
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1996-03

Analysis and performance comparison of adaptive

differential pulse code modulation data compression systems

Cooperwood, Michael Vonshay.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/32143

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

ANALYSIS AND PERFORMANCE
COMPARISON OF ADAPTIVE DIFFERENTIAL

PULSE CODE MODULATION DATA
COMPRESSION SYSTEMS

by

Michael Vonshay Cooperwood, Sr.

Thesis Advisor:
Co-Advisor:

March, 1996

Monique P. Fargues
Ralph Hippenstiel

Approved for public release; distribution is unlimited.

19960503 081 ,~,-~--~-~.,.., ,..,,..""' l
~----,~~.-;.·---"~ w

REPORT DOCUMENTATION PAGE Fonn Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instruction. searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information. including suggestions for reducing this burden, to Washington Headquart= Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Hi~wav, Suite 1204. ArliMton. VA 222024302, and to the Office of Management and Budget, Paper Nork Reduction Project (0704-0188) Washington DC 20503.

I. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

MARCH1996 - Master's Thesis

4. mLEAND SUBTITLE ANALYSIS AND PERFORMACE COMPARISON 5. FUNDING NUMBERS

OF ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION DATA
COMPRESSION SYSTEMS

6. AUTHOR(S) Michael Vonshay Cooperwood, Sr.

7. PERFORMING ORGANIZATIONNAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCYNAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCYREPORTNUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release· distribution is unlimited.

13. ABSTRACT (maximum 200 words)
Advances in audio data compression are largely driven by the need to conserve transmission rate or bandwidth, while maintaining the

ability to accurately reconstruct the signal at the receiver. This report examines data compression methods with an emphasis on techniques
for the compression of audio data. An overview of data compression schemes is presented to provide the background for a performance
comparison between selected versions of data compression systems featuring adaptive differential pulse code modulation (ADPCM) schemes.
Two different types of data compression systems are investigated; IIR and FIR impulse implementations. A modification to the basic
ADPCM system using a modular function is implemented. The modular operation results in a smaller size codebook and prevents data
expansion when the source is not matched to the code. This modification is utilized for both types of ADPCM coders compared. To
complete the compression system Huffman coding, is employed to encode and decode the compressed data to and from binary form.

14. SUBJECT TERMS ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION
DATA COMPRESSION SYSTEMS PERFORMANCE r"MPARISON.

17. SECURITY CLASSIF1CA- 18. SECURITY CLASSIF1- 19. SECURITY CLASSIF1CA-
TION OF REPORT CATION OF TillS PAGE TION OF ABSTRACT

Unclassified Unclassified • Unclassified
NSN 7540-01-280-5500

1

15. NUMBER OF

PAGES 94
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Author:

Approved for public release; distribution is unlimited.

ANALYSIS AND PERFORMANCE COMPARISON OF
ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION

DATA COMPRESSION SYSTEMS

Michael V. Cooperwood, Sr

Lieutenant, United States Navy

B.S., University of South Carolina, 1986

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

Michael V. Cooperwood, Sr.

Approved by:

m

IV

ABSTRACT

Advances in audio data compression are largely driven by the need to conserve

transmission rate or bandwidth, while maintaining the ability to accurately reconstruct the

signal at the receiver. This thesis examines data compression methods with an emphasis

on techniques for the compression of audio data. An overview of data compression

schemes is presented to provide the background for a performance comparison between

selected versions of data compression systems featuring adaptive differential pulse code

modulation (ADPCM) schemes. Two different types data compression systems are

investigated; IIR. and FIR impulse systems. A modification to the basic ADPCM system

using a modular function is implemented. The modular operation results in a smaller size

codebook and prevents data expansion when the source is not matched to the code. This

modification is utilized for both types of ADPCM coders compared. To complete the

compression system, Huffinan coding is employed to encode and decode the compressed

data to and from binary form.

v

Vl

TABLE OF CONTENTS

I. IN1'R.ODUCTION .. 1

A LITERATURE REVIE.W ... 1

B. DATA COMPRESSIONBACKGROUND .. ; 2

C. TIIESIS O"VER.VIE.W ... 3

II. LOSSLESS COMPRESSION TECHNIQUES .. 5

A TIIEORETICAL BACKGROUND ... 5

B. SHANNON-F .AN"O CODING ... 6

C. HUF'F1v.lAN" CODING ... 9

D. ARITITh1ETIC CODING .. 16

III. LOSSY DATA COMPRESSION TECHNIQUES ... 21

A LOSSY COMPRESSION TIIEORETICAL BACKGROUND 21

B. SCALAR .AN"D VECTOR QU.AN"TIZATION ... 22

C. MULTIP ATH SEARCH CODING .. 24

1. TREE/TRELLIS CODING ... 24

2. CODEBOOK CODING .. 26

D. PREDICTIVE CODING ... 28

1. DELTAMODULATION ... 28

2. DIFFERENTIAL PULSE CODE MODULATION 28

IV. LOSSLESS ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION 31

A IN1'R.ODUCTION .. 31

B. FINITE IMPULSE RESPONSE FILTER32

C. INFINITE IMPULSE RESPONSE FILTER ... 36

Vll

D. MODULAR ARITHMETIC RJNCTION .. 39

V. PERFOIDvfANCE COMPARISON45

A OVERVIEW ... 45

B. PRESENTATION OF DATA46

VI. CONCLUSIONS ... 61

APPENDIX (l\1ATLAB CODE) ... 65

A FIR ADPCM Implementation .. 66

B. IIR ADPCM Implementation ... 70

C. HUFFMAN Encoding/Decoding Scheme .. 77

LIST OF REFERENCES .. 81

INITIAL DIS1RIBUTION LIST .. 83

Vlll

ACKNOWLEDGEMENT

The author would like to express his sincere gratitude and thanks for the
extraordinary support of his wife, Linda, and sons Ashanta and Hampton, without whose
understanding and forbearance this thesis could not have been completed.

The author wants to thank Prof Fargues and Prof Hippenstiel for their guidance
and patience during the work in performing this investigation.

IX

I. INTRODUCTION

A. LITERATURE REVIEW

The efficient digital representation of data and speech signals offers the possibility

to increase the data rate transmitted over existing digital transmission networks by

providing bit rate reductions as high as 16:1 in comparison with the use oflogarithmic

pulse code modulation schemes. Data compression is the application of methods to

process information to obtain a more compact representation without suffering

unacceptable loss of fidelity or accuracy (Davidson and Gray, 1976). Compression

techniques are based on either lossy or lossless properties. Lossless methods generate an

exact duplicate of the original signal upon decompression, whereas, lossy methods trade

complete accuracy for increased compression. Some of the lossless algorithms developed

for data compression include Shannon-Fano (Lynch, 1985), Huffinan (Knuth, 1985), (Lu

and Gough, 1993), and Arithmetic (Langdon, 1984) schemes. Lossy methods include

various types of quantization coding, transform coding and predictive coding (Lynch,

1985), (Cappellini, 1985), (Sibul, 1987). Audio (speech, music, etc.) compression

research has traditionally been separate from other areas. Since sound is often an integral

part of other data types, this area of research is becoming increasingly more important

with currently evolving applications. This thesis examines data compression techniques

with a specific emphasis on compressing audio signals (Rabiner and Schafer, 1978). The

basic theory of data compression, including a discussion of some of the most common

techniques, is explored. A review of basic ADPCM coders, along with an improvement

using modular arithmetic is presented (Sibul, 1987), (Einarsson, 1991). These latter

techniques are the structures implemented for a comparison of the FIR and IIR. versions

ofthe modified ADPCM algorithms.

1

--~

B. DATA COMPRESSION BACKGROUND

Data Compression is the process used to reduce the physical space or bandwidth

used to hold or transmit a particular set of data. The electromagnetic spectrum, time

intervals and physical volumes are all compressible mediums. The following equation

shows the interrelationship of all three.

Volume =fCtime xbandwidth). (1.1)

In effect, reducing the volume which a set of data occupies, results in a reduction in

transmission time or bandwidth. C. E. Shannon originated this concept in 1948 which

initiated the branch called information theory. Shannon's work showed that the extent to

which a message can be compressed and then accurately restored is limited by its entropy.

Entropy is a measure of the message's information content: the more probable the

message, the lower its entropy. Entropy can also be represented as a measure of surprise;

the more unexpected are the contents of a message, the higher its entropy and vice-versa,

which results in more bits being required to encode it. Shannon used source entropY and

channel capacity as the basis for two basic theorems which set precise bounds to the

accurate representation and errorless transmission of data (Lynch, 1985). With unlimited

resources (time, computing power, etc.), then the code wordlength for optimal source

codes is approximately equal to (but not less than) the source entropy. Hence, source

coding, also known as entropy coding, is just another term for data compression.

Data compression methods take one of two approaches: lossless or lossy. Lossless

data compression algorithms perfectly reconstruct the compressed data without error.

Source message redundancy reduction is the method these algorithms employ to achieve

2

compression. Repetitive data in a message set or signal is eliminated by sending only the

changes and number of repetitions. Conversely, entropy reduction is the principle used by

lossy data compression techniques. The entropy reduction process results in an

information loss. Using a threshold to monitor sample values is one example of a lossy

compression process. In this case, compression is achieved by only transmitting the time

at which a sample value exceeds the preassigned threshold. Data compression systems

often combine both lossy and lossless techniques to achieve maximum compression.

C. THESIS OVERVIEW

The current chapter introduces the basic mechanics of data compression including

a review of the some of the relevant literature.

Chapter II describes the specifics of severallossless data compression methods.

Huffinan coding, perhaps the best-known method, used for encoding and decoding of the

compressed signals is featured. Related compression techniques, Shannon-Fano and

Arithmetic coding are also discussed.

Chapter III reviews lossy compression schemes. Some of the different types of

quantization schemes are presented. These include vector quantization and the featured

predictive coders.

Chapter IV introduces adaptive differential pulse code modulation. An

improvement to the basic algorithm designed to decrease the size of the codebook used

for channel coding is also explained.

In Chapter V, a comparative analysis of the FIR and IIR implementations of the

ADPCM is performed. Specific comparison points include compression ratio, power

reduction and speed of operation of each design.

3

The general conclusion reached from the comparative analysis of Chapter V are

presented in Chapter VI. Topics for further study are also discussed.

The Appendix lists the Matlab code used to evaluate and simulate the data

compression systems.

4

IT. LOSSLESS COMPRESSION TECHNIQUES

A. THEORETICAL BACKGROUND

Lossless data compression algorithms preserve all the information in the data so

that it can be reconstructed without error. Adhering to that constraint, their compression

ratios are significantly less than their lossy counterparts; averaging 2: 1 to 8: 1, depending

upon the redundancy of the information source and the efficiency of the algorithm.

Despite that fact, some applications such as storing or transmitting financial documents,

computer programs or numerical information, where a single bad bit could be

catastrophic, demand lossless techniques. A number of different lossless compression

methods with many variations exist. These techniques fall into the following general

categories: optimum source coding, nonredundant sample coding and binary source

coding. Again, note that coding techniques result in data compression, thus their

discussion is germane to a data compression exploration. Nonredundant sample coding

(NSC) makes use of threshold values and sends only time information. The dominant

type ofNSC is run-length coding and others include predictors and interpolators (Lynch,

1985). Since the timing information sent by this method is asynchronous, buffering is

required. The compression systems studied in this thesis are synchronous ADPCM

systems without buffering, and no further discussion of NSC occurs. The remainder of

this chapter discusses optimum source and binary coding methods.

Optimum source encoding starts with statistically independent samples and codes

them in such a way as to make the average word length equal to the sample entropy. This

method is also called entropy coding (since the code approaches the entropy of the

source). Entropy relates to randomness. If the contents of a message are unexpected,

5

then the entropy is high. If the contents of a message are as expected, then entropy is

low. Ifthe entropy of a data set is reduced, the lower entropy data set can then be

encoded with fewer bits resulting in data compression. Two main methods occupy this

category: Shannon-Fano and Huffinan coding.

B. SHANNON-FANO CODING

The Shannon-Fano coding procedure produces binary codes that are

instantaneously decodable. An explanation of instantaneous decodability is provided

later. One application of this technique is as a stage of the well-known PKZIP's (Apiki,

1991) "imploding" algorithm. Shannon-Fane code reaches an efficiency of 100% only

when the source message probabilities are negative powers of two. The following coding

procedure and example detail and illustrate the process (Lynch, 1985): 1) Arrange the

source message probabilities in descending order, 2) Divide the message set into two

subsets of equal, or almost equal, total probability and assign a zero as the first code digit

in one subset, and a one as the first code digit in the second subset, 3) Continue this

process until each subset contains only one message. The accompanying example shows

how the efficiency is computed.

EXAMPLE

The following set of messages with probabilities, Pi> is given:

m(i) 1 2 3 4 5 6 7

P; 0.4 0.1 0.1 0.1 0.1 0.1 0.1

The average codeword length, Lavg, is computed by the formula:

6

M
Lavg=~l(m(i))Pi,

i-1
(2.1)

whereMis the number of messages in the set and l(m(i)) represents the number ofbits in

the code for symbol m(i). Applying the procedure outlined earlier the following Shannon

Fane code would be generated as follows:

Split the seven messages into two groups with their probabilities being as equal as

possible. Thus, group one would be message one and message two with a total P; = 0.5,

and group two would be the four remaining messages, m3-m7, with the same total P;. The

next step would be to arbitrarily assign a '1' to group one and '0' to group two. The

process would be repeated; group one would be split into two groups and a second '1'

would be arbitrarily assigned to message one, ml, and a '0' to m2. This process is

arbitrary because it could have been done in the reverse, assigning a '0' to m1 and a '1' to

m2. Likewise, group two would be split into two subgroups, m3 and m4 in one group and

m5-m7 in another group. Again, each member of the first subgroup would be assigned a

one and each member of the second subgroup would append a zero onto its current code.

As per the procedure, the process would continue until each message had been assigned a

unique, instantly decodeable codeword. The entire process is shown in Table 2.1. Using

Equation 2.1, Lavg is computed to be 2. 7 bits:

[2(0.4) + 2(0.1) + 3(0.1) + 3(0.1) + 3(0.1) + 4(0.1) + 4(0.1) = 2.7 bits].

By comparison, the entropy is given by:

7

M

H=-JJP/og .J'z-
t-1

Original New New Or g.

Group Grp Grp msg

m(i) Code Code Code m(i) P ..

ml2 1 ml 11 ml 11 ml 0.4

m2 10 m2 10 m2 0.1

m34567 0 m34 01 m3 011 m3 0.1

m4 010 m4 0.1

m567 00 m5 001 m5 0.1

m67 000 m6 0.1

m7 0.1
TABLE 2.1 Shannon-Fano Codeword Construction

This value is computed to be 2.522 bits resulting in an efficiency of93.4%, where

efficiency, 1], is given by:

H
, = Lavg"

(2.2)

Code

11

10

011

010

001

0000

0001

(2.3)

Shannon-Fano coding has a close relative, called Huffinan coding, which is well known to

have a significantly greater efficiency. Increased efficiency is one reason Huffinan is a

preferred technique.

8

C. HUFFMAN CODING

1. Static Huffman Coding

Huffinan coding is probably the best-known method of data compression and has

many practical applications. These include the last stage of JPEG compression and the

:MNP-5 modem data compression standard (Apiki, 1991). The basic premise ofHuffinan

coding is the creation of a binary tree with internal nodes, called branches, that represent

the path to external nodes, known as leaves. There is one leaf on the tree for each symbol

in the data set. These leaves are combined by connecting them to branches. The tree

begins at a branch called the root, which has no number assigned to it and has a probability

of one. The binary numbers encountered along the path to the leaves comprise the

variable-length codes for each symbol of a given sequence, with each code being

represented by an integral number of bits. Symbols with higher probabilities are given

shorter bit codes while symbols with lower probabilities are assigned longer bit codes and

thus, longer branches on the tree. The Huffinan tree is constructed, after determining the

frequency of occurrence or probability for each symbol in a source, by repeatedly

combining the two least probable symbols at each stage. This process continues until the

original source is reduced to only two symbols. These two symbols are respectively

assigned the bit values of '0' and '1'. The codes for the previous reduced stage are then

determined by appending a '0' or a '1' to the right of the code corresponding to the two

least probable symbols, and so on. Once each symbol in the original source is assigned a

binary code, the Huffinan coding is complete. Table 2.2 shows an example source

reduction and Table 2.3 performs the resulting codeword construction for generating the

Huffinan code (Apiki, 1991), (Langdon, 1984).

9

Table 2.2 displays a source reduction process for a source with five symbols; ml through

m5. Symbol probability is determined by dividing the total number of occurrences, No.

occ, of each symbol by the total number of symbols. The two lowest probability symbols

are combined to make a new symbol with a probability equal to that of the combined

symbols. The next two lowest probabilities are then combined. When symbols of equal

probability are encountered, they can be combined in any order; with an optimal code still

resulting. The Huffman code is optimal in that it produces a code with the minimal

average word length. Thus, in Table 2.2, m5 could have been combined with m3, or m2,

not just m4. No ambiguity results from the arbitrary combinations since each symbol is

given a unique binary code. The construction of this code is depicted in Table 2.3. The

combination process continues until only two symbols remain. These symbols are

assigned the codes of'O' and '1'; shown in Table 2.3. The reconstruction occurs from the

right side of the table, starting with the final two reduced source symbols from Table 2.2.

Original source New Symbol New Symbol New Symbol

symbol Pro b. symbol Prob. symbol Pro b.

m(i) No Prob

occ

ml 20 0.4 ml 0.4 ml 0.4 m2345 0.6

m2 10 0.2 m2 0.2 m345 0.4 ml 0.4

m3 10 0.2 m3 0.2 m2 0.2

m4 6 0.2 m45 0.2

m5 4 0.08
TABLE 2.2 Huffinan Source Reduction Procedure

10

The higher probability symbol is arbitrarily assigned the value of '0' in Table 2.3.

It could have been assigned a '1' and the lower probability symbol could have received a

'0'. The symbol which is a combination of symbols (m2345) is broken into two symbols

meaning there are now three. A '0' or a '1' is appended to the right of the original code of

the two least probable symbols, following whichever convention was established with the

first two symbols, ml and m2345. This process continues until a codeword is generated

for each of the five original symbols. Table 2.3, which shows how to construct a

codeword, must also be transmitted to the receiver so that the receiver may correctly

decode received messages.

From Table 2.3, it is easily seen that the final codewords have the unique prefix

property, thus no single code is a prefix (or subset) for another code. This is what is

meant by instantaneously decodable. Each symbol can be transmitted and immediately

decoded without confusion with any other symbol as the symbols arrive because the

decompressor must already have a copy of the probability table. In communication

channel applications, Huffinan compression is further limited since a copy of the

probability table must be transmitted with the compressed data to allow decompression at

the receiver (Cappelini, 1985). As the decompressor receives code, it processes it in

reverse. The decompressor starts at the tree's root and follows the sequence of incoming

'l's and 'O's through the tree until it reaches a leaf The symbol attached to that leaf is the

decoded character and the next bit received obviously starts a new character. Therefore,

there is no need for the receiver to explicitly know the length of each symbol (Apiki,

1991). The requirement that the number ofbits for each code must be an integer is a

restriction on the Huffinan codes efficiency. The ideal binary code length for a

symbolm(i), given by:

11

l(m(i))=-logj'(i), (2.4)

where l is the wordlength and P(i) is the probability of symbol m(i), is achieved only

when its probability is a negative power of two, such as 112, 1/4, 1/8, and so on, which

results in integer values for the wordlengths. In that case, no bits would be wasted while

representing decimal values like 2.67 bits, for example, since that word length would

require three bits wasting part of the third bit.

Original source Reduced Reduced Reduced

source source source

m(i) Codeword

ml 1 ml 1 ml 1 m2345 0

m2 01 m2 01 m345 00 ml 1

m3 000 m3 000 m2 01

m4 0010 m45 001

m5 0011

TABLE 2.3 Huffinan Codeword Construction Procedure

Thus, the chance of the Huffman code being set to ideal lengths is unlikely. The

example described in Tables 2.2 and 2.3 accomplishes bit compression by reducing the

average symbol length (Lavg), Equation 2.5, from three to 2.52.

The original average symbol length is three because three binary bits are required to

12

(2.5)

differentiate between five symbols. The calculation of the compressed Lavg, using

probability values from Table 2.2 and message lengths from Table 2.3 is:

[Lavg = 1(0.4) + 2(0.2) + 3(0.2) + 4(0.2) + 4(0.08) = 2.52 bits].

2. Dynamic Huffman Coding

A dynamic version ofHuffman compression can construct the Huffman encoding

tree on the fly while reading and actively compressing, effectively eliminating the above

efficiency limitations. The encoding tree is continually corrected to reflect the changing

probabilities of the input data (Knuth, 1985). Therefore, instead of first determining

probabilities and then encoding as in static Huffman, the adaptive model initially assumes

all symbol weights are zero and counts the symbol frequencies as it encodes them. After

reading each symbol, the Huffman code is modified to account for the new character.

Similarly, the decoder learns the symbol frequencies and updates the Huffman code in the

same manner. The encoder and decoder remain synchronized because any changes to

symbol probabilities in the encoder also occur in the decoder. The number of different

symbols must be sent to the receiver to allow decoding of the compressed data. The

adaptive Huffman tree is generated starting with an uninitialized tree and an empty leaf,

which represents a node with no symbol attached to it, of zero probability. The following

example, (Apiki, 1991), demonstrates the process. The input symbols are: "This is",

including the space.

The example shows that the tree starts with the empty leaf, e0 and then sends the

actual ASCII character the first time it encounters a symbol, generating a code for each

symbol in the process. Therefore, when the T is received the tree looks like the left-most

structure in Figure 2.1. The circle represents the root and if only a 'T' were being

transmitted, then the ASCII character for a 'T' would be actually sent. By the time the

13

entire word 'This' has been seen by the encoder the tree has been changed to match the

structure second from the left in Figure 2.1. The second time a symbol appears, its code is

transmitted instead of its literal symbol. As the frequency of a symbol increases, in this

case the symbols 'i' and's', it move higher up the tree towards the root.

Input: This(space)is Root

)\ B•~~chl f<'--~)\
eo T1 2 2 2 3 3 4

1\ 1\ !\ 1\ 1\ 1\
1 11 TI ht

1\
ht it T 1 2

1\
hi sz i 2 2

/\
eo SI eo (space)1 eo (space)1

Tree after T After s After (space) Final Tree
Output: TOhOOil OOsOOO(space)Ollll

Figure 2.1 Dynamic Huffman Tree Construction (Apiki, 1991)

The initial tree, held by both the compressor and decompressor, has only the
root and a single empty leaf, e0• The compressor starts the process by
reading in a character. It attaches this character to the 1-branch of the root,
leaving the empty leaf on branch '0'. It then sends this character to the
decompressor as a literal ASCII code, and the decompressor make the same
adjustment to its tree.

For each character read thereafter, the compressor performs the
following steps. First, it check to see if the code is in the encoding tree. If the
code is there, the compressor sends it in the same fashion as in the static case.
If not, it sends the code for the empty leaf Then it sends the new character
as a literal ASCII code. Finally, the compressor adds two codes, one for a
new empty leaf on branch 0 and one for the new code on branch 1. When the
tree is full, the compressor just changes the last empty leaf node into the last
character (Apiki, 1991).

14

In the example above, there are four trees shown. Each tree is labeled underneath,

showing what the last character processed was. The intermediate trees which show the

current tree structures after the 'h', and the first and second 'i's are not shown. The

compressor starts out with just the empty leaf and then reads in character 'T'.

The 'T' is placed on branch '1' and the empty leaf is placed on branch '0'. As the next

character, 'h' is read in, the procedure in the quote above is followed. Since the 'h' is not

already in the table, the code is sent for the empty leaf and the ASCII code for an 'h' is

transmitted. Then the compressor builds a new tree, with the empty leaf attached to the

root by branch '0' and the other two symbols 'T' and 'h' attached to the root by branch '1'

which will have a weight of two; one for the number of occurrences of each symbol. The

process continues with each new symbol. The numerals in Figure 2.1 indicate the weights

of the nodes below it. This value must be updated so that when a node has a weight

higher than a node above it, the two nodes are swapped, with the child nodes remaining in

their same places. This is observed in the final structure where the 's' with a weight of

two has been swapped to a higher node with the 'T' of weight one. These swaps are

necessary to make the tree adapt to the changing probabilities of the data symbols. Again,

note that each character is transmitted as it is read in and then a new tree structure defined

which allows the decompressor to simultaneously make the same changes to its tree. The

final output is shown on Figure 2.1 and the codes are deciphered as follows: The literal

ASCII code for a 'T' is transmitted for the 'T', then the code for the empty leaf, '0' and

the literal code for 'h' are sent for the 'h', next the new code for the empty leaf'OO' is sent

along with the literal code for the first 'i', 100s, where 100 is the new code for the empty

leaf is sent for the first 's; 000(space) represents the space, then the Huffinan code '0 1' is

15

transmitted for the second 'i' and the final 'Ill' is the code for the second 's'.

The other major type oflossless data compression explored is binary source

coding. Though binary source codes are typically grouped as redundancy-reduction

methods, and thus usually require buffering, the next technique under consideration is very

similar to Huffman coding. Its advantages over Huffman are presented next.

D. ARITHMETIC CODING

Though Huffman coding is largely considered the most efficient fixed-length

lossless coding method, it has one major disadvantage. That is the requirement that

symbol codes be an integral number of bits. As earlier stated, this only occurs for

probabilities which are a negative power of two. If the symbol probability, P;, is 1/5, for

example, the optimum code length is given by:

-loglP)=2.32 hits. (2.6)

Huffman code would use two or three bits to encode the symbol. Clearly the compression

is neither completely efficient nor maximum. Arithmetic coding provides a viable solution

to this limitation. This technique represents the entire message as a number stream

(Langdon, 1984). The entire symbol domain is encompassed on the interval of real

numbers between zero inclusive and one exclusive, [0, 1). Each symbol is assigned a

range within the interval, corresponding to its probability.

16

EXAMPLE!

Table 2.4 demonstrates a sample interval range assignment. The initial range is [0, 1).

The initial range is divided up amongst the symbols starting with the highest probability

symbol 'I'. The 'I' is assigned the interval [0.0, 0.4), next the second symbol, 'T', is

assigned twenty five percent of the total range [0, 1), starting where the last symbol's

interval ended, 0.4, since the symbol intervals cannot overlap. The procedure is followed

until all symbols have been assigned a portion ofthe initial range, [0, 1). Table 2.5

demonstrates the encoding of the word 'timing' based on the range assignments of Table

2.4. The first symbol to be coded assumes the same range on the initial interval, [0, 1), as

it is assigned in Table 2.4. Therefore, the current range is now [0.4, 0.65).

As each additional symbol is processed, the range is narrowed to that interval

within the current range which is allocated to the symbol. So when the 'I' is to be

processed its probability, P;, is multiplied by the current range producing the new range of

0.1. [0.4 * 0.25 = 0.1]. The greater a symbol's probability, the less it will reduce the

current range; resulting in fewer bits being added to the code. This can be seen from the

bracketed Equation above where the P; for an 'I' is 0.25, which means the previous range

is reduced to 25% ofthe initial range of0.4 or 0.1. The choice ofwhere to place the new

interval within the range of [0.4, 0.65) is arbitrary. Thus, the new interval could be [0.49,

0.59) or any other 0.01 interval within [0.4, 0.65). In Table 2.5, the new range was

chosen to be [0.4, 0.5). When the 'M' is processed, its probability is multiplied by the

current range resulting in a new range of 0. 01 [0.1 * 0.1 = 0. 0 1]. Again, this 0. 01 interval

is arbitrarily chosen from the entire range of [0.4, 0.5). No confusion results from the

arbitrary range selection because, just like in Huffman coding, the coding table must be

sent to the receiver to decode messages. The process continues until one decimal number

17

is determined which represents the entire message, 'timing'. The decoding process is then

fairly straightforward.

The first symbol is determined from the sub-interval, of the initial range, [0, 1) in

which the encoded message falls. Since the received value is on the interval of [0.48314,

0.48320), it can be seen that the first symbol carne from the sub-interval [0.4, 0.65) and

must be a 'T'. The next symbol is determined by subtracting from the received encoded

value, 0.48314 in Table 2.6, the low value from Table 2.4, of the first symbol and

dividing by the probability, Pi, of the first symbol's range, 0.25. The symbol is then found

via the interval in which the new encoded value falls. In Table 2.5, the following values

result: [(0.48314- 0.4)/0.25 = 0.33256]. This new value falls within the range [0.0, 0.4)

indicating the second symbol is an 'I'. Results for the remaining decoding of symbols are

illustrated in Table 2.6. Note that in actual coding, the values of the encoded numbers will

be represented in binary. Decimal values were utilized in the above example to assist in

concept understanding. Since the decoder interprets the encoded number 0.0 as a symbol

('I' in Table 2. 4) in the domain interval, an end of message symbol must be transmitted

with the code.

Symbol Probability Range

I 0.40 [0.00, 0.40)

T 0.25 [0.40, 0.65)

N 0.15 [0.65, 0.8)

M 0.10 [0.80, 0.9)

G 0.10 [0.90, 1.0)
TABLE 2.4 Arithmetic Coding Range Assignment for Example 1

18

Symbol Number Symbol Low Value High Value

2 T 0.40 0.65

1 I 0.40 0.50

4 M 0.48 0.49

5 I 0.480 0.484

1 N 0.4826 0.4832

3 G 0.48314 0.48320

TABLE 2.5 Arithmetic Encoding Process for Example 1

EXAMPLE2

Assume a stream ofVVVVVVV's' is to be compressed. The probability ofV is known to

be 0.9, while the end-of-message character has a probability ofO.l. The range [0, 0.9) is

assigned to the letter V and [0.9, 1.0) is assigned to the end-of-message character. Table

2.7 displays the results (Langdon, 1984).

Encoded Number Symbol Low High Range

0.48314 T 0.40 0.65 0.25

0.33256 I 0.00 0.40 0.40

0.8314 M 0.80 0.90 0.10

0.314 I 0.00 0.40 0.40

0.785 N 0.65 0.80 0.15

0.90 G 0.90 1.00 0.10

TABLE 2.6 Arithmetic Decoding Process for Example 1

19

New Character Low Value High Value

v 0.0 0.9

v 0.0 0.81

v 0.0 0.729

v 0.0 0.6561

v 0.0 0.59049

v 0.0 0.531441

v 0.0 0.4782969

END OF FILE 0.43046721 0.4782979
TABLE 2. 7 Arithmetic Encoding for Example 2

The value 0.4782979 would then be transmitted to represent a string of nine V's

rather than sending nine, eight bit, ASCIT characters. Like Huffinan codes, arithmetic

codes have a dynamic version and often use a zero-order Markov model; though higher

order models can be implemented. The major problem with arithmetic coding is that most

computers cannot process numbers of the length needed to encode certain data types, i.e.

images. This is can be seen in the example of Table VII in that the precision required to

represent only a few more 'V's would result in a precision greater than the normal

computer could achieve. This problem is overcome by only sending a portion of a

message or data set which can be represented within the precision of the computer system

sending it (Weiss and Schremp, 1993).

Another drawback is that of loss of precision between the high and low values as

the ranges gets very small. This often results in the low value being higher than the high

value and consequently, causing overflow. Inserting checks into the process prevent this

problem at the expense of greater complexity (Langdon, 1984).

20

m. LOSSY DATA COMPRESSION TECHNIQUES

A. LOSSY COMPRESSION THEORETICAL BACKGROUND

Lossy compression describes processes where information is irretrievably lost. It

is typically used for applications where there is a notion of fidelity associated with the

data. Such applications often involve digitally sampled analog data (still images, video,

etc.) where it is only necessary that the decompressed data be acceptably close in quality

to the original. Thus, it is very useful for audio compression applications where the

human ear is not discerning enough to detect the loss. Lossy compression techniques are

a subset of the entropy reduction class of data compression. The major types oflossy

compression methods use some form of quantization. Efficient quantizer design requires

an accurate statistical model of the data source. For this thesis, linear prediction is used to

model the data.

There are three general categories of quantization compression: 1) Zero-memory,

2) Block and 3) Sequential. The distinction between these categories is not strong, as

techniques which fall under one category also fit into another. Zero-memory quantization

is the process where samples are quantized individually, while in block quantization, a

block of input samples are represented by a block of output values chosen from a finite set

of possible output blocks. Finally, sequential quantization quantizes input samples using

information from its surrounding samples on a block or non-block basis (Knuth, 1985).

Thus, the sequential techniques can all also be block quantization techniques. Under the

zero-memory category are vector and scalar quantization. Multi-path search coders and

predictive coders are the dominant form of sequential quantization techniques, which as

21

stated earlier can also be used in a block quantization form. The block quantization

category encompasses various types of transform coding. Transform coding operates on a

block of n samples generating an output sequence by matching the input block with its

closest approximation from a codebook of sequences. The compression scheme is

optimized by minimizing the difference between the two sequences. See Lynch (1985),

and Jayant and Noll (1984) for additional information on transform coding. No further

discussion of transform coding is presented here.

B. SCALAR AND VECTOR QUANTIZATION

For the zero-memory method, each data sample is quantized independently of all

other samples using the same quantizer, therefore, the system has no memory of previous

data. The compression algorithm is optimized to minimize the quantizing noise using

fixed quantizing levels. Another name for zero memory quantization is scalar

quantization. Scalar quantization is just a special case of a very powerful data

compression technique called vector quantization. Vector quantization is a process based

on a codebook. A codebook is a collection of vectors or lists of"typical" data sequences.

The codebook vectors are very similar to the branches in a tree structure used for tree or

trellis coding which will be discussed later. The codebook vectors contain the parameters

used to reproduce the original source sequences. The index associated with the parameter

vector, or codeword, that most reduces the distortion between the source sequence and a

reproduction of that sequence is transmitted as side information to a decoder. The

decoqer matches that index to the index of a codebook of optimal coefficient vectors. The

selected optimal coefficient vector is then used to supply the parameters to reproduce the

original source at the decoder. The closeness of reproduced data to original source

22

sequence is made in a mean squared error sense. The advantage of this procedure is the

elimination of quantizing of the information sent that's not original data, the side

information. Extensive searching can be required, when the codebook is large, to find the

best parameter codewords.

The huge computational load incurred during the searching of the codebook is the

main disadvantage of this approach. In addition to various audio applications, vector

quantization is commonly employed in the compression of images. In this latter case, the

source sequences are subarrays of pixels and the codebooks are vectors of pixel values

which can reproduce the source pixels (Xue and Crissey, 1991). The process achieves

compression in that the index of the reproduction parameters can be specified in fewer bits

than the original pixels themselves. The following relationship for the number ofbits

required per pixel, or compression rate (r), illustrates that principle:

r=(R/k) bits/pixel, (3.1)

where R=logz(m) is the quantizer rate in bits/vector, m is the number of codebook vectors,

and k is the number of pixels. The input source vector can take many forms and a vector

of pixels is just one example.

Another example involves character recognition from half-tone or
fax data, where vectors are arrays of bits that are positioned over the
character positions and the table (or codebook) is the alphabet of
characters that are being recognized. Larger vectors and tables result in
higher fidelity for a given amount of compression at the expense of
increased computational resources. In scaler quantization, each vector
consists of a single data element. In fact, the initial process of analog to
digital data conversion is an example of scalar quantization (Bookstein and
Storer, 1992).

23

C. MULTIPATH SEARCH CODING

Sequential quantization, like block quantization, takes advantage of dependency

between samples, and it has been shown that they can provide better performance than the

scalar version of quantization. Two categories of sequential quantization exist: Multi path

search coding and predictive coding.

Multipath search coding (MSC) is a relatively new form of quantization being

studied. The motivation for its study stems from the performance bounds predicted by the

rate distortion function for sources with memory developed by Shannon. Generally, this

type of quantization, which is of the block type, has the potential for approaching the rate

distortion bound with the least amount of design complexity. Trellis, and tree coding

comprise the dominant types of multi-path search coding, though codebook

implementations are increasingly used (Lynch, 1985).

1. Tree !Trellis Coding

MSC's use future as well as previous sample values in order to select a quantized

version of a given input sample. They are often called look-ahead coders, or tree or trellis

encoders due to this property. Compression is obtained by virtue of the fact that the

selected quantized version of the input sample sequence is coded into a binary channel

sequence wherein each sample is represented by one binary digit. The techniques of trellis

and tree coding make use of geometric structures and are very similar to the vectors of

vector quantization and the lists oflist coding. Each typical sample is stored as a sequence

of branches in a tree structure. When a sequence is selected, its corresponding tree path is

transmitted as a binary sequence, with each bit corresponding to a direction at each

sequential node of the tree, much like the procedure used in Huffinan coding. A similar

procedure is used in trellis coding since the trellis structure is really a truncated tree

24

structure (Jayant and Noll, 1984). The following example, (Jayant and Noll, 1984),

illustrates the process.

1 3

1
2

+1 1
1

1 -- 0

-1
-1 -1

-1
-1

-2
-1

-3
-1

0 1 2 -------------
TIMEn

Figure 3.1 Delta Modulation Code Tree (Jayant and Noll, 1984)

The code tree of Figure 3.1 has a set of nodes for each time index n. The nodes

are indicated by the black dots and the branches by the horizontal lines. Each node has 2R

= 2 branches, where R = 1 bit/sample. In Delta Modulation, the decision outcome of a

waveform encoder is input to the tree coder and each previous value is updated with a

positive or negative step of fixed size. Figure 3.1 shows the possible DM outputs, which

can be input to the tree coder, at either end of the two-headed arrow on the left side of

the figure. A branch letter or reconstruction value, selected from the alphabet of

25

reconstruction values (-1, + 1), is labeled on each horizontal branch. The tree is traced by

following the branches (dashed in this case), which show the DM output at each time

instant, to the nodes, where the sum of all the previous output values is labeled. The

dashed-line branches are labeled with sample input values, and the path is located by a

binary sequence called a path map(+ 1, + 1, -1 for this example). The nodes with the bold

numbers show the result at each time instant (Jayant and Noll, 1984). The bits

corresponding to the reconstruction values are transmitted and determine the output

sequences generated at the decoder. These bits lay out a path to follow through the tree.

The decoder has the same tree structure and can follow the branches to each node, in a

process that basically integrates the map sequence, to determine the correct value which

was input to the tree coder. Unlike codebook coding, tree and trellis coding can be done

on a sample-by-sample basis instead of on a block basis. This is very similar to maximum

likelihood or Viterbi decoding of convolutional channel codes. This latter process is used

in the newest standard for cellular phone communications: Code Division Multiple Access

(CDMA), which has wide ranging audio compression employment. A full treatment of

trellis and tree coding is available in (Lynch, 1985).

2. Codebook Coding

Codebook coding (also known as list coding) involves the use of a codebook of 2n

highly probable n-sample sequences. The codebook vectors are highly probable since, in

image coding, an image is scanned and used to train the program used to develop the

codebook to produce reproduction vectors which are "highly probable". One sequence is

selected from the codebook, that minimizes the distortion between itself and the actual

input sequence (Lynch, 1985) and (Cappelini, 1985). The index of the selected sequence

is coded as an n-bit word and sent to the receiver, where the same codebook is stored.

26

If each sample hasMlevels, then there areM possible sequences but only 2n "typical"

sequences, giving a compression ratio of:

(3.2)

For example (Jayant and Noll, 1984), given a coder sequence oflengthN and rateR

bits/sample, the total number of unique codewords is given by:

J = Y'R. (3.3)

A sequence of output samples, Y;: i = 1,2, ... ,2NR is assigned to each codeword and the

codebook is comprised of the set of all possible output sequences. The output sample

values are selected from an "alphabet" of reproducing values. The codebook coder is also

called a vector quantizer. Jayant and Noll (1984) describe the process, which is the same

for vector quantization, as follows:

A code book coder accepts a block x of N input samples, searches

through the codebook with J = 2NR entries, finds the output sequence best

matching the input block, and transmits the corresponding codeword index

iopt to the decoder in the form ofNR bits. The decoder looks up the

corresponding codeword in its codebook and releases theN samples of

Y;. opt as the output sequence.

Since a codeword is transmitted once for every N input sample block, the codebook coder

is also a block coder; further evidence of its equivalence as a vector quantizer.

27

D. PREDICTIVE CODING

Predictive coders include the well-known techniques of delta modulation and

differential pulse code modulation (DPCM). Both of these techniques predict the next

sample value and then quantize the difference between the predicted value and the actual

value. The prediction is based on a weighted combination of previously predicted values.

Delta modulation uses a 1-bit quantizer, whereas DPCM uses a k-bit quantizer.

1. Delta Modulation

Delta modulation is a predictive coding technique in which the difference between

a given sample and its predicted value is quantized into one of two levels (-o, +o). If the

difference is positive, +o is coded, and if the difference is negative, -o is coded. The

important feature of delta modulation is that it allows only two possible levels to be coded

and transmitted. Thus, it is known as a "1-bit" system. Delta modulation can be done in

two ways: conventional and adaptive.

2. Differential Pulse Code Modulation

In Pulse code modulation (PCM), the original analog signal is time-sampled and

each sample is quantized and transmitted as a digital signal. Instead of quantizing each

sample, in DPCM, the next sample is predicted and the difference between the actual and

predicted values is quantized. This is also the basis of delta modulation, thus many

similarities exist between DM and DPCM. In DPCM, the predicted value, which is

obtained from previous predicted values and differences, is also available at the receiver,

since the identical predictor is used there. In many applications, a more accurate

prediction can be obtained if more than just the previous sample is used. This is to be

expected since many data sources produce sequential samples that are not independent.

The number of previous samples to use for prediction and the predictor function itself

28

depend upon the statistical properties of the data source. Adaptive DPCM (ADPCM) is

frequently employed to allow non-stationary signals to be tracked by the compression

algorithm. In the next chapter, a more detailed examination of the ADPCM scheme is

conducted.

29

30

IV. LOSSLESS ADAPTIVE DIFFERENTIAL PULSE CODE MODULATION

A. INTRODUCTION

Normally, when designing a DPCM system, it is assumed that the input data is

stationary. Thus, a predictor and quantizer are designed with fixed parameters. But when

the input data is non-stationary, these fixed-parameter designs show inconsistent and

generally poor performance with respect to signal-to-quantizing-noise ratio. Adaptive

designs have been used effectively in these cases and the approach boils down to one of

three choices: an adaptive predictor with a fixed quantizer, a fixed predictor with an

adaptive quantizer or an adaptive predictor and quantizer. In the ADPCM comparison to

follow, an adaptive predictor with a fixed quantizer will be simulated.

Acoustical signal digitization uses 64 kb/s PCM (8 bits per 8kHz sample), in

communication networks. For efficiency, the transmission rate is reduced to 32 kb/s (4

bits per 8 kHz sample) with ADPCM coding. Redundancy removal is accomplished by

subtracting a predicted value from each input sample, and entropy reduction is achieved by

quantizing the difference between the input data sample and the predicted value to a

limited number of amplitude levels. Speech contains a relatively high short-term

correlation, therefore the power of the prediction error is less than that of the original

signal and fewer bits are required to transmit the error signal. This is what makes

ADPCM especially useful for audio data compression applications. Adaptive predictors

are now a major component of32 kb/s DPCM systems, and instrumental in obtaining the

best performance in differential encoding systems below 32 kb/s.

The principal components of the ADPCM system are the quantizer, the binary

encoder/decoder pair, and the predictor, shown in Figure 4.1. For the data compression

31

system simulation herein, the quantizer is a symmetric, 2L-level one with fixed step size.

The quantizer is implemented in Matlab code using the round function, which takes the

input values and rounds them towards the nearest integer. The difference between the

original prediction error and the quantized prediction error from the quantizer output is

known as the quantization noise and represents the lossy part of the system which can not

be recovered. However, in the adaptive systems implemented in this thesis input values

were also rounded so that only integer data values were used. This form oflossless

compression, using integer values, was used since data stored on a computer can only be

represented to a limited finite precision. In addition, receiver outputs were sent through a

round function. As a result, these ADPCM systems are lossless and quantization noise is

eliminated.

In this chapter the ADPCM predictor systems used for the performance

comparison are examined and the various system components presented. The finite

impulse response and infinite impulse response predictors are developed and the process

of their underlying algorithm, the least mean square algorithm is explained. Next, the

modular function, added to the basic ADPCM system to reduce the size of the codebook,

is introduced.

B. FINITE IMPULSE RESPONSE FILTER

Figure 4.1 depicts the block diagram of an ADPCM system. These systems fall

into one of two types, those that have a finite-duration impulse response (FIR) and

those that have an infinite-duration impulse response (IIR), (Proakis and Manolakis,

1992). These two types of systems will be the basis ofthis thesis' comparative analysis.

The binary coder block in Figure 4.1 performs lossless source coding of the residual

32

sequence, eq(k). The coder assigns a binary word oflength log2 (2L) to each quantization

level, L, on a sample-by-sample basis. The Huffinan coding algorithm will be utilized to

implement the binary coder. The box in Figure 4.1 labeled P(z) represents the adaptive

predictor. The predictor structure is chosen to emulate an assumed model of the input

signal process. In this thesis, P(z) is chosen to have a FIR structure defined as:

M
P(z) = ~a,-t,

j.J
(4.1)

where a; represents the predictor weights, based on the assumption that speech can be

modeled appropriately by a linear prediction model. The transmitter portion of this

structure is an all-zero model. It utilizes a finite impulse response filter (FIR), or a

moving average (MA) filter, to predict output values.

In Figure 4.1, the transfer functionH(z), from eq(k) to (k/k-1), is derived as

shown below.

Z[s(k!k-1)] = P(z)EQ(z),

Which leads to:

H(z) = Z[s{kl{k-l))J = P(z)
EQ(z) ·

(4.2)

33

+

§(k/k-1)

§(k)

TRANSMITTER

Biaary
Coder

Figure 4.1 FIR ADPCM system

--, --
CHANNEL

Binary
Decoder

RECEIVER

P(z) represents the transfer function of the MA predictor and H(z) is the transfer function

of the transmitter portion between eq(k) and ~k/k-1) which has an FIR structure.

The adaptive predictors ofboth the transmitter and receiver of Figure 4.1 use the

least mean square (LMS) algorithm which determines the predictor weights by minimizing

the instantaneous square of the error. This algorithm is used to allow the gradient of the

error vector to be estimated from available data since no prior knowledge of the input

signal correlation matrix, R, and the cross-correlation vector between the input and the

desired response, is available. As a result, the weight coefficients of the predictors are not

initially optimal weights like those derived using Wiener-Hopf equations, though the

predictor weights do eventually converge to the optimal weights in stationary

environments. However, the LMS algorithm performs far fewer calculations as a result as

it does not require computation of matrix inverses. For the FIR ADPCM implementation,

the standard LMS algorithm will be used. Haykin (1991) provides a detailed explanation

of this process which results in three basic relations:

34

1. Filter Output:

v(k)=C H {k)gg_(k), (4.3)

wheregg(k)=[eq(k-1), eq(k-2), ... , eq(k-M)]T a vector oflengthM, v(k) is the output of

the predictor, and f.(k) is the vector of filter coefficients which are updated after each input

sample.

2. Estimation error:

e(k)=s{k)-v(k), (4.4)

3. Predictor weight update:

£{k+l)=£{k)+pgg_(k)eq(k). (4.5)

The step size Jl is used to control the updates to future weight coefficients. The bounds

on this variable are derived from the bounds for updating the steepest-descent algorithm.

In that case, the steepest descent algorithm converges when:

(4.6)

where M is the length of the predictor and Req (0) is the autocorrelation of the input

sequence. However, for the LMS algorithm an initial value for Jl is usually chosen as 10%

of the maximum value, Jl, obtained in Equation 4.6.

35

C. INFINITE-IMPULSE RESPONSE FILTER

In contrast to the standard, FIR ADPCM implementation, the IIR filter system

output is weighted by the linear combination of the past input and output samples instead

of just a finite number of past input samples. This fact gives rise to the notion of infinite

memory or infinite impulse response. To accurately model the vocal tract, the model

should contain zeros as well as poles, and an ADPCM system transmitter based on a pole

zero model is shown in Figure 4.2. Its transfer function, H(z), from eq(k) to

v(k)=~k/k-1) is derived from the following equations:

Which leads to:

Therefore,

Z[v(k)] = v(z) = B(z)EQ (z)

+ [B(z)EQ(z) + EQ(z)]A(z) + A(z)[v(z) - B(z)EQ(z)].

v(z)[(l - A(z)] = [A(z) + B(z)]EQ(z).

H(z) = v(z)
EQ(z)

A(z) + B(z)
1 - A(z)

36

(4.7)

s(k) eq(k)
Q

v(k)

s(k)

A

ENCODER

Figure 4.2 IIR ADPCM System

B

CHANNEL

s(k)

eq(k) rfr(k) "-./\
~----4~------~

B

DECODER

Thus, it is a standard IIR predictor where zeros and poles can be individually specified.

For the IIR filter implementation, a version of the International Telephone and

Telegraph Consultative Committee (CCITT) G.721 recommendation is used (CCITT,

1984). The basic LMS algorithm has been modified to provide additional system stability

restraints, ensure synchronization between the transmitter and receiver, and prevent drift

of the AR portion of the receiver (Bonnet et al, 1990). The block labeled 'A' in Figure

4.2 represents the AR portion of the system and the 'B' block represents the MA portion.

The modification to the basic LMS algorithm made to the G. 721 algorithm lies in the

37

addition ofleakage factors, o1 and o2, the stability constraints on the AR predictors weight

coefficients, and the definition ofthe signalp(k).

The effect of the modifications are to allow the updating of the AR portion in the

same fashion as the MA portion is updated, i.e., like a transversal filter vice a recursive

one (Bonnet, 1990). The stability constraints are explained below. Last, the signalp(k)

improves adjustment of the receiver onto the transmitter and allows resynchronization of

the receiver to the transmitter in the presence of transmission errors. Bonnet (1990)

defines the signal p(k) in the z-domain as:

P(z)=[J-A(z)]S(z), (4.8)

where ~k) represents the input to the AR predictor. As a result of these modifications to

the basic LMS algorithm, the modified CCITT G. 721 update equations become:

aln+l)=(l-o)a/n)+a.1sgn(pjsgn(pn-)

aln+l)=(l-o ;)aln)+a. zSgn(p,)[sgn(pn-;)-f(aln))sgn(pn-~1 (4.9)

bfn+l)=(l-o JbfnJ+a.zSgn(eq,)sgn(eqn-) j=l, ... ,6;

where a ln+ 1) and a in+ 1) represent the recursive weights for a length two AR predictor,

bin+ 1) represents the jth weight coefficient for a length six MA predictor, and sgn(*)

stands for the sign function. Note that the parameters a1 and a2 perform the same

function asp. does in Equation 4.5. Similar equations hold at the receiver. The function

f(a) is used as a stability constraint to control the boundedness of the AR parameter a2 and

its range of values are given by:

38

f(l ~ _ { 4a if abs(a) ~ 0.5
a - 2sgn(a) othe1Wise. (4.10)

Note that, the value of0.5, Equation 4.10, was selected by Bonnet et al. to correspond to

a limit on aJ for frequencies in the middle of the telephone bandwidth (Bonnet, 1990). This

algorithm was modified from a standard LMS algorithm by the addition of the leakage

factors oJ and o2. These terms are used to control the drift in the AR parameters at the

decoder. Nominal values for oJ and o2 and the updating factors, aJ and a2 are:
'

01 = 2 X JfF8
,

a.1 = 3.2 X J(F8,

o2 = 2 X J(F7

a.2 = 2 X J(F7.
(4.11)

Actual values used for the IIR varied by a factor of 1 00 or 1000 depending on the signal

and are given in the following chapter when the signals are introduced. Additionally, the

actual values of aJ and a2 are limited to the following range to ensure stability.

(4.12)

D. MODULAR ARITHMETIC FUNCTION

The standard ADPCM compression system transmits the quantized error signal.

The amount of data compression achievable is dependent upon the entropy of the error

vector. The first-order entropy, corresponding to a coder which encodes each error,

eq(n), separately, is given by:

(4.13)

39

where PeqG) is the relative frequency of the symbol eq(k)=j and Q is the number of discrete

integer values assumed by the input eq(k) (Einarsson, 1991). The entropy of the error

sequence can usually be reduced using a modular function such as the one depicted in

Figure 4.3. This figure shows the output of the ADPCM predictor, eq(k), as the input to a

residual function which produces the integer-valued sequence, v(k). This sequence is then

input to the modular function, which uses modular arithmetic to generate integer-valued

data, w(k). The lossless procedure presented by Einarsson to reduce the size of the

codebook is a two-step procedure.

eq(k) 11(k) w(k)
Huffman ~R(z) I >I mod Ql ADPCM

XMITTE

~
R-I(Z)

Huffma
modQ Decoder

R

S(k) eq(k) y(k) w(k)

Figure 4.3 ADPCM system with Modular function

The modular coding process described by Einarsson (1991) starts with a positive

data sequence, eq(k) k = ... -1, 0,1 ,2 , constrained in a range of Q discrete values. The

next step of the procedure is to generate a sequence of integer-valued residuals v(k), k =

40

... -1,0,1,2 , constrained in a range ofQ discrete values. The next step of the

procedure is to generate a sequence of integer-valued residuals v(k), k= ... -1, 0, 1, 2, ... ,

referred to as the shifted sequence. This step is accomplished through the application of a

linear filtering operation between the input data, eq(k) and a linear filter, R, with

coefficients / 0=1 andft= -1. The filter R(z) forms the first difference of eq(k) and is given

by:

v(k) = eq{k)-eq{k-1). (4.14)

Then the modular arithmetic function, mod Q, is applied to the sequence v(k) to reduce it

to the appropriate range of 0 to Q-1 before it is entropy coded. Table 4.1 depicts the

process. Therein, sample data values for the input, eq(k), are given, shifted to make them

all positive, filtered through the residual filter R, and processed by the modular function to

generate the resulting "modular sequence" W(k). The binary coding process is external to

this procedure and is not shown. At the receiver, the linear filter operation is reversed and

the modular operation is applied exactly as before resulting in the same original data

values.

Note however that the shift, (+4) and (-4), illustrated in Table 4.1, is not required

and this step could have been skipped. This shift was done to match the procedure given

by Einarsson exactly, by starting with all positive data. The algorithm to reconstruct the

original data at the receiver is derived from:

eq(k)=[w{k}-{y{k)-y{k-l}}]modQ, (4.15)

where eq(k) is the reconstructed eq(k).The entropy, H, of W(k) is given by:

(4.16)

41

TRANSMITTER RECEIVER

eq(k) shift (+4) v(k)= ~k) y(k) = Shift (-4)

eq(k)- modQ ~k)+ eq(k)

eq(k-1) Q=12 y(k-1)

modQ

Q=12

7 11 11 11 11 7

5 9 -2 10 9 5

2 6 -3 9 6 2

-3 1 -5 7 1 -3

-4 0 -1 11 0 -4

6 10 10 10 10 6

TABLE 4.1 Modular Coding Process

where P,.. U) is the frequency of occurrence of the symbol ~k)=j. Einarsson showed that

the entropy for the modular function residual, ~k), is lower than that for v(k). For

Q=256, the residual v(k)=eq(k)-eq(k-1) will take on integer values in the range (-255,

255). Thus, eq(k) = 239, and eq(k) = -17 reduced modulo 256 both result in v(k) = 239.

Therefore the entropy ofv(k) is the sum of two terms as shown in Equation 4.18,

Hv = PJj)logPli) + Pll)logPli:). (4.17)

where v1(k)=j1 and vz(k)=j2 both result in ~k)=j. Writing Equation 4.17 in terms of the

entropy for ~k) gives the single term Equation:

42

(4.18)

where P Jj)=Pjj1) + P)}2). Thus, since for a, b > 0

(a + b)log(a + b) > a log(a) + b log(b), (4.19)

then H w < Hw. Despite this theoretical advantage of reduced entropy, Einarsson states that

the difference is usually negligible. The real advantage of using the modular coding

function is a decrease in the size of the Huffinan codebook necessary to encode the

transmitted error vector, which, in turn, implies that fewer bits will be required. This

modular function is incorporated into both the FIR and IIR versions of the ADPCM data

compression systems whose performances are compared in Chapter 5.

43

44

~---

V. PERFORMANCE COMPARISON

A. OVERVIEW

Generally, performance comparisons of ADPCM compression systems have been

made using PCM systems as a baseline; often using the signal to quantizer noise ratio as a

basic parameter of comparison. When directly comparing ADPCM coders, the mean

square error (MSE) is usually used since these coders are designed to minimize this

parameter. This measurement would be valid for the FIR coder as it is designed to

minimize the MSE. However, due to the modifications of the LMS algorithm

incorporated into the G. 721 IIR coder reviewed herein, the IIR coder doesn't minimize

the MSE but the quantity given by the following relation:

E(eq,/ + ~ E~ ~.
a;

(5.1)

where E(•) is the expectation operator, a is a positive adaption parameter, o is a positive

leakage factor and 4, is the vector of the AR parameters at time n (Bonnett, 1990). The

first term of Equation 5.1 represents the MSE of the system while the second term is a

weighted version of the AR predictor parameters. Thus, comparing MSE's between the

FIR and IIR. coders would not be completely accurate. Of course, MSE's are just one

parameter that is frequently compared in ADPCM comparisons. Others include

compression ratios, sound fidelity, variances, compression/decompression time and SNR's.

In fact, no single measurement is sufficient to completely, reliably and easily classify the

coders performance. This is one reason for the importance of a variety of studies

investigating all the relevant properties of ADPCM coders. In this report, the variance of

the original signal is compared to the variance of the quantized error signal. Additionally,

the compression ratios of each type of coder is also compared. The compression ratio has

45

many definitions; it is defined in this thesis as the number of bits needed to encode the

original signal in a PCM format divided by the number of bits used to encode the

transmitted error sequence. The Huffinan coder is utilized to encode the quantized error

and to determine the compression ratio achieved.

B. PRESENTATION OF DATA

Five data signals were examined. Four of them were audio signals and the fifth is a

sinusoid, which was included since it is nonpersistently-exciting, and is of the type most

difficult for the IIR ADPCM compressor to handle (Bonnet, 1990). The original signals,

shown as the middle image in Figures 5.1-5. 5, are:

1.) PFREE - a fast-paced pop song with a male voice and music,

2.) GUITAR- a musical selection played on a guitar,

3.) VOICE- a male voice speaking in a normal tone

4.) TRANSIENT - a filtered version of a male voice speaking,

5.) SINE- a sinusoid generated from s(k) = sin(21t 4/100 k), k=l, ... , 7025,

where k is the number of points in the signal. All the signals had a duration of 7025

points. Each signal had a zero mean. The upper plot in each Figure is the IIR receiver

output signal and the lower plot represents the FIR receiver estimate of the original signal

shown in the middle plot. In every case the received signal is an exact integer

representation of the input data after about three filter lengths. Note that the IIR predictor

was implemented with different values than the nominal values proposed by Bonnet for the

leakage factors, o1 and o2, and update control variables, a1 and a2, given in Chapter 4,

Equation (4.11) and repeated here as Equation 5.2:

0 l = 2 X J()"8
,

a.1 = 3.2 X J()"8,

o2 = 2 X J()"7

a.2 = 2 X J()"7.

46

(5.2)

When using these nominal values for leakage and update factors, the compression

achieved in the ADPCM coder was significantly lower for the IIR version than for the FIR

version. As a result, these values were experimentally determined to produce the

maximum compression in the quantized error power. Each actual value used was

increased by a factor of 100 for the PFREE, GUITAR, and VOICE signals, a factor of

1000 for the TRANSIENT signal and were unchanged for the SINE signal. The FIR

predictor used an update control variable, J.l, experimentally picked to provide the best

compression for each signal and a filter order of six in each case. The actual values were

4 x 104
, 6 x 104

, 10-5
, 5 x 10-6, and 6 x 10-5

, listed in the same order as the corresponding

signal. The filter order of six was used for two reasons. First, to make it equal to the

order of the AR portion of the IIR coder which also uses a predictor of order six.

Naturally, this was not done in expectation of producing similar results but rather as a

convenient starting point to experiment with. Secondly, experiments with predictors of

order 2, 4, 5, 7, 8, and 10 all provided inferior results in terms of reducing the power of

the error sequence. These experimental results were expected for the filter orders less

than six but were inexplicable for filter orders greater than six. Nonetheless, the results

were repeatable and six was determined to be the best filter order for this implementation.

Time for compression and decompression was significantly lower for the FIR model as

well.

The power of the quantized error given for each coder was one of the parameters

measured to determine the amount of compression achieved by each ADPCM coder. All

five signals were compressed at two different SNR decibel levels. The SNR was increased

by increasing the power of the input signal while maintaining the noise level at a constant.

This was done by multiplying the original signal by a randomly selected scaling factor of2

to produce a six dB increase. Each signal power was determined and Table S.llists the

results. In this table, the original input signal power, cJ IIP , and the quantized error

47

power, shown as cr EQ ' are presented. The reduction in power is listed as PIR. Greater

compression is represented by a higher percentage of power reduction, in the ADPCM

coder itself The power reduction (in percentage) is determined by:

2
OEQ

PIR = 1 - 2 •
0]/p

(5.3)

The fifth and eleventh columns, respectively, show the power reduction for the IIR and

FIR coders. A direct comparison between these columns shows that the FIR coder

performed better, higher PIR, in this category than the IIR coder, though both coders

significantly reduced the signal power as compared to the original signal variances. Of

particular note is the large difference in compression between the two systems for a

sinusoidal input. Bonnet (1990) prefaced this result by noting that the IIR is less effective

on nonpersistently excited signals. In addition to measuring the power of each signal, the

transmitted quantized error signal was input to the modular coding function and its output,

W, coded using Huffinan coding to determine the compression ratios (CR) achieved on

each signal. Again, a higher compression ratio implies better compression than a lower

ratio, where compression ratio, CR, is defined by:

CR = total no. of sample points*8
total no. of bits used (5.4)

For the first four signals the compression ratio achieved in the IIR is superior, as shown in

Table 5 .1- column three versus column nine, with the only exception being the sinusoid at

both dB levels. The reduced signal power of the error sequence output from the FIR

coder, allowing fewer code words to be generated by the Huffinan coder, would tend to

48

explain this exception. In the middle section ofTable 5.1, columns six and seven, the

compression ratios achieved by sending the quantized error signal through the Huffinan

coder without using the modular function are listed. This section is included to allow a

tabular comparison of the compression achieved with and without the modular function.

Thus column three compares directly to column six, for the FIR, and column seven to

column nine, for the IIR coder. In every instance of comparison between the IIR systems

and all but two cases of comparison between the FIR systems (Transient and Sine signals

at lower db level) it can be seen that the CR achieved going through the modular function

is greater. This result agrees with Einarsson's (1991) paper wherein he stated that the CR

might theoretically increase. However, in most of the cases displayed in Table 5.1, the

modular function CR was significantly better, exceeding Einarsson's projections of only

modest CR increases. As stated above, the compression ratio, CR, was determined by

totaling the number of bits used to encode the residuals and dividing that value into the

number ofbits required to encode an 8-bit PCM signal.

Table 5.2 (IIR coder) and 5.3 (FIR coder) show the results of the comparison of

a number of other parameters, including average wordlength, Lavgs> entropy, (H), relative

redundancy ratio, (RR), and maximum compression, (Rma:J All of the values used in both

Table 5.2 and Table 5.3 come from the higher SNR data set of Table 5.1. Specifically,

CR' s obtained for the IIR implementation at the higher SNR level in Table 5 .1, column

three, coincide with the modular sequence values shown in Table 5.2, CR row. Likewise,

compression ratio values obtained for the higher SNR levels in the FIR implementation of

Table 5.1, column seven, correspond to the values in the CR row of Table 5.2. The tables

are provided solely to assess the effectiveness ofEinarsson's modular function on the

operation of each coder and not to form a basis of comparison between the two coders.

Thus, each table displays an intra-coder only comparison between W(k) and eq(k). The

reasoning for this limitation is provided below. In both Table 5.2 and 5.3, the results show

49

a smaller average wordlength for the modular sequence, W(k), as compared to the error

sequence, eq(k), with the only exception being in the case of the IIR coder and the guitar

signal where the opposite is true. Lavg is derived from the relation ofEquation 5.4:

(5.5)

where I; is the length of the codeword 'i', P; is the probability ofthe codeword 'i', andM

is the total number of codewords. This is result is expected from Einarsson's (1990)

conclusions. In addition to Lavg being smaller for W(k), Table 5.3 (FIR coder) shows, that

the entropy, H, is higher, in each case for the FIR error sequence, eq(k), than for the FIR

modular sequence, w(k). The entropy, defined in Equation 2.2 and repeated here as

Equation 5.6 is:

M

H = 'JJP Jog:/' r (5.6)
f,.]

This development, in tum leads to the higher CR achieved on the FIR modular sequence

as compared to the FIR error sequence. In Table 5.2 (IIR coder), this same relation,

where a lower H leads to a higher CR, also holds true, again with the exception of the

guitar signal. The guitar signal error sequence has a lower H than does the residual

sequence. Despite this contradiction, the CR is still higher for the IIR modular sequence

than it is for the IIR error sequence. The data is insufficient to explain this anomaly,

however, since nine often such comparisons (across both Tables 5.2 and 5.3) follow the

above relationship, it still appears valid. Relative redundancy gives a theoretical measure

of how much a signal can be compressed and is higher for the modular sequence (than for

50

the error sequences) indicating a greater compressibility. The relative redundancy, RR, is

defined by:

H RR = 1-
log;M

and is related to the maximum compression ratio by the following relation:

1
Rmax = 1 - RR'

{5.7)

{5.8)

where H is the entropy of the signal, M represents the number of amplitude levels in the

compressed signal, and Rmax is the maximum compression that can theoretically be

achieved on the given signal. Since there are different numbers of amplitude levels in the

FIR and IIR signals, theM parameter, the utility of comparisons between Tables 5.2 and

5.3, is reduced. Each ADPCM coder and associated modular function reduces its error

sequence to Q integer levels. However, the Q value is signal and coder system dependent.

Therefore, just as comparisons cannot be made between the same parameters of different

signals, no direct comparison can be made between the RR's or Rmax's of each coder

because they depend onM which is Q dependent. Conversely, comparisons can be made

between the CR of each coder system due to the way CR is defined which is simply as the

ratio of the total number ofbits used to encode a given compressed signal to the number

required to encode the same signal in PCM format. Thus, comparing CR's is just a simple

comparison of total bits used, irrespective of other parameters. In a similar manner,

although better compression is achieved when RR increases and likewise for the CR, these

two parameters are not related. The RR is an imprecise theoretical value and is only a

guideline used to determine a theoretical maximum compression which is usually never

reached (Lynch, 1984). In any case, RR is dependent onM and Hand thus is a direct

51

function of compression achieved in the ADPCM coder itself Alternately, the CR is

based on a comparison between the actual number of bits used in the Huffinan coder and

the number which would have been required for PCM and is only indirectly related to

coder compression. Therefore, RR and CR can move independently of one another. In

effect then, RR' s only purpose is to calculate Rmax which was determined for both the

modular sequence, W(k), output from the modular function and the original error

sequence, eq(k), output from the ADPCM compressors. This term is included in Tables

5.2 and 5.3 only to show that the actual CR achieved in the Huffinan coders did not

achieve the theoretical maximum value.

52

IIR rcvr estimate of original PFREE signal

0

8000

0

8000

0

-20L-----~------~------~------~----~------~------~----~

0 1 000 2000 3000 4000 5000 6000 7000 8000

Figure 5.1 PFREE SIGNAL, Sampling Frequency£:= 8 kHz, time shown in no. of samples

53

IIR rcvr estimate of original GUITAR signal

-100~----~------~----~------~----~----~------~----~
0 1000 2000 3000 t . 400CLUIT 5000 1npu s1gnal U fffi

6000 7000 8000

-100~----~------~----~------~----~~----~------~----~
0 1000 20.0!l 3000 4000. _5QQQ . 6000 "FIR rcvr estimate of ong~nal GUI1AR s1gnar

7000 8000

1000 2000 3000 4000 5000 6000 7000 8000

Figure 5.2 GUITAR SIGNAL, Sampling Frequency±: = 8 kHz, time shown in no. of samples

54

IIR rcvr estimate of original VOICE signal

-iOL-----~----~------~----~------~----~~----~----~
0 1000 2000 3000 t .4000VOICSDOO 1npu Slgnaf F

6000 7000 8000

-10L-----~------~----~------~----~------~------~----~

0 1000 2000 3000 4000 . .SOOD . 6000
F1R rcvr es1:1mate orong1nal vorcE s1gnal

7000 8000

-10~----~------~----~------~----~------~------~----~

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 5.3 VOICE SIGNAL, Sampling Frequency f, = 8 kHz, time shown in no. of samples

55

IIR rcvr estimate of original TRANSIENT signal
1000 I I I

0 L
F

-1000 f

0 1000 2000 3ooo . 4ff~ E'M 1nput s1gna ANSI
6000 7000 8000

1000

0 L. -r

-1000 _j f

0 1000 ~HRo ~oo~ 4ooo ~~f$9 6oo~ rcvr es 1ma e of ongmal TR ENT s1gna
7000 8000

1000

oiL -r
...:.1000 ! I _L I

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 5.4 TRANSIENT SIGNAL, Sampling Frequency f, = 8 kHz, time shO\vn in no. of samples ~.

56

IIR rcvr estimate of original SINE signal
50~--------~--------~--------.--------,,---------r--------~

0

~.
-

-50
0 200 400

input s~~~l SINE
800 1000 1200

50

0

~
-

-50
0 200

FIR 18v~ estimate 8Pgriginal SIN~0s9gnal 1000 1200

50

0 ~ -

-50 _[_

0 200 400 600 800 1000 1200

Figure 5.5 SINUSOID SIGNAL, Sampling Frequency t: = 8kHz, time shO\m in no. of samples

57

MOD FUNCTION W/OMOD MOD FUNCTION

SIN IIR IIR IIR IIR FIR FIR FIR FIR

dB Signal CR d2 EQ PIR CR CR dl-IIP CR dl-EQ P/R

% %

20 P:free 2.00 0.60 14.0 0.81 0.62 0.70 1.36 0.49 30.0

20 Guitar 1.40 1.20 54.0 0.69 0.61 2.60 1.20 0.60 77.0

26 Voice 6.60 5.20 48.0 1.74 1.88 9.90 6.20 4.63 53.0

28 Trans 3.20 11.7 23.0 2.95 3.17 15.1 3.10 6.01 60.0

25 Sine 0.80 11.8 01.0 0.52 0.92 12.5 0.91 0.89 93.0

dB

26 Pfree 2.10 9.30 37.0 0.85 0.68 14.8 1.54 3.79 74.0

26 Guitar 1.60 50.0 59.0 0.72 0.65 122 1.40 7.52 94.0

32 Voice 7.01 419 42.0 2.01 2.03 723 6.06 314 57.0

34 Trans 3.10 792 52.0 2.66 2.08 1662 2.70 612 63.0

31 Sine 1.10 19.4 09.0 0.51 0.87 21.2 2.00 4.04 81.0
TABLE 5.1 FIR and IIR Compression Ratios (CR) and Power Reductions (PIR)

58

SIGNAL pfree guitar voice transient sme

SYSTEM w eq w eq w eq w eq w eq

Rmax 2.78 4.17 2.78 2.86 14.3 7.14 3.13 3.57 3.28 2.13

RR 0.64 0.76 0.64 0.65 0.93 0.86 0.68 0.72 0.69 0.53

Lavg 1.87 2.26 2.41 2.37 1.47 1.91 1.61 2.13 3.20 3.85

H 1.76 1.78 2.36 2.31 0.19 0.29 2.60 2.74 2.07 3.15

CR 2.10 0.85 1.60 0.72 7.01 2.01 3.10 2.66 1.10 0.51

Total Bits 11.6 28.4 30.6 65.1 2.20 19.9 13.4 19.6 22.3 28.4

(x103
)

TABLE 5.2 (IIR) Comparison of Coding Parameters for Residual, W(k), vs. eq(k)

SIGNAL pfree guitar voice transient sme

Parameter w eq w eq w eq w eq w eq

Rmax 3.57 3.13 4.55 2.04 7.69 3.57 3.13 3.57 2.27 3.23

RR 0.72 0.68 0.78 0.51 0.87 0.72 0.68 0.72 0.56 0.69

Lavg 1.56 2.17 1.53 1.61 1.05 1.21 2.31 3.17 1.89 2.07

H 1.46 2.13 2.69 2.96 0.37 0.73 2.14 2.91 1.75 3.01

CR 1.54 0.68 1.40 0.65 6.06 2.03 2.70 2.08 2.00 0.87

Total Bits 20.8 23.3 33.2 61.6 5.68 19.7 13.4 17.1 15.3 18.4

(x103
)

TABLE 5.3 (FIR) Comparison of Coding Parameters for Residual, W(k), vs. eq(k)

59

60

VI. CONCLUSIONS

This thesis set out to compare the performance of two versions of ADPCM data

compression systems. The primary objective was to use a set of evaluation criteria to

determine, for a given implementation and a given set of algorithms, whether the FIR

ADPCM compressor performed better than the IIR ADPCM compressor or vice versa. A

Huffinan binary coder/decoder was added to the basic ADPCM compressors thus

completing an entire data compression system. Therefore, a comparison was also made of

each associated binary coder's performance. The specific results of the testing are detailed

in the previous chapter. It must be noted that these results are valid only for the specific

implementation used in this thesis, which included a FIR filter of order 6 only, and do not

necessarily hold for different implementations, filters of different orders, or other changes.

As stated in the previous chapter, a FIR filter of order six was experimentally picked on

the basis of providing better compression in the ADPCM coder than a sampling of filters

using different orders.

Table 5.1 displays the results of the main comparison between IIR and FIR

ADPCM compressors. The power reduction, (P/R), percentage was used to determine

the percentage by which each compressor reduced the original signal power. Clearly, the

FIR performed far better than the IIR in this category. This fact was particularly

highlighted by the greater power reduction the FIR compressor achieved using the

sinusoidal signal; a non-persistently excited signal known to be problematic for the IIR

compressor, (Table 5.1, column five -rows eight and fourteen vs. column eleven- and the

same rows). Not visible in any of the tables was the fact that the FIR coder

implementation compressed each signal approximately 40% faster than did the IIR coder.

As dramatic as this difference was, since the IIR coder was not optimized for the fastest

possible speed, this result cannot be assumed to always hold for other implementations.

61

The second major analysis focused on how effectively the modular function performed its

job. The purpose of the modular function was to reduce the size of the codepage required

to transmit the compressed signal. In order to accomplish this task, the average

wordlength, Lavg> was determined; where a smaller Lavz indicated a smaller codepage. The

compression ratio, (CR), of the binary coder was also calculated to help facilitate the

comparison of each modular functions' effectiveness. Thus, in Table 5.2 and Table 5.3,

both of which refer only to data taken from the higher SNR set of Table 5.1, both the

error sequence, eq, and the modular sequence, W, were run through the Huffinan coder.

Table 5.2 shows the results from the IIR coder, where the modular sequence had a smaller

Lavz than the error sequence for all signals except the GUITAR signal. The FIR modular

function produced a smaller modular sequence Lovg for all five signals (Table 5.3).

Furthermore, the CR of each signal was greater for the modular sequence than for the

error sequence. This increase in CR was a theoretical possibility foretold in Einarsson's

work. This result held equally well for the FIR coder as well as the IIR coder. Thus, the

addition of the modular function did improve the performance of both ADPCM

compression systems as postulated by Einarsson. The compression ratios which are less

than one show that when the sequence was coded with the Huffinan coder, the codepage

required to transmit the sequence actually expanded rather than become compressed.

This expansion phenomenon occurs when the input sequence statistics do not match the

statistical expectations of the binary coder, resulting in a mismatch which causes the data

to expand rather than compress. It is also possible that this statistical mismatch is what

sometime caused the CR to move in the opposite direction from what the RR would cause

one to expect (Tables 5.2 and 5.3).

The limited data set and restricted applicability of the data still make the results

somewhat inconclusive and further testing is needed to completely specifY each system

62

capabilities. This inconclusivity is also partly due to the lack of a standard comparison

criteria upon which to definitively judge different types of ADPCM systems. Additional

testing might concentrate on different types of compression ratios, see Lynch (1985) for

more discussion on types of compression ratios, other SNR' s and certainly different types

of data signals and filter orders, as starting points for further research.

63

64

APPENDIX

(MATLAB CODE)

65

A. FIR ADPCM Implementation

~---
~ FINAL OUTPUT IS SEST1
~ LMS of order M=6 using round for Q wrt error, mu values signal dependent
~ This program simulates an ADPCM compression scheme using an fir predictor

~---
clear
clg
k=1:2000;
~load input signal
mu=X;
M=6;
A=20;
u=A *[zeros([1,M]),s];
ul=round(u);
N=length(u);
shat=O;
w=zeros(M);
e=O;
eq=zeros(1 ,M);

cw=O;
minV1=min(u1);
maxV1=max(u1);
mod1=maxV1-minV1;
c 1 =zeros(1 ,mod 1);

~ implement LMS algorithm
for n = M+1:N,

end

eq 1 =eq(n-1:-1 :n-M)';
shat = w(:,n-1)' *eq1;
e = ul(n) - shat;
eq(n) =round(e);
[j,i] = min(abs(Q-eq(n)));
cl(i)=cl(i)+ 1;
w(:,n)=w(:,n-l)+mu*eq1 *eq(n);

~no. of data points

~ step size mu
~ predictor length
~ scaling factor used to change SNR
~ i!p scaled by A
~ round input
~ data length
~ predictor output
~ initial weights
~ initial error
~ predictor input

~ get minimum value of input for H calc.
~ get max value of input for H calc.
~ determine mod function value

~ predictor output
~ error: voice signal
~ quantizer output
~ get index of quantizer value
~ update counter
~ recalculate weights

66

W=max(eq); % get max value of eq to det. mod value
V1 =min(eq); % get min value of eq to det. mod value
mod=W-V1+1 %get mod value for error sequence
minV=V1; %store value ofV1 inminVvariable
V1=-V1; %negate min value ofeq to make it positive
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This section computes the probability vector for the error vector eq
%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
C1=sum(c1); %total number of data values
Pe=c 1./C 1; % vector of probabilities
Pe=sort(Pe); %sort prob vector from low to high
pe=fliplr(Pe); % arrange prob vector from high to low
% Initialize Modulus Function
c=zeros(1,mod);
wk=zeros(1,M);
Q1=[0:1:mod-1];
R=zeros(1,mod);
% Modulus Function which takes values from -mod to +mod and reduces the range
% to 0 to +mod to reduce the number of codewords necessary to transmit the
% quantized error signal
for n = M+ 1 :N,

end

eqa(n)=V1+eq(n);
wk(n)=eqa(n)-eqa(n-1);
O,i] = min(abs(Q1-wk(n))); %get index of quantizer value
R(i)=R(i)+ 1;
ifwk(n) >= 0

else

end

wk1(n)=rem(wk(n),mod); %mod function
O,i] = min(abs(Q1-wk1(n))); %get index of quantizer value
c(i)=c(i)+ 1;

wk1(n)=mod+rem(wk(n),mod);
O,i] = min(abs(Q1-wk1(n))); %get index of quantizer value
c(i)=c(i)+ 1;

67

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This section computes the probability vector for the mod function o/p w'
%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C=sum(c);
P=c./C;
P=sort(P);
p=fliplr(P);

% total number of data values
% vector of probabilities
% sort prob vector from low to high
% sort prob vector from high to low

%%
%%%%%%%%%%%%%%%%%%%%%%%
%
% This section computes the probability vector for the residuals
%
%%
%%%%%%%%%%%%%%%%%%%%%%%

wc=sum(R);
Pw=R./wc;
Pw=sort(Pw);
pw=fliplr(Pw);

% total number of data values
% vector of probabilities
% sort prob vector from low to high

% Implement Huffman Encoder/Decoder using function huffinan4.m
%which returns wkmod- rcvd residuals, CR-compression ratio,
% Eb -bits in error, and
%bits-total no. of bits used

Ebl=O;
CRl=O;
Bits=O;
%minV=O; % set to zero when calculating values for w'

[wkmod,H,L _ avg,Bits,E, CR,Lvar,Rmax,eff]=huffinan4(eq,mod,pe,min V);

68

%Implement FIR Receiver
%Initializations
L=length(eq);
wr=zeros(M);
shatr=O;
sest=zeros(l,M);
wkmod 1 =zeros(l,M);

%FIR Receiver LMS algorithm
for n=M+ 1 :N .

% data length
% assumed predictor coefficients
% assumed predictor output
% assumed rcvr output

wkmodl(n)=rem(wkmod(n)+wkmodl(n-l),mod);
eqhat(n)=wkmodl(n)-VI;
eq2=eqhat(n-l:-l:n-M);
wr(:,n)=wr(:,n-l)+mu*eq2'*eqhat(n);
shatr=wr(:,n-l)'*eq2';%filter output
sest(n) = shatr + eqhat(n); %est of noisy signal y

end
sest 1 =round(sest);

%%
%%%%%%%%%%%%%%%%%%%%%%%
%
% This section computes signal to noise ratios and input and
% output power ratios
%
%%
%%%%%%%%%%%%%%%%%%%%%%%
Pn=l
yo=xcorr(sest, 'biased');
yi=xcorr(u,'biased');
ra=length(yi)/2;
ri=round(ra);
rb=length(yo)/2;
ro=round(rb);
Pi=lO*log(yi(ri))
Po=IO*log(yo(ro))
SNRo=Po/Pn
SNRi=Pi!Pn

69

B. DR ADPCM Implementation

~---
~FINAL OUTPUT IS SRHATl
~ transmitter uses backward adaption IIR. Rcvr uses error signal.
~ ARMA MODEL MA part is B, AR part is A.
~ This program simulates an ADPCM compression scheme using an iir predictor

~---

clear
clg
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~

~ input data section
~

~load guitar.mat;
~d=g_synth(l :7025);
~

%%
%%%%%%%%%%%%%%%%%%~%%%%%%%%%%%%%

P=length(d);
p=2;
q=6;
A=lO;

~Initializations
u=A *[zeros([l,q]),d'];
N=length(u);
k=length(u);
uhatA=O;
uhatB=O;
uhat=zeros([l,q+ 1]);
e=O;
ul=round(u);
eql(l:q)=zeros([l,q]);
u2(1 :q)=zeros(l,q);

~ ar predictor length
~ rna predictor length
~ scaling factor

% data length

% initial error

~ predictor input

70

eq=zeros(1,q);
P=zeros(1,q);
shat=zeros(1,q);
delta1 =1-1e-6;
delta2=1-2e-6;
a1 =zeros(l,p);
a2=zeros(1,p);
b=zeros(1,q);
alpha1 =3 .2e-6;
alpha2=2e-6;
f=O;
minV1=min(u1);
max:V1=max(u1);
mod1=max:V1-minV1;
Q=(O:mod1-1);
c1 =zeros(1,mod1 + 1);

%DR Transmitter LMS algorithm
for n = q+ 1 :N,

% predictor coefficients

% get minimum value of input for H calc.
% get maximum value of input for H calc.
% get value to use for modular function

e = u1(n)- uhat(n); %error: voice signal
eq(n)= round(e);
O,i] = min(abs(Q-eq(n))); %get index of quantizer value
c1(i)=c1(i)+ 1;
eq1 = eq(n-1:-l:n-q);
uhatB = b(:,n-1)'* eq1';
P(n) = uhatB+eq(n);
shat(n) = P(n) + uhatA;
shatl =shat(n:-l:n-1);
uhatA = [a1(n-1) a2(n-1)]*(shat1)'; %predictor output
uhat(n+1) = uhatA + uhatB;
a1(n)=delta1 *a1(n-1) + alpha1 *sgn(P(n-1))*sgn(P(n-2));
if abs(a1(n)) <= 0.5,

f 4*a1(n);
else

f 2*sgn(a1(n));
end
a2(n)=delta2*a2(n-1)+alpha2*sgn(P(n))*[sgn(P(n-2))-f*sgn(P(n-1))];
if a2(n) > 0.75,

a2(n)=0.75;

71

elseif a2(n) < -0.75,
a2(n)=-0.75;

else
a2(n)=a2(n);

end
if al(n) >1-2"(-4)-a2(n),

al(n)=l-2"(-4)-a2(n);
elseifal(n) < -(1-2"(-4)-a2(n));

al (n)= -(1-2"(-4)-a2(n));
else

al(n)=al(n);
end
b(:,n)=deltal *b(:,n-l)+alpha2*sgn(eql)'*sgn(eq(n-1));

end
clear a 1 a2 b uhatA uhatB P

V=min(eq);
minV=V;
Vl=-1 *V;
W=max(eq);
mod=W+Vl+l
wk=zeros(l,q);

% get minimum value of eq to shift with

% change min value to positive
% get max value of eq to det. mod value
% get mod value

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This section computes the probability vector for the error vector eq
%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Cl=sum(cl);
Pe=cl./Cl;
Pe=sort(Pe);
pe=fliplr(Pe);
Ql=[O:l:mod-1];

% Initialize Modulus Function
c=zeros(l,mod);

% total number of data values
% vector of probabilities
% sort prob vector from low to high

72

w=zeros(1 ,mod);

% Modulus Function which reduces range toto 0 to +mod to reduce the number of
% codewords necessary to transmit the quantized error signal

for n = q+1:N,
eqa(n)=V1 +eq(n);
wk(n)=eqa(n)-eqa(n-1);
O,i] = min(abs(Q1-wk(n)));
w(i)=w(i)+ 1;
ifwk(n) >= 0

else

wk1(n)=rem(wk(n),mod);
O,i] = min(abs(Ql-wk1(n)));
c(i)=c(i)+ 1;

% adjust for min of eq

% get index of quantizer value

% mod function
% get index of quantizer value

wk1 (n)=mod+rem(wk(n),mod);

end
end
clear eqa

O,i] = min(abs(Q1-wkl(n))); %get index of quantizer value
c(i)=c(i)+ 1;

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This section computes the probability vector for the mod function o/p w'
%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

C=sum(c);
P=c./C;
P=sort(P);
p=fliplr(P);

% total number of data values
% vector of probabilities
% sort prob vector from low to high

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This section computes the probability vector for the residuals w

73

%

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

wc=sum(w);
Pw=w./wc;
Pw=sort(Pw);
pw=fliplr(Pw);

%Implement IIR Receiver
%Initializations
L=length(eq);
wkmod1 =zeros(l,q);
x(1 :q)=[zeros([1,q])]';
br=zeros(q);
shatr(l :q)=zeros([l,q]);
shatrA=O;
shatrB=O;
srhat=zeros([1 ,q]);
Pr=zeros(l,q);
arl=zeros(l,q);
ar2=zeros(l,q);
CR1=0;
Bits=O;
Eb1=0;
minV=O;

% total number of data values
% vector of probabilities
% sort prob vector from low to high

% data length

% predictor input

% rcvr pred output

% rcvr output

%Implement Huffman Encoder/Decoder using function huffman4.m
% which returns wkmod- rcvd residuals, CR-compression ratio,
% Eb -bits in error, and
%bits-total no. of bits used

[wkmod,H,L _ avg,Bits,E, CR,Lvar,Rmax,eft]=huffman4(wk1,mod,p,min V);

for n=q+1:N
wkmod1 (n)=rem(wkmod(n)+wkmod 1 (n-1),mod);
eqhat(n)=wkmod1(n)-V1; %adjust for min ofeq
eq2=eqhat(n-1 :-1 :n-q);

74

%llR Receiver LMS algorithm
Pr(n) = shatrB + eqhat(n);
srhat(n) = Pr(n) + shatrA;
shatrB = br(:,n-1)'*(eq2');

end

shatrA = [ar1(n-1) ar2(n-1)]*(srhat(n-1:-1:n-2))';
ar1(n)=delta1 *ar1(n-1) + alpha1 *sgn(Pr(n-1))*sgn(Pr(n-2));
ifabs(ar1(n)) <= 0.5,

f 4*ar1(n);
else

f 2*sgn(ar1(n));
end
ar2(n)=delta2*ar2(n-1)+alpha2*sgn(Pr(n))*[sgn(Pr(n-2))-f*sgn(Pr(n-1))];
if ar2(n) > 0.75,

ar2(n)=0.75;
elseif ar2(n) < -0. 75,

ar2(n)=-0.75;
else

ar2(n)=ar2(n);
end
ifar1(n) >1-2/\(-4)-ar2(n),

ar1(n)=1-2A(-4)-ar2(n);
elseif ar1(n) < -(1-2/\(-4)-ar2(n));

ar1(n)= -(1-2/\(-4)-ar2(n));
else

arl(n)=arl(n);
end
br(:,n)=deltal *br(:,n-1)+alpha2*sgn(eq2)'*sgn(eqhat(n));

clear shatrB shatrA Pr ar1 ar2 br
srhat 1 =round(srhat); % round output to match rounded input

75

%%
%%%%%%%%%%%%%%%%%%%%%%%
%
% This section computes signal to noise ratios and input and
% output power ratios
%
%%
%%%%%%%%%%%%%%%%%%%%%%%

Pn=l
yo=xcorr(srhat, 'biased');
yi=xcorr(u, 'biased');
ra=length(yi)/2;
ri=round(ra);
rb=length(yo)/2;
ro=round(rb);
Pi=lO*log(yi(ri))
Po=lO*log(yo(ro))
SNRo=Po/Pn
SNRi=Pi!Pn

76

C. HUFFMAN Encodingillecoding Scheme

% HUFFMAN4 finds the minimum variance Huffinan code for the symbol
% probabilities entered by the user. The algorithm makes use of
% permutation matrices for the combination and sorting of probabilities.
% Permutation matrices are used because they provide a convenient record
% of operations, so that the codewords can then be constructed fairly easily
% once the combination and sorting of probabilities yields just two
% probabilities. At this point a zero is assigned to one of the
% probabilities and a one assigned to the other. The permutation matrices
% are used to append additional zeros and ones as appropriate to obtain
% the final codeword for each symbol. This program both encodes and decodes
% Program revised to accept a vector of data (wk1) and with (mod) different
% values and apply the generated Huffinan code (generated as CW and converted
% to decimal- Cwdr) to the data and decode it at the receiver.
% Written by K.L. Frack for EC4580 Course Project% Revised by M. V. Cooperwood
% for data compression thesis
% Last Update: 20 June 1995
% clear Bits out H effRR Lavg Rmax

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%ThWUTTHESYMBOLSTOBECODED%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%function [wkmod,H,L _avg,Bits,E,CR,Lvar,Rmax,eff]=huffinan4(wk1 ,mod,p,min V);
disp('Commence symbol probability determination process')

total=length(wk1);
% determines the number of characters in the input file.

% This section determines the frequency of occurrence of each unique character
%(As)
% in the input file and associates the frequency with the respective character
%(X).

%nb=input('Input the number ofbins (128 or 256) ');
Z=[1:mod];
[As,X]=hist(wk1,Z);

% This section determines calculates the integer length (1) of the respective codeword.

77

l=zeros(l,mod); %initialize length vector
for
%INPUT THE NUMBER OF SYMBOLS TO BE CODED. NO TRIVIAL
% SOLUTION ALLOWED.
q=O; % q = number of symbols. Set to 0 to ensure that

%the loop
% will be executed at least once

while q<3 %Need at least 3 symbols for a non-trivial solution
q=mod
%q=input('Enter the number of symbols: '); %allows for keyboard input

ifq<3,
beep,
disp('Trivial solution. Use a larger number ofsymbols.'),

end
end

%ENTER THE SYMBOL PROBABILITIES. For keyboard input only
% Note: The probabilities must sum to 1.00 and must be in entered in
% descending order for the algorithm to work properly. Since the
% algorithm
% will give erroneous results if these errors are overlooked, error
% checking
% routines are included in later steps.
%disp(' ')
%disp('Enter the symbol probabilities (in descending order).')
%for=l:q,
%p(i)=input([' Enter the probability of s',int2str(i),': ']);
%end
% ENSURE THERE ARE ENOUGH PROBABILITIES ENTERED
% If <RETURN> is inadvertently struck before a probability is entered
%the
% input command could yield a probability vector which is too small.
%This
% causes the program to crash. This procedure prevents this from
% happening
% by setting all of the missing probabilities to zero. In this event the
% user can correct the wrong probabilities in a later step.
%iflength(p)<q,
% p=[p;zeros(q-length(p),l)];

78

%end
% ERROR CHECK THE SYMBOL PROBABILITIES
correct=1n1

; %correct = 1n1 ensures at least once through the error
%checking
% loop.
count=O;
% count = 0 makes the loop a little simpler. It
%prevents % the
% program from prompting for a correction until the loop
% has % been executed at least once.
while correct -= Y % Keep looping until correct.
if count>O; % This procedure will be executed only if there are

% errors to be corrected.
s=input('Enter the index of the incorrect probability: 1

);

p(s)=input(['Enter the correct probability for s',int2str(s),': 1
]};

end
count= I;

79

80

LIST OF REFERENCES

Apiki, S., "Lossless Data Compression," Byte, March 1991.

Bonnet, M., Macchi, 0., and Jaidane-Saidane, M., "Theoretical Analysis of the ADPC¥
CCITT Algorithm," IEEE Transactions on Communications, Vol. 38, No.6, June 1990.

Bookstein, A. and Storer, J. A., "Data Compression," Information Processing &
Management, Vol. 28, No.6, 1992.

Cappellini, V., Data Compression and Error Control Techniques with Applications, New
York, NY: Harcourt Brace Janovich, 1985.

CCITT, Recommendation G.721, Red Book, Tome III-3, Malaga-Torremolinos, October
1984.

Davisson L. D., and Gray R. M., Data Compression, Stroudsburg, PA: Halsted-Press,
1976.

Einarsson, G., "An Improved Implementation ofPredictive Coding Compression," IEEE
Transactions on Communications, Vol. 39, No.2, February 1991.

Gibson, J.D., "Adaptive Prediction for Speech Encoding," Acoustic Speech Signal
Processing Magazine, Vol. 21, No.7, July 1984.

Haykin, S., Adaptive Filter Theory, Englewood Cliffs, NJ, Prentice-Hall, 1991.

Jayant N. S., and Noll, P., Digital Coding of Waveforms, Englewood Cliffs, NJ: Prentice
Hall, 1984.

Knuth, D. E., "Dynamic Huffman Coding," Journal of Algorithms, No. 6, March 1985.

Langdon, Jr., G. G., "An Introduction to Arithmetic Coding," IBM J. Res. Develop.,
March 1984.

Lu, W. W., and Gough, M.P., "AFast-AdaptiveHuffinan Coding Algorithm," IEEE
Transactions on Communications, Vol. 41, No.4, April1993.

Lynch, J., Data Compression Techniques, Belmont, CA: Wadsworth, Inc., 1985.

81

Proakis, J. G., and Manolakis, D. G., Digital Signal Processing, New York, NY:
Macmillan Publishing Co., 1992.

Rabiner, L. R., and Schafer, R. W., Digital Processing of Speech Signals, Englewood
Cliffs, NJ: Prentice-Hall, 1978.

Sibul, L. H., Adaptive Signal Processing, New York, NY: IEEE, 1987.

Weiss, J., and Schremp, D., "Putting Data On a Diet," IEEE Spectrum, Vol. 9, No.3,
August 1993.

Xue, K., and Crissey, J. M., "An Iteratively Interpolative Vector Quantization Algorithm
for Image Data Compression," IEEE Proceedings Data Compression Conference,
Snowbird, UT, 1991.

82

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd. STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 13 2

Naval Postgraduate School
Monterey, California 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

4. Professor Monique P. Fargues, Code EC/Fa 2
Department of Electrical and Computer Engineering
Naval Postgraduate School·
Monterey, California 93943-5121

5. Professor Ralph Hippenstiel, Code EC/Hi 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

6. Lt. Michael Vonshay Cooperwood, Sr. 1
6 Rustic Place
Buffalo, New York 14215

83

