter the Hull Number here."

userlnputl = promptString1

promptString2 = "Enter the Port Number here."

userlnput2 = promptString2

userlnput1.view("What is the Hull Number?")

userlnput2.view("What is the Port Number?")

ifuserlnput1 <> promptString1 and userlnput2 <> promptString2 then

if not Hull_No.locate("Hull No", userlnput1) then

beep()

message("Couldn't find", userlnput1)

else if not Port_No.locate("Port No", userlnput2) then

beep()

92

message("Couldn't find", userlnput2)

endif

endif

endif

endmethod

method pushButton(var eventinfo Event)

formReturn("OK")

endmethod

Exercise Per Command Update

method action(var eventinfo ActionEvent)

if eventinfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventinfo.setErrorCode(U serError)

endlf

endlf

endmethod

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

endvar

filePop.addText ("New")

filePop.addText ("Exit")

93

mainMenu.addPopUp("File", file Pop)

editPop.addText ("Cut")

editPop.addText ("Copy")

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

mainMenu.show ()

endmethod

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventinfo.setErrorCode(U serError)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

94

method pushButton(var eventlnfo Event)

action(DataEndEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput1, promptString1 String

userlnput2, promptString2 String

endVar

promptString1 ="Enter the Command Name here."

userlnput 1 = promptString 1

promptString2 = "Enter the Exercise Number here."

userlnput2 = promptString2

userlnput1.view("What is the Command Name?")

userlnput2.view("What is the Exercise Number?")

ifuserlnput1 <> promptString1 and userlnput2 <> promptString2 then

if not Command_Name.locate("Command Name", userlnputl) then

beep()

message(" Couldn't find", userlnput 1)

else if not Exercise_No.locate("Exercise No", userlnput2) then

beep()

message("Couldn't find", userlnput2)

sleep(1000)

95

endlf

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Drill Per Subcommand Update

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

if msgQuestion ("Delete?", "Delete this record?") = "Yes" then

do Default

else

eventlnfo .setErrorCode(U serError)

endlf

endlf

endmethod

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo .setErrorCode(U serError)

endlf

endlf

96

endmethod

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

endvar

filePop.addText ("New")

filePop.addText ("Exit")

mainMenu.addPopUp("File", filePop)

editPop.addText ("Cut")

editPop.addText ("Copy")

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

mainMenu.show ()

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

97

method pushButton(var eventlnfo Event)

action(DataEndEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnputl, promptStringl String

userlnput2, promptString2 String

endVar

promptStringl ="Enter the Subcommand Name here."

userlnputl = promptStringl

promptString2 ="Enter the Drill Number here."

userlnput2 = promptString2

userlnputl.view("What is the Subcommand Name?")

userlnput2.view("What is the Drill Number?")

ifuserlnputl <> promptStringl and userlnput2 <> promptString2 then

if not Subcommand_Name.locate("Subcommand Name", userlnputl) then

beep()

message(" Couldn't find", userlnput 1)

else if not Drill_No.locate("Drill No", userlnput2) then

beep()

message("Couldn't find", userlnput2)

sleep(I 000)

endlf

98

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Drill Per Ship Update

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo.setErrorCode(U serError)

endlf

endlf

endmethod

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

if msgQuestion ("Delete?", "Delete this record?") = "Yes" then

do Default

else

eventlnfo. setErrorCode(U serError)

endlf

endlf

endmethod

99

method pushButton(var eventlnfo Event)

var

userlnput 1, promptString 1 String

userlnput2, promptString2 String

endVar

promptString 1 = "Enter the Hull Number here."

userlnput1 = promptString1

promptString2 = "Enter the Drill Number here."

userlnput2 = promptString2

userlnput1.view("What is the Hull Number?")

userlnput2.view("What is the Drill Number?")

ifuserlnput1 <> promptString1 and userlnput2 <> promptString2 then

if not Hull_No.locate("Hull No", userlnputl) then

beep()

message("Couldn't find", userlnputl)

else if not Drill_No.locate("Drill No", userlnput2) then

beep()

message(" Couldn't find", userlnput2)

sleep (I 000)

endlf

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

100

method pushButton(var eventlnfo Event)

action(DataEndEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Exercise Update

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo. setErrorCode(U serError)

endlf

endlf

endmethod

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

101

endvar

filePop.addText ("New")

filePop.addText ("Exit")

mainMenu.addPopUp("File", file Pop)

editPop.addText ("Cut")

editPop.addText ("Copy")

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

mainMenu.show ()

endmethod

method change Value(var eventlnfo ValueEvent)

if eventlnfo.newValue() >Today() then

eventlnfo .setErrorCode(CanN otDepart)

message("Date can't be later than today's date.")

sleep(I 000)

endlf

endmethod

method changeValue(var eventlnfo ValueEvent)

if eventlnfo.newValue() >Today() then

102

eventlnfo. setErrorCode(CanN otDepart)

message("Date can't be later than today's date.")

sleep(l 000)

endlf

if eventinfo.newValue() < "[EXERCISE.Date begins]" then

eventlnfo. setErrorCode(CanN otDepart)

message(" Date can't be earlier than Date begins.")

sleep(l 000)

endlf

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataEndEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString = "Enter the Exercise Number here."

103

userlnput = promptString

userlnput.view("What is the Exercise Number?")

if userlnput <> promptString then

if not Exercise_No.locate("Exercise No", userlnput) then

beep()

message("Couldn't find", userlnput)

sleep(1 000)

endlf

endlf

endmethod

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

endvar

filePop.addText ("New")

filePop.addText ("Exit")

mainMenu.addPopUp("File", filePop)

editPop.addText ("Cut")

editPop.addText ("Copy")

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

104

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

mainMenu.show ()

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Drill Update

method action(var eventlnfo ActionEvent)

if eventlnfo.id() = DataDeleteRecord then

ifmsgQuestion ("Delete?", "Delete this record?")= "Yes" then

do Default

else

eventlnfo. setErrorCode(U serError)

endlf

endlf

endmethod

method changeValue(var eventlnfo ValueEvent)

ifeventlnfo.newValue() >Today() then

eventlnfo.setErrorCode(CanN otDepart)

message(" Date can't be later than today's date.")

sleep(l 000)

endlf

if eventlnfo.newValue() < "[EXERCISE.Date begins]" then

eventlnfo .setErrorCode(CanN otDepart)

105

message(" Date can't be earlier than exercise's date.")

sleep(l 000)

endlf

ifeventlnfo.newValue() > "[EXERCISE.Date ends]" then

eventlnfo. setErrorCode(CanN otDepart)

message("Date can't be later than exercise's date.")

sleep(lOOO)

endlf

endmethod

method pushButton(var eventlnfo Event)

action(DataBeginEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataEndEdit)

endmethod

method pushButton(var eventlnfo Event)

action(DataCancelRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString ="Enter the Drill Number here."

userlnput = promptString

106

userlnput.view("What is the Drill Number?")

if userlnput <> promptString then

if not Drill_No.locate("Drill No", userlnput) then

beep()

message(" Couldn't find", userlnput)

sleep(l 000)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

method arrive(var eventlnfo MoveEvent)

var

mainMenu Menu

filePop, editPop, recordPop PopUpMenu

endvar

filePop.addText ("New")

filePop.addText ("Exit")

mainMenu.addPopUp("File", filePop)

editPop.addText ("Cut")

editPop.addText ("Copy")

editPop.addText ("Paste")

mainMenu.addPopUp("Edit", editPop)

recordPop.addText ("Next")

recordPop.addText ("Prev")

107

recordPop.addSeparator ()

recordPop.addText ("Edit Data")

recordPop.addText ("Insert")

recordPop.addText ("Delete")

mainMenu.addPopUp("Record", recordPop)

mainMenu.show ()

endmethod

Retrieval Subsystem

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open("F 19 ")

endmethod

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open("F20")

endmethod

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custForm.open("F21 ")

108

endmethod

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open(" startup")

close()

formReturn("OK")

endmethod

Reports

method pushButton(var eventlnfo Event)

var

custRpt Report

endVar

custRpt.open("rl ")

endmethod

method pushButton(var eventlnfo Event)

var

custRpt Report

endVar

custRpt.print("rl ")

endmethod

method pushButton(var eventlnfo Event)

var

109

custRpt Report

endVar

custRpt.open("R2")

endmethod

method pushButton(var eventlnfo Event)

var

custRpt Report

endVar

custRpt. print("r2 ")

endmethod

method pushButton(var eventlnfo Event)

var

custRpt Report

endVar

custRpt.open("R3 ")

endmethod

method pushButton(var eventlnfo Event)

var

custRpt Report

endVar

custRpt.print("r3 ")

endmethod

method pushButton(var eventlnfo Event)

var

110

custRpt Report

endVar

custRpt.open("r4")

endmethod

method pushButton(var eventlnfo Event)

var

custRpt Report

endVar

custRpt. print("r4")

endmethod

method pushButton(var eventlnfo Event)

var

custRpt Report

endVar

custRpt.open("r5")

endmethod

method pushButton(var eventlnfo Event)

var

custRpt Report

endVar

custRpt. print("r5")

endmethod

method pushButton(var eventlnfo Event)

var

111

custF orm Form

endVar

custF orm.open("F7")

formReturn("OK")

endmethod

Records

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open("F 1 ")

endmethod

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open("F3 ")

endmethod

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open("F6")

endmethod

112

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open("F2 ")

endmethod

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open("F 5 ")

endmethod

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custF orm.open("F 4 ")

endmethod

method pushButton(var eventlnfo Event)

var

custF orm Form

endVar

custForm.open("F7")

formReturn(" 0 K")

endmethod

113

Queries

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("ql2.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q13.qbe", "Answer.db") then

tv .open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

114

ifExecuteQBEFile("q2.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q7.qbe", "Answer.db") then

tv .open(" Answer .db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q3.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

115

method pushButton(var eventlnfo Event)

var

tv TableView

endVar

ifExecuteQBEFile("q8.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q10.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q9.qbe", "Answer.db") then

116

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv TableView

endVar

ifExecuteQBEFile("ql4.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv TableView

endVar

ifExecuteQBEFile("ql.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

117

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("qll.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q5.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q4.qbe", "Answer.db") then

tv.open("Answer.db")

118

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q15.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

var

tv Table View

endVar

ifExecuteQBEFile("q6.qbe", "Answer.db") then

tv.open("Answer.db")

else

msgStop("Stop", "Couldn't run the query.")

endlf

endmethod

method pushButton(var eventlnfo Event)

119

var

custF orm Form

endVar

custF orm.open("F7")

formReturn("OK")

endmethod

Command Records Per Exercise

method pushButton(var eventlnfo Event)

action(DataN extRecord)

endmethod

method pushButton(var eventlnfo Event)

action(DataPriorRecord)

endmethod

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString = "Enter the Command Name here."

userlnput = promptString

userlnput.view("What is the Command Name?")

if userlnput <> promptString then

if not Command_ Name.locate("Command Name", userlnput) then

beep()

message("Couldn't find", userlnput)

sleep(l 000)

120

endlf

endlf

endmethod

Subcommand Records Per Command

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString ="Enter the Command Name here."

userlnput = promptString

userlnput.view("What is the Command Name?")

if userlnput <> promptString then

if not Command_Name.locate("Command Name", userlnput) then

beep()

message("Couldn't find", userlnput)

sleep(l 000)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

method pushButton(var eventlnfo Event)

action(DataN extRecord)

endmethod

121

method pushButton(var eventlnfo Event)

action(DataPriorRecord)

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Drill Records Per Ship

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString ="Enter the Hull Number here."

userlnput = promptString

userlnput.view("What is the Hull Number?")

if userlnput <> promptString then

if not Hull_No.locate("Hull No", userlnput) then

beep()

message(" Couldn't find", user Input)

sleep(l 000)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

action(DataN extRecord)

122

endmethod

method pushButton(var eventlnfo Event)

action(DataPriorRecord)

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

Ship Records Per Port

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString = "Enter the Port Number here."

userlnput = promptString

userlnput.view("What is the Port Number?")

if userlnput <> promptString then

if not Port_No.locate("Port No", userlnput) then

beep()

message(" Couldn't find", userlnput)

sleep(I 000)

endlf

endlf

endmethod

method pushButton(var eventlnfo Event)

123

formReturn("OK")

endmethod

method pushButton(var eventlnfo Event)

action(DataN extRecord)

endmethod

method pushButton(var eventlnfo Event)

action(DataPriorRecord)

endmethod

Drill Records Per Ship Per Subcommand

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString = "Enter the Subcommand Name here."

userlnput = promptString

userlnput.view("What is the Subcommand Name?")

ifuserlnput <> promptString then

if not Subcommand_Name.locate("Subcommand Name", userlnput) then

beep()

message("Couldn't find", userlnput)

sleep(l 000)

endlf

endlf

endmethod

124

method pushButton(var eventlnfo Event)

action(DataN extRecord)

endmethod

method pushButton(var eventlnfo Event)

action(DataPriorRecord)

endmethod

method pushButton(var eventlnfo Event)

formRetum("OK")

endmethod

Drill Records Per Exercise

method pushButton(var eventlnfo Event)

var

userlnput, promptString String

endVar

promptString = "Enter the Exercise Number here."

userlnput = promptString

userlnput.view("What is the Exercise Number?")

if userlnput <> promptString then

if not Exercise_No.locate("Exercise No", userlnput) then

beep()

message("Couldn't find", userlnput)

sleep(l 000)

endlf

endlf

endmethod

125

method pushButton(var eventlnfo Event)

action(DataN extRecord)

endmethod

method pushButton(var eventlnfo Event)

action(DataPriorRecord)

endmethod

method pushButton(var eventlnfo Event)

formReturn("OK")

endmethod

126

APPENDIX G: APPLICATION MENUS

...

127

128

129

130

131

132

LIST OF REFERENCES

1. Kroenke,D.M., Database Processing Fundamentals, Design, and

Implementation, Prentice-Hall, Inc., 1995.

2. Tsongas, G. C., Design and Implermentation of a Database System to

Support Administrative Functions Aboard Hellenic Navy Vessels, Naval Postgraduate

School Thesis, 1994.

3. Whitten,J.L., Bentley, L. D., Barlow, V. M., System Analysis and Design

Methods, Irwin, Inc., 1994.

4. Paradox for Windows v. 5.0, User's Guide, Borland International, Inc.,

1994.

133

134

BIBLIOGRAPHY

1. Page-Jones, M., The Practical Guide to Structured System Design,

Prentice-Hall, Inc., 1988.

2. Kroenke,D.M., Database Processing Fundamentals, Design, and

Implementation, Prentice-Hall, Inc., 1995.

3. Mcfadden, F.R., Hoffer, J.A., Modern Database Management,

Benjamin/Cummings, Inc., 1994.

4. Tsongas, G. C., Design and Implermentation of a Database System to

Support Administrative Functions Aboard Hellenic Navy Vessels, Naval Postgraduate

School Thesis, 1994.

5. Paradox for Windows v. 5.0, User's Guide, Borland International, Inc.,

1994.

6. Paradox for Windows v. 5.0, Guide to Object PAL, Borland International,

Inc., 1994.

7. Paradox for Windows v. 5.0, Workgroup Desktop Guide, Borland

International, Inc., 1994.

8. Paradox for Windows v. 5.0, Object PAL Quick Reference, Borland

International, Inc., 1994.

9. Shneiderman, B., Designing the User Interface, Addison-Wesley

Publishing Company, Inc., 1992.

135

136

INITIAL DISTRIBUTION LIST

No. of copies

1. Defense Technical Information Center .. 2
8725 John J. Kingman Rd. STE 0944
Ft. Belvoir, VA 22060- 6218

2. Dudley Knox Library ... 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Professor James C. Emery, Code SM/Ey ... 1
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Magdi N. Kamel, Code SM/Ka ... 1
Naval Postgraduate School
Monterey, CA 93943-5000

5. Evangelos P. Marinos .. 2
31 Perikleous Str.,
Aegaleo 12244,
Athens, Greece.

6. Panagiotis P. Lymberis .. 1
580 Irving Ave. #A,
Monterey, CA 93940.

137

