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ABSTRACT 

An analysis of the performance of a binary phase shift keying (BPSK) 

communication system employing fast frequency-hopped (FFH) spread spectrum 

modulation, under conditions ofhostile partial-band noise interference, is performed in this 

thesis. The data are assumed to be encoded using convolutional coding and the receivers 

are assumed to use soft decision Viterbi decoding. 

The receiver structures to be examined are the conventional FFH/BPSK receiver 

with diversity, the conventional FFH/BPSK receiver with diversity and the assumption of 

perfect side information, and the noise-normalized FFH/BPSK combining receiver with 

diversity. The FFH/BPSK noise-normalized receiver with diversity minimizes the effects of 

hostile partial-band noise interference and alleviates the effects of fading. The effect of 

inaccurate measurement of the noise power present in each hop is also examined, and it is 

found that noise measurement error does not significantly degrade receiver performance. 

For the conventional FFH/BPSK receiver with perfect side information, the effect of a 

Ricean fading channel is also examined. 
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I. INTRODUCTION 

A. BACKGROUND 

The conventional modulation/demodulation techniques like binary phase-shift 

keying (BPSK), quadrature phase-shift keying (QPSK), M-ary frequency-shift keying 

(MFSK) have good performance for digital communications in an additive white Gaussian 

noise (AWGN) environment. In reality, there are many occasions when the channel 

cannot be modeled as AWGN. For example, a military communication system is more 

likely to encounter narrowband interference such as a continuous wave (CW) signal near 
1 

the carrier frequency in addition to A WGN. Also, the transmitted signal usually follows 

many different propagation paths in order to reach the receiver, so it suffers from another 

type of interference called multi path interference. 

The necessity for a more robust modulation/demodulation technique m the 

presence of narrowband interference for military applications drove the development of 

spread spectrum. Spread spectrum is so called because the transmission bandwidth 

employed is much greater than the minimum bandwidth required to transmit the 

information. Some types of spread spectrum systems decrease the ability of a. hostile 

observer to detect communication. This type of system is referred to as a low probability 

of detection (LPD) communication system. Other types of spread spectrum systems 

decrease the ability of a hostile observer to intercept communications. This type of system 

is referred to as a low probability of intercept (LPI) communication system. Spread 

spectrum systems also decrease the ability of a hostile jammer to efficiently jam the 

communication band. In the past, spread spectrum systems were primarily used for 

military applications. Nowadays, spread spectrum systems are coming into widespread use 

for commercial applications such as cellular communications and wireless 

communications. There are three primary types of spread spectrum systems: 

direct-sequence, frequency-hopping, and time-hopping systems. Hybrids of such systems 

can also be obtained. 
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As was mentioned above, one spread-spectrum modulation technique is 

frequency-hopping spread spectrum. Typically, in frequency-hopped spread spectrum the 

frequency of the carrier changes periodically according to some pseudorandom pattern. If 

more than one symbol is transmitted before the carrier frequency hops, then the system is 

referred to as a slow frequency-hopping (SFH) spread spectrum system. If the carrier 

frequency changes one or more times during the transmission of one symbol, then the 

system is referred to as a fast frequency-hopped (FFH) spread spectrum system. Fast 

frequency-hopping is a form of frequency/time diversity when multiple hops per symbol 

are used. Diversity is a form of repetition coding for the transmission of one symbol. A 

signal configured with multiple replicate copies, each transmitted over a different 

frequency, has a greater possibility of surviving than a signal with no diversity. 

One of the most severe forms of narrowband interference is partial-band noise 

interference. In this case the jammer selects a fraction of the signal transmission bandwidth 

to jam with the result that significant performance degradation can occur. Fast 

frequency-hopping with diversity can be an effective countermeasure against partial-band 

noise jamming. 

B. OBJECTIVE 

In this thesis, the performance of a fast frequency-hopped BPSK receiver using 

noise-normalization is investigated. Noise-normalization combining is a technique that can 

be useful in reducing the effect of hostile interference. The noise-normalized receiver will 

be discussed in Chapter III. Partial-band noise interference is assumed in addition to 

AWGN. The communication system also employs diversity, convolutional coding, and 

soft decision Viterbi decoding. For purposes of comparison, a fast frequency-hopped 

BPSK receiver with perfect side information is used. The perfect side information receiver 

will be discussed in Chapter IV. The assumption of perfect side information is unrealistic 

but provides an ideal against which other systems can be compared. 

The effect of partial-band interference on communication systems for noncoherent 

channels was investigated in [Ref 1]. The performance of a noncoherent FFHIBFSK 

system with diversity and partial-band noise interference, was investigated [Ref 2]. In 
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[Ref 3] the effect of partial-band noise interference and channel fading on a non-coherent 

FFH!MFSK noise-normalized receiver was investigated, but the noise measurement was 

assumed to be ideal. In [Ref 4] the performance of a FH/DPSK receiver with partial-band 

jamming and in [Ref 5] the performance of a FH/QPSK receiver in the presence of 

jamming was investigated. 

Previous investigations ofFFH systems have concentrated on noncoherent systems 

such as noncoherent FFHIMFSK since, given current technology, implementation of 

coherent systems is not practical. This will not remain true in the future given sufficient 

technological advances," and FFH coherent systems with diversity have the advantage of 

zero noncoherent combining losses. Noncoherent combining losses result in a severe 

limitation of the effectiveness of noncoherent FFH systems with diversity. Hence, in this 

thesis the performance of a noise-normalized FFH/BPSK receiver with non-ideal noise 

power measurement and partial band noise jamming is investigated. Non-ideal noise 

power measurement is an important problem for the noise-normalized receiver since 

accurate, real time noise power estimation is difficult to implement for a FFH system. 
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II. DESCRIPTION OF SYSTEMS 

The fast frequency-hopped BPSK transmitter is assumed to perform L hops per 

data bit where L is an integer greater than or equal to one. A block diagram of the 

FFH/BPSK receiver with noise normalization combining is shown in Fig. 1. At the 

receiver, the FFH signal is assumed perfectly dehopped. After the multiplier used for 

frequency translation, or heterodyning, an integrator circuit integrates the signal over the 

duration of one hop. The integrator acts as a low pass filter and provides optimum 

detection in A WGN. The integrator output is modeled as a Gaussian random variable Xk 

where k is an integer number between 1 and L corresponding to the specific hop. 

For signals transmitted over fading channels, simple linear combining of the hops 

of a bit is sufficient to improve performance dramatically. For narrowband noise such as 

the worst case partial-band noise jamming considered in this thesis, simple linear 

combining is ineffecttve. One technique for reducing performance degradation due to 

partial-band noise jamming is noise-normalization combining. In noise-normalized 

receiver, the integrator output is normalized by the measured noise power cr k of hop k. 

We consider both ideal and non-ideal noise power measurement. The decision variable Z 

of the receiver is formed by the summation of the noise-normalized integrator outputs Zk 

k= 1.. .L. The decision variable Z is also a Gaussian random variable since it is the sum of 

L independent Gaussian random variables. The signal Z is routed to a comparator where 

the final decision for an one or zero takes place. The effect of the noise-normalization 

procedure is to de-emphasize jammed hops with respect to unjammed hops; hence, the 

influence of jammed hops on the overall decision statistic is minimized. 

The other receiver to be considered uses a knowledge of which hops are jammed 

and which are not. This information is called side information. When we know with 

certainty which hops are jammed and which are not, then we have perfect side 

information. In a receiver with perfect side information, only unjammed hops contribute 

to the final decision statistic unless all hops are jammed, in which case all hops are used 

with equal weight. If the system operates at a very high ratio of bit energy-to-thermal 

noise power spectral density (E/No ), then the effect of thermal noise may be neglected; 
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and if any of the L bits are received without jamming, the decoder makes a perfect 

decision based only on the unjammed hops. Perfect side information is not realistic, but it 

gives us a standard against which to measure receivers which have imperfect side 

information. 

The type of interference that is considered in this thesis is partial-band noise 

interference caused either by a partial-band jammer or by some unintended narrowband 

interference. The partial-band noise interference is modeled as a Gaussian process. Let p 

denote the fraction of the spread spectrum bandwidth jammed. Thus, p is the probability 

that narrowband interference is present, and ( 1-p) is the probability that narrowband 
N· 

interference is not present. If 2~ is the average power spectral density of partial-band 

noise interference over the entire spread bandwidth, where N is the total number of 

frequency bins and Nj is the noise power spectral density of the jammer without 
N· 

partial-band jamming, then 2;P is the power spectral density of partial-band interference 

when it is present. In addition to narrowband interference, the signal suffers from the 

existence of thermal noise. The power spectral density of this wideband noise is defined as 

~o . Thus, the total power spectral density of wideband noise and partial-band noise 

interference combined is given by 

N No ~-T=-+-2 2Np (1) 

If we assume that the equivalent noise bandwidth of the receiver is B Hz, then for 
each hop the noise power NoB is received with probability (1-p) when interference is not 
present and noise power (No +Ni /Np )B with probability p when interference is present. In 
this thesis the bit rate is assume fixed. So for an FFHIBPSK system with L 1

h order 
diversity the hop rate is given by 

T Tb 
or h =-

L (2) 

where Rh and Th are the hop rate and the hop duration, respectively, and Rb and Tb are 
the bit rate and the bit duration, respectively. It is obvious that when L = 1 there is no 
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diversity and noise-normalization has no effect. Also, the average energy per bit is related 

to the average energy per hop by 

(3) 

where Eb is the average energy per bit and Eh is the average energy per hop. So for a 

fixed bit rate and a fixed average energy per bit, both hop duration and average energy per 

hop decreases as diversity increases. 

The equivalent noise bandwidth in the noise-normalized BPSK demodulator must 

be at least as wide as the hop rate, and for the correlation demodulator assumed in this 

thesis B = Rh = ;h. So the received noise power is (No+ ~)/Th when partial-band noise 

interference is present and N 0 /T h when is not present. 

Note that there are two ways to investigate the performance of the FFH/BPSK 

noise-normalized receiver with L th order diversity. The first is by assuming that the spread 

spectrum transmission bandwidth W is fixed. The bit rate is already assumed fixed for this 

thesis. Thus, as diversity increases, the number of frequency bins must decrease when 

bandwidth is fixed since W = KNLRb where L is the diversity, N the number of 
frequency bins, and K is an integer. 

Alternatively, we can assume that the number ofbins N is fixed. Now increasing 

diversity L also increases bandwidth by a factor of L. This means that the power of 

jammer Pi must be spread over a bandwidth larger by a factor of L, and the jamming 
N· . 

power spectral density decreases by a factor of L. For this case Njnew = l where Njnew is 

the jamming power spectral density after the spreading over the larger bandwidth. 

When a system utilizes forward error correction coding (FEC), then for every k 

information data bits, n coded bits are transmitted where n>k. The FEC can help improve 

overall system performance. It is obvious that the n coded bits must be transmitted in the 

same time that the k data bits are transmitted in order to maintain a fixed data bit rate. So 

(4) 

and 
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(5) 

wh~re r = ~ is the code rate, Tbc is the coded bit duration, and Rbc is the coded bit rate 
which is given by 

R nR Rb 
b =- b=-c k r (6) 

Since r< 1, the coded bit rate is higher than the uncoded bit rate. On the other hand, the 

average transmitted power is the same regardless of whether coded or uncoded bits are 

transmitted and is given by 

(7) 

which implies 

(8) 

Since r<1, the average energy per coded bit is less than the energy per data bit, and for 

fixed average energy per data bit, increasing the level of coding increases the probability of 

coded bit error. In this thesis the FEC used is convolutional coding with constraint length 

v=3 and code rate r=l/2. A convolutional code produces n coded bits that are determined 

by the k data bits and the k(v-1) preceding data bits. 

If we assume that the number ofbins N is fixed, then the bandwidth with coding is 

increased by a factor 1/r and the power of jammer has to be spread over a bandwidth 
N· 

larger by a factor 1/r. Hence, ~new= ; = rNJ. Taking diversity into account, we see 
r 

that the jamming power spectral density decreases in total by a factor Llr. Hence, the 
rN· 

jamming power spectral density is NJnew = -f . 
We modeled the channel as a Ricean fading channel in which the signal consists of 

two components: a direct signal component and a diffuse signal component [Ref . 6]. In 

this case the channel for each hop is modeled as a frequency-nonselective, slowly fading 
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Ricean process. So the bandwidth of a hop is assumed to be smaller than the coherence 

bandwidth· of the channel, and the hop duration is assumed smaller than the coherence 

time of the channel [Ref 6]-[Ref 7]. As a result of the above assumptions, the dehopped 

signal amplitude is modeled as a Ricean random variable. In this thesis, only the receiver 

with perfect side information is assumed to receive a signal over a fading channel. 
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III. PERFORMANCE ANALYSIS OF FAST 

FREQUENCY-HOPPED NON-IDEAL NOISE-NORMALIZED 

COMBINING BPSK RECEIVERS WITH SOFT DECISION 

VITERBI DECODING 

The performance of the noise-normalized receiver is evaluated in this thesis by 

obtaining the bit error probability versus the bit energy-to-interference power spectral 

density for the receiver in Fig 1. The analysis requires the statistics of the random variables 

that model the integrator output Xk k=1,2, ... ,L, for each hop k, as well as the statistics 

of the noise-normalized random variables Zk k=1,2, ... , L, where 

(9) 

where &i is the inaccurate noise power measurement for hop k. The summation of Z k 's 

yields the final decision random variable Z 

(10) 

From Fig 1. the mean of Xk is simply the integrator output when there is no noise and is 

given by 

(11) 

For this thesis we assumed perfect dehopping. 

A. NOISE POWER ESTIMATOR 

We have already discussed in the previous chapter that the noise power for each 

hop is 

11 



2 2 N B No (j'k = (j'k = 0 = -
o Th (I2) 

with probability I - p when interference is not present and is 

(13) 

with probability p when interference is present. When the estimation of the noise power is 
ideal then 

(I4) 

When the noise power estimation is not ideal, then the total estimated noise power when 

interference is present is given by 

(15) 

.. 
where ~· is the estimated noise power spectral density of the jammer and thermal noise .. 
power is assumed to be estimated without error. In this thesis Nj is modeled as a 
parameter so 

(I6) 

.. 
where k is a real number and takes different values. For values ofk such that k<I, ~ is 
underestimated . For values of k such that k> I, ~ is overestimated. When k=I, we have .. 
ideal noise power estimation and Nj = ~. 

When only thermal noise is present the estimated noise power is given by 

(I7) 

I2 



B. PROBABILITY DENSITY FUNCTION OF THE DECISION VARIABLES 

The random variable Xk is a Gaussian random variable, and its probability density 

function is 

(18) 

Making the linear transformation of equation (9) and using equation (11), we get the 

probability density function 

(19) 

We note that equation (19) is a Gaussian random variable with mean 

(20) 

and variance 

(21) 

Since ZK is a Gaussian random variable, then from equation (10) Z is also a Gaussian 

random variable, hence the mean of Z is 

(22) 

and the variance is 

(23) 

13 



Substituting equations (20) and (21) into equations (22) and (23), respectively, we obtain 

the mean 

(24) 

and the variance 

(25) 

of the decision variable Z. 

If i of the L hops are jammed, then from equation (24) the mean of the random 

variable Z, is given by 

Z- J2Ac. J2Ac(L .) = -,-1+-- -l 
e:rk. e:rko 

J 

(26) 

The variance, or the noise power, of the random variable Z is obtained from equation (25) 
as 

(27) 

where ot is the estimated noise power of the jammer and crt is the thermal noise power. 
We have already assumed in equation (17) that &t =crt 

C. PROBABILITY OF BIT ERROR 

1. Without Coding 

Since the decision statistic Z is a Gaussian random variable, the conditional bit 

error probability is 

14 



(28) 

where the Q-function is defined as 

00 

1 f I.Z Q(z) = - exp( --)d'A 
fiitz 2 (29) 

Substituting equations (26) and (27) into equation (28), we get the conditional bit error 

probability given i jammed hops as 

(30) 

The argument of the Q-function can be rewritten 

(31) 

and we already know from equations (2) and (17) that 

(32) 

Also from equations (15) and (17) 

(33) 

15 



which can be rewritten 

(34) 

Similarly, from equations (13) and (15) 

(35) 

Substituting equations (31), (32), (34), and (35) into equation (30), we get the conditional 

probability of bit error for the noize-normalized receiver without coding and non-ideal 

noise power estimation as 

( 2Eb . ') 

l.No ( ~·' +L-i)2 
N· 

1+-J 
pNNo 

N· 
1+-J 

i( fJN!fo )+L-i 
N-

1+-J 
pNNo 

We note that for i=O (no jammed hops) 

which is the bit error probability for the conventional BPSK receiver. 

(36) 

(37) 

Since whether or not a hop is jammed is independent of whether other hops are 

jammed or not the probability that i ofL hops are jammed is given by 

(38) 

16 



and the number of different ways that i of L hops can be jatinned is given by the binomial 

coefficient 

(39) 

Therefore, the probability of the event that i ofL hops are jammed is 

(40) 

Finally, the probability of bit error for any type of FFH system with diversity and 

partial-band noise jamming is given by 

(41) 

In our case Pb(i) is given by equation (36). From equation (41) we can calculate the bit 

error probability of a FFHIBPSK noise-normalized receiver with diversity. 

In order to estimate the worst case p, the p which maximizes the probability of bit 

error, we assume that P b is dominated by the all hops jammed case. Hence 

(42) 

According to Leibnitz's rule, we get from equation (29) 

dQ(z) = __ 1_exp(-z2
) 

dz fii 2 (43) 

Now 

17 



(44) 

and applying equation (43) to equation (44), we get 

(45) 

By using an approximate expression ofQ(z), [Ref 8] 

Q(z) ~ exp(-~)( :2 ) 
ffiz z +I 

z>2 (46) 

we can simplify equation ( 45) as follows 

(47) 

which reduces to 

dPb PL-iexp(-P~b) (NEb)l ( 2L lj 
-~ - -1 
dp J41tN.Eb Nj· 2pNEb +1 

N N· j J 

(48) 

We require a:;Pb = 0 0 From equation (48), only the factor 2~ - 1 can be equal to 
_b+l 
~ 

zero for 1 ;::: p > 0 0 Hence, 

(49) 

which can be solved to obtain 

18 



(50) 

Equation (50) provides an estimate ofPwc· 

2. With Coding 

The bit error probability of the FFHIBPSK noise-normalized receiver with L th 

order diversity and convolutional coding is bounded by [Ref 6] 

00 

Pb < i ~ waP2(d) 
d=dfree 

(51) 

where w d is the information weight of all paths of weight d and P 2 (d) is the probability of 

selecting a code word that is a distance d from the all zero code word. For soft decision 

decoding, P2(d) is equivalent to the probability of coded bit error for binary signaling with 

dth order diversity [Ref 6]. Since we have already assumed that our system utilizes L th 

order diversity, the total effective diversity is Ld and P2(d) is obtained by modifying 
equation ( 41) to get 

where P2(d/i) is given by modifying equation (36) to get 

( 2rEb i 
2 
l 

!No ( ~ +Ld-i) 
N· 

1+-' 
pNNo 

N· 
1+-' 

i( P~o )+Ld-i 
N· 

1+-' 
pNNo 

{52) 

(53) 

where r is the ratio of the number of information bits to the number of coded bits and is 

called the code rate. In order to find the worst case value of p, we follow the same 

procedure as before, beginning with 
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(54) 

and we get 

(55) 

This concludes the analysis of the FFH noise-normalized combining BPSK receiver. The 

discussion of numerical results is deferred until Chapter V where results for both the 

noise-normalized and the receiver with perfect side information, discussed in the next 

Chapter, are presented. 
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IV. PERFORMANCE ANALYSIS OF FFHIBPSK 

RECEIVERS WITH PERFECT SIDE INFORMATION, RICEAN 

FADING AND SOFT DECISION VITERBI DECODING 

A. PROBABILITY OF BIT ERROR 

1. Without Coding 

As mentioned in the previous chapter, the total bit error probability of any type of 

FFH spread spectrum system with diversity and partial-band noise interference is given by 

(56) 

For a receiver with perfect side information, when the number of jammed hops is 

less than L, then the computation of the probability of bit error is based on the L-i 

unjammed hops. Hence, the only noise source is AWGN, and the system has an effective 

diversity of L-i, where the effective energy per bit is reduced by the factor L~i . In this 

case, the conditional probability ofbit error Pb(i) is given by 

(57) 

When all hops are jammed, all hops are used, and the conditional probability of bit error is 

given by 

i=L (58) 

Assuming that 
2<r;::b >> 1, we come to the conclusion that Pb(i) ~ 0 when i -:f::L. 

Assuming also that No is very small, we obtain the total probability ofbit error 
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(59) 

The approximate worst case value of p, as previously, is given by equation (50). 

2. With Coding 

We have already shown that the probability of bit error for convolutional coding 
with soft decision Viterbi decoding is given by equation (51), while P2(d) is given by 
equation (52). For the receiver with perfect side information, when i :t:. Ld, we adapt 
equation (53) to obtain the conditional probability ofbit error. 

P2(d/i) = Q( ~:(Ld- i)) (60) 

and when i = Ld 

P2(d/i) = Q( 2rd~ J 
No+pN 

(61) 

The approximate worst case value of pis again given by equation (55). 

3. With Fading 

By modeling the channel as a Ricean fading channel we assume that the signal 

amplitude is no longer fixed but varies. In this thesis, only slowly fading 

frequency-nonselective Ricean fading channels are examined [Ref 6]. The problem of 

BPSK with diversity transmitted over a Ricean fading channel has been examined [Ref9]. 

The result obtained is cumbersome in the extreme. In this subsection, the probability of bit 

error is obtained in terms of an integral that must be evaluated numerically. The resulting 

numerical integration is significantly easier to implement than is applying the analytic 

solution obtained in [Ref 9 ]. 

The probability density function of the Ricean random variable ack is [Ref 10] 
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(62) 

where /( •) represents the modified Bessel function of order zero and u( •) is the unit step 

function. The total average received signal power of hop k is 

(63) 

where a 2 is the power of the received non-faded (direct) signal component and 2cr2 is the 

power of the received Rayleigh faded (diffuse) signal component. The noise-normalized 

signal power ofhop k is given by 

(64) 

where Pk = a2/cr~ is the direct signal-to-noise power ratio and ~k = 2cr2/cr~ is the diffuse 

signal-to-noise ratio. We specify the ratio of the direct component of the signal power to 

the power of the Rayleigh- faded component of the signal as 

(65) 

from equation (65), 

(66) 

Substituting equation (65) into equation (64), we get 

(67) 

and the final expression for the diffuse signal-to-noise ratio is 
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(68) 

a~ A2 
We notice that if there is no fading then ---f = -1", which implies that 11 ~ oo. 

(jk (jk 

Also, when 11 ~ 0 we have a Rayleigh fading channel, and Pk ~ 0; i.e., the direct signal 

component goes to zero. 

In equation (62), for the change of variables a~k = bk, we get 

and the probability density function becomes 

The Laplace transform of equation (70) is 

00 

FBk(s) = JJBk(bk)exp(-sbk)dbk 
0 

which can be evaluated to obtain 

(69) 

(70) 

(71) 

(72) 

L 
We define b = L: a~k; and since FB(s) = [FBk(s)]L, we get after inverse transforming 

k=l 

(73) 

We know that the probability density function of a Gaussian random variable is [Ref 6] 
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1 (-(x-x)2
) fx(x) = --exp -

2
-

$ O"x 2ux 
(74) 

where cr x and .X are the variance and the mean of the Gaussian random variable x, 

respectively. Thus, the bit error probability is [Ref 6] 

P 1 

00J 1 ( (x-i)
2

) dx b=- u-exp ---
~ x 2u2 
~~1L Q X 

Substituting in equation (75) A=~: and d'A = ~~,we get 

00 

1 J }) Pb =- exp(--)d'A 
j21t - 2 

X 
Ox 

Modifying equation (76) by using 

which leads to 

we obtain bit error probability conditioned on b as 
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(76) 

(77) 

(78) 

(79) 



which can be expressed in terms of the Q-function as 

Now the total Ph is 

00 

Pb = f /B(b)Pb(b)db 
0 

An approximate expression for equation (80) that is valid forb>> 1 is 

Now we add and subtract Pbapp from the integral of equation (81) to get 

00 

Pb = ffB(b)[Pb(b)+Pbapp -Pbapp]db 
0 

which is equal to 

00 00 

(80) 

(81) 

(82) 

(83) 

Pb = ffB(b)[Pb(b)-Pbapp(b)]db+ ffB(b)Pbappdb (84) 
0 0 

We define 

00 

JB = f /B(b)Pbappdb 
0 

and if in equation (82) we let 
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.---------------------------- .--------

[2T;b = JC 1/N:: 

where c is some constant, then equation (82) becomes 

Now equation (85) becomes 

00 

(86) 

(87) 

f b(L-IJI
2exp(-La2/2cr2

) ( 1 1 ) (a f"'TL') 
JB = 2 2 (L I)/2~ exp -b(-2 +NIT h-I 7.-.;Lb db(88) 2cr (La ) - 21tc 2cr o h cr . 

0 

2 2 2 
and ifwe define ~ = -"'7 and p = a 2 , equation (88) can be evaluated to obtain 

(jk (jk 

(89) 

Rewritting equation (73), we get 

(90) 

If we define b1 = b/cr~ and db'= db/cr~, then equation (90) becomes 

(91) 

and equation (84) can be expressed as 
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In equation (92), 

(93) 

pbapp(b1
) = b exp(-b1

) 
. ..;2nc 

(94) 

and 

I (b')(L-i-1)12 -b'-(L-i)pk 2 . I 
fB(b ) = ~k[(L-i)pk](L-i-1)12 exp( ~k )h-i-1 (~k J(L -l)pkb ) (95) 

and h-1-1 (~k J (L- i)pkb1 
) is the modified Bessel function of order L-i-1. Equation (92) is 

now in a form that can be easily evaluated by numerical integration since the integral 

rapidly approaches zero to increasing b1
• 

The conditional probability of bit error, assuming that i out ofL hops are jammed, 

is obtained from equation (92) as 

When all hops are jammed, i = L, the conditional bit error probability is given by 

oo L 
Pb(L) = JJB(b1)[Pb(b1

)-Pbapp(b')]db1 + ./2-iC 1 f exp(- 1!:) (97) 
0 21lC (1-t;k ~k 

Finally, substituting equations (96) and (97) into equation (56), we obtain the total bit 

error probability for a perfect side information receiver and a Ricean fading channel. 

Numerical results are presented in the next Chapter. 
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V. NUMERICAL RESULTS AND DISCUSSION 

A. NOISE-NORMALIZED RECEIVER 

1. Without Coding 

By using equations (3 6) and ( 41 ), we obtained the probability of bit error of the 

noise-normalized receiver without coding. Figs. 2-13, are an illustration of an examination 

of the performance ofthe receiver for non-ideal estimation of noise power. Specifically, in 

Figs. 2-4, a 50% underestimation of noise power is assumed, in Figs.5-7 a 75% 

underestimation of noise power is assumed, in Figs. 8-10 a 50% overestimation of noise 

power is assumed, and in Figs.11-13 a 100% overestimation of noise power is assumed. 

The order of diversity is L=2, 4, and 6, and the fraction of the jammed band pis taken as 

p=0.001,0.02,0.1,0.5,1and Pwc· We assumed that the ratio ofbit energy-to-jamming noise 

power spectral density varied from -30 dB to 10 dB. In all cases, by increasing diversity 

we achieved better performance, contrary to what is obtained with noncoherent systems 

where noncoherent combining losses are a factor [Ref 11]. 

The performance of the receiver is better when the noise power is underestimated 

50% rather than 75%. The performance of the receiver is better for 100% overestimation 

than for 50% overestimation. In general, we noticed that overestimation gave better 

performance than underestimation. The higher the overestimation error the better the 

performance of the receiver. This result is not unexpected and is consistent with results 

obtained for noncoherent systems. For all cases of noise-normalization error considered 

and, for L=2, p=1 is not worst case for all values of E,/Nj. For some specific values of 

E,!Nj. when the whole band is jammed receiver performance is best. For 75% 

underestimation of noise power, L=2, and values of E,/Ni between -1 dB and -17 dB, 

p= 1 is best case for the receiver; while for values of E,/Nj between -9 dB and 10 dB, 

p=0.001 is worst case. For 50% overestimation of noise power, L=2, and E,/Ni between 

-1 dB and -12 dB, p=1 is best case for the receiver; while for E, /Nj between -5 dB and 

10 dB, p=O.OOl is the worst case. Clearly, a diversity ofL=2 is insufficient to completely 

eliminate the effect of partial-band noise jamming. 
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For 50% and 100% overestimation of noise power and for L=4 and 6, p=l is 

worst case for the receiver. For 75% and 50% underestimation of noise power, as L is 

increased, the range of values of~ INj over which p=l is best case becomes smaller. For 

a specific fraction of the band jammed, the receiver has the best performance for 100% 

overestimation of noise power and diversity of order L=6. 

Ideal noise normalization, illustrated in Figs.l4-16, is seen to have better 

performance than that obtained when noise power is underestimated . On the other hand, 

ideal noise-normalization does not perform as well as when noise power is overestimated. 

As can be seen from an examination of the figures, the effect of partial-band noise 

jamming can be completely negated, given sufficient diversity, by intentionally 

overestimating noise power. 

2. With Coding 

By using a combination of equations (51), (52), and (53), we obtained the 

probability of bit error of the noise-normalized receiver with coding. In Figs. 17-26 we 

illustrate the performance of the receiver for the same cases as above, but this time with 

the addition of convolutional coding. The order of diversity examined is L=l and 2. As 

before, overestimation of noise power gives better results than underestimation. For 75% 

and 50% underestimation of noise power and for both L=l and 2, p=l is not worst case 

for the receiver for all values of ~/Nj . For L= 1, different values of p yield worst case 

depending on ~ /Nj. For 75% underestimation of noise power and Eb INj between -4 dB 

and -lldB, worst case is p=O.OOl and between -11 dB and -16 dB, worst case is p=0.02. 

For 50% and 100% overestimation of noise power and L=2, p=l is the worst case for all 

values of~ /Nj. In all cases equation (50) provided a satisfactory approximation to Pwc· 

Again, ideal noise-normalization gave better results than noise power underestimation and 

worse than overestimation. As can be seen, much lower levels of diversity are required to 

eliminate the effects of partial-band noise jamming when convolutional coding is used. 
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3. Comparisons 

In Figs. 27-29 the improvement in performance of the noise-normalized receiver 

without coding for worst case partial-band jamming and increasing the estimation error is 

shown. For L=2 and ~ /Ni <-25 dB and for L=4, 6 and Eb /Ni <-23 dB the performance 

remains the same, regardless of the estimation error. Especially noteworthy is that the 

same performance is obtained for a wide range of overestimation. It is clear that with 

overestimation of noise power the receiver performance is better than with 

underestimation. The higher the overestimation error, the better the performance of the 

receiver. We also noticed that for bit energy-to-jamming noise ratios less than -23 dB and 

worst case partial-band jamming that the performance is unaffected by estimation error. 

In Figs. 30-31 . the improvement in performance of the noise-normalized receiver 

with coding for worst case partial-band jamming and increasing the estimation error is 

shown. For L=1 and ~/Ni <-25 dB and for L=2 and ~/Ni <-23 dB, the performance 

remains the same, regardless of the estimation error. 

In Figs. 32-37, we illustrate the probability of bit error for the noise-normalized 

receiver both with and without coding for worst case partial-band noise jamming and 

different values of diversity for each case of noise power estimation. In Figs. 32-34 we 

assumed a system with constant bandwidth, which is the classical way of eval~ating a 

system. No matter what the noise estimation is, the utilization of coding allows the 

receiver to have better performance than without coding even with high order diversity 

(L=6). In Figs. 35-37, we assume a system with a constant number of bins. This kind of 

system in general has better performance than a system using constant bandwidth. The 

reason is that in this system the bandwidth is increased by a factor ofL without coding and 

by a factor of L/r with coding. Consequently, the power of the jammer is spread over a 

larger bandwidth, decreasing its effectiveness and enhancing the performance of the 

receiver. So for the case of 50% noise power underestimation without coding and L=2, 

there is a gain of 3 dB and for L=6 there is a gain of 8 dB at probability of 1 o-3
• This is in 

agreement with theory as we expected a gain of 10log1oL dB. For the noise-normalization 

with coding the gain is expected to be 10log 10 (~) dB. For example, regardless of 
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estimation error, at a probability of bit error 10"9 and Lc=2 the gain is 6 dB. Again, the 

utilization of coding yields better performance than no coding and diversity L=6. 

In Figs. 38-40 we compare the performance of the noise-normalized receiver for 

each case of noise power estimation, with and without coding, with diversity L=2, to the 

performance of the comparable conventional FFH/BPSK receiver assuming a system with 

constant bandwidth. It is apparent that the noise-normalized receiver with coding gives the 

best performance for almost the entire range of E/Nj. The FFH/BPSK with 

noise-normalization receiver with coding has a significantly better performance, about 23 

dB, than the conventional FFHJBPSK with coding at a probability ofbit error 10·7 . We 

also notice that for all cases of noise power estimation error and for ~ /Nj between -17 

dB and -11 dB that the conventional FFH/BPSK receiver with coding has the worst 

performance; while for values of ~/Nj >-9dB the conventional FFH/BPSK receiver with 

coding has better performance than the FFH/BPSK noise-normalized receiver without 

coding. 

In Figs. 41-43, we illustrate the same comparisons as above but for a system with a 

constant number of bins. The same general trends previously observed are repeated, but 

the performance of the receivers with coding is improved about 7 dB, while without 

coding the performance is improved about 3 dB as compared to a system with constant 

bandwidth. 

B. PERFECT SIDE INFORMATION RECEIVER 

1. Without Fading 

a. Without Coding 

In order to evaluate the performance of the perfect side information 

receiver, we computed the probability of bit error using equations (56), (57), and (58). 

We assume that the ratio of the bit energy-to-thermal noise power spectral density Eb /No 

is 20 dB rather 10.52 dB. In Figs. 44-46 the performance ofthe perfect side information 

receiver without coding and for L=2, 4, and 6 is illustrated. The fraction of the band that 

must be jammed for worst case performance is calculated from equation (50). Broadband 
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jamming, p=1, is not worst case for all values ofE/N j. In general, as diversity increases 

the range of values of E/Nj for which p= 1 is worst case increases. We also note that as 

the bit energy, Eb, decreases smaller values of p result in worst case performance. As 

diversity increases, worst case partial-band noise jamming approaches broadband noise 

jamming (Pwc =1). 

b. With Coding 

In Figs.47-48 we evaluated the performance of the perfect side information 

receiver by computing the bit error probability using equations (60) and (61). As is 

expected, the utilization of coding gives better results than without coding. For p= 1 and 

L=2, there is a coding gain of 4 dB for a probability of bit error of 1 o-6
. 

When using convolutional coding, there is no need to use high orders of 

diversity. Even with a diversity of L=2, the performance of the receiver is better than 

without coding and a diversity ofL=6. Performance degradation due to partial-band noise 

jamming is essentially eliminated with very small level of diversity when coding is used. 

2. With Fading 

Without Coding 

In Figs 49-57 we evaluate the performance of the perfect side information 

receiver for Ricean fading channels using equations (96), (97), and (56) . 

In Figs. 49-51, we examine the performance of the receiver for L=2, 4, 

and 6 with a ratio of the direct-to-diffuse component of the signal of 10, 11=10. In all 

cases, p= 1 yields worst case. The smaller the fraction of the band that is jammed, the 

better the performance of the receiver. As we increase the direct component of the signal 

so that 11=100 (Figs.52-54), the overall performance of the receiver improves and 

approaches what is expected in the absence of fading. 

For the case ofRayleigh fading, the direct component of the signal is zero. 

In Figs. 55-57, we examine the performance of the receiver for this case. We note that for 

L=2 even small values of pare effective in degrading receiver performance. For values of 

33 



EiNj between -30 dB and -13 dB, p=l is the worst case for the receiver and between -7 

dB and 1 dB is the best. Receiver performance improves when diversity is increased to 

L=6, and only p=O.l results in a high probability ofbit error. For values of ~/Nj greater 

than -8 dB, the effectiveness of the jammer is negligible when the whole band is jammed. 
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VI. CONCLUSIONS . 

There is a noticeable difference in the performance of a FFH/BPSK 

noise-normalized receiver in partial-band noise jamming conditions when the noise power 

estimation is inaccurate. The poorest receiver performance is obtained when the noise 

jamming power is underestimated, and the best performance is obtained when the noise 

jamming power is overestimated. This is the result we intuitively expect and is consistent 

with the results obtained for noncoherent noise-normalized .MFSK [Ref 11]. The effect of 

diversity in minimizing receiver degradation due to partial-band noise jamming ts 

significant. The performance of the receiver improves as diversity is increased. 

The utilization of convolutional coding with soft decision Viterbi decoding 

dramatically improves the performance of the receiver and increases significantly the 

robustness of the receiver in partial-band noise jamming. The combination of coding and a 

diversity of L=2 giv~s performance superior to that obtained when only a high order 

diversity (L=6) with no coding is used. 

We investigated the performance of the FFH/BPSK noise-normalized system for 

both a constant bandwidth and constant number of frequency bins. In general systems 

with a constant number of bins have better performance against a jammer than systems 

with constant bandwidth. In both cases, the FFHIBPSK noise-normalized receiver with 

coding and L th order diversity performs better in a partial-band noise jamming 

environment than the traditional FFH/BPSK receiver either with or without coding. 

The performance of a FFH/BPSK receiver with the assumption of perfect side 

information with fading and partial-band noise jamming is also examined. As mentioned 

previously, the assumption of perfect side information is unrealistic but provides an ideal 

against which other systems can be compared. We note that the performance of the 

receiver improves in fading channels with partial-band jamming for increasing diversity. 

The opposite occurs in channels without fading and with partial-band noise jamming. The 

worst performance degradation of the receiver occurs for Rayleigh fading channels with 

partial-band noise interference. Even with a diversity of L=6, partial-band noise jamming 

with p=O.l resulted in a high probability ofbit error.. 
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We conclude that the noise-normalized receiver is relatively insensitive to noise 

power measurement error. The larger the overestimation error, the better the performance 

of the receiver. Hence, the noise-normalized receiver is very robust in worst case 

partial-band noise jamming even when noise power measurement error is large. 
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Figure I FFHIBPSK noise- normalized receiver assuming perfect dehopping 
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Figure 2. Non-ideal noise-normalization with 75% underestimation of 

noise power. Performance of the receiver without coding, 

L=2 and J;,IN
0
=10.52 dB. 
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Figure 3. Non-ideal noise-normalization with 75% underestimation of 

noise power. Performance of the receiver without coding, 

L=4 and ~/N0=10.52 dB. 
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Figure 4. Non-ideal noise-normalization with 75% underestimation of 

noise power. Performance of the receiver without coding, 

L=6 and ~IN0=10.52 dB. 
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Figure 5. Non-ideal noise-normalization with 50% underestimation of 

noise power. Performance of the receiver without coding, 

L=2 and E/N
0
=l0.52 dB. 
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Figure 6. Non-ideal noise-normalization with 50% underestimation of 

noise power. Performance of the receiver without coding, 

L=4 and ~/N0=10.52 dB. 
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Figure 7. Non-ideal noise-normalization with 50% underestimation of 

noise power. Performance of the receiver without coding, 

L=6 and ~/Na=l0.52 dB. 
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Figure 8. Non-ideal noise-normalization with 50% overestimation of 

noise power. Performance of the receiver without coding, 

L=2 and E,IN
0
=10.52 dB. 
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Figure 9. Non-ideal noise-normalization with 50% overestimation of 

noise power. Performance of the receiver without coding, 

L=4 and J;,IN
0
=l0.52 dB. 
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Figure 10. Non-ideal noise-normalization with 50% overestimation of 

noise power. Performance of the receiver without coding, 

L=6 and ~/N0=10.52 dB. 
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Figure 11. Non-ideal noise-normalization with 100% overestimation of 

noise power. Performance of the receiver without coding, 

L=2 and ~!N0=10.52 dB. 
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Figure 12. No~-ideal noise-normalization with 100% overestimation of 

noise power. Performance of the receiver without coding, 

L=4 and ~/N0=10.52 dB. 
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Figure 13. Non-ideal noise-normalization with 100% overestimation of 

noise power. Performance of the receiver without coding, 

L=6 and ~/N0=10.52 dB. 
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Figure 14. Ideal noise-normalization. Performance ofthe receiver 

without coding, L=2 and E,!No=l0.52 dB. 
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Figure 15. Ideal noise-normalization. Performance ofthe receiver 

without coding, L=4 and £..1No=10.52 dB. 
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Figure 16. Ideal noise-normalization. Performance ofthe receiver 

without coding, L=6 and ~/N0=10.52 dB. 
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Figure 17. Non-ideal noise-normalization with 75% underestimation 

of noise power. Performance of the receiver with convolutional 

coding, constraint length v=3, code rater =112, L=l and 
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Figure 18. Non-ideal noise-normalization with 75% underestimation 

of noise power. Performance of the receiver with convolutional 

coding, constraint length v=3, code rater =112, L=2 and 
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Figure 19. Non-ideal noise-normalization with 50% underestimation 

of noise power. Performance of the receiver with convolutional 

coding, constraint length v=3, code rater =1/2, L=1 and 
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Figure 20. Non-ideal noise-normalization with 50% underestimation 

of noise power. Performance of the receiver with convolutional 

coding, constraint length v-3, code rater =1/2, L=2 and 
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Figure 21. Non-ideal noise-normalization with 50% overestimation 

of noise power. Performance of the receiver with convolutional 

coding, constraint length v=3, code rater =1/2, L=1 and 
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Figure 22. Non-ideal noise-normalization with 50% overestimation 

of noise power. Performance of the receiver with convolutional 

coding, constraint length v=3, code rater =1/2, L=2 and 

58 



10 -l .--.o:---r----r----r----r---~.-----r-------,.------; 

+·p-p · - we 

-25 0 5 10 

Figure 23. Non-ideal noise-normalization with 100% overestimation 

of noise power. Performance of the receiver with convolutional 

coding, constraint length v=3, code rater =1/2, L=1 and 

~/N0=10.52 dB. 
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Figure 24. Non-ideal noise-normalization with 100% overestimation 

of noise power. Performance of the receiver with convolutional 

coding, constraint length v=3, code rater =1/2, L=2 and 

~/N0=10.52 dB. 
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Figure 25. Ideal noise-normalization. Performance of the receiver 

with convolutional coding, constraint length v=3, code 

rater =1/2, L=l and EJN
0
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Figure 26. Ideal noise-normalization. Performance ofthe receiver 

with convolutional coding, constraint length v=3, code 

rater =1/2, L=2 and ~/N0=l0.52 dB. 
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Figure 27. Non-ideal noise-normalization without coding and L=2. 

Comparison of the different values of noise estimation 

for worst case ( p=pwc ) partial band jamming. 
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Figure 28. Non-ideal noise-normalization without coding and L=4. 

Comparison of the different values of noise estimation 

for worst case (p=pwc ) partial band jamming. 
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Figure 29. Non-ideal noise-normalization without coding and L=6. 

Comparison of the different values of noise estimation 

for worst case.( p=pwc ) partial band jamming. 
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Figure 30. Non-ideal noise-normalization with coding and L=l. 

Comparison of the different values of noise estimation 

for worst case ( p=pwJ partial band jamming. 
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Figure 31. Non-ideal noise-normalization with coding and L=2. 

Comparison of the different values of noise estimation 

for worst case (P=Pwc ) partial band jamming. 
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Figure 32. Non-ideal noise-normalization with 50% underestimation 

of noise power. Performance of the receiver for worst case 

partial-band jamming for different values of diversity with 

and without coding and assuming constant bandwidth. 
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Figure 33. Non-ideal noise-normalization with 50% overestimation 

of noise power. Performance of the receiver for worst case 

partial-band jamming for different values of diversity with 

and without coding and assuming constant bandwidth. 
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Figure 34. Ideal noise-normalization. Performance of the receiver for 

worst case partial-band jamming for different values of 

diversity with and without coding and assuming constant 

bandwidth. 
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Figure 35. Non-:ideal noise-normalization with 50% underestimation 

of noise power. Performance of the receiver for worst case 

partial-band jamming, for different values of diversity with 

and without coding and assuming constant number ofbins. 
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Figure 36. Non-ideal noise-normalization with 50% overestimation 

of noise power. Performance of the receiver for worst case 

partial-band jamming, for different values of diversity with 

and without coding and assuming constant number ofbins. 
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number ofbins. 
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Figure 40. Comparison of different types of receivers for L=2 with 

ideal noise normalization for the noise-normalized 

receiver, assuming constant bandwidth. 
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Figure 41. Comparison of different types of receivers for L=2 and 

50% underestimation of noise power for the noise 

normalized receiver, assuming constant number ofbins. 
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Figure 42. Comparison of different types of receivers for L=2 and 

100% overestimation of noise power for the noise 

normalized receiver, assuming constant number ofbins. 
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Figure 43. Comparison of different types of receivers for L=2 and 

ideal noise normalization for the noise-normalized 

receiver, assuming constant number ofbins. 
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Figure 44. Performance of the perfect side information receiver 

without coding and with diversity L=2. 
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Figure 45. Performance of the perfect side information receiver 

without coding and with diversity L=4. 
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Figure 46. Performance of the perfect side information receiver 

without coding and with diversity L=6. 
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Figure 47. Performance of the perfect side information receiver with 

coding, constraint length v=3, code rate r=l/2 and with 

diversity L= 1. 
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Figure 48. Performance of the perfect side information receiver with 

coding,constraint length v =3, code rater =112 and with 

diversity L=2. 

84 



L 
0 
L 
L 

w -3 
...... 10 co 
11--
0 

~ 
~ 10"4 

-g p=0.1 
L 
Q_ 

-25 -20 -15 -10 -5 0 5 10 

Figure 49. Performance of the perfect side information receiver with 

fading, 11 = 10, without coding and with diversity L=2. 
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Figure 50. Performance of the perfect side information receiver with 

fading, 11 = 10, without coding and with diversity L=4. 
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Figure 51. Performance of the perfect side information receiver with 

fading, 11 = 10, without coding and with diversity L=6. 

87 



10 ·I~---,.----,-----,---.....,.--....,---.---.-----. 

'-
0 
'­
'-
uJ ·3 
..... 10 co .._ 
0 

-25 -20 -15 -10 -5 0 5 10 

Figure 52. Performance of the perfect side information receiver with 

fading, 11 = 100, without coding and with diversity L=2. 
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Figure 53. Performance of the perfect side information receiver with 

fading, T\ = 100, without coding and with diversity L=4. 
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Figure 54. Performance of the perfect side information receiver with 

fading, 11 = 100, without coding and with diversity L=6. 
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Figure 55. Performance of the perfect side information receiver with 

Rayleigh fading, 11 =0, without coding and with diversity 

L=2. 
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Figure 56. Performance of the perfect side information receiver with 

Rayleigh fading, 11 =0, without coding and with diversity 

L=4. 
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Figure 57. Performance of the perfect side information receiver with 

Rayleigh fading, 11 =0, without coding and with diversity 

L=6. 
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