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ABSTRACT 

Advances in audio data compression are largely driven by the need to conserve 

transmission rate or bandwidth, while maintaining the ability to accurately reconstruct the 

signal at the receiver. This thesis examines data compression methods with an emphasis 

on techniques for the compression of audio data. An overview of data compression 

schemes is presented to provide the background for a performance comparison between 

selected versions of data compression systems featuring adaptive differential pulse code 

modulation (ADPCM) schemes. Two different types data compression systems are 

investigated; IIR. and FIR impulse systems. A modification to the basic ADPCM system 

using a modular function is implemented. The modular operation results in a smaller size 

codebook and prevents data expansion when the source is not matched to the code. This 

modification is utilized for both types of ADPCM coders compared. To complete the 

compression system, Huffinan coding is employed to encode and decode the compressed 

data to and from binary form. 
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I. INTRODUCTION 

A. LITERATURE REVIEW 

The efficient digital representation of data and speech signals offers the possibility 

to increase the data rate transmitted over existing digital transmission networks by 

providing bit rate reductions as high as 16:1 in comparison with the use oflogarithmic 

pulse code modulation schemes. Data compression is the application of methods to 

process information to obtain a more compact representation without suffering 

unacceptable loss of fidelity or accuracy (Davidson and Gray, 1976). Compression 

techniques are based on either lossy or lossless properties. Lossless methods generate an 

exact duplicate of the original signal upon decompression, whereas, lossy methods trade 

complete accuracy for increased compression. Some of the lossless algorithms developed 

for data compression include Shannon-Fano (Lynch, 1985), Huffinan (Knuth, 1985), (Lu 

and Gough, 1993), and Arithmetic (Langdon, 1984) schemes. Lossy methods include 

various types of quantization coding, transform coding and predictive coding (Lynch, 

1985), (Cappellini, 1985), (Sibul, 1987). Audio (speech, music, etc.) compression 

research has traditionally been separate from other areas. Since sound is often an integral 

part of other data types, this area of research is becoming increasingly more important 

with currently evolving applications. This thesis examines data compression techniques 

with a specific emphasis on compressing audio signals (Rabiner and Schafer, 1978). The 

basic theory of data compression, including a discussion of some of the most common 

techniques, is explored. A review of basic ADPCM coders, along with an improvement 

using modular arithmetic is presented (Sibul, 1987), (Einarsson, 1991). These latter 

techniques are the structures implemented for a comparison of the FIR and IIR. versions 

ofthe modified ADPCM algorithms. 

1 

----------------------------------------------------------------------------~ 



B. DATA COMPRESSION BACKGROUND 

Data Compression is the process used to reduce the physical space or bandwidth 

used to hold or transmit a particular set of data. The electromagnetic spectrum, time 

intervals and physical volumes are all compressible mediums. The following equation 

shows the interrelationship of all three. 

Volume =fCtime xbandwidth ). (1.1) 

In effect, reducing the volume which a set of data occupies, results in a reduction in 

transmission time or bandwidth. C. E. Shannon originated this concept in 1948 which 

initiated the branch called information theory. Shannon's work showed that the extent to 

which a message can be compressed and then accurately restored is limited by its entropy. 

Entropy is a measure of the message's information content: the more probable the 

message, the lower its entropy. Entropy can also be represented as a measure of surprise; 

the more unexpected are the contents of a message, the higher its entropy and vice-versa, 

which results in more bits being required to encode it. Shannon used source entropY and 

channel capacity as the basis for two basic theorems which set precise bounds to the 

accurate representation and errorless transmission of data (Lynch, 1985). With unlimited 

resources (time, computing power, etc.), then the code wordlength for optimal source 

codes is approximately equal to (but not less than) the source entropy. Hence, source 

coding, also known as entropy coding, is just another term for data compression. 

Data compression methods take one of two approaches: lossless or lossy. Lossless 

data compression algorithms perfectly reconstruct the compressed data without error. 

Source message redundancy reduction is the method these algorithms employ to achieve 

2 



compression. Repetitive data in a message set or signal is eliminated by sending only the 

changes and number of repetitions. Conversely, entropy reduction is the principle used by 

lossy data compression techniques. The entropy reduction process results in an 

information loss. Using a threshold to monitor sample values is one example of a lossy 

compression process. In this case, compression is achieved by only transmitting the time 

at which a sample value exceeds the preassigned threshold. Data compression systems 

often combine both lossy and lossless techniques to achieve maximum compression. 

C. THESIS OVERVIEW 

The current chapter introduces the basic mechanics of data compression including 

a review of the some of the relevant literature. 

Chapter II describes the specifics of severallossless data compression methods. 

Huffinan coding, perhaps the best-known method, used for encoding and decoding of the 

compressed signals is featured. Related compression techniques, Shannon-Fano and 

Arithmetic coding are also discussed. 

Chapter III reviews lossy compression schemes. Some of the different types of 

quantization schemes are presented. These include vector quantization and the featured 

predictive coders. 

Chapter IV introduces adaptive differential pulse code modulation. An 

improvement to the basic algorithm designed to decrease the size of the codebook used 

for channel coding is also explained. 

In Chapter V, a comparative analysis of the FIR and IIR implementations of the 

ADPCM is performed. Specific comparison points include compression ratio, power 

reduction and speed of operation of each design. 
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The general conclusion reached from the comparative analysis of Chapter V are 

presented in Chapter VI. Topics for further study are also discussed. 

The Appendix lists the Matlab code used to evaluate and simulate the data 

compression systems. 
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IT. LOSSLESS COMPRESSION TECHNIQUES 

A. THEORETICAL BACKGROUND 

Lossless data compression algorithms preserve all the information in the data so 

that it can be reconstructed without error. Adhering to that constraint, their compression 

ratios are significantly less than their lossy counterparts; averaging 2: 1 to 8: 1, depending 

upon the redundancy of the information source and the efficiency of the algorithm. 

Despite that fact, some applications such as storing or transmitting financial documents, 

computer programs or numerical information, where a single bad bit could be 

catastrophic, demand lossless techniques. A number of different lossless compression 

methods with many variations exist. These techniques fall into the following general 

categories: optimum source coding, nonredundant sample coding and binary source 

coding. Again, note that coding techniques result in data compression, thus their 

discussion is germane to a data compression exploration. Nonredundant sample coding 

(NSC) makes use of threshold values and sends only time information. The dominant 

type ofNSC is run-length coding and others include predictors and interpolators (Lynch, 

1985). Since the timing information sent by this method is asynchronous, buffering is 

required. The compression systems studied in this thesis are synchronous ADPCM 

systems without buffering, and no further discussion of NSC occurs. The remainder of 

this chapter discusses optimum source and binary coding methods. 

Optimum source encoding starts with statistically independent samples and codes 

them in such a way as to make the average word length equal to the sample entropy. This 

method is also called entropy coding (since the code approaches the entropy of the 

source). Entropy relates to randomness. If the contents of a message are unexpected, 
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then the entropy is high. If the contents of a message are as expected, then entropy is 

low. Ifthe entropy of a data set is reduced, the lower entropy data set can then be 

encoded with fewer bits resulting in data compression. Two main methods occupy this 

category: Shannon-Fano and Huffinan coding. 

B. SHANNON-FANO CODING 

The Shannon-Fano coding procedure produces binary codes that are 

instantaneously decodable. An explanation of instantaneous decodability is provided 

later. One application of this technique is as a stage of the well-known PKZIP's (Apiki, 

1991) "imploding" algorithm. Shannon-Fane code reaches an efficiency of 100% only 

when the source message probabilities are negative powers of two. The following coding 

procedure and example detail and illustrate the process (Lynch, 1985): 1) Arrange the 

source message probabilities in descending order, 2) Divide the message set into two 

subsets of equal, or almost equal, total probability and assign a zero as the first code digit 

in one subset, and a one as the first code digit in the second subset, 3) Continue this 

process until each subset contains only one message. The accompanying example shows 

how the efficiency is computed. 

EXAMPLE 

The following set of messages with probabilities, Pi> is given: 

m(i) 1 2 3 4 5 6 7 

P; 0.4 0.1 0.1 0.1 0.1 0.1 0.1 

The average codeword length, Lavg, is computed by the formula: 
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M 
Lavg=~l(m(i))Pi, 

i-1 
(2.1) 

whereMis the number of messages in the set and l(m(i)) represents the number ofbits in 

the code for symbol m(i). Applying the procedure outlined earlier the following Shannon

Fane code would be generated as follows: 

Split the seven messages into two groups with their probabilities being as equal as 

possible. Thus, group one would be message one and message two with a total P; = 0.5, 

and group two would be the four remaining messages, m3-m7, with the same total P;. The 

next step would be to arbitrarily assign a '1' to group one and '0' to group two. The 

process would be repeated; group one would be split into two groups and a second '1' 

would be arbitrarily assigned to message one, ml, and a '0' to m2. This process is 

arbitrary because it could have been done in the reverse, assigning a '0' to m1 and a '1' to 

m2. Likewise, group two would be split into two subgroups, m3 and m4 in one group and 

m5-m7 in another group. Again, each member of the first subgroup would be assigned a 

one and each member of the second subgroup would append a zero onto its current code. 

As per the procedure, the process would continue until each message had been assigned a 

unique, instantly decodeable codeword. The entire process is shown in Table 2.1. Using 

Equation 2.1, Lavg is computed to be 2. 7 bits: 

[2(0.4) + 2(0.1) + 3(0.1) + 3(0.1) + 3(0.1) + 4(0.1) + 4(0.1) = 2.7 bits]. 

By comparison, the entropy is given by: 
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H=-JJP/og .J'z-
t-1 

Original New New Or g. 

Group Grp Grp msg 

m(i) Code Code Code m(i) P .. 

ml2 1 ml 11 ml 11 ml 0.4 

m2 10 m2 10 m2 0.1 

m34567 0 m34 01 m3 011 m3 0.1 

m4 010 m4 0.1 

m567 00 m5 001 m5 0.1 

m67 000 m6 0.1 

m7 0.1 
TABLE 2.1 Shannon-Fano Codeword Construction 

This value is computed to be 2.522 bits resulting in an efficiency of93.4%, where 

efficiency, 1], is given by: 

H 
, = Lavg" 

(2.2) 

Code 

11 

10 

011 

010 

001 

0000 

0001 

(2.3) 

Shannon-Fano coding has a close relative, called Huffinan coding, which is well known to 

have a significantly greater efficiency. Increased efficiency is one reason Huffinan is a 

preferred technique. 
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C. HUFFMAN CODING 

1. Static Huffman Coding 

Huffinan coding is probably the best-known method of data compression and has 

many practical applications. These include the last stage of JPEG compression and the 

:MNP-5 modem data compression standard (Apiki, 1991). The basic premise ofHuffinan 

coding is the creation of a binary tree with internal nodes, called branches, that represent 

the path to external nodes, known as leaves. There is one leaf on the tree for each symbol 

in the data set. These leaves are combined by connecting them to branches. The tree 

begins at a branch called the root, which has no number assigned to it and has a probability 

of one. The binary numbers encountered along the path to the leaves comprise the 

variable-length codes for each symbol of a given sequence, with each code being 

represented by an integral number of bits. Symbols with higher probabilities are given 

shorter bit codes while symbols with lower probabilities are assigned longer bit codes and 

thus, longer branches on the tree. The Huffinan tree is constructed, after determining the 

frequency of occurrence or probability for each symbol in a source, by repeatedly 

combining the two least probable symbols at each stage. This process continues until the 

original source is reduced to only two symbols. These two symbols are respectively 

assigned the bit values of '0' and '1'. The codes for the previous reduced stage are then 

determined by appending a '0' or a '1' to the right of the code corresponding to the two 

least probable symbols, and so on. Once each symbol in the original source is assigned a 

binary code, the Huffinan coding is complete. Table 2.2 shows an example source 

reduction and Table 2.3 performs the resulting codeword construction for generating the 

Huffinan code (Apiki, 1991), (Langdon, 1984). 
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Table 2.2 displays a source reduction process for a source with five symbols; ml through 

m5. Symbol probability is determined by dividing the total number of occurrences, No. 

occ, of each symbol by the total number of symbols. The two lowest probability symbols 

are combined to make a new symbol with a probability equal to that of the combined 

symbols. The next two lowest probabilities are then combined. When symbols of equal 

probability are encountered, they can be combined in any order; with an optimal code still 

resulting. The Huffman code is optimal in that it produces a code with the minimal 

average word length. Thus, in Table 2.2, m5 could have been combined with m3, or m2, 

not just m4. No ambiguity results from the arbitrary combinations since each symbol is 

given a unique binary code. The construction of this code is depicted in Table 2.3. The 

combination process continues until only two symbols remain. These symbols are 

assigned the codes of'O' and '1'; shown in Table 2.3. The reconstruction occurs from the 

right side of the table, starting with the final two reduced source symbols from Table 2.2. 

Original source New Symbol New Symbol New Symbol 

symbol Pro b. symbol Prob. symbol Pro b. 

m(i) No Prob 

occ 

ml 20 0.4 ml 0.4 ml 0.4 m2345 0.6 

m2 10 0.2 m2 0.2 m345 0.4 ml 0.4 

m3 10 0.2 m3 0.2 m2 0.2 

m4 6 0.2 m45 0.2 

m5 4 0.08 
TABLE 2.2 Huffinan Source Reduction Procedure 
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The higher probability symbol is arbitrarily assigned the value of '0' in Table 2.3. 

It could have been assigned a '1' and the lower probability symbol could have received a 

'0'. The symbol which is a combination of symbols (m2345) is broken into two symbols 

meaning there are now three. A '0' or a '1' is appended to the right of the original code of 

the two least probable symbols, following whichever convention was established with the 

first two symbols, ml and m2345. This process continues until a codeword is generated 

for each of the five original symbols. Table 2.3, which shows how to construct a 

codeword, must also be transmitted to the receiver so that the receiver may correctly 

decode received messages. 

From Table 2.3, it is easily seen that the final codewords have the unique prefix 

property, thus no single code is a prefix (or subset) for another code. This is what is 

meant by instantaneously decodable. Each symbol can be transmitted and immediately 

decoded without confusion with any other symbol as the symbols arrive because the 

decompressor must already have a copy of the probability table. In communication 

channel applications, Huffinan compression is further limited since a copy of the 

probability table must be transmitted with the compressed data to allow decompression at 

the receiver (Cappelini, 1985). As the decompressor receives code, it processes it in 

reverse. The decompressor starts at the tree's root and follows the sequence of incoming 

'l's and 'O's through the tree until it reaches a leaf The symbol attached to that leaf is the 

decoded character and the next bit received obviously starts a new character. Therefore, 

there is no need for the receiver to explicitly know the length of each symbol (Apiki, 

1991). The requirement that the number ofbits for each code must be an integer is a 

restriction on the Huffinan codes efficiency. The ideal binary code length for a 

symbolm(i), given by: 
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l(m(i))=-logj'(i), (2.4) 

where l is the wordlength and P( i) is the probability of symbol m( i), is achieved only 

when its probability is a negative power of two, such as 112, 1/4, 1/8, and so on, which 

results in integer values for the wordlengths. In that case, no bits would be wasted while 

representing decimal values like 2.67 bits, for example, since that word length would 

require three bits wasting part of the third bit. 

Original source Reduced Reduced Reduced 

source source source 

m(i) Codeword 

ml 1 ml 1 ml 1 m2345 0 

m2 01 m2 01 m345 00 ml 1 

m3 000 m3 000 m2 01 

m4 0010 m45 001 

m5 0011 

TABLE 2.3 Huffinan Codeword Construction Procedure 

Thus, the chance of the Huffman code being set to ideal lengths is unlikely. The 

example described in Tables 2.2 and 2.3 accomplishes bit compression by reducing the 

average symbol length (Lavg), Equation 2.5, from three to 2.52. 

The original average symbol length is three because three binary bits are required to 
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differentiate between five symbols. The calculation of the compressed Lavg, using 

probability values from Table 2.2 and message lengths from Table 2.3 is: 

[Lavg = 1(0.4) + 2(0.2) + 3(0.2) + 4(0.2) + 4(0.08) = 2.52 bits]. 

2. Dynamic Huffman Coding 

A dynamic version ofHuffman compression can construct the Huffman encoding 

tree on the fly while reading and actively compressing, effectively eliminating the above 

efficiency limitations. The encoding tree is continually corrected to reflect the changing 

probabilities of the input data (Knuth, 1985). Therefore, instead of first determining 

probabilities and then encoding as in static Huffman, the adaptive model initially assumes 

all symbol weights are zero and counts the symbol frequencies as it encodes them. After 

reading each symbol, the Huffman code is modified to account for the new character. 

Similarly, the decoder learns the symbol frequencies and updates the Huffman code in the 

same manner. The encoder and decoder remain synchronized because any changes to 

symbol probabilities in the encoder also occur in the decoder. The number of different 

symbols must be sent to the receiver to allow decoding of the compressed data. The 

adaptive Huffman tree is generated starting with an uninitialized tree and an empty leaf, 

which represents a node with no symbol attached to it, of zero probability. The following 

example, (Apiki, 1991), demonstrates the process. The input symbols are: "This is", 

including the space. 

The example shows that the tree starts with the empty leaf, e0 and then sends the 

actual ASCII character the first time it encounters a symbol, generating a code for each 

symbol in the process. Therefore, when the T is received the tree looks like the left-most 

structure in Figure 2.1. The circle represents the root and if only a 'T' were being 

transmitted, then the ASCII character for a 'T' would be actually sent. By the time the 

13 



entire word 'This' has been seen by the encoder the tree has been changed to match the 

structure second from the left in Figure 2.1. The second time a symbol appears, its code is 

transmitted instead of its literal symbol. As the frequency of a symbol increases, in this 

case the symbols 'i' and's', it move higher up the tree towards the root. 

Input: This(space)is Root 

)\ B•~~chl f<'--~)\ 
eo T1 2 2 2 3 3 4 

1\ 1\ !\ 1\ 1\ 1\ 
1 11 TI ht 

1\ 
ht it T 1 2 

1\ 
hi sz i 2 2 

/\ 
eo SI eo (space)1 eo (space)1 

Tree after T After s After (space) Final Tree 
Output: TOhOOil OOsOOO(space)Ollll 

Figure 2.1 Dynamic Huffman Tree Construction (Apiki, 1991) 

The initial tree, held by both the compressor and decompressor, has only the 
root and a single empty leaf, e0• The compressor starts the process by 
reading in a character. It attaches this character to the 1-branch of the root, 
leaving the empty leaf on branch '0'. It then sends this character to the 
decompressor as a literal ASCII code, and the decompressor make the same 
adjustment to its tree. 

For each character read thereafter, the compressor performs the 
following steps. First, it check to see if the code is in the encoding tree. If the 
code is there, the compressor sends it in the same fashion as in the static case. 
If not, it sends the code for the empty leaf Then it sends the new character 
as a literal ASCII code. Finally, the compressor adds two codes, one for a 
new empty leaf on branch 0 and one for the new code on branch 1. When the 
tree is full, the compressor just changes the last empty leaf node into the last 
character (Apiki, 1991). 
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In the example above, there are four trees shown. Each tree is labeled underneath, 

showing what the last character processed was. The intermediate trees which show the 

current tree structures after the 'h', and the first and second 'i's are not shown. The 

compressor starts out with just the empty leaf and then reads in character 'T'. 

The 'T' is placed on branch '1' and the empty leaf is placed on branch '0'. As the next 

character, 'h' is read in, the procedure in the quote above is followed. Since the 'h' is not 

already in the table, the code is sent for the empty leaf and the ASCII code for an 'h' is 

transmitted. Then the compressor builds a new tree, with the empty leaf attached to the 

root by branch '0' and the other two symbols 'T' and 'h' attached to the root by branch '1' 

which will have a weight of two; one for the number of occurrences of each symbol. The 

process continues with each new symbol. The numerals in Figure 2.1 indicate the weights 

of the nodes below it. This value must be updated so that when a node has a weight 

higher than a node above it, the two nodes are swapped, with the child nodes remaining in 

their same places. This is observed in the final structure where the 's' with a weight of 

two has been swapped to a higher node with the 'T' of weight one. These swaps are 

necessary to make the tree adapt to the changing probabilities of the data symbols. Again, 

note that each character is transmitted as it is read in and then a new tree structure defined 

which allows the decompressor to simultaneously make the same changes to its tree. The 

final output is shown on Figure 2.1 and the codes are deciphered as follows: The literal 

ASCII code for a 'T' is transmitted for the 'T', then the code for the empty leaf, '0' and 

the literal code for 'h' are sent for the 'h', next the new code for the empty leaf'OO' is sent 

along with the literal code for the first 'i', 100s, where 100 is the new code for the empty 

leaf is sent for the first 's; 000( space) represents the space, then the Huffinan code '0 1' is 
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transmitted for the second 'i' and the final 'Ill' is the code for the second 's'. 

The other major type oflossless data compression explored is binary source 

coding. Though binary source codes are typically grouped as redundancy-reduction 

methods, and thus usually require buffering, the next technique under consideration is very 

similar to Huffman coding. Its advantages over Huffman are presented next. 

D. ARITHMETIC CODING 

Though Huffman coding is largely considered the most efficient fixed-length 

lossless coding method, it has one major disadvantage. That is the requirement that 

symbol codes be an integral number of bits. As earlier stated, this only occurs for 

probabilities which are a negative power of two. If the symbol probability, P;, is 1/5, for 

example, the optimum code length is given by: 

-loglP )=2.32 hits. (2.6) 

Huffman code would use two or three bits to encode the symbol. Clearly the compression 

is neither completely efficient nor maximum. Arithmetic coding provides a viable solution 

to this limitation. This technique represents the entire message as a number stream 

(Langdon, 1984). The entire symbol domain is encompassed on the interval of real 

numbers between zero inclusive and one exclusive, [0, 1). Each symbol is assigned a 

range within the interval, corresponding to its probability. 
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EXAMPLE! 

Table 2.4 demonstrates a sample interval range assignment. The initial range is [0, 1). 

The initial range is divided up amongst the symbols starting with the highest probability 

symbol 'I'. The 'I' is assigned the interval [0.0, 0.4), next the second symbol, 'T', is 

assigned twenty five percent of the total range [0, 1), starting where the last symbol's 

interval ended, 0.4, since the symbol intervals cannot overlap. The procedure is followed 

until all symbols have been assigned a portion ofthe initial range, [0, 1). Table 2.5 

demonstrates the encoding of the word 'timing' based on the range assignments of Table 

2.4. The first symbol to be coded assumes the same range on the initial interval, [0, 1), as 

it is assigned in Table 2.4. Therefore, the current range is now [0.4, 0.65). 

As each additional symbol is processed, the range is narrowed to that interval 

within the current range which is allocated to the symbol. So when the 'I' is to be 

processed its probability, P;, is multiplied by the current range producing the new range of 

0.1. [ 0.4 * 0.25 = 0.1]. The greater a symbol's probability, the less it will reduce the 

current range; resulting in fewer bits being added to the code. This can be seen from the 

bracketed Equation above where the P; for an 'I' is 0.25, which means the previous range 

is reduced to 25% ofthe initial range of0.4 or 0.1. The choice ofwhere to place the new 

interval within the range of [0.4, 0.65) is arbitrary. Thus, the new interval could be [0.49, 

0.59) or any other 0.01 interval within [0.4, 0.65). In Table 2.5, the new range was 

chosen to be [0.4, 0.5). When the 'M' is processed, its probability is multiplied by the 

current range resulting in a new range of 0. 01 [ 0.1 * 0.1 = 0. 0 1]. Again, this 0. 01 interval 

is arbitrarily chosen from the entire range of [0.4, 0.5). No confusion results from the 

arbitrary range selection because, just like in Huffman coding, the coding table must be 

sent to the receiver to decode messages. The process continues until one decimal number 
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is determined which represents the entire message, 'timing'. The decoding process is then 

fairly straightforward. 

The first symbol is determined from the sub-interval, of the initial range, [0, 1) in 

which the encoded message falls. Since the received value is on the interval of [0.48314, 

0.48320), it can be seen that the first symbol carne from the sub-interval [0.4, 0.65) and 

must be a 'T'. The next symbol is determined by subtracting from the received encoded 

value, 0.48314 in Table 2.6, the low value from Table 2.4, of the first symbol and 

dividing by the probability, Pi, of the first symbol's range, 0.25. The symbol is then found 

via the interval in which the new encoded value falls. In Table 2.5, the following values 

result: [ (0.48314- 0.4)/0.25 = 0.33256]. This new value falls within the range [0.0, 0.4) 

indicating the second symbol is an 'I'. Results for the remaining decoding of symbols are 

illustrated in Table 2.6. Note that in actual coding, the values of the encoded numbers will 

be represented in binary. Decimal values were utilized in the above example to assist in 

concept understanding. Since the decoder interprets the encoded number 0.0 as a symbol 

('I' in Table 2. 4) in the domain interval, an end of message symbol must be transmitted 

with the code. 

Symbol Probability Range 

I 0.40 [0.00, 0.40) 

T 0.25 [0.40, 0.65) 

N 0.15 [0.65, 0.8) 

M 0.10 [0.80, 0.9) 

G 0.10 [0.90, 1.0) 
TABLE 2.4 Arithmetic Coding Range Assignment for Example 1 
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Symbol Number Symbol Low Value High Value 

2 T 0.40 0.65 

1 I 0.40 0.50 

4 M 0.48 0.49 

5 I 0.480 0.484 

1 N 0.4826 0.4832 

3 G 0.48314 0.48320 

TABLE 2.5 Arithmetic Encoding Process for Example 1 

EXAMPLE2 

Assume a stream ofVVVVVVV's' is to be compressed. The probability ofV is known to 

be 0.9, while the end-of-message character has a probability ofO.l. The range [0, 0.9) is 

assigned to the letter V and [0.9, 1.0) is assigned to the end-of-message character. Table 

2.7 displays the results (Langdon, 1984). 

Encoded Number Symbol Low High Range 

0.48314 T 0.40 0.65 0.25 

0.33256 I 0.00 0.40 0.40 

0.8314 M 0.80 0.90 0.10 

0.314 I 0.00 0.40 0.40 

0.785 N 0.65 0.80 0.15 

0.90 G 0.90 1.00 0.10 

TABLE 2.6 Arithmetic Decoding Process for Example 1 
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New Character Low Value High Value 

v 0.0 0.9 

v 0.0 0.81 

v 0.0 0.729 

v 0.0 0.6561 

v 0.0 0.59049 

v 0.0 0.531441 

v 0.0 0.4782969 

END OF FILE 0.43046721 0.4782979 
TABLE 2. 7 Arithmetic Encoding for Example 2 

The value 0.4782979 would then be transmitted to represent a string of nine V's 

rather than sending nine, eight bit, ASCIT characters. Like Huffinan codes, arithmetic 

codes have a dynamic version and often use a zero-order Markov model; though higher

order models can be implemented. The major problem with arithmetic coding is that most 

computers cannot process numbers of the length needed to encode certain data types, i.e. 

images. This is can be seen in the example of Table VII in that the precision required to 

represent only a few more 'V's would result in a precision greater than the normal 

computer could achieve. This problem is overcome by only sending a portion of a 

message or data set which can be represented within the precision of the computer system 

sending it (Weiss and Schremp, 1993). 

Another drawback is that of loss of precision between the high and low values as 

the ranges gets very small. This often results in the low value being higher than the high 

value and consequently, causing overflow. Inserting checks into the process prevent this 

problem at the expense of greater complexity (Langdon, 1984). 

20 



m. LOSSY DATA COMPRESSION TECHNIQUES 

A. LOSSY COMPRESSION THEORETICAL BACKGROUND 

Lossy compression describes processes where information is irretrievably lost. It 

is typically used for applications where there is a notion of fidelity associated with the 

data. Such applications often involve digitally sampled analog data (still images, video, 

etc.) where it is only necessary that the decompressed data be acceptably close in quality 

to the original. Thus, it is very useful for audio compression applications where the 

human ear is not discerning enough to detect the loss. Lossy compression techniques are 

a subset of the entropy reduction class of data compression. The major types oflossy 

compression methods use some form of quantization. Efficient quantizer design requires 

an accurate statistical model of the data source. For this thesis, linear prediction is used to 

model the data. 

There are three general categories of quantization compression: 1) Zero-memory, 

2) Block and 3) Sequential. The distinction between these categories is not strong, as 

techniques which fall under one category also fit into another. Zero-memory quantization 

is the process where samples are quantized individually, while in block quantization, a 

block of input samples are represented by a block of output values chosen from a finite set 

of possible output blocks. Finally, sequential quantization quantizes input samples using 

information from its surrounding samples on a block or non-block basis (Knuth, 1985). 

Thus, the sequential techniques can all also be block quantization techniques. Under the 

zero-memory category are vector and scalar quantization. Multi-path search coders and 

predictive coders are the dominant form of sequential quantization techniques, which as 
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stated earlier can also be used in a block quantization form. The block quantization 

category encompasses various types of transform coding. Transform coding operates on a 

block of n samples generating an output sequence by matching the input block with its 

closest approximation from a codebook of sequences. The compression scheme is 

optimized by minimizing the difference between the two sequences. See Lynch (1985), 

and Jayant and Noll (1984) for additional information on transform coding. No further 

discussion of transform coding is presented here. 

B. SCALAR AND VECTOR QUANTIZATION 

For the zero-memory method, each data sample is quantized independently of all 

other samples using the same quantizer, therefore, the system has no memory of previous 

data. The compression algorithm is optimized to minimize the quantizing noise using 

fixed quantizing levels. Another name for zero memory quantization is scalar 

quantization. Scalar quantization is just a special case of a very powerful data 

compression technique called vector quantization. Vector quantization is a process based 

on a codebook. A codebook is a collection of vectors or lists of"typical" data sequences. 

The codebook vectors are very similar to the branches in a tree structure used for tree or 

trellis coding which will be discussed later. The codebook vectors contain the parameters 

used to reproduce the original source sequences. The index associated with the parameter 

vector, or codeword, that most reduces the distortion between the source sequence and a 

reproduction of that sequence is transmitted as side information to a decoder. The 

decoqer matches that index to the index of a codebook of optimal coefficient vectors. The 

selected optimal coefficient vector is then used to supply the parameters to reproduce the 

original source at the decoder. The closeness of reproduced data to original source 
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sequence is made in a mean squared error sense. The advantage of this procedure is the 

elimination of quantizing of the information sent that's not original data, the side 

information. Extensive searching can be required, when the codebook is large, to find the 

best parameter codewords. 

The huge computational load incurred during the searching of the codebook is the 

main disadvantage of this approach. In addition to various audio applications, vector 

quantization is commonly employed in the compression of images. In this latter case, the 

source sequences are subarrays of pixels and the codebooks are vectors of pixel values 

which can reproduce the source pixels (Xue and Crissey, 1991). The process achieves 

compression in that the index of the reproduction parameters can be specified in fewer bits 

than the original pixels themselves. The following relationship for the number ofbits 

required per pixel, or compression rate (r), illustrates that principle: 

r=(R/k) bits/pixel, (3.1) 

where R=logz(m) is the quantizer rate in bits/vector, m is the number of codebook vectors, 

and k is the number of pixels. The input source vector can take many forms and a vector 

of pixels is just one example. 

Another example involves character recognition from half-tone or 
fax data, where vectors are arrays of bits that are positioned over the 
character positions and the table (or codebook) is the alphabet of 
characters that are being recognized. Larger vectors and tables result in 
higher fidelity for a given amount of compression at the expense of 
increased computational resources. In scaler quantization, each vector 
consists of a single data element. In fact, the initial process of analog to 
digital data conversion is an example of scalar quantization (Bookstein and 
Storer, 1992). 
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C. MULTIPATH SEARCH CODING 

Sequential quantization, like block quantization, takes advantage of dependency 

between samples, and it has been shown that they can provide better performance than the 

scalar version of quantization. Two categories of sequential quantization exist: Multi path 

search coding and predictive coding. 

Multipath search coding (MSC) is a relatively new form of quantization being 

studied. The motivation for its study stems from the performance bounds predicted by the 

rate distortion function for sources with memory developed by Shannon. Generally, this 

type of quantization, which is of the block type, has the potential for approaching the rate 

distortion bound with the least amount of design complexity. Trellis, and tree coding 

comprise the dominant types of multi-path search coding, though codebook 

implementations are increasingly used (Lynch, 1985). 

1. Tree !Trellis Coding 

MSC's use future as well as previous sample values in order to select a quantized 

version of a given input sample. They are often called look-ahead coders, or tree or trellis 

encoders due to this property. Compression is obtained by virtue of the fact that the 

selected quantized version of the input sample sequence is coded into a binary channel 

sequence wherein each sample is represented by one binary digit. The techniques of trellis 

and tree coding make use of geometric structures and are very similar to the vectors of 

vector quantization and the lists oflist coding. Each typical sample is stored as a sequence 

of branches in a tree structure. When a sequence is selected, its corresponding tree path is 

transmitted as a binary sequence, with each bit corresponding to a direction at each 

sequential node of the tree, much like the procedure used in Huffinan coding. A similar 

procedure is used in trellis coding since the trellis structure is really a truncated tree 
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structure (Jayant and Noll, 1984). The following example, (Jayant and Noll, 1984), 

illustrates the process. 

1 3 

1 
2 

+1 1 
1 

1 -- 0 

-1 
-1 -1 

-1 
-1 

-2 
-1 

-3 
-1 

0 1 2 -------------
TIMEn 

Figure 3.1 Delta Modulation Code Tree (Jayant and Noll, 1984) 

The code tree of Figure 3.1 has a set of nodes for each time index n. The nodes 

are indicated by the black dots and the branches by the horizontal lines. Each node has 2R 

= 2 branches, where R = 1 bit/sample. In Delta Modulation, the decision outcome of a 

waveform encoder is input to the tree coder and each previous value is updated with a 

positive or negative step of fixed size. Figure 3.1 shows the possible DM outputs, which 

can be input to the tree coder, at either end of the two-headed arrow on the left side of 

the figure. A branch letter or reconstruction value, selected from the alphabet of 
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reconstruction values ( -1, + 1 ), is labeled on each horizontal branch. The tree is traced by 

following the branches (dashed in this case), which show the DM output at each time 

instant, to the nodes, where the sum of all the previous output values is labeled. The 

dashed-line branches are labeled with sample input values, and the path is located by a 

binary sequence called a path map(+ 1, + 1, -1 for this example). The nodes with the bold 

numbers show the result at each time instant (Jayant and Noll, 1984). The bits 

corresponding to the reconstruction values are transmitted and determine the output 

sequences generated at the decoder. These bits lay out a path to follow through the tree. 

The decoder has the same tree structure and can follow the branches to each node, in a 

process that basically integrates the map sequence, to determine the correct value which 

was input to the tree coder. Unlike codebook coding, tree and trellis coding can be done 

on a sample-by-sample basis instead of on a block basis. This is very similar to maximum

likelihood or Viterbi decoding of convolutional channel codes. This latter process is used 

in the newest standard for cellular phone communications: Code Division Multiple Access 

(CDMA), which has wide ranging audio compression employment. A full treatment of 

trellis and tree coding is available in (Lynch, 1985). 

2. Codebook Coding 

Codebook coding (also known as list coding) involves the use of a codebook of 2n 

highly probable n-sample sequences. The codebook vectors are highly probable since, in 

image coding, an image is scanned and used to train the program used to develop the 

codebook to produce reproduction vectors which are "highly probable". One sequence is 

selected from the codebook, that minimizes the distortion between itself and the actual 

input sequence (Lynch, 1985) and (Cappelini, 1985). The index of the selected sequence 

is coded as an n-bit word and sent to the receiver, where the same codebook is stored. 
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If each sample hasMlevels, then there areM possible sequences but only 2n "typical" 

sequences, giving a compression ratio of: 

(3.2) 

For example (Jayant and Noll, 1984), given a coder sequence oflengthN and rateR 

bits/sample, the total number of unique codewords is given by: 

J = Y'R. (3.3) 

A sequence of output samples, Y;: i = 1,2, ... ,2NR is assigned to each codeword and the 

codebook is comprised of the set of all possible output sequences. The output sample 

values are selected from an "alphabet" of reproducing values. The codebook coder is also 

called a vector quantizer. Jayant and Noll (1984) describe the process, which is the same 

for vector quantization, as follows: 

A code book coder accepts a block x of N input samples, searches 

through the codebook with J = 2NR entries, finds the output sequence best 

matching the input block, and transmits the corresponding codeword index 

iopt to the decoder in the form ofNR bits. The decoder looks up the 

corresponding codeword in its codebook and releases theN samples of 

Y;. opt as the output sequence. 

Since a codeword is transmitted once for every N input sample block, the codebook coder 

is also a block coder; further evidence of its equivalence as a vector quantizer. 
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D. PREDICTIVE CODING 

Predictive coders include the well-known techniques of delta modulation and 

differential pulse code modulation (DPCM). Both of these techniques predict the next 

sample value and then quantize the difference between the predicted value and the actual 

value. The prediction is based on a weighted combination of previously predicted values. 

Delta modulation uses a 1-bit quantizer, whereas DPCM uses a k-bit quantizer. 

1. Delta Modulation 

Delta modulation is a predictive coding technique in which the difference between 

a given sample and its predicted value is quantized into one of two levels ( -o, +o ). If the 

difference is positive, +o is coded, and if the difference is negative, -o is coded. The 

important feature of delta modulation is that it allows only two possible levels to be coded 

and transmitted. Thus, it is known as a "1-bit" system. Delta modulation can be done in 

two ways: conventional and adaptive. 

2. Differential Pulse Code Modulation 

In Pulse code modulation (PCM), the original analog signal is time-sampled and 

each sample is quantized and transmitted as a digital signal. Instead of quantizing each 

sample, in DPCM, the next sample is predicted and the difference between the actual and 

predicted values is quantized. This is also the basis of delta modulation, thus many 

similarities exist between DM and DPCM. In DPCM, the predicted value, which is 

obtained from previous predicted values and differences, is also available at the receiver, 

since the identical predictor is used there. In many applications, a more accurate 

prediction can be obtained if more than just the previous sample is used. This is to be 

expected since many data sources produce sequential samples that are not independent. 

The number of previous samples to use for prediction and the predictor function itself 
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depend upon the statistical properties of the data source. Adaptive DPCM (ADPCM) is 

frequently employed to allow non-stationary signals to be tracked by the compression 

algorithm. In the next chapter, a more detailed examination of the ADPCM scheme is 

conducted. 
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IV. LOSSLESS ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION 

A. INTRODUCTION 

Normally, when designing a DPCM system, it is assumed that the input data is 

stationary. Thus, a predictor and quantizer are designed with fixed parameters. But when 

the input data is non-stationary, these fixed-parameter designs show inconsistent and 

generally poor performance with respect to signal-to-quantizing-noise ratio. Adaptive 

designs have been used effectively in these cases and the approach boils down to one of 

three choices: an adaptive predictor with a fixed quantizer, a fixed predictor with an 

adaptive quantizer or an adaptive predictor and quantizer. In the ADPCM comparison to 

follow, an adaptive predictor with a fixed quantizer will be simulated. 

Acoustical signal digitization uses 64 kb/s PCM (8 bits per 8kHz sample), in 

communication networks. For efficiency, the transmission rate is reduced to 32 kb/s (4 

bits per 8 kHz sample) with ADPCM coding. Redundancy removal is accomplished by 

subtracting a predicted value from each input sample, and entropy reduction is achieved by 

quantizing the difference between the input data sample and the predicted value to a 

limited number of amplitude levels. Speech contains a relatively high short-term 

correlation, therefore the power of the prediction error is less than that of the original 

signal and fewer bits are required to transmit the error signal. This is what makes 

ADPCM especially useful for audio data compression applications. Adaptive predictors 

are now a major component of32 kb/s DPCM systems, and instrumental in obtaining the 

best performance in differential encoding systems below 32 kb/s. 

The principal components of the ADPCM system are the quantizer, the binary 

encoder/decoder pair, and the predictor, shown in Figure 4.1. For the data compression 
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system simulation herein, the quantizer is a symmetric, 2L-level one with fixed step size. 

The quantizer is implemented in Matlab code using the round function, which takes the 

input values and rounds them towards the nearest integer. The difference between the 

original prediction error and the quantized prediction error from the quantizer output is 

known as the quantization noise and represents the lossy part of the system which can not 

be recovered. However, in the adaptive systems implemented in this thesis input values 

were also rounded so that only integer data values were used. This form oflossless 

compression, using integer values, was used since data stored on a computer can only be 

represented to a limited finite precision. In addition, receiver outputs were sent through a 

round function. As a result, these ADPCM systems are lossless and quantization noise is 

eliminated. 

In this chapter the ADPCM predictor systems used for the performance 

comparison are examined and the various system components presented. The finite 

impulse response and infinite impulse response predictors are developed and the process 

of their underlying algorithm, the least mean square algorithm is explained. Next, the 

modular function, added to the basic ADPCM system to reduce the size of the codebook, 

is introduced. 

B. FINITE IMPULSE RESPONSE FILTER 

Figure 4.1 depicts the block diagram of an ADPCM system. These systems fall 

into one of two types, those that have a finite-duration impulse response (FIR) and 

those that have an infinite-duration impulse response (IIR), (Proakis and Manolakis, 

1992). These two types of systems will be the basis ofthis thesis' comparative analysis. 

The binary coder block in Figure 4.1 performs lossless source coding of the residual 
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sequence, eq(k). The coder assigns a binary word oflength log2 (2L) to each quantization 

level, L, on a sample-by-sample basis. The Huffinan coding algorithm will be utilized to 

implement the binary coder. The box in Figure 4.1 labeled P(z) represents the adaptive 

predictor. The predictor structure is chosen to emulate an assumed model of the input 

signal process. In this thesis, P(z) is chosen to have a FIR structure defined as: 

M 
P(z) = ~a,-t, 

j.J 
(4.1) 

where a; represents the predictor weights, based on the assumption that speech can be 

modeled appropriately by a linear prediction model. The transmitter portion of this 

structure is an all-zero model. It utilizes a finite impulse response filter (FIR), or a 

moving average (MA) filter, to predict output values. 

In Figure 4.1, the transfer functionH(z), from eq(k) to (k/k-1), is derived as 

shown below. 

Z[s(k!k-1)] = P(z)EQ(z), 

Which leads to: 

H(z) = Z[s{kl{k-l))J = P(z) 
EQ(z) · 

(4.2) 
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P(z) represents the transfer function of the MA predictor and H(z) is the transfer function 

of the transmitter portion between eq(k) and ~k/k-1) which has an FIR structure. 

The adaptive predictors ofboth the transmitter and receiver of Figure 4.1 use the 

least mean square (LMS) algorithm which determines the predictor weights by minimizing 

the instantaneous square of the error. This algorithm is used to allow the gradient of the 

error vector to be estimated from available data since no prior knowledge of the input 

signal correlation matrix, R, and the cross-correlation vector between the input and the 

desired response, is available. As a result, the weight coefficients of the predictors are not 

initially optimal weights like those derived using Wiener-Hopf equations, though the 

predictor weights do eventually converge to the optimal weights in stationary 

environments. However, the LMS algorithm performs far fewer calculations as a result as 

it does not require computation of matrix inverses. For the FIR ADPCM implementation, 

the standard LMS algorithm will be used. Haykin (1991) provides a detailed explanation 

of this process which results in three basic relations: 
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1. Filter Output: 

v(k)=C H {k)gg_(k), (4.3) 

wheregg(k)=[eq(k-1), eq(k-2), ... , eq(k-M)]T a vector oflengthM, v(k) is the output of 

the predictor, and f.(k) is the vector of filter coefficients which are updated after each input 

sample. 

2. Estimation error: 

e(k)=s{k)-v(k), (4.4) 

3. Predictor weight update: 

£{k+l)=£{k)+pgg_(k)eq(k). (4.5) 

The step size Jl is used to control the updates to future weight coefficients. The bounds 

on this variable are derived from the bounds for updating the steepest-descent algorithm. 

In that case, the steepest descent algorithm converges when: 

(4.6) 

where M is the length of the predictor and Req (0) is the autocorrelation of the input 

sequence. However, for the LMS algorithm an initial value for Jl is usually chosen as 10% 

of the maximum value, Jl, obtained in Equation 4.6. 
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C. INFINITE-IMPULSE RESPONSE FILTER 

In contrast to the standard, FIR ADPCM implementation, the IIR filter system 

output is weighted by the linear combination of the past input and output samples instead 

of just a finite number of past input samples. This fact gives rise to the notion of infinite 

memory or infinite impulse response. To accurately model the vocal tract, the model 

should contain zeros as well as poles, and an ADPCM system transmitter based on a pole

zero model is shown in Figure 4.2. Its transfer function, H(z), from eq(k) to 

v(k)=~k/k-1) is derived from the following equations: 

Which leads to: 

Therefore, 

Z[v(k)] = v(z) = B(z)EQ (z) 

+ [B(z)EQ(z) + EQ(z)]A(z) + A(z)[v(z) - B(z)EQ(z)]. 

v(z)[(l - A(z)] = [A(z) + B(z)]EQ(z). 

H(z) = v(z) 
EQ(z) 

A(z) + B(z) 
1 - A(z) 
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Thus, it is a standard IIR predictor where zeros and poles can be individually specified. 

For the IIR filter implementation, a version of the International Telephone and 

Telegraph Consultative Committee (CCITT) G.721 recommendation is used (CCITT, 

1984). The basic LMS algorithm has been modified to provide additional system stability 

restraints, ensure synchronization between the transmitter and receiver, and prevent drift 

of the AR portion of the receiver (Bonnet et al, 1990). The block labeled 'A' in Figure 

4.2 represents the AR portion of the system and the 'B' block represents the MA portion. 

The modification to the basic LMS algorithm made to the G. 721 algorithm lies in the 
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addition ofleakage factors, o1 and o2, the stability constraints on the AR predictors weight 

coefficients, and the definition ofthe signalp(k). 

The effect of the modifications are to allow the updating of the AR portion in the 

same fashion as the MA portion is updated, i.e., like a transversal filter vice a recursive 

one (Bonnet, 1990). The stability constraints are explained below. Last, the signalp(k) 

improves adjustment of the receiver onto the transmitter and allows resynchronization of 

the receiver to the transmitter in the presence of transmission errors. Bonnet (1990) 

defines the signal p(k) in the z-domain as: 

P(z)=[J-A(z)]S(z), (4.8) 

where ~k) represents the input to the AR predictor. As a result of these modifications to 

the basic LMS algorithm, the modified CCITT G. 721 update equations become: 

aln+l)=(l-o )a/n)+a.1sgn(pjsgn(pn-) 

aln+l)=(l-o ;)aln)+a. zSgn(p,)[sgn(pn-;)-f(aln))sgn(pn-~1 ( 4.9) 

bfn+l)=(l-o JbfnJ+a.zSgn(eq,)sgn(eqn-) j=l, ... ,6; 

where a ln+ 1) and a in+ 1) represent the recursive weights for a length two AR predictor, 

bin+ 1) represents the jth weight coefficient for a length six MA predictor, and sgn(*) 

stands for the sign function. Note that the parameters a1 and a2 perform the same 

function asp. does in Equation 4.5. Similar equations hold at the receiver. The function 

f(a) is used as a stability constraint to control the boundedness of the AR parameter a2 and 

its range of values are given by: 
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f(l ~ _ { 4a if abs(a) ~ 0.5 
a - 2sgn(a) othe1Wise. (4.10) 

Note that, the value of0.5, Equation 4.10, was selected by Bonnet et al. to correspond to 

a limit on aJ for frequencies in the middle of the telephone bandwidth (Bonnet, 1990). This 

algorithm was modified from a standard LMS algorithm by the addition of the leakage 

factors oJ and o2. These terms are used to control the drift in the AR parameters at the 

decoder. Nominal values for oJ and o2 and the updating factors, aJ and a2 are: 
' 

01 = 2 X JfF8
, 

a.1 = 3.2 X J(F8, 

o2 = 2 X J(F7 

a.2 = 2 X J(F7. 
(4.11) 

Actual values used for the IIR varied by a factor of 1 00 or 1000 depending on the signal 

and are given in the following chapter when the signals are introduced. Additionally, the 

actual values of aJ and a2 are limited to the following range to ensure stability. 

(4.12) 

D. MODULAR ARITHMETIC FUNCTION 

The standard ADPCM compression system transmits the quantized error signal. 

The amount of data compression achievable is dependent upon the entropy of the error 

vector. The first-order entropy, corresponding to a coder which encodes each error, 

eq(n), separately, is given by: 

(4.13) 
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where PeqG) is the relative frequency of the symbol eq(k)=j and Q is the number of discrete 

integer values assumed by the input eq(k) (Einarsson, 1991). The entropy of the error 

sequence can usually be reduced using a modular function such as the one depicted in 

Figure 4.3. This figure shows the output of the ADPCM predictor, eq(k), as the input to a 

residual function which produces the integer-valued sequence, v(k). This sequence is then 

input to the modular function, which uses modular arithmetic to generate integer-valued 

data, w(k). The lossless procedure presented by Einarsson to reduce the size of the 

codebook is a two-step procedure. 

eq(k) 11(k) w(k) 
Huffman ~R(z) I >I mod Ql ADPCM 

XMITTE 

~ 
R-I(Z) 

Huffma 
modQ Decoder 

R 

S(k) eq(k) y(k) w(k) 

Figure 4.3 ADPCM system with Modular function 

The modular coding process described by Einarsson (1991) starts with a positive 

data sequence, eq(k) k = ... -1, 0,1 ,2 .... , constrained in a range of Q discrete values. The 

next step of the procedure is to generate a sequence of integer-valued residuals v(k), k = 
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... -1,0,1,2 .... , constrained in a range ofQ discrete values. The next step of the 

procedure is to generate a sequence of integer-valued residuals v(k), k= ... -1, 0, 1, 2, ... , 

referred to as the shifted sequence. This step is accomplished through the application of a 

linear filtering operation between the input data, eq(k) and a linear filter, R, with 

coefficients / 0=1 andft= -1. The filter R(z) forms the first difference of eq(k) and is given 

by: 

v(k) = eq{k)-eq{k-1). (4.14) 

Then the modular arithmetic function, mod Q, is applied to the sequence v(k) to reduce it 

to the appropriate range of 0 to Q-1 before it is entropy coded. Table 4.1 depicts the 

process. Therein, sample data values for the input, eq(k), are given, shifted to make them 

all positive, filtered through the residual filter R, and processed by the modular function to 

generate the resulting "modular sequence" W(k). The binary coding process is external to 

this procedure and is not shown. At the receiver, the linear filter operation is reversed and 

the modular operation is applied exactly as before resulting in the same original data 

values. 

Note however that the shift, (+4) and (-4), illustrated in Table 4.1, is not required 

and this step could have been skipped. This shift was done to match the procedure given 

by Einarsson exactly, by starting with all positive data. The algorithm to reconstruct the 

original data at the receiver is derived from: 

eq(k)=[w{k}-{y{k)-y{k-l}} ]modQ, (4.15) 

where eq(k) is the reconstructed eq(k).The entropy, H, of W(k) is given by: 

(4.16) 
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TRANSMITTER RECEIVER 

eq(k) shift (+4) v(k)= ~k) y(k) = Shift (-4) 

eq(k)- modQ ~k)+ eq(k) 

eq(k-1) Q=12 y(k-1) 

modQ 

Q=12 

7 11 11 11 11 7 

5 9 -2 10 9 5 

2 6 -3 9 6 2 

-3 1 -5 7 1 -3 

-4 0 -1 11 0 -4 

6 10 10 10 10 6 

TABLE 4.1 Modular Coding Process 

where P,.. U) is the frequency of occurrence of the symbol ~k)=j. Einarsson showed that 

the entropy for the modular function residual, ~k), is lower than that for v(k). For 

Q=256, the residual v(k)=eq(k)-eq(k-1) will take on integer values in the range (-255, 

255). Thus, eq(k) = 239, and eq(k) = -17 reduced modulo 256 both result in v(k) = 239. 

Therefore the entropy ofv(k) is the sum of two terms as shown in Equation 4.18, 

Hv = PJj)logPli) + Pll)logPli:). (4.17) 

where v1(k)=j1 and vz(k)=j2 both result in ~k)=j. Writing Equation 4.17 in terms of the 

entropy for ~k) gives the single term Equation: 
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(4.18) 

where P Jj)=Pjj1) + P )}2). Thus, since for a, b > 0 

(a + b)log(a + b) > a log(a) + b log(b), (4.19) 

then H w < Hw. Despite this theoretical advantage of reduced entropy, Einarsson states that 

the difference is usually negligible. The real advantage of using the modular coding 

function is a decrease in the size of the Huffinan codebook necessary to encode the 

transmitted error vector, which, in turn, implies that fewer bits will be required. This 

modular function is incorporated into both the FIR and IIR versions of the ADPCM data 

compression systems whose performances are compared in Chapter 5. 
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~-----------------------------------------

V. PERFORMANCE COMPARISON 

A. OVERVIEW 

Generally, performance comparisons of ADPCM compression systems have been 

made using PCM systems as a baseline; often using the signal to quantizer noise ratio as a 

basic parameter of comparison. When directly comparing ADPCM coders, the mean 

square error (MSE) is usually used since these coders are designed to minimize this 

parameter. This measurement would be valid for the FIR coder as it is designed to 

minimize the MSE. However, due to the modifications of the LMS algorithm 

incorporated into the G. 721 IIR coder reviewed herein, the IIR coder doesn't minimize 

the MSE but the quantity given by the following relation: 

E(eq,/ + ~ E~ ~. 
a; 

(5.1) 

where E( •) is the expectation operator, a is a positive adaption parameter, o is a positive 

leakage factor and 4, is the vector of the AR parameters at time n (Bonnett, 1990). The 

first term of Equation 5.1 represents the MSE of the system while the second term is a 

weighted version of the AR predictor parameters. Thus, comparing MSE's between the 

FIR and IIR. coders would not be completely accurate. Of course, MSE's are just one 

parameter that is frequently compared in ADPCM comparisons. Others include 

compression ratios, sound fidelity, variances, compression/decompression time and SNR's. 

In fact, no single measurement is sufficient to completely, reliably and easily classify the 

coders performance. This is one reason for the importance of a variety of studies 

investigating all the relevant properties of ADPCM coders. In this report, the variance of 

the original signal is compared to the variance of the quantized error signal. Additionally, 

the compression ratios of each type of coder is also compared. The compression ratio has 
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many definitions; it is defined in this thesis as the number of bits needed to encode the 

original signal in a PCM format divided by the number of bits used to encode the 

transmitted error sequence. The Huffinan coder is utilized to encode the quantized error 

and to determine the compression ratio achieved. 

B. PRESENTATION OF DATA 

Five data signals were examined. Four of them were audio signals and the fifth is a 

sinusoid, which was included since it is nonpersistently-exciting, and is of the type most 

difficult for the IIR ADPCM compressor to handle (Bonnet, 1990). The original signals, 

shown as the middle image in Figures 5.1-5. 5, are: 

1.) PFREE - a fast-paced pop song with a male voice and music, 

2.) GUITAR- a musical selection played on a guitar, 

3.) VOICE- a male voice speaking in a normal tone 

4.) TRANSIENT - a filtered version of a male voice speaking, 

5.) SINE- a sinusoid generated from s(k) = sin(21t 4/100 k), k=l, ... , 7025, 

where k is the number of points in the signal. All the signals had a duration of 7025 

points. Each signal had a zero mean. The upper plot in each Figure is the IIR receiver 

output signal and the lower plot represents the FIR receiver estimate of the original signal 

shown in the middle plot. In every case the received signal is an exact integer 

representation of the input data after about three filter lengths. Note that the IIR predictor 

was implemented with different values than the nominal values proposed by Bonnet for the 

leakage factors, o1 and o2, and update control variables, a1 and a2, given in Chapter 4, 

Equation ( 4.11) and repeated here as Equation 5.2: 

0 l = 2 X J()"8
, 

a.1 = 3.2 X J()"8, 

o2 = 2 X J()"7 

a.2 = 2 X J()"7. 
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When using these nominal values for leakage and update factors, the compression 

achieved in the ADPCM coder was significantly lower for the IIR version than for the FIR 

version. As a result, these values were experimentally determined to produce the 

maximum compression in the quantized error power. Each actual value used was 

increased by a factor of 100 for the PFREE, GUITAR, and VOICE signals, a factor of 

1000 for the TRANSIENT signal and were unchanged for the SINE signal. The FIR 

predictor used an update control variable, J.l, experimentally picked to provide the best 

compression for each signal and a filter order of six in each case. The actual values were 

4 x 104
, 6 x 104

, 10-5
, 5 x 10-6, and 6 x 10-5

, listed in the same order as the corresponding 

signal. The filter order of six was used for two reasons. First, to make it equal to the 

order of the AR portion of the IIR coder which also uses a predictor of order six. 

Naturally, this was not done in expectation of producing similar results but rather as a 

convenient starting point to experiment with. Secondly, experiments with predictors of 

order 2, 4, 5, 7, 8, and 10 all provided inferior results in terms of reducing the power of 

the error sequence. These experimental results were expected for the filter orders less 

than six but were inexplicable for filter orders greater than six. Nonetheless, the results 

were repeatable and six was determined to be the best filter order for this implementation. 

Time for compression and decompression was significantly lower for the FIR model as 

well. 

The power of the quantized error given for each coder was one of the parameters 

measured to determine the amount of compression achieved by each ADPCM coder. All 

five signals were compressed at two different SNR decibel levels. The SNR was increased 

by increasing the power of the input signal while maintaining the noise level at a constant. 

This was done by multiplying the original signal by a randomly selected scaling factor of2 

to produce a six dB increase. Each signal power was determined and Table S.llists the 

results. In this table, the original input signal power, cJ IIP , and the quantized error 
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power, shown as cr EQ ' are presented. The reduction in power is listed as PIR. Greater 

compression is represented by a higher percentage of power reduction, in the ADPCM 

coder itself The power reduction (in percentage) is determined by: 

2 
OEQ 

PIR = 1 - 2 • 
0]/p 

(5.3) 

The fifth and eleventh columns, respectively, show the power reduction for the IIR and 

FIR coders. A direct comparison between these columns shows that the FIR coder 

performed better, higher PIR, in this category than the IIR coder, though both coders 

significantly reduced the signal power as compared to the original signal variances. Of 

particular note is the large difference in compression between the two systems for a 

sinusoidal input. Bonnet (1990) prefaced this result by noting that the IIR is less effective 

on nonpersistently excited signals. In addition to measuring the power of each signal, the 

transmitted quantized error signal was input to the modular coding function and its output, 

W, coded using Huffinan coding to determine the compression ratios ( CR) achieved on 

each signal. Again, a higher compression ratio implies better compression than a lower 

ratio, where compression ratio, CR, is defined by: 

CR = total no. of sample points*8 
total no. of bits used (5.4) 

For the first four signals the compression ratio achieved in the IIR is superior, as shown in 

Table 5 .1- column three versus column nine, with the only exception being the sinusoid at 

both dB levels. The reduced signal power of the error sequence output from the FIR 

coder, allowing fewer code words to be generated by the Huffinan coder, would tend to 
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explain this exception. In the middle section ofTable 5.1, columns six and seven, the 

compression ratios achieved by sending the quantized error signal through the Huffinan 

coder without using the modular function are listed. This section is included to allow a 

tabular comparison of the compression achieved with and without the modular function. 

Thus column three compares directly to column six, for the FIR, and column seven to 

column nine, for the IIR coder. In every instance of comparison between the IIR systems 

and all but two cases of comparison between the FIR systems (Transient and Sine signals 

at lower db level) it can be seen that the CR achieved going through the modular function 

is greater. This result agrees with Einarsson's (1991) paper wherein he stated that the CR 

might theoretically increase. However, in most of the cases displayed in Table 5.1, the 

modular function CR was significantly better, exceeding Einarsson's projections of only 

modest CR increases. As stated above, the compression ratio, CR, was determined by 

totaling the number of bits used to encode the residuals and dividing that value into the 

number ofbits required to encode an 8-bit PCM signal. 

Table 5.2 (IIR coder) and 5.3 (FIR coder) show the results of the comparison of 

a number of other parameters, including average wordlength, Lavgs> entropy, (H), relative 

redundancy ratio, (RR), and maximum compression, (Rma:J All of the values used in both 

Table 5.2 and Table 5.3 come from the higher SNR data set of Table 5.1. Specifically, 

CR' s obtained for the IIR implementation at the higher SNR level in Table 5 .1, column 

three, coincide with the modular sequence values shown in Table 5.2, CR row. Likewise, 

compression ratio values obtained for the higher SNR levels in the FIR implementation of 

Table 5.1, column seven, correspond to the values in the CR row of Table 5.2. The tables 

are provided solely to assess the effectiveness ofEinarsson's modular function on the 

operation of each coder and not to form a basis of comparison between the two coders. 

Thus, each table displays an intra-coder only comparison between W(k) and eq(k). The 

reasoning for this limitation is provided below. In both Table 5.2 and 5.3, the results show 
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a smaller average wordlength for the modular sequence, W(k), as compared to the error 

sequence, eq(k), with the only exception being in the case of the IIR coder and the guitar 

signal where the opposite is true. Lavg is derived from the relation ofEquation 5.4: 

(5.5) 

where I; is the length of the codeword 'i', P; is the probability ofthe codeword 'i', andM 

is the total number of codewords. This is result is expected from Einarsson's (1990) 

conclusions. In addition to Lavg being smaller for W(k), Table 5.3 (FIR coder) shows, that 

the entropy, H, is higher, in each case for the FIR error sequence, eq(k), than for the FIR 

modular sequence, w(k). The entropy, defined in Equation 2.2 and repeated here as 

Equation 5.6 is: 

M 

H = 'JJP Jog:/' r (5.6) 
f,.] 

This development, in tum leads to the higher CR achieved on the FIR modular sequence 

as compared to the FIR error sequence. In Table 5.2 (IIR coder), this same relation, 

where a lower H leads to a higher CR, also holds true, again with the exception of the 

guitar signal. The guitar signal error sequence has a lower H than does the residual 

sequence. Despite this contradiction, the CR is still higher for the IIR modular sequence 

than it is for the IIR error sequence. The data is insufficient to explain this anomaly, 

however, since nine often such comparisons (across both Tables 5.2 and 5.3) follow the 

above relationship, it still appears valid. Relative redundancy gives a theoretical measure 

of how much a signal can be compressed and is higher for the modular sequence (than for 
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the error sequences) indicating a greater compressibility. The relative redundancy, RR, is 

defined by: 

H RR = 1-
log;M 

and is related to the maximum compression ratio by the following relation: 

1 
Rmax = 1 - RR' 

{5.7) 

{5.8) 

where H is the entropy of the signal, M represents the number of amplitude levels in the 

compressed signal, and Rmax is the maximum compression that can theoretically be 

achieved on the given signal. Since there are different numbers of amplitude levels in the 

FIR and IIR signals, theM parameter, the utility of comparisons between Tables 5.2 and 

5.3, is reduced. Each ADPCM coder and associated modular function reduces its error 

sequence to Q integer levels. However, the Q value is signal and coder system dependent. 

Therefore, just as comparisons cannot be made between the same parameters of different 

signals, no direct comparison can be made between the RR's or Rmax's of each coder 

because they depend onM which is Q dependent. Conversely, comparisons can be made 

between the CR of each coder system due to the way CR is defined which is simply as the 

ratio of the total number ofbits used to encode a given compressed signal to the number 

required to encode the same signal in PCM format. Thus, comparing CR's is just a simple 

comparison of total bits used, irrespective of other parameters. In a similar manner, 

although better compression is achieved when RR increases and likewise for the CR, these 

two parameters are not related. The RR is an imprecise theoretical value and is only a 

guideline used to determine a theoretical maximum compression which is usually never 

reached (Lynch, 1984). In any case, RR is dependent onM and Hand thus is a direct 
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function of compression achieved in the ADPCM coder itself Alternately, the CR is 

based on a comparison between the actual number of bits used in the Huffinan coder and 

the number which would have been required for PCM and is only indirectly related to 

coder compression. Therefore, RR and CR can move independently of one another. In 

effect then, RR' s only purpose is to calculate Rmax which was determined for both the 

modular sequence, W(k), output from the modular function and the original error 

sequence, eq(k), output from the ADPCM compressors. This term is included in Tables 

5.2 and 5.3 only to show that the actual CR achieved in the Huffinan coders did not 

achieve the theoretical maximum value. 

52 



IIR rcvr estimate of original PFREE signal 
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Figure 5.1 PFREE SIGNAL, Sampling Frequency£:= 8 kHz, time shown in no. of samples 
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IIR rcvr estimate of original GUITAR signal 
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Figure 5.2 GUITAR SIGNAL, Sampling Frequency±: = 8 kHz, time shown in no. of samples 
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IIR rcvr estimate of original VOICE signal 
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Figure 5.3 VOICE SIGNAL, Sampling Frequency f, = 8 kHz, time shown in no. of samples 
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IIR rcvr estimate of original TRANSIENT signal 
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Figure 5.4 TRANSIENT SIGNAL, Sampling Frequency f, = 8 kHz, time shO\vn in no. of samples ~. 
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IIR rcvr estimate of original SINE signal 
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Figure 5.5 SINUSOID SIGNAL, Sampling Frequency t: = 8kHz, time shO\m in no. of samples 
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MOD FUNCTION W/OMOD MOD FUNCTION 

SIN IIR IIR IIR IIR FIR FIR FIR FIR 

dB Signal CR d2 EQ PIR CR CR dl-IIP CR dl-EQ P/R 

% % 

20 P:free 2.00 0.60 14.0 0.81 0.62 0.70 1.36 0.49 30.0 

20 Guitar 1.40 1.20 54.0 0.69 0.61 2.60 1.20 0.60 77.0 

26 Voice 6.60 5.20 48.0 1.74 1.88 9.90 6.20 4.63 53.0 

28 Trans 3.20 11.7 23.0 2.95 3.17 15.1 3.10 6.01 60.0 

25 Sine 0.80 11.8 01.0 0.52 0.92 12.5 0.91 0.89 93.0 

dB 

26 Pfree 2.10 9.30 37.0 0.85 0.68 14.8 1.54 3.79 74.0 

26 Guitar 1.60 50.0 59.0 0.72 0.65 122 1.40 7.52 94.0 

32 Voice 7.01 419 42.0 2.01 2.03 723 6.06 314 57.0 

34 Trans 3.10 792 52.0 2.66 2.08 1662 2.70 612 63.0 

31 Sine 1.10 19.4 09.0 0.51 0.87 21.2 2.00 4.04 81.0 
TABLE 5.1 FIR and IIR Compression Ratios (CR) and Power Reductions (PIR) 
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SIGNAL pfree guitar voice transient sme 

SYSTEM w eq w eq w eq w eq w eq 

Rmax 2.78 4.17 2.78 2.86 14.3 7.14 3.13 3.57 3.28 2.13 

RR 0.64 0.76 0.64 0.65 0.93 0.86 0.68 0.72 0.69 0.53 

Lavg 1.87 2.26 2.41 2.37 1.47 1.91 1.61 2.13 3.20 3.85 

H 1.76 1.78 2.36 2.31 0.19 0.29 2.60 2.74 2.07 3.15 

CR 2.10 0.85 1.60 0.72 7.01 2.01 3.10 2.66 1.10 0.51 

Total Bits 11.6 28.4 30.6 65.1 2.20 19.9 13.4 19.6 22.3 28.4 

(x103
) 

TABLE 5.2 (IIR) Comparison of Coding Parameters for Residual, W(k), vs. eq(k) 

SIGNAL pfree guitar voice transient sme 

Parameter w eq w eq w eq w eq w eq 

Rmax 3.57 3.13 4.55 2.04 7.69 3.57 3.13 3.57 2.27 3.23 

RR 0.72 0.68 0.78 0.51 0.87 0.72 0.68 0.72 0.56 0.69 

Lavg 1.56 2.17 1.53 1.61 1.05 1.21 2.31 3.17 1.89 2.07 

H 1.46 2.13 2.69 2.96 0.37 0.73 2.14 2.91 1.75 3.01 

CR 1.54 0.68 1.40 0.65 6.06 2.03 2.70 2.08 2.00 0.87 

Total Bits 20.8 23.3 33.2 61.6 5.68 19.7 13.4 17.1 15.3 18.4 

(x103
) 

TABLE 5.3 (FIR) Comparison of Coding Parameters for Residual, W(k), vs. eq(k) 
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VI. CONCLUSIONS 

This thesis set out to compare the performance of two versions of ADPCM data 

compression systems. The primary objective was to use a set of evaluation criteria to 

determine, for a given implementation and a given set of algorithms, whether the FIR 

ADPCM compressor performed better than the IIR ADPCM compressor or vice versa. A 

Huffinan binary coder/decoder was added to the basic ADPCM compressors thus 

completing an entire data compression system. Therefore, a comparison was also made of 

each associated binary coder's performance. The specific results of the testing are detailed 

in the previous chapter. It must be noted that these results are valid only for the specific 

implementation used in this thesis, which included a FIR filter of order 6 only, and do not 

necessarily hold for different implementations, filters of different orders, or other changes. 

As stated in the previous chapter, a FIR filter of order six was experimentally picked on 

the basis of providing better compression in the ADPCM coder than a sampling of filters 

using different orders. 

Table 5.1 displays the results of the main comparison between IIR and FIR 

ADPCM compressors. The power reduction, (P/R), percentage was used to determine 

the percentage by which each compressor reduced the original signal power. Clearly, the 

FIR performed far better than the IIR in this category. This fact was particularly 

highlighted by the greater power reduction the FIR compressor achieved using the 

sinusoidal signal; a non-persistently excited signal known to be problematic for the IIR 

compressor, (Table 5.1, column five -rows eight and fourteen vs. column eleven- and the 

same rows). Not visible in any of the tables was the fact that the FIR coder 

implementation compressed each signal approximately 40% faster than did the IIR coder. 

As dramatic as this difference was, since the IIR coder was not optimized for the fastest 

possible speed, this result cannot be assumed to always hold for other implementations. 
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The second major analysis focused on how effectively the modular function performed its 

job. The purpose of the modular function was to reduce the size of the codepage required 

to transmit the compressed signal. In order to accomplish this task, the average 

wordlength, Lavg> was determined; where a smaller Lavz indicated a smaller codepage. The 

compression ratio, ( CR), of the binary coder was also calculated to help facilitate the 

comparison of each modular functions' effectiveness. Thus, in Table 5.2 and Table 5.3, 

both of which refer only to data taken from the higher SNR set of Table 5.1, both the 

error sequence, eq, and the modular sequence, W, were run through the Huffinan coder. 

Table 5.2 shows the results from the IIR coder, where the modular sequence had a smaller 

Lavz than the error sequence for all signals except the GUITAR signal. The FIR modular 

function produced a smaller modular sequence Lovg for all five signals (Table 5.3). 

Furthermore, the CR of each signal was greater for the modular sequence than for the 

error sequence. This increase in CR was a theoretical possibility foretold in Einarsson's 

work. This result held equally well for the FIR coder as well as the IIR coder. Thus, the 

addition of the modular function did improve the performance of both ADPCM 

compression systems as postulated by Einarsson. The compression ratios which are less 

than one show that when the sequence was coded with the Huffinan coder, the codepage 

required to transmit the sequence actually expanded rather than become compressed. 

This expansion phenomenon occurs when the input sequence statistics do not match the 

statistical expectations of the binary coder, resulting in a mismatch which causes the data 

to expand rather than compress. It is also possible that this statistical mismatch is what 

sometime caused the CR to move in the opposite direction from what the RR would cause 

one to expect (Tables 5.2 and 5.3). 

The limited data set and restricted applicability of the data still make the results 

somewhat inconclusive and further testing is needed to completely specifY each system 
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capabilities. This inconclusivity is also partly due to the lack of a standard comparison 

criteria upon which to definitively judge different types of ADPCM systems. Additional 

testing might concentrate on different types of compression ratios, see Lynch (1985) for 

more discussion on types of compression ratios, other SNR' s and certainly different types 

of data signals and filter orders, as starting points for further research. 
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APPENDIX 

(MATLAB CODE) 
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A. FIR ADPCM Implementation 

~-------------------------------------------------------------------------------
~ FINAL OUTPUT IS SEST1 
~ LMS of order M=6 using round for Q wrt error, mu values signal dependent 
~ This program simulates an ADPCM compression scheme using an fir predictor 

~-------------------------------------------------------------------------------
clear 
clg 
k=1:2000; 
~load input signal 
mu=X; 
M=6; 
A=20; 
u=A *[zeros([1,M]),s]; 
ul=round(u); 
N=length(u); 
shat=O; 
w=zeros(M); 
e=O; 
eq=zeros( 1 ,M); 

cw=O; 
minV1=min(u1); 
maxV1=max(u1); 
mod1=maxV1-minV1; 
c 1 =zeros( 1 ,mod 1 ); 

~ implement LMS algorithm 
for n = M+1:N, 

end 

eq 1 =eq(n-1:-1 :n-M)'; 
shat = w(:,n-1)' *eq1; 
e = ul(n) - shat; 
eq(n) =round( e); 
[j,i] = min(abs(Q-eq(n))); 
cl(i)=cl(i)+ 1; 
w(:,n)=w(:,n-l)+mu*eq1 *eq(n); 

~no. of data points 

~ step size mu 
~ predictor length 
~ scaling factor used to change SNR 
~ i!p scaled by A 
~ round input 
~ data length 
~ predictor output 
~ initial weights 
~ initial error 
~ predictor input 

~ get minimum value of input for H calc. 
~ get max value of input for H calc. 
~ determine mod function value 

~ predictor output 
~ error: voice signal 
~ quantizer output 
~ get index of quantizer value 
~ update counter 
~ recalculate weights 
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W=max( eq); % get max value of eq to det. mod value 
V1 =min( eq); % get min value of eq to det. mod value 
mod=W-V1+1 %get mod value for error sequence 
minV=V1; %store value ofV1 inminVvariable 
V1=-V1; %negate min value ofeq to make it positive 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This section computes the probability vector for the error vector eq 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C1=sum(c1); %total number of data values 
Pe=c 1./C 1; % vector of probabilities 
Pe=sort(Pe); %sort prob vector from low to high 
pe=fliplr(Pe ); % arrange prob vector from high to low 
% Initialize Modulus Function 
c=zeros(1,mod); 
wk=zeros(1,M); 
Q1=[0:1:mod-1]; 
R=zeros(1,mod); 
% Modulus Function which takes values from -mod to +mod and reduces the range 
% to 0 to +mod to reduce the number of codewords necessary to transmit the 
% quantized error signal 
for n = M+ 1 :N, 

end 

eqa(n)=V1+eq(n); 
wk(n)=eqa(n)-eqa(n-1 ); 
O,i] = min(abs(Q1-wk(n))); %get index of quantizer value 
R(i)=R(i)+ 1; 
ifwk(n) >= 0 

else 

end 

wk1(n)=rem(wk(n),mod); %mod function 
O,i] = min(abs(Q1-wk1(n))); %get index of quantizer value 
c(i)=c(i)+ 1; 

wk1(n)=mod+rem(wk(n),mod); 
O,i] = min(abs(Q1-wk1(n))); %get index of quantizer value 
c(i)=c(i)+ 1; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This section computes the probability vector for the mod function o/p w' 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

C=sum(c); 
P=c./C; 
P=sort(P); 
p=fliplr(P); 

% total number of data values 
% vector of probabilities 
% sort prob vector from low to high 
% sort prob vector from high to low 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This section computes the probability vector for the residuals 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% 

wc=sum(R); 
Pw=R./wc; 
Pw=sort(Pw); 
pw=fliplr(Pw); 

% total number of data values 
% vector of probabilities 
% sort prob vector from low to high 

% Implement Huffman Encoder/Decoder using function huffinan4.m 
%which returns wkmod- rcvd residuals, CR-compression ratio, 
% Eb -bits in error, and 
%bits-total no. of bits used 

Ebl=O; 
CRl=O; 
Bits=O; 
%minV=O; % set to zero when calculating values for w' 

[ wkmod,H,L _ avg,Bits,E, CR,Lvar,Rmax,eff]=huffinan4( eq,mod,pe,min V); 
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%Implement FIR Receiver 
%Initializations 
L=length( eq); 
wr=zeros(M); 
shatr=O; 
sest=zeros(l,M); 
wkmod 1 =zeros(l,M); 

%FIR Receiver LMS algorithm 
for n=M+ 1 :N . 

% data length 
% assumed predictor coefficients 
% assumed predictor output 
% assumed rcvr output 

wkmodl(n)=rem(wkmod(n)+wkmodl(n-l),mod); 
eqhat(n)=wkmodl(n)-VI; 
eq2=eqhat(n-l:-l:n-M); 
wr(:,n)=wr(:,n-l)+mu*eq2'*eqhat(n); 
shatr=wr(:,n-l)'*eq2';%filter output 
sest(n) = shatr + eqhat(n); %est of noisy signal y 

end 
sest 1 =round( sest ); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This section computes signal to noise ratios and input and 
% output power ratios 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% 
Pn=l 
yo=xcorr( sest, 'biased'); 
yi=xcorr(u,'biased'); 
ra=length(yi)/2; 
ri=round(ra); 
rb=length(yo )/2; 
ro=round(rb ); 
Pi=lO*log(yi(ri)) 
Po=IO*log(yo(ro)) 
SNRo=Po/Pn 
SNRi=Pi!Pn 
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B. DR ADPCM Implementation 

~-------------------------------------------------------------------------------
~FINAL OUTPUT IS SRHATl 
~ transmitter uses backward adaption IIR. Rcvr uses error signal. 
~ ARMA MODEL MA part is B, AR part is A. 
~ This program simulates an ADPCM compression scheme using an iir predictor 

~-------------------------------------------------------------------------------

clear 
clg 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~ 

~ input data section 
~ 

~load guitar.mat; 
~d=g_synth(l :7025); 
~ 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%~%%%%%%%%%%%%% 

P=length( d); 
p=2; 
q=6; 
A=lO; 

~Initializations 
u=A *[zeros([l,q]),d']; 
N=length(u); 
k=length(u); 
uhatA=O; 
uhatB=O; 
uhat=zeros([l,q+ 1]); 
e=O; 
ul=round(u); 
eql(l:q)=zeros([l,q]); 
u2(1 :q)=zeros(l,q); 

~ ar predictor length 
~ rna predictor length 
~ scaling factor 

% data length 

% initial error 

~ predictor input 
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eq=zeros(1,q); 
P=zeros(1,q); 
shat=zeros(1,q); 
delta1 =1-1e-6; 
delta2=1-2e-6; 
a1 =zeros(l,p); 
a2=zeros(1,p); 
b=zeros(1,q); 
alpha1 =3 .2e-6; 
alpha2=2e-6; 
f=O; 
minV1=min(u1); 
max:V1=max(u1); 
mod1=max:V1-minV1; 
Q=(O:mod1-1); 
c1 =zeros(1,mod1 + 1); 

%DR Transmitter LMS algorithm 
for n = q+ 1 :N, 

% predictor coefficients 

% get minimum value of input for H calc. 
% get maximum value of input for H calc. 
% get value to use for modular function 

e = u1(n)- uhat(n); %error: voice signal 
eq(n)= round( e); 
O,i] = min(abs(Q-eq(n))); %get index of quantizer value 
c1(i)=c1(i)+ 1; 
eq1 = eq(n-1:-l:n-q); 
uhatB = b(:,n-1)'* eq1'; 
P(n) = uhatB+eq(n); 
shat(n) = P(n) + uhatA; 
shatl =shat(n:-l:n-1 ); 
uhatA = [a1(n-1) a2(n-1)]*(shat1)'; %predictor output 
uhat(n+1) = uhatA + uhatB; 
a1(n)=delta1 *a1(n-1) + alpha1 *sgn(P(n-1))*sgn(P(n-2)); 
if abs(a1(n)) <= 0.5, 

f 4*a1(n); 
else 

f 2*sgn(a1(n)); 
end 
a2(n)=delta2*a2(n-1)+alpha2*sgn(P(n))*[sgn(P(n-2))-f*sgn(P(n-1))]; 
if a2(n) > 0.75, 

a2(n)=0.75; 
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elseif a2(n) < -0.75, 
a2(n)=-0.75; 

else 
a2(n)=a2(n); 

end 
if al(n) >1-2"(-4)-a2(n), 

al(n)=l-2"( -4)-a2(n); 
elseifal(n) < -(1-2"(-4)-a2(n)); 

al (n)= -(1-2"( -4)-a2(n) ); 
else 

al(n)=al(n); 
end 
b(:,n)=deltal *b(:,n-l)+alpha2*sgn(eql)'*sgn(eq(n-1)); 

end 
clear a 1 a2 b uhatA uhatB P 

V=min(eq); 
minV=V; 
Vl=-1 *V; 
W=max(eq); 
mod=W+Vl+l 
wk=zeros(l,q); 

% get minimum value of eq to shift with 

% change min value to positive 
% get max value of eq to det. mod value 
% get mod value 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This section computes the probability vector for the error vector eq 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Cl=sum(cl); 
Pe=cl./Cl; 
Pe=sort(Pe ); 
pe=fliplr(Pe ); 
Ql=[O:l:mod-1]; 

% Initialize Modulus Function 
c=zeros(l,mod); 

% total number of data values 
% vector of probabilities 
% sort prob vector from low to high 
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w=zeros( 1 ,mod); 

% Modulus Function which reduces range toto 0 to +mod to reduce the number of 
% codewords necessary to transmit the quantized error signal 

for n = q+1:N, 
eqa(n)=V1 +eq(n); 
wk(n)=eqa(n)-eqa(n-1 ); 
O,i] = min(abs(Q1-wk(n))); 
w(i)=w(i)+ 1; 
ifwk(n) >= 0 

else 

wk1(n)=rem(wk(n),mod); 
O,i] = min(abs(Ql-wk1(n))); 
c(i)=c(i)+ 1; 

% adjust for min of eq 

% get index of quantizer value 

% mod function 
% get index of quantizer value 

wk1 (n)=mod+rem(wk(n),mod); 

end 
end 
clear eqa 

O,i] = min(abs(Q1-wkl(n))); %get index of quantizer value 
c(i)=c(i)+ 1; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This section computes the probability vector for the mod function o/p w' 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

C=sum(c); 
P=c./C; 
P=sort(P); 
p=fliplr(P); 

% total number of data values 
% vector of probabilities 
% sort prob vector from low to high 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This section computes the probability vector for the residuals w 
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% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

wc=sum(w); 
Pw=w./wc; 
Pw=sort(Pw); 
pw=fliplr(Pw); 

%Implement IIR Receiver 
%Initializations 
L=length( eq); 
wkmod1 =zeros(l,q); 
x(1 :q)=[zeros([1,q])]'; 
br=zeros( q); 
shatr(l :q)=zeros([l,q]); 
shatrA=O; 
shatrB=O; 
srhat=zeros([ 1 ,q]); 
Pr=zeros(l,q); 
arl=zeros(l,q); 
ar2=zeros(l,q); 
CR1=0; 
Bits=O; 
Eb1=0; 
minV=O; 

% total number of data values 
% vector of probabilities 
% sort prob vector from low to high 

% data length 

% predictor input 

% rcvr pred output 

% rcvr output 

%Implement Huffman Encoder/Decoder using function huffman4.m 
% which returns wkmod- rcvd residuals, CR-compression ratio, 
% Eb -bits in error, and 
%bits-total no. of bits used 

[ wkmod,H,L _ avg,Bits,E, CR,Lvar,Rmax,eft]=huffman4(wk1,mod,p,min V); 

for n=q+1:N 
wkmod1 (n)=rem(wkmod(n)+wkmod 1 (n-1 ),mod); 
eqhat(n)=wkmod1(n)-V1; %adjust for min ofeq 
eq2=eqhat(n-1 :-1 :n-q); 
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%llR Receiver LMS algorithm 
Pr(n) = shatrB + eqhat(n); 
srhat(n) = Pr(n) + shatrA; 
shatrB = br(:,n-1)'*(eq2'); 

end 

shatrA = [ar1(n-1) ar2(n-1)]*(srhat(n-1:-1:n-2))'; 
ar1(n)=delta1 *ar1(n-1) + alpha1 *sgn(Pr(n-1))*sgn(Pr(n-2)); 
ifabs(ar1(n)) <= 0.5, 

f 4*ar1(n); 
else 

f 2*sgn(ar1(n)); 
end 
ar2(n)=delta2*ar2(n-1)+alpha2*sgn(Pr(n))*[sgn(Pr(n-2))-f*sgn(Pr(n-1))]; 
if ar2(n) > 0.75, 

ar2(n)=0.75; 
elseif ar2(n) < -0. 75, 

ar2(n)=-0.75; 
else 

ar2(n)=ar2(n); 
end 
ifar1(n) >1-2/\(-4)-ar2(n), 

ar1(n)=1-2A(-4)-ar2(n); 
elseif ar1(n) < -(1-2/\(-4)-ar2(n)); 

ar1(n)= -(1-2/\(-4)-ar2(n)); 
else 

arl(n)=arl(n); 
end 
br( :,n)=deltal *br(:,n-1 )+alpha2*sgn( eq2)'*sgn( eqhat(n)); 

clear shatrB shatrA Pr ar1 ar2 br 
srhat 1 =round( srhat ); % round output to match rounded input 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This section computes signal to noise ratios and input and 
% output power ratios 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% 

Pn=l 
yo=xcorr( srhat, 'biased'); 
yi=xcorr(u, 'biased'); 
ra=length(yi)/2; 
ri=round(ra); 
rb=length(yo )/2; 
ro=round(rb ); 
Pi=lO*log(yi(ri)) 
Po=lO*log(yo(ro)) 
SNRo=Po/Pn 
SNRi=Pi!Pn 
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C. HUFFMAN Encodingillecoding Scheme 

% HUFFMAN4 finds the minimum variance Huffinan code for the symbol 
% probabilities entered by the user. The algorithm makes use of 
% permutation matrices for the combination and sorting of probabilities. 
% Permutation matrices are used because they provide a convenient record 
% of operations, so that the codewords can then be constructed fairly easily 
% once the combination and sorting of probabilities yields just two 
% probabilities. At this point a zero is assigned to one of the 
% probabilities and a one assigned to the other. The permutation matrices 
% are used to append additional zeros and ones as appropriate to obtain 
% the final codeword for each symbol. This program both encodes and decodes 
% Program revised to accept a vector of data (wk1) and with (mod) different 
% values and apply the generated Huffinan code (generated as CW and converted 
% to decimal- Cwdr) to the data and decode it at the receiver. 
% Written by K.L. Frack for EC4580 Course Project% Revised by M. V. Cooperwood 
% for data compression thesis 
% Last Update: 20 June 1995 
% clear Bits out H effRR Lavg Rmax 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%ThWUTTHESYMBOLSTOBECODED% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%function [ wkmod,H,L _avg,Bits,E,CR,Lvar,Rmax,eff]=huffinan4(wk1 ,mod,p,min V); 
disp('Commence symbol probability determination process') 

total=length(wk1 ); 
% determines the number of characters in the input file. 

% This section determines the frequency of occurrence of each unique character 
%(As) 
% in the input file and associates the frequency with the respective character 
%(X). 

%nb=input('Input the number ofbins (128 or 256) '); 
Z=[1:mod]; 
[As,X]=hist(wk1,Z); 

% This section determines calculates the integer length (1) of the respective codeword. 
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l=zeros(l,mod); %initialize length vector 
for 
%INPUT THE NUMBER OF SYMBOLS TO BE CODED. NO TRIVIAL 
% SOLUTION ALLOWED. 
q=O; % q = number of symbols. Set to 0 to ensure that 

%the loop 
% will be executed at least once 

while q<3 %Need at least 3 symbols for a non-trivial solution 
q=mod 
%q=input('Enter the number of symbols: '); %allows for keyboard input 

ifq<3, 
beep, 
disp('Trivial solution. Use a larger number ofsymbols.'), 

end 
end 

%ENTER THE SYMBOL PROBABILITIES. For keyboard input only 
% Note: The probabilities must sum to 1.00 and must be in entered in 
% descending order for the algorithm to work properly. Since the 
% algorithm 
% will give erroneous results if these errors are overlooked, error 
% checking 
% routines are included in later steps. 
%disp(' ') 
%disp('Enter the symbol probabilities (in descending order).') 
%for=l:q, 
%p(i)=input([' Enter the probability of s',int2str(i),': ']); 
%end 
% ENSURE THERE ARE ENOUGH PROBABILITIES ENTERED 
% If <RETURN> is inadvertently struck before a probability is entered 
%the 
% input command could yield a probability vector which is too small. 
%This 
% causes the program to crash. This procedure prevents this from 
% happening 
% by setting all of the missing probabilities to zero. In this event the 
% user can correct the wrong probabilities in a later step. 
%iflength(p )<q, 
% p=[p;zeros(q-length(p),l)]; 
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%end 
% ERROR CHECK THE SYMBOL PROBABILITIES 
correct=1n1

; %correct = 1n1 ensures at least once through the error 
%checking 
% loop. 
count=O; 
% count = 0 makes the loop a little simpler. It 
%prevents % the 
% program from prompting for a correction until the loop 
% has % been executed at least once. 
while correct -= Y % Keep looping until correct. 
if count>O; % This procedure will be executed only if there are 

% errors to be corrected. 
s=input('Enter the index of the incorrect probability: 1

); 

p(s)=input(['Enter the correct probability for s',int2str(s),': 1
]}; 

end 
count= I; 
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