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ABSTRACT:
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TANGENT SEARCH METHOD OF CONSTRAINED MINIMIZATION

Introduction

Each of three recent articles (l, 2, 3) has contributed a new method

for solving the general problem of minimizing (or optimizing) an arbitrary

function subject to arbitrary constraints. The objective functions to be

minimized by these methods and the constraint functions considered are real,

continuous, and, in general, non-linear. However in practical problems,

for example "Problem A" of Box (3), many of the constraints prove to be

simple upper or lower bounds on independent variables. All constraints

are expressible as inequalities.

The first two of these new methods can be classified as extensions of

the Direct Search method of Hooke and Jeeves (h) . In these algorithms

Direct Search (alias "pattern search"), or a simplification of it, is

employed until a constraint is encountered. Then an alternative or adaptive

procedure is substituted. This attempts to find a move along the constraint

boundary which will continue minimization of the objective function. Trials

are made by explorations from the base point which always remains in the

feasible region where no constraint is violated. No trial move is accepted

as a new base unless it is both feasible and also lowers the value of the

objective function from the previous base value.

In Klingman and Himmelblau (l) the alternative exploratory move is

called the "multiple-gradient summation technique". Whenever the exploratory

move of the Direct Search fails near a constraint boundary this method com-

putes a "new successful direction". This is found as the vector sum of the

normalized gradients of the contacted constraint and the objective function.

After this adaptive move an attempt is made to return to the Direct Search





algorithm in order to obviate the evaluation steps involved in gradient

calculation. The authors of this method do not discuss possible degrading

of results in cases when the gradients can only be approximated. It would

seem that such would be the more typical situation in actual minimization

requirements, such as Problem A of Box (3). However, perhaps the authors

had in mind recently developed methods for the automatic calculation of

derivatives, such as those reported in Wengert (5) or Smith (6).

A particularly lucid and diagrammatic explanation of the reason Direct

Search often either fails or becomes inefficient at a boundary is given in

Klingman and Himmelblau (l). Therefore this information will not be in-

cluded in the present discussion.

In the Sequential Search method of Glass and Cooper (2) the Direct

Search rule is slightly modified. To keep computationally-expensive

exploratory moves to a minimum their method always continues in an es-

tablished successful direction until failure occurs. That is, the usual

post-pattern exploration of Direct Search is omitted except when the

pattern move has failed. Consequently it becomes necessary to build an

explicit lengthening process into the pattern move in order to accelerate

when an advantageous direction has been found.

When the usual exploratory move fails near a constraint boundary, the

method of Glass and Cooper resorts to an alternative routine which in

certain situations must, itself, be extended to a further alternative

procedure. They show that at such a base point the new required direction

can be found as the solution of a linear programming problem. The authors

state that this sub-problem can always be solved by the Simplex Method

provided a solution exists. However, the constraint hyper-surface is

often convex, as defined below. In this case the new direction returns





immediately to the non-feasible region. Therefore an "extension" to the

alternative move provides systematic rotation of the indicated direction

until it clears the constraint. After an alternative move an attempt is

made to return to the modified Direct Search algorithm, since there is

obviously considerable expenditure of computational effort in carrying

out the procedures outlined above.

Unfortunately only two very simple examples, each with only two in-

dependent variables, were included in Cooper and Glass (2). Therefore

the present author is not convinced that it offers an efficient method of

solving practical problems.

The Complex Method of M. J. Box (3) falls into a different category.

It is a novel and elegant adaptation of the Simplex Method of linear

programming, and, therefore, is not conceptually allied to the pattern

search basis of the two methods outlined above. Starting with any one

feasible first point in n-dimensional space a "complex" of 2n vertices is

constructed by selecting random points from the feasible region. Then one

simple computational loop is employed. These instructions find the current

worst vertex, that is, the vertex with largest corresponding value for the

objective function, and replace it by its oVer-reflection through the

centroid of all other vertices. If the vertex to be replaced is considered

as a vector in n-space, its overflection is opposite in direction, increased

in length, and collinear with the old vertex and the centroid of the other

vertices. When the overflection is not feasible or remains worst, it is

displaced half way toward the centroid. Constraints are classified as

explicit or implicit. The former are simple upper or lower bounds on in-

dependent variables. The latter are treated as upper or lower bounds on

arbitrary functions of the independent variables. This distinction is





used profitably in the Box algorithm.

Eventually all vertices converge to a point which is taken as the so-

lution. Preliminary experience seems to show that the Complex Method is

very dependable but not completely infallible. (See problems 3, 5, 7 and

9 in the numerical examples below.

)

Basic Concepts of the Tangent Search Method .

The Tangent Search Method which is described in the present paper falls

into the pattern search family of suggested solutions to the problem of

constrained minimization. The modified pattern search of Glass and Cooper

is used except that the test for constraint violations is postponed until

the exploratory move is completed for all independent variables. Whenever

a trial move passes a boundary the partial derivatives of the violated con-

straint function are approximated at the current feasible base point. This

is performed by the most elementary difference method possible. Every

effort is made to eliminate unnecessary use of the auxiliary procedure which

evaluates constraint functions.

Then an exploratory move is made in the hyperplane which is approximately

tangent to the constraint hyper-surface. (The hyperplane is, in general,

slightly removed into the feasible region so that it contains the current

base. ) This substitute exploratory move seemed to the present author a

more obvious adaptation of the Hooke and Jeeves algorithm than either of

the two described above. If it is successful it is called a "tangent move".

Economy over the method of Klingman and Himmelblau is achieved since evalu-

ation of the gradient of the objective function is completely avoided. The

difference technique used to approximate the partial derivatives of the

constraint function will be described in a separate section before the

numerical examples are considered.





An additional feature of the algorithm here described is the allowance

made for small perturbations of the base point when the tangent exploration

procedure fails several times consecutively. Under some circumstances it

seems better to transfer provisionally the base point to a higher feasible

position on the objective function than to continue reducing step sizes.

This type of move, called "jump move" below, helps to extract the base

point from difficult slots and corners in the feasible region caused by

the multiplicity of constraints.

Finally, it is obvious that the directions for exploration in the

tangent hyperplace can be chosen in any number of ways. The attempt of

this method is to preserve the basic logic of the usual exploratory move,

but to allow a variety of possibilities within that outline. Previous

success in finding a good "tangent move" for a constraint dictates the

mode of the tangential exploration first tried if that constraint is

violated again.

Comparisons of the performance of the proposed method and those pre-

viously mentioned will be given in the penultimate sections of this paper.

The immediately following sections give an informal mathematical definition

of the problem of constrained minimization and then a detailed exposition

of the Tangent Search Method.

The Problem of Constrained Minimization .

Let X = ( x, , Xp, ..., x_) be a vector in n- dimensional space. Let

f (X) and g. (X), (j = 1, 2, ..., m) , be continuous functions which can
J

be evaluated for any X within the vector space.





Any X for which

g (X) > 0, (j = 1, 2, ..., m),
J

will be called "feasible".

Also, any constraint hyper-surface,

gk
(X) = 0,

will be called "convex" in a region of interest if every point of every

hyperplane tangent to that constraint hyper-surface in the area of interest

is not feasible.

The general problem of constrained minimization is to determine the

vector, X , such that f(X
s ) is less than all other f(X), subject to the

constraints, g. (X ) ^0, for all j = 1, 2, ..., m.
J s

If for any point, X,

g (X) < 0, then
J

the jth constraint is "violated" at X.

For the problems of constrained minimization considered here,

gk (X ) = 0, where 1 £ k 4 m.

That is, typically, the solution will lie on one or more constraint boundaries.

An important requirement of the Tangent Search Method is that the first

partial derivatives of g.(X) with respect to each X., (i = 1, 2, ..., n)
J *-

should be continuous and computable, at least in the vicinity of any

violation. Special provision is made for cases where such partial deriva-

tives are zero.

Details of the Presentation: Chart Symbols and Notes

The discussion below will assume familiarity with the method of

Direct Search as given by Hooke and Jeeves (U). It is also outlined in

Glass and- Cooper (2) and Klingman and Himmelblau (l). The Tangent Search





algorithm will be communicated by means of detailed flow diagrams similar

to those of Hooke and Jeeves. Descriptive flow diagrams will be omitted.

However each box of the detailed flow diagrams will be numbered within

parentheses. Corresponding descriptive titles (underlined) and additional

explanatory notes will be given in the text following each chart.

Notation will differ from that of previous papers in order to avoid

Greek symbols which are inconvenient on a typewriter. Flow chart con-

ventions will be more standard:

1. The diamond will represent a decision function.

2. The circle will represent a connector. Off-page connector numbers

will be preceded by the referenced chart number(s); for example,

connector 5 of chart 3 would be denoted "3/5"-

3. The square will represent starting/stopping points in the main

procedure and entry/exit points for auxiliary procedures.

k. Processing functions are represented by rectangles.

5. Input/output functions are shown as rectangles with rounded

corners. Only the most basic of these are given.

6. When an operation involves a matrix, indicated by capitalization,

it should be understood that it is carried out on all elements.

Otherwise subscripts indicate the elements referenced.

7. The "equals" sign is used as the replacement symbol; the evaluated

right hand side replaces the former value (if any) of the variable

denoted on the left hand side.

Auxiliary Procedures

Two external auxiliary procedures are used in various parts of the flow

diagrams. The actual forms of these vary according to the objective function





to be minimized and the constraints imposed on the solution. The notation

and purpose of each are given below:

1. F(x) is a function procedure which, when called, produces a value

of the objective function at any point, X, whether or not X is

feasible.

2. C(X) is a subroutine which, when called, produces a column matrix

of m elements. These are the values at the point X of the constraint

functions, g , for j = 1, 2, ..., m.
J

The eight internal auxiliary procedures are not changed from problem to

problem. They are separated from the main procedure in the discussion below

either because they are called from more than one site or because logical

delineation of the function performed may clarify the presentation. The

notational representation for the internal auxiliaries is adapted from

Hooke and Jeeves (k) . A colon separates the auxiliary name-symbol from

its parameter list. The list is divided between input and output parameters

by a semicolon. As an example, the notation

"Q : x, X; y, Y",

would indicate that the internal auxiliary, Q, using current values of the

variables, x (a scalar) and X (a vector or matrix), causes replacement of

the values of the variables, y (a scalar) and Y (a vector). If an argument

is both an input and output parameter, it will appear only in the latter

list.

The details of the internal auxiliary procedures E, E , F , H, T,

and V are given in flow diagrams of later sections.

The internal auxiliary procedure, M, is simply the usual minimum-value

function: e_.g_. ,

"M:X; x"





indicates that the algebraically smallest element of X replaces the present

value (if any) of x.

The internal auxiliary procedure, S, is the usual sign function; e_.g_. ,

"S : x, y; z"

indicates that the value of z is replaced by the absolute value of x,

prefixed with the sign of y.

Matrix Variable Symbols

A Values of the m constraint functions at current best feasible

move produced by auxiliary procedure T.

B Values of the m constraint functions at base point.

D Current exploration step sizes for the n variables.

G Values of the m constraint functions at trial move.

I Matrix of indices containing one column of n variable numbers

for each of the v constraints presently violated.

J Auxiliary column matrix, defined in the same manner as K.

K Indices of the v currently-violated constraints.

L Lower limits allowed on the corresponding n values of D. When

Dj_< L. , for all i = 1, 2, ..., n, the search is terminated.

N Table containing the current coupling mode for each of the m

constraints

.

P Matrix of v columns, each containing n first partial derivatives

i

of a violated constraint function with respect to the independent

variables. These are arranged in ascending'order of absolute value,

U Upper limits allowed on the corresponding n values of D.

W Base point prior to last jump move, containing n values of the

variables

.
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X Trial move (n elements). Also, the vector of independent

variables of n-space in mathematical discussion.

Y Current base point (n elements).

Z In the main procedure, the previous base point. It is also used

as a temporary array by auxiliary procedures, H and T.

Scalar Variable Symbols

a Index of primary variable of any component of a tangent explora-

tory move.

b Index of secondary variable in any component of a tangent explora-

tory move.

c Failure counter; controls application of jump move option.

d Constant used in step size control.

d^ Decrement of the secondary variable in any component of a tangent

exploratory move.

e Temporary indicator, used variously.

f Value of objective function after trial move. Also denotes the

objective function in the mathematical discussion.

f Value of objective function, corresponding to tentative jump move.

fw Value of objective function at base prior to last jump move.

fx Function value used temporarily by conventional exploratory move.

f Value of objective function at current base point.

g Coupling constant for active variables in auxiliary procedure T.

g. The j-th constraint function (in mathematical discussion).
J

h Coupling constant for passive variables in auxiliary procedure T.

i, j, k Utility indices used variously,

m Number of constraints,

n Number of independent variables.

11





p. First step extension factor.

p Second step extension factor.
2

p Partial derivative of constraint function with respect to primary
a

variable of any component of auxiliary procedure T.

p Partial derivative with respect to secondary variable. (See
b

p above.

)

a

q Temporary storage and utility index.

r Step reduction factor.

s Utility switch, used variously.

t Feasible move indicator.

u Auxiliary counter, used in the same manner as v.

v Number of constraints currently violated.

w Coupling variable index, used in auxiliary procedure T.

x Variable increment used in auxiliary procedure H.

x , x Primary and secondary, respectively, trial increments at any
a b

component of tangent exploratory move.

x The i-th variable in n-space in mathematical discussion,
i

y , y Previous values of primary and secondary variables before trial
a tq

component

.

z Variable increment used in auxiliary procedure H.

Details of the Method; Initialization and Search for Feasible Start

The detailed flow diagram for these phases of a solution is given in

Chart 1. At times it is a considerable convenience to require that the

algorithm, itself, find a feasible initial point before the actual search

for constrained minimization is initiated. This is easily accomplished

by using a variation of the usual unconstrained Direct Search to minimize

the function F : X, G; f . This internal auxiliary procedure, which is
o x

12





o f = f

X = Y

tf)

E : Y, D; f, X
o '

V (i)

Input:

n, m, r,

y, d, x

£10)

Stop

(9)

D < L

n

1
1

(2)

Pl = r+i

P2
= r+2

M: r, kl d

U * D/d

1
1 (3)

f
y

- f
w

- F(Y)

B - C(Y)

N =

V: B; v, K

Z—a
D = rD

1)

V (15)

M: p p, U; D

<Qi o—3L-^T)

(8)
f < f

1 (12)

X -

Z = Y
y = x

p2
x -

Pl z

f = f
y

f - F (X)

-0

13)

f £

(16)

B = C(X)

Y - X
D = dU

f - f - F(Y)

KD

Chart 1: Initialization and Search for a Feasible Start

Main Procedure, Part I
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shown in Chart 3, simply calculates the sum of the squares of all constraint

functions which are negative at point X. As soon as f "becomes zero, the

actual solution can begin.

Descriptive titles for each numbered block of Chart 1 and additional

explanatory notes are given below.

(1) Input starting point , computational constants , initial and minimal

step sizes .

Optimal choice of r, the step reduction factor, has not been

thoroughly investigated. The example problems discussed in a later section

were run with r = .25, . 375» and .5- These three values seemed to produce

approximately-equivalent satisfactory results for various problems in

unconstrained minimization previously solved by the author in trials of

the conventional Direct Search algorithm on the Control Data l6oU computer.

However, as will be shown in the discussion of numerical examples below-

significant differences in performance developed in some problems of

constrained minimization. According to Hooke and Jeeves (U) the simple

Direct Search algorithm in unconstrained problems is not sensitive to this

choice, as long as r < 1.

(2) Initialize computational constants .

The pattern and exploration step size extension factors are both

1 + r; however, the exploration steps are limited to a maximum size of

four times the original values.

(3) Evaluate objective function and constraint functions at starting

point ; check for violations .

The coupling modes are initialized at zero for all constraints. The

use of these quantities is explained in a subsequent section. Details of

the internal auxiliary procedure V, are given in Chart 2. Briefly stated,

lit





this procedure examines the constraint functions, counts the number of

violations, and stores the index number of each violated constraint in K.

( h ) Is_ any constraint violated ?

If not, exit to the actual constrained search is made. If so, a

feasible starting point must first be found.

(5) Evaluate special function at origin .

Details of this internal function, F , are given in Chart 3.

(6) Starting at base point , perform exploratory move , E , using the

special function, F .—* o

A detailed flow diagram of the Hooke's and Jeeves' exploratory pro-

cedure, E, is given in Chart h. The auxiliary, EQ , is identical to E,

except that all appearances of "f = F(X)" are to be replaced by

"fx
= F (X)".

( 7

)

Is. trial value of special function zero ?

If so, a feasible starting point has been found.

( 8

)

Is_ trial value of special function below the base value ?

If so, a pattern move can be attempted.

( 9

)

Are all step sizes below corresponding minimal criteria ?

(10) Stop

If control arrives at Item (10), Direct Search has failed to locate

any feasible starting point for the actual search. Perhaps the constraints,

as defined in external auxiliary procedure C(X), are inconsistent, or the

elements of L are too large.

(11) Reduce exploratory step sizes .

Another exploratory move follows

.
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> v =

v v+1

K = i
v

<*- 2-<^< $ -©
n

O i = i+1 <*-
n

Chart 2: Internal Auxiliary Procedure V: G;v,K.

This procedure places a count of currently-violated
constraints at v and tabulates their indices in col-

umn vector K.
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Enter

f + GT
x . i

i > m
n

G - C(X)

-i> i - i+1

f =
x

<D

Chart 3: Internal Auxiliary Procedure F : X,G;f .

o x

Any values of X for which this function is zero is

a feasible point.

IT





Xi- Y
l

G>

X
i " X

i
+D

i

f - F(X)
x

n

X i2 n

i - i+1

Chart 4j Internal Auxiliary Procedure E: Y,D; f ,X.

This is the conventional exploratory algorithm of
Hooke and Jeeves.
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(12) Set new base point ; make extended pattern move ; evaluate

special function .

(13) Is. trial value of special function zero ?

If so, pattern move arrived at feasible start.

( Ik ) Is_ trial value of special function below base value ?

If not, an exploratory move follows.

( 15

)

Increase exploratory step sizes , subject to an upper limit .

A successful pattern move causes these steps to be extended.

Another extended pattern move follows.

( 16

)

Evaluate constraint functions at feasible start ; set this point

as first base ; restore original step sizes ; evaluate objective

function .

Initialization for the constrained search is accomplished by these
\

steps

.

The preceding three charts show the details of three important

internal auxiliary procedures. They do not seem sufficiently complicated

to warrant inclusion of descriptive titles and additional notes.

Modified Direct Search

Chart 5 can be conveniently considered as representing the steps of

the algorithm which are followed when the base point is not in the

vicinity of any constraint boundary. The method shown is substantially

Direct Search (U) with some modifications very similar to those proposed

by Glass and Cooper (2).

It should be recalled that Direct Search assumes an initial feasible

X, and the corresponding f is first computed. In order to explore,

each X. is increased by its D. and if the corresponding f is below

f, the trial X. is adopted. If not, the effect of decreasing X^ by

D. is tried. If both +_ D. components fail to lower the objective

19





function, X. is restored to the base value. The exploratory move tries
1

all variables in this manner, and if the complete move produces an im-

proved f, the vector between the base point and the successful exploratory

move provides the direction for a trial pattern move and its reference

length. The first pattern step in that direction is (l + r) times this

reference length. Accelerating moves are made in the same direction until

some new trial value of f is greater than the base value, f .

When a pattern or exploratory move fails, every element of D is reduced

by a multiplicity factor, r 4. 1. Eventually either a new successful

pattern is found or else the lower limits, L, on all D are passed. When

this happens the calculation is terminated.

The method of pattern move acceleration differs from Hooke and Jeeves.

The present author believes that this variation usually reduces the

required number of exploratory moves which are costly in terms of objective

function evaluations. This conclusion was also reached by Glass and

Cooper (2). Furthermore, it seems to follow logically from the following

observation on page 2l6 of Hooke and Jeeves (h) . "Typically a pattern

once established will, through continuous modification, grow until the

length of the pattern move is 10 to 100 times the basic step size."

Any successful pattern move leads to a longer one in exactly the same

direction; it also causes a corresponding increase in every element of D.

However, upper limits on the value of D are imposed. These processes are

also not part of the original Direct Search. They seem justified on the

basis of the favorable results achieved.

The fundamental variations from the method of Hooke and Jeeves are,

of course, inclusion of tests for constraint violations and the alternate

exploratory procedure employed when such occur. Tests for violations are

20





made after each otherwise-successful exploratory and pattern move. When-

ever one or more boundaries have been crossed, exit is made to the tangent

exploratory procedure. This will be described in the later sections.

Finally, the jump move is proposed as a wholly new tactic in finding

difficult solutions. If, at one or more constraint boundaries, the tangent

exploratory procedure repeatedly fails to establish a successful direction

(tangent move), a jump move is made to the best feasible trial of all

components developed. That is, the base point is shifted to that com-

ponent of the v tangent exploratory moves
5
just attempted by auxiliary

procedure T, which is feasible and has the lowest corresponding value of

the objective function.

The solution then proceeds with an initial reapplication of the tangent

exploratory procedure. If repeated failures at one or more constraints

recur, another jump move is made, provided that the intervening solution

steps have produced a base point with function value lower than the value

prior to the first jump move. If this has not happened, the subsequent

potential jump move is bypassed. Instead, the base is returned to its

position before the first jump move and a conventional exploratory move

is attempted. More precise information on this feature will be given in

the following charts and notes

.
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-J ill
c =

X = Y
f = f

y
E: Y,D; f,X

*©

y w

Df>M3
y

Out]

Y,

I 46)

Stop

(10)

V (12 )

G - C(X)

V: G; v,K

Chart 5: Modified Direct Search with Jump Move.

Main Procedure, Part II
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Notes for Chart 5

( 1

)

Set failure counter to zero ; starting from base point , perform

exploratory move .

The details of this conventional exploration were shown in Chart U,

above

.

(2) I_s_ trial objective function below value at base ?

If so, constraints must next be checked for any possible violation.

( 3) Set failure counter to n + 1 .

(h) Reduce step sizes .

This is also the point of re-entry into the main procedure after

failure of the tangent explore move.

( 5

)

Are all step sizes less than lowest tolerated limit ?

If so, the calculation is terminated.

(6) Output values of variables and objective function at minimum .

The accuracy obtained, provided the method is successful, depends

upon the specified values of the L column matrix.

( 7

)

Set and test switch s_. If_ s £ 0, try tangent exploration ; if

s = , test for existence of & feasible move ; if s>0 , try

conventional exploration .

Only after n consecutive applications of the tangent exploration

algorithm fail to produce a satisfactory move does a jump move become

possible. Switch s will be greater than zero only immediately after

failure of a conventional exploration.

( 8

)

Has a feasible jump move been stored by T?

If the previous application of auxiliary procedure T produced no

feasible trial, it is re-entered.

23





(9) ls_ the objective function at the present base below its value

before the most recent jump move ?

This is a necessary condition for any subsequent jump move.

( 10

)

If_ not , restore previous base and try conventional exploratory move .

(11) If_ so, perform jump move ; then go to recompute partial derivatives

before tangent exploration .

The present base values are saved, so that the test at Item (9) can

be made the next time a jump move may be indicated. The best feasible

trial from the most recent application of procedure T becomes the new base,

and the present base is treated as a failed trial.

( 12

)

Compute constraint functions and check for violations .

( 13

)

_Is_ there any violation ?

If so, control is transferred to the preamble to the tangent

exploratory procedure.

( lU ) Perform extended pattern move .

The failure counter is set to unity as an indicator; present values

of the constraint functions are saved for possible use by auxiliary pro-

cedure H.

( 15

)

Is_ the trial value of the objective function below base value ?

If not, pattern move has failed and exploration is indicated.

( 16

)

Extend exploration step sizes .

Whenever a pattern move succeeds in lowering the objective function

the values of D are increased, subject to a limit.

The Exploratory Move in the Tangent Hyperplane; Basic Concepts .

Whenever at some trial point, X, a conventional exploratory or pattern

move finds a value of the objective function lower than the base value,

that trial move is immediately checked to determine whether or not it is
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feasible. If not, control is transferred to the preamble of the tangent

exploratory procedure, shown in Chart 6. This section will provide a

general outline of tangent exploration, including ancillary logic such

as the preamble and the calculation of partial derivatives of the con-

straint hyper-surfaces. Later sections will explain each sub-procedure

in greater detail.

The internal auxiliary procedure H:v, B, G, K, X, Y; I, P approximates

the partial derivative of each constraint function currently violated at

the last feasible base, i.e_. , the quantities;

* g

3 x
i

(j = 1, 2, ..., v), (i = 1, 2, ..., n)

It also generates the matrix I which, after exit from H, contains a

column of indices for each violated constraint. Each of these v columns

contains n variable numbers arranged in order of ascending absolute value

of the corresponding first partial derivatives. If the tangent exploratory

move fails, auxiliary H is not re-entered on subsequent attempts to find

a tangent move from that base. If, however, after n such failures a jump

is made, H is used to re-estimate the appropriate derivatives before

procedure T is re-entered.

If Y is the current base point in feasible n-space and the j-th con-

straint hyper-surface is crossed due to trial move X, the first essential

concept of the Tangent Search Method is that the next exploration be made,

if possible, in the hyperplane,

n

C>
g
j>

i = 1 a*i

(x. - Y. ) = 0,
l l '
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where x. is the i-th independent variable of n-space.

Note that this hyperplane is only approximately tangent to the hyper-

surface, g.(x) = 0, since it includes the point Y which, in general, is dis-
J

placed some amount into feasible space. However, the discussion following

will usually refer to it as the "tangent hyperplane". It would be so

strictly only if the base lay directly upon the constraint boundary.

The second basic idea of the tangent exploratory scheme is that each

variable, in turn, be incremented, while holding all others but one con-

stant. That one is adjusted by the amount necessary to confine this trial

component of the move to the tangent hyperplane. The a-th variable, in-

cremented by the corresponding D , will be called the "primary" variable
a,

of a trial component of a tangent exploratory move. The b-th variable,

which is that one adjusted to keep the trial in the hyperplane, will be

called the "secondary" variable. Each such trial component, therefore,

requires the two replacement operations:

X = X + D
a a a

X
v

= X
b b

^ g
j

^ xa Y ^gj

The primary index simply cycles through the first (n - l) elements

of the j-th column of the current I matrix, i.e., a = I, . , (k=l, 2, ...,

n-l). The corresponding b indices are selected by a rule which will be

discussed in the section below treating the preamble to tangent exploration.

As in the conventional exploratory move, the objective function is

evaluated for any trial component, the k-th, for example. If it is lower

than any previous trial of the present move and if no constraint is violated,

that component is adopted and the variable indexed by I, . becomes
(k + l)j

26





X
a

= xa
—

a'

X. = X
b

+

>° a
Y

^S
u

SSj

primary.

Otherwise the reflection of that trial component is tested, i_.e_. ,

the component generated by the replacements,

and

D .

Y
a

On the first component this reflection is collinear with the original trial

and the base point. On subsequent components it is collinear with the

previous trial and the best move yet developed during the current ex-

ploration. If this trial component is feasible and produces a function

value lower than the previous trial, it is adopted. Otherwise both the

a-th and b-th variables are restored to their values before the former

became primary, and the next primary variable is substituted. This

process continues until (n - l) primary variables have been selected.

Preamble to Tangent Exploratory Move .

Introductory steps before entrance into and testing procedures after

exit from procedure T are shown in Chart 6.

If the violation which results in tangent exploration was caused by

conventional exploration, step sizes are reduced in the preamble. How-

ever, if an attempted pattern move caused the violation, step sizes are

unchanged. This policy was chosen solely on empirical grounds. Next*

procedure H obtains estimates of the values at the base of the partial

derivatives of each violated constraint function with respect to each

independent variable. Then a loop is initiated which attempts to obtain

one exploratory move for each presently-violated constraint.

It is now necessary to return to the subject of variable coupling

during tangent exploration. The manner in which secondary variables are
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selected is also partly shown in Chart 6. It should be recalled that the

b-th variable is decremented by an approximation of the amount,

d
b

=

^7
D

when the a-th variable is primary for the exploratory move in a hyperplane

approximately tangent to the hyper-surface, g- = 0. The adjustment of
el

I by d, is designed to confine the trial move to that hyperplane when X

is incremented by D .

a

In order to avoid possible computational difficulties arising from

large disparities in magnitude between dgi /ox„ and og. /O'x, , it was
«j a j d

decided simply to choose a and b such that

^g. /^x
b
Y

Here the notation

refers to the absolute values of the partial derivatives. Both are

evaluated at base point Y. To facilitate this rule the matrix I is pro-

duced by auxiliary procedure H. It should be noted that the partial

derivatives, stored in the matrix P, are correspondingly arranged at exit

from H.

Many of the elements of P will be zero for practical problems. In

fact, a column of P representing an explicit constraint (upper or lower

bound on an independent variable) contains, at every violation, (n - l)

zeros, while the last element is always unity. Implicit and explicit

constraints are not treated separately by the algorithm described here.

It would probably be advantageous to follow the example of M. J. Box (3)

and do so in future work.

When some element, P . , of matrix P is zero, the corresponding i-th
K. J

variable, where i = I , cannot be used either as a primary or secondary
kj
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variable in the sense previously defined. In that case the tangent hyper-

plane is parallel to the i-th coordinate axis. Such a variable will be

called "passive" in the following discussion. Any variable, the q-th,

where q = I , for which the corresponding P, . is not zero, will be called
kj K J

"active".

Since any increment (or decrement) to X. cannot remove it from the

tangent hyperplane, the trial step for any passive variable can be chosen

as the corresponding element of the D vector. Also, if more than one

element of P, . , (k = 1, 2, ..., n) are zero, any two such passive variables

may be simultaneously incremented and/or decremented without departure

from the tangent hyperplane. In that sense primary and secondary passive

variables may also be chosen arbitrarily.

Therefore, in the selection of the variables for the trial components

of the tangent exploratory move at the j-th constraint, the primary index

can always become in turn,

a = Xij' Z
2j, .-•, X

( n _ i)j'

The variable of index I • is never primary. The corresponding element

PR i cannot be zero, since this would imply that all P^-i- (k = 1, 2, ..., n)

are zero, in which case the tangent hyperplane would be parallel to all

coordinate axes. Therefore, it cannot be involved in coupling passive

variables. Also, it is never used as the primary in coupling active

variables, since it will have already been considered at least one time

as a secondary variable by the time a = 1/
i

) •

'

The manner in which the secondary variable index, b, is chosen will

be termed the "coupling mode". At all times the j-th element of N con-

tains the current coupling mode number to be next applied in calculating

a trial move in the tangent hyperplane at the j-th constraint. If the
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trial exploration results in a tangent move, the coupling mode is unchanged.

Otherwise the present mode number is decreased by one. If all fail in turn,

a total of 2(n-l) modes are tried to complete a cycle. If necessary it is

then re-initiated.

The coupling constants, g and h, for each constraint are functions of

the current corresponding coupling mode number. Constant g is used by

procedure T to couple active variables, and h is used to couple passive

variables. Further information will be given in the description of that

auxiliary procedure. An example of a complete cycle of g and h is given

in the notes to Items (8), (9), and (10) of Chart 6.

After each exit from procedure T, the result is tested. The first

trial which has been found feasible by T and also produces a value of the

objective function below the base value becomes a "tangent move". The

base is transferred to this point, and the vector defined by that transfer

becomes the information upon which a pattern move is attempted. Exit to

that part of the main procedure immediately follows.

However, if after trials for all violations are complete and no

tangent move is made, transfer of the base may still be performed by a

jump move, provided certain previously-described conditions are met.

Such a new base must be feasible, even though it may involve an increase

in the objective function over that of the previous base. This transfer

of base does not provide a promising vector for a pattern move. Instead,

tangent exploration from the new base follows any jump move.

In analyzing Chart 6, it is important to note that every feasible

trial component for all violated constraints is tested for corresponding

objective function value. The best move of this set is preserved in Z,

the function value in f , and constraint function values in G. Auxiliary

procedure T indicates that at least one feasible trial was found by setting

the feasible move indicator, t, tcu unity.





5/$U

lil3)

N. - Nr l

g - N

(10)

^-

I1D

T: g,h,i,j,G,I;
f,f

a
,t,X,Y

(14)

3[ (16)

c c+1

n

(15)

&> J " j+l

^5/4)

Chart 6: Preamble to a Series of Tangent Exploratory Moves

and Tests of Results.

Main Procedure, Part III
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Descriptive titles and further notes for the items of Chart 6 are

given below.

( 1

)

Is_ the failure counter greater than zero ?

Here the counter is used to indicate whether the preamble has been

entered after failure of an exploratory or a pattern move. If the former,

explore step sizes are reduced.

( 2

)

Reduce step sizes ; set failure counter to unity .

( 3

)

Internal auxiliary procedure H:v, B, G, K, X, Y; I, P is performed .

The detailed steps of this auxiliary are shown in Charts 9 and 10

below.

( h ) Set feasible move indicator to zero ; initialize loop to be indexed

.1
= 1 (1) v .

( 5

)

Obtain index of the j-th violated constraint ; reset trial variables

and function to base values .

(6) Is_ present coupling mode number zero ?

If so, cycle must be restarted.

(7) Initiate coupling cycle .

( 8 ) , ( 9 ) > ( 10 ) Calculate active and passive coupling constants .

In all cases,

g = N^ - n + 1 _or Nj_ , whichever is positive,

h = hQ
- q , where h is the previous value of

h, and

jql = n - g - 1, to be prefixed by the sign of h .
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Therefore, when n = k, a complete cycle is

Order N.
1 g h

1st 6 3

2nd 5 2 -1

3rd h 1 +1

Uth 3 3 -2

5th 2 2 +2

6th 1 1 -3

The manner in which g and h are used to select secondary variables

is described in the discussion of auxiliary procedure T below.

(11) Exploratory Move in Tangent Hyperplane .

The details of this internal auxiliary procedure are shown in

Charts 7 and 8.

( 12

)

Is_ trial function lower than value at base ?

If so, an immediate pattern move is made and, in this process, the

base is transferred to the tangent move just found.

(13) Decrease coupling mode number .

4

' -Since the mode used by procedure T at the i-th constraint did not

produce a tangent move, the next attempt at that constraint will try the

next coupling mode.

( lU ) Have explorations been tried in all hype rplanes tangent to presently-

violated boundaries ?

( 15

)

Increment index and return to consider next constraint .

(16) Increment failure c ount e

r

.

No tangent move has been found. Therefore, return to the main

procedure is made to decrease step sizes, test for end of search and,
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possibly, a jump move.

Special Expedient for Convex Constraint Hyper-surfaces .

It should be noted that convex curvature of a violated constraint hyper-

surface is inherently troublesome for the algorithm described here; any

move which were strictly confined to a hyperplane actually tangent to a

convex constraint hyper-surface would cause immediate re-violation of that

constraint.

Therefore, a special expedient is employed whenever any component of

a trial exploratory move produces re-violation of the constraint currently

considered. This open sub-procedure is located within the auxiliary pro-

cedure T. This problem was dealt with by Glass and Cooper (2) by their

"extension" to the alternate move.

The method proposed here takes advantage of the fact that a measure

of the gravity of a subsequent re-violation is provided at the same time

it is detected. When, for the secondary variable, indexed by b,

pb*P g
j ^ x

i Y
and

G.< 0, after application of the external auxiliary C(X), the following
J

^b = X
b " 2G

j / Pb'

simple replacement is used to adjust the trial move

Xb
=

A factor of 2 is used to over-compensate for the estimated convexity. If

re-violation follows, this adjustment is again employed. However, if a

third attempt fails, the present trial component is abandoned. Either the

next primary variable is selected or the reflection is then tried.

The steps outlined above are appropriate only when the variables in-

volved are active. If the primary variable is passive and not presently

coupled, the variable of largest M^g. /^x.[ I , (i = 1, 2, ..., n),

is selected to serve as the secondary variable for this special expedient.
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The index of that variable is the element I .

.

Finally, if two passive variables are coupled and re-violation of the

currently-considered constraint occurs on any trial component, the second-

ary variable of that component becomes the k-th where

Then all calculations for the component are restarted. Detailed steps

of this expedient are shown in Charts 7 and 8 below.

Tangent Exploratory Auxiliary Procedure .

Input parameters of this procedure, T, include g and h, the coupling

mode constants of the current trial move; i and j, indices of the con-

straint hyper-surface to be considered; the column I ., (k = 1, 2, ..., n),

which holds indices of variables ordered by magnitude of the corresponding

P , (k = 1, ..., n); and the column matrix G, containing the constraint

function values at X, where one or more constraints are violated.

This internal auxiliary procedure usually generates values for t, f ,

A, and Z, all of which are utilized only if no tangent move is found for

any one of the currently-violated constraints. Values of f and X, pro-

duced by T, constitute a tangent move if and only if f lies below fy , the

value of the objective function at the base point, Y.

An introduction to the steps of this procedure has been given in various

previous sections. However, it is still necessary to state the rules by

which g and h are used to select secondary variables. If g is the coupling

mode constant for active variables and a = Iv-p then b is chosen as the

(k + g)th index of the j-th column of I, except that the index at In *

pre-empts in all cases when k + g > n.

Similarly, if h is the coupling mode constant for passive variables

and a = Ijh , then b is chosen as the w-th index of the j-th column
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whenever w = k + I hi £ n-1. If w > n-1 or if P^-/ 0, no coupling is

effected. When the increment /decrement of the b-th variable is actually

used, the sign of this operations is dictated by the sign of h.

As an example, we shall assume that n = U, m= 3, v=2, K-, = 2, Kg = 3,

and

I =
3 1

1 2

1+ k

2 3

P =
.1

-.5

7.1
-9.8 1

Then the variables involved in the trial components of the tangent

exploratory move near the hyper-surface, g2 (X) = 0, would be, for the first

three coupling modes:

N.
l g a b

6 3 3 2

1 2

h 2

5 2 3 k

1 2

1+ 2

k 1 3 1

1 h

h 2

The last three modes of the active coupling cycle repeat the above table.

Since no element of the first column of P is zero, only active coupling

is used at this constraint. The variable coupling used in trial components

near g^(X) = is shown in the table below. This constraint boundary is

actually a hyperplane, perpendicular to the 3rd coordinate axis. Therefore,

all coupling is passive.
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N. h a b Remark

6 No coupling a = 1, 2, U

i

5 -1 1

2

1+

2

None
Increments /Decrements
opposite in sign

k +1 1

2

2

u

None
Increments /Decrements
the same in sign

3 -2 1

2 None
None

Increments /Decrements
opposite in sign

2 +2 1

2 None
None

Inc rement s /De creme nt s

same in sign

1 -3 No coupling a = 1, 2, k

Detailed steps of procedure T are shown in Charts 7 and 8. De-

scriptive titles for the items given and additional explanatory notes

follow the charts.
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(4)

M: n,k+g; w
b - I .

wj

Pb " P
wj

*b "V
K " Vpa

D
a
/p

b|

(1A)

V (15 )

G - COO
V: G; u,J

<16)

pb " P
wj

b = I .

wj

*b = *b
S: D

b
,h; q

x
b
-y

b
+q

Chart 7: Internal Auxiliary Procedure T: g,h,i,j,G,I; f,f ,t,A,X,Z.

The Tangent Exploratory Move, Part I
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Chart 8: Internal Auxiliary Procedure T: g,h,i,j,G,I; f,f ,t,A,X,Z.

The Tangent Exploratory Move, Part II
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Charts 7 and 8

(1) Initialize index of outer loop , k = l(l)n-l .

Index k will pick up, in order, the variable numbers of the n-1

primary variables of the present tangent exploratory move.

( 2 ) Select index of primary variable ; select the corresponding partial

derivative ; save old value of primary ; increment and save new

primary variable value .

The values of p , y„ , and x are preserved separately from the
a °* a

matrices in which they are found. This policy reduces indexing steps in

an object program. It also simplifies the calculation of the component

reflection, if this becomes necessary.

(3) Is the primary partial derivative , jg. / fix zero?

If so, any change in the a-th variable would be parallel to the

tangent hyperplane and, therefore, it is passive,

{h) Select the index , b_, for the secondary active variable by using

constant g_; select secondary partial derivative ; save old value

of the active secondary ; save new decremented variable value .

Values of p-, , y, , and x-. are also preserved for later use in

calculating a trial reflection.

( 5 ) Change effective value of secondary variable , X-u,

.

(6) Does coupling constant indicate that the primary passive variable

is to be coupled ?

If so, it will be necessary to select the appropriate index of a

passive variable.

( 7 ) Compute tentative location of the secondary index .

(8) Is_ location within bounds?

If so, It is still necessary to discover whether or not the tenta-

tively-selected variable is also passive.





( 9 ) Save the partial derivative of tentative secondary passive variable .

( 10 ) I_s_ the partial derivative zero ?

If not, coupling is not allowed since any change in one active

variable would cause departure from hyperplane.

(11) Select secondary passive index , b_, from I_ matrix ; save old value of

X, ; compute incremented or decremented secondary variable .

The direction of that adjustment depends upon the present sign of the

coupling constant.

( 12 ) Select variable with largest absolute partial derivative as secondary ;

save value of derivative and old value of variable ; maintain this

value for trial .

These steps allow the reflection/reset logic to handle non-coupled

components without special tests. They also provide a secondary variable

for possible use in the special expedient for convex surfaces.

(13) Set re fie ct i on /re set switch to unity .

This switch is tested whenever a trial component is non-feasible

or fails to improve the objective function value. When s is unity, the

reflection of the present trial component is next tested; if s = 2, the

values of the variables which existed prior to the failed component are

reset.

( 1^ ) Initialize loop to count possible applications of the special

expedient at a convex hyper-surface .

This sub-procedure is tried a maximum of three times consecutively

before a trial component is abandoned.

( 15 ) Compute constraint functions and test for violations .
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(16) Is_ any constraint violated ?

If not, exit from the special expedient loop is made. In that case

the next step is to test whether or not this feasible trial component

brings an improvement in the objective function value.

( 17 ) Is_ the presently-considered constraint re-violated by this trial

component ?

If not, the special expedient is useless and this trial component

has failed.

(18) Is_ the secondary variable passive ?

If so, it cannot be used in the logic of the special expedient.

Therefore, exit is made in order to try the reflection or to select a

different secondary variable.

If not, the secondary variable is adjusted by approximately twice

the minimum amount necessary to produce a feasible trial. These steps

are discussed at Item (26), etc., below.

( 19 ) Calculate the value of the objective function corresponding to

the present trial component .

(20) and (21) Is this value an improvement over the best previous

result at this constraint ?

If so, it is saved, the variables remain undisturbed,

and the next primary variable is selected.

( 22 ) Has any feasible move been previously found at any presently-

violated constraint ?

If not, this component will be preserved.

(23) Set feasible move indicator to unity .

(2k) Save present values of objective function , independent variables ,

and constraint functions as best feasible move so far.
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(25) Test objective function .

The function value at the present trial component is compared with

the value for the best feasible component so far at all constraint surfaces

currently violated.

If it is below the previous best value the appropriate quantities

are preserved for a possible jump move. If not, the reflection/reset

switch is tested to determine the manner of finding the next trial com-

ponent. See Item (29), below.

(26) Correct secondary variable .

(27) and (28) Have three attempts to apply the special expedient been

made ?

(29) and (30) Test reflection/reset switch .

If a trial component fails, its reflection in the hyper-

plane about the previous best reference is tried. If a reflection fails,

variables are reset to the previous reference.

The switch test at Item (30) is made after failure of the

special expedient.

( 31

)

Compute reflection of trial component in hype rplane about previous

best point ; set re fie cti on /res et switch to 2_.

It should be noted that the reflection of a trial which is modified

by the special expedient is not used. Control next returns to the

feasibility test.

( 32

)

Reset primary and secondary variables to previous best values .

Both the original and reflection components for this pair of

variables have failed.

(33) and (3*0 Have ( n-l ) primary variables been tried ?

If so, this application of T is complete. If not, k is
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incremented and the next primary variable is selected.

( 35 ) Reset secondary variable .

If both components fail with passive coupling due to convexity of

the constraint hyper-surface, a new secondary variable, which is neces-

sarily active, is selected.

Calculation of Partial Derivatives of the Constraint Functions .

In the material above discussion of the problem of evaluating the

partial derivatives,

, (J = 1, 2, ..., v), (i = 1, 2, ..., n),
Y

has been bypassed. In Chart 6 this process is shown as an internal

auxiliary procedure

H: v, B, G, K, X, Y; I, P ,

which is used as part of the preamble to a series of tangent exploratory

moves. The details of one formulation of that auxiliary are shown in

Charts 9 and 10. This is the algorithm used in the test calculations

to be discussed in the following sections.

However, there are many computational alternatives for accomplishing

the same purposes, one or more of which may be more elegant and economical

than that given in Charts 9 and 10. The last section of this paper will

return to this point.

Five major presuppositions led to the particular version of procedure

H which is described here.

1. Only one external auxiliary procedure to define all constraint

functions should be allowed. All such functions should be evaluated each

time this auxiliary, C(X), is called.

The author has visualized C(X) as a subroutine to be supplied by
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the user of a standard library routine which contains all steps except

F(X) and C(X). For this reason complete simplicity of logic, e.g., no

conditional branching, within both of these external auxiliaries has been

an overriding desideratum .

2. Wo special external auxiliaries to calculate the derivatives,

themselves, either by difference methods or by the evaluation of formulas

obtained by analytic differentiation, should be allowed.

The present author felt that the entire task of obtaining de-

rivatives should be shouldered by any proposed minimization method. This

is particularly important for any method seriously suggested for the

solution of practical problems.

3. Special software or subroutines to obtain derivatives by the

methods of Wengert (5) or Smith (6) should not be assumed.

k. Implicit and explicit constraints would not be separately treated.

5. The minimum number of evaluations of F(X) and, expecially, C(X)

in obtaining satisfactory solutions would be a primary goal.

In the context of these presuppositions it was decided to approximate

the desired partial derivatives by simple first-order differences. In

other words the secant is actually substituted for the tangent.

When procedure H is called, one or more tangent exploratory moves are

about to be tried. The actual number is, at most, v, the number of con-

straints violated by the last trial move. The point Y is the present

base, to which corresponds the column matrix of constraint function values,

B. All elements of B are zero or positive. The point X is the non-

feasible trial move, to which corresponds the column matrix, G, v elements

of which are negative. Additionally, K is a column matrix of v elements,

each of which is the index number of a violated constraint.
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In the following discussion attention will be restricted to the

approximation of

, (1-1, 2 n),

^ X
i

where k is any one of the indices stored in K, and g is the k-th constraint
k

function. It should be understood that, each time it is called, H produces

all elements of the matrix, P, which contains n rows and v columns.

The total differential of e can be expressed,

where the x. (i = 1, 2, ..., n) are general independent variables.

Evaluation of the partial derivatives is desired either at the base point

or nearby, for example, at some point between the current base, Y, and the

non-feasible trial, X. The differentials above are approximated by simple

differences

,

dx. ^ X. - I., (i = 1, 2, ..., n),

and

d^~ Gk" V
It is, in general, necessary to evaluate only (n-l) of the partial de-

rivatives ^gv /^x., (i = 1, 2, ..., n), since the n-th can be found from,

L
ZllVi
i=l
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One call of the external auxiliary procedure C(X) is necessary to

calculate each d gk/9 x .
for * = l(l)n-l. These values are then approxi-

1

mated by the simple differences,

^gk/3 Xi 2: (Ak
- B ) / (X. - Y± ),

where A, is g, (W)

.

The point W is defined,

W = Y , for all q^ i,
q q

and W-? = X. .±
1

The method described above would fail whenever any X. = Y. When •

this happens W^ is taken as

W. = X. + D. ,1 l l'

in the evaluation of A^.

In the notation of the flow charts

^ P.. .

y lk
"} V^ X

i|

Auxiliary procedure H generates matrix P containing n rows and v columns

of such approximate partial derivatives corresponding to the n variables

and v violated constraints. At exit from H each column of P is arranged

in ascending order of absolute value. The procedure also generates matrix

I which contains the variable numbers corresponding to the arrangement of

P. The sorting which is necessary to order P and I is accomplished by the

simple exchange method.

The steps which calculate the elements of matrix P are given in Chart 9-

The rearrangement of P and generation of I are shown in Chart 10. The

author has omitted the usual listing of descriptive titles for these charts,

since there are no difficult points requiring more detailed explanation.

It should be mentioned that the control, e, and switch s are used for

hi





branching when any increment, Z. = (X- - Y. ) , is near zero and t<

eliminate the unnecessary use of C(X), as explained above.
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Enter

15)

s e

©* X " 2

i (so

k - K.
J

P . - G,-B,
qj k k

XU
Z = X-Y
X - Y

e -1

12)

> 1 = 1

n

n

V (ID

j - J+l

<D
% U)

z - Z,

V (12 )

s *

x - D,

(13)

A

j

C(X)

L^8)
e - 1

q - i

j ' 1

<D
I 04)

k=K.
P
ij " <VBk)/x

qj qj ij

(21)

Chart 9: Internal Auxiliary Procedure H: v,B,G,K,X,Y; I, P.

Evaluation of Partial Derivatives of Constraint Functions,
Part I
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X—Xl)

©
Ii)

p .

- p Vz
qj qj q

(3)

(1-1,2,. ...n)

I

JL

\j (4)

19)

> k - k+1 -KD

(11)

Chart 10: Internal Auxiliary Procedure H: v,B,G,K,X,Y; I,

P

.

Evaluation of Partial Derivatives of Constraint Functions,
Part II
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Numerical Results and Comparisons

The new calculations reported here were performed on the Control Data

Corporation l60U Computer of the Computer Facility, U. S. Naval Postgraduate

School, Monterey. Both the Tangent Search Method described above and the

Complex Method of M. J. Box (3) were programmed by the author in FORTRAN 60

for these trials.

Comparisons between other methods and Tangent Search are made on the

basis of criteria used by previous authors. Counts of required moves are

given for comparison with the results of Glass and Cooper (2), and for the

one problem reported in detail by Klingman and Himmelblau (l). However,

most comparisons are between Tangent Search and the Complex Method. All

eleven examples were run with both of these methods by the author. These

comparisons are made in terms of the numbers of function and constraint

evaluations, tabulated separately, required to attain a constrained minimum

of a defined accuracy. The present author wants to concur in the remark

of M. J. Box (3) concerning the superiority of this measure. However for

Tangent Searches counts of base points, conventional exploratory moves,

and tangent exploratory moves are also tabulated below for possible help

to other investigators. For the Complex Method, total and permissible

trials are counted in addition to evaluations of the external auxiliary

procedures. These statistics are used by M. J. Box. It is the interpret-

ation of the present author that a trial vertex is "permissible" only

if it both is feasible and also produces a value of the objective function

which is no longer worst.

Each trial problem will be defined below and results tabulated. A

summary of the results is given subsequently.
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PROBLEM 1

This example is taken from the paper of Glass and Cooper (2). Their

Table 1 shows the solution as developed by Sequential Search.

Required is the minimum of

F (x) = - V 21 - (Xi - 5)
2

- (x
2

- 5)
2

,

subject to the constraints,

andG
1

(x) = x
±
2 - h x

2
2 0,

G2 (x) = (x2 - 6)
2

- h(x
±

- 3) 21 .

All trial runs were calculated from the initial point,

x = 7.000

x
2

= 1.000

F = -2.236, with

initial step sizes,

D
1

= .0666667 and

D
2

= .1333333 .

According to the article the actual solution to the problem is

x_ = h.
Is

c2s

F = -U. 7958 . .

.

s

Sequential Search attained a result within a circle of radius .0015

about the true solution as its 23rd base point. Tangent Search solutions

were also obtained to the same accuracy for three choices of step reduction

factor, r. Comparison of all these results is given in Table la.
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TABLE la

End criterion: ~]j(x
1

- kf + (x
2

- k) 2 6 .0015

Result Algorithm

Seq. Search Tangent Search

r =

" -25 .375 .500

x
l

I2F

U.000

3.999
-U.796

U.0005

3.999^
-^•7958

3.999^
3.9988

-^•7955

3.9992
U.0008

-^.7958

Base
Points 23 21 31 32

Explore
Moves 12 5 7 11

Alternate
Moves* 5 6 12 19

* For the purposes of Tangent Search this counter was incremented before

any entry to Item 5 of Chart 6.

Results with Sequential or Tangent Search seem substantially the same

for this problem. The best run is for Tangent Search with r = .25 .

However with larger factors this method attains the required minimum less

efficiently than Sequential Search.

Problem 1 was also solved using the Complex Method of M. J. Box (3) •

Initial conditions were, as before, x-. = 7.0 and x = 1.0 . Two runs were

made in order to discover, to a slight extent, the effect of the random

choices of vertices made at the beginning of each calculation. The sequence

of pseudo-random numbers, used in setting up the first complex, varies

between the two solutions. These are denoted "a" and "b". To compare
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performance with Tangent Search the number of functions and constraint

evaluations were counted. For the Complex Method the centroid of the

vertices is the reference point for determining the progress of the solution.

Comparison is made for the same degree of accuracy described previously;

results are given in Table lb.

TABLE lb

End Criterion: V (^ - M 2 + (x~ - h)
2

i-
. 0015

Algorithm Number of Evaluations

Complex Method Constraints Ob j . Function

a

b
191
128

109
61+

Tangent Search

k2 38r = .125

r = .375 63 72

r = .500 81 . 85

These results seem to indicate that Tangent Search is superior to the

Complex Method for this problem.

PROBLEM 2

This is the second illustration of Glass and Cooper. The problem is

to minimize the objective function of Problem 1, above, but now subject to

the single constraint,

G(x) = 32-Ux - x
2
a > 0.

The initial point and step sizes are, as before,

x
1

= 7.0 .

x, = 1.0 >

D = .0666667,

D
2

= .1333333.
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The solution (to four decimal places) is said to be:

x
ls

= U.37U1

xQ = 3.8083
2S

F = -U.815U •

s

Table 2 of that reference shows the steps generated by Sequential

Search until a base approximately . 00U units from the true result is

found. Previous base points were actually closer than this. However

none of these was chosen as final since subsequent results diverged.

Comparisons between that result and corresponding tests using Tangential

Search are given in Table I la.

TABLE Ila

End Criterion: W (x - x ) + (x - x2s )

2 6 .00k

Result Algorithm

Seq. Search Tangent Search
r =

.25 .375 .500

X
l

x
2

F

U.376U
3.8071

-U.815U

U.37H1
3.8081

-U.815U

U.37U1
3.8083

-U.815U

U.37^1
3.8082

-U.815U
Base

Points hi 36 32 36
Explore
Moves 20 10 13 15

Alternate
Moves 15 lit 15 21

Since two runs confirm the conclusion, it seems that Tangent Search

is better than Sequential Search for Problem 2. Either of the two smaller

values of r seems to be the proper choice in this case.
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Trial calculations were also made, as on Problem 1, with the Complex

Method. These results are shown in Table lib.

TABLE lib

End Criterion: ~W (x1 - *
ls )

2
+ U2 " X2 S ^ - - 00^

Algorithm Number of Evaluations

Complex Method Constraints Ob j . Function

a 132 68

b 122 65

Tangent Search
lh 81r = .250

r = .375 72 8U

r = .500 91 101

The author feels this table shows substantially similar performance

for the two methods

.

PROBLEM 3

This example is taken from the paper of Klingman and Himmelblau (l);

however, it originated in another article by R. A. Mugele where it demon-

strated the IBM Probe Method of Optimization. A detailed narrative of the

progress of the solution by the Multiple-Gradient Summation Technique is

provided by the Appendix to the former paper. It is required to locate the

optimum of

F(x) = 1/ ((x, + l)
2

+ x
2
),

1

under the two constraints,

G
±

(x) = x
2

+ x
2
2

- k Z

G
2

(x) = 16 - xx
2

- x
2
2 > 0.
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To prevent possible confusion, this problem will be immediately re-cast

to require the minimum of

F(x) = -1/ ((x + D 2
+ x

2

2
),

subject to the given constraints.

Initial conditions for trial runs are,

x
1

= 5, x = k 9 and

D
1

= 1.5, D
2

= 1.2 .

Since G (x) = -25 for this origin, the solution must begin by search-

ing for some feasible point. Both the Multiple Gradient Summation and

Tangent Search Methods include a preliminary procedure for this purpose.

A comparison of results is provided by Table Ilia. Moves required to find

an initial feasible point and subsequent performance criteria are tabulated.

In order accurately to compare results the constrained minimization phases

of all three Tangent Search Calculations were started at the point (2.8,

2.0) at which all counts were reset to zero. Final tabulations are made

for the point in each calculation which corresponds in accuracy to the

last point reported in the Appendix of (l). Specifically this is the point

at which the base enters a circle of radius less than .52 about the true

solution,

X
ls

= -2.0

x
ls

=

F
s

-1.0

Evaluation of analytic first partial derivatives are also counted

for Multiple-Gradient Summation. Other criteria are as described pre-

viously.
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TABLE Ilia

End Criterion: V^T + 2 )

2 + x 2 ± .52

Criterion

^_ ,

Algorithm

Initial
Feasible Pt.

M-G Summation Tangent Search
*•'*:=

.250 .375 .500

x
l

2.8 1.625 3.500 -2.125

Xo 2.0 1.300 1.150 -1.700
F" -.059^ -.1165 -.01+61+ -.2U06

Base
Points 1 2 3 3

Explore
Moves 1 1 2 1

Constraint
Evaluations 6 T 15 11+

Final Point
-2.1+9 -2.118 -2.101+ -2.131x

l
*2
F^

-.182 .1+699 -.331+7 .1+960

-.1+005 -.6799 -.7513 -.655^

Moves

7 15 8 8Base
Explore 10 5 1+ 6

Alt. 3 5 1+ 6

Evaluations
1+3 31 20 28Constraints

Dbj. Funct. 33 U3 29 1+3

Part. Deriv 6 —

Inspection of Table Ilia does not seem to establish any superiority

between the methods. Among step reduction factors for Tangent Search,

r = .375 seems best. With that choice the final result is better

than that of Multiple-Gradient Summation. That method seems to do

better in the initial search for a feasible origin; however the author

feels this is due to a particularly fortuitous initial pattern move.
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Comparisons between Tangent Search and the Complex Method are given

in Table IITb. The end criterion is smaller for these calculations.

TABLE I lib

End Criterion: Y^T +2) + x^ fi .005

Algorithm Evaluations Trials/Moves

Complex Meth. Constraints Ob.i . Funct

.

Total Permissible
a 295 223 287 180
b - - failed -

T angent Search Base Explore Alt.
r = .250 68 87 33 11 13
r = .375 71 86 30 10 16

r = .500 75 101 25 15 19

Using the sequence of pseudo-random numbers designated "b" , the Complex

algorithm failed to develop a feasible fourth vertex at the start. This

was due to the fact that both the random trial vertex and the centroid of

the three previously-chosen vertices were not feasible. Both lay within

the inner boundary.

G
1
(x) = x

±
2 + x

g
2 - 1+ = 0.

This difficulty may indicate an undesirable restriction on the use of

that method in some practical problems. The author feels that this failure,

with the poor result for run "a", indicates the superiority of a pattern

search for Problem 3. Finally, the results given for Tangent Search in

Table Ilib are better for the two smaller step reduction factors considered.

PROBLEM k

This example is based upon the "banana-shaped valley" proposed origin-

ally by Rosenbrock (7). A modification of this function was used in the

calculations reported by Krolak and Cooper (8). Problem k calls for minim-.

... <lzmg this function under the constraints proposed for the second problem
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of Table 1 in the article of Klingman and Himmelblau (l).

Specifically, the minimum of

F(x,y) = (y - x2 )

2
+ (l - x)

2

is required, assuming the constraints,

G
1

= x - .2 2

G
2

= 2 - x Z

G
3

= y -.2 Z.

G
h

= 2 - y Z

G
5

= 1 - x
2 - y

2 Z 0.

It will not be possible to compare trial calculation with the Multiple-

Gradient Summation Technique since it failed on this problem. From evidence

in the text it is assumed that Problem U, here defined, is the same as the

second problem of Klingman and Himmelblau, and that the function actually

shown in their table contains a typographical error. Exact comparisons

are impossible for another reason; the starting points of all of the tests

reported in their Table 1 are omitted.

Tangent Search Calculations were at first started with the non-feasible

point, (5 s -5) and with both step sizes unity. Table IVa displays totals

of moves and evaluations required to find feasible origins, which are also

given.

TABLE IVaj Tangent Search

Reduction

Factor

Feasible Origin Moves Constraint
Evaluations

X y F

Base Expl.

.250

.375

.500

.333
• 73U

.250

.766

.kk-J

.875

.Qlh

.079

1.223

6

6

h

3

5

3

17

30

13
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In order validly to compare step reduction factors in Tangent Search

and that algorithm with the Complex Method, all of the results in Table IVb

were obtained for calculations initiated at the feasible point, ( .25, .875)

Beginning step sizes for Tangent Search runs were unity in all cases. The

correct solution to Problem h is (to six significant figures in each inde-

pendent variable )

,

x
s

= .808169

ys
= .588951

F
s

= .0U09190.

TABLE IVb

End Criteria: I be — xk< 000005 and f-4r 000005

Algorithm Evaluations Trials /Moves

Complex Meth. Const

.

Ob.i . Funct. Totals Permissible
a 179 12 h 169 90
b 196 131 186 96

Tangent Search
61+ 80

Base Explore Alt.

r = .250 27 Ik 15

r = .375 96 109 37 18 2U

r = .500 98 118 33 21 26

All three Tangent Search results are superior to both Complex Method

solutions. Additionally, a reduction factor of .25 is best for this prob-

lem.

PROBLEM 5

This trial problem is also adapted from Krolak and Cooper (8) with

constraints proposed by Klingman and Himmelblau (l). It is the minimi-

zation problem corresponding to the eighth example of their table 1.
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Specifically, it is desired to find the minimum of

F(x) = - [(x
u

- l)
sin x

2 + (x
2

- x
3

)

2
] ,

gubject to the constraints:

^ x
1

< 1

< x
2

< 2

-1 < x
3 ^ 1

1.05 C x, < 2
k

x
x
2 + x

2
2 + x

3
2 + x

k
2 < 3

x
2

+ x + x, + x
2

x. + x x^ + x^ x^ 4. 2

2 2
x
2

- x
2

Xo + x 1 xh ~ xl x
3
2 ^ 6 '

For the purposes of solution by Tangent Search the inequalities given

above were modified and expressed as eleven constraint functions of the

following form:

G
1
(x) = x

x
>

G
2
(x) = l-x

1
>

Go(x) = x2 »

G
u
(x) = 2-Xg 2

G (x) = 6 - X
2

+ X
2
X_ - X 2 - X-^

2 Xi + X, Xo ^ 0.

Klingman and Himmelblau list the following solution obtained by their method:

x
±

= .995

x
2

= U.OU x ID"
5

"

x
3

= -.953

x
k

= 1.050

F = -U.T93 .

'Mfe&
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Examination of this result shows that it lies very near the intersection

of the 3rd, 7th, 9th, and 10th constraint boundaries. If it is assumed

that the exact solution is at that intersection, the correct values can be

immediately calculated:

x
ls

= + V .9U875 = .97^037987

x
2s

= °

[3s
= -.97^037987...

x, = 1.05
4S

F
s

= -4.795 •

Calculations with the Complex Method for two initial random complexes

and with Tangent Search for three values of r were performed for Problem

5, as for all problems reported in this section. When supplied with a

non-feasible origin the first phase of Tangent Search always correctly lo-

cated an initial feasible base for the constrained minimization phase.

This feature of the algorithm was tested successfully on this and various

other problems; it will not be discussed further.

All calculations reported in Tables Va, Vb, and Vc began from the

feasible origin,

x
x

= .75

x2 = -75

x
3

= -.375

x
h

= 1.3125

F = -1.718179 •

Initial step sizes for Tangent Search runs were .5 for all variables.
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TABLE Va

End Criterion: F ^ -U.7

Algorithm Evaluations Trials /Moves

Complex Meth. Const. Obj. Funct. Total Permissible
a li+719 10208 1U669 10200
b - - failed -

Tangent Search
157 81

Base Explore Alt.

r = .250 13 1 15
r = .375 279 125 15 1 21
r = .500 259 85 8 1 18

Table Vb provides terminal counts for the same runs. The last two

lines give totals for that point in each solution at which the base entered

a hypersphere of radius .001 about the true solution. Both Complex Method

runs and the Tangent Search calculation with r = .25 failed to reach

results of comparable accuracy.

TABLE Vb, Terminal Results

Algorithm Evaluations Trials /Moves Note/

Case
Complex
Meth. Const. 0b ,1. Funct. Total Permissible

a 1U879 10258 11+827 10250 (1)

b 10038 69U2 9999 693U (2)

Tangent
Search

66h 303"

Base Explore Alt.

(3)r = .250 67 1 65
r = .375 830 369 88 1 76 (U)

r = .500 930 382 73 k 8U m
N. B. For final results on failed cases, see Table Vc below

(1) Failed; terminated due to excessive time.

(2) Failed; terminated" wfyen trials reached 9999.

(3) Failed: terminated when all D less than 10

(h) Succeeded; results given for the base at which Jt2>; (x - x
is )

2
-c

i=l

001,

6k





TABLE Vc

Best Point Achieved for Failed Runs. (See Table Vb .

)

Final
Value

Case

(1) (2) (3)

x
l

1.000 .8U0 .998

x2 -.2E-T .^03 1.1E-10
Xn -.9^7 -.666 -.9V9
X), 1.050 1.300 1.050
F -1+.7922 -2.8903 -U.7926

For this problem Tangent Search seems superior to both Multiple- Gradient

Summation and to the Complex Method. Also, r = .375 seems the best choice

of reduction factor among the three considered.

PROBLEM 6

This illustration is essentially the same as the fifth problem of

Klingman and Himmelblau. The objective function, once again, originated

with Krolak and Cooper (8). Here the minimum of

F(w,x,y,z) = - (sin x + z^4^)

is desired, subject to constraints,

< w < 1

^- x < 2

<- y < 1

< z < 2

9 2 2 2
xd + y +. z + w < 1 .

As before, for the Tangent Search solution the constraints

are re-expressed as simple inequalities for vhich the boundaries are

feasible, i.e.

,

G = w ZL

G = 1 - w 2.
2

G = 1 - x3 - y
2

- z
2 - w

2
2. 0,
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Klingman and Himmelblau list the following result, which is erroneous:

w = 14.89 x 10-6

x = .559

y = U.89 x 10

z = .829

F = -1.530 .

Examination of this problem reveals that the constrained minimum actual-

ly lies at the intersection of the 1st, 5th, 7th, and 9th constraint bound-

aries. That is, the correct solution is:

x = 1
s

w = y = z =0
s J

s s

F = -1.8U1U71 • ••
s

All calculations with both Tangent Search and Complex Methods correctly

solved this problem. Results are given in Tables Via and VIb.

TABLE Via

End Criterion: F < -1.8U

Algorithm Evaluations Trials /Moves
Complex Meth. Constr. Ob.i . Funct

.

Total Permissible
a 292 199 272 180
b 279 172 258 160

Tangent Search
U31 222

Base Explore Alt.
r = .250 U3 3 37
r = .375 558 252 52 3 kQ

r = .500 56U 321 U6 10 kQ
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TABLE Vlb, Terminal Results

Final Algorithm
Result
Item

Complex Tangent Search, r =

a b .2^0 .375 .500

w •98E-9 1.0E-9 1.0E-10 .1+1E-7 .67E-8
X 1.0000 .99952 1.0000 1.0000 1.0000

y .10E-8 .98E-9 1.2E-10 1.9E-7 6.9E-8
z •783E-U 3.11E-2 1.18E-3 1.02E-3 1.15E-3
F -I.8U1U71 -1.8U1210 -I.8U1U7I -1.81+11+67 -I.8U1J470——————

—

Evaluations

—————

6U0 7^9 1U22 2163 2016Constraints
Ob.j.Funct. 1+U0 1+21 657 1060 1191

Trials /Moves

620 729Total
Permiss

.

395 1+07 - - -

Base - - 136 190 171
Explore - - 5 22 39
Alternate - - 119 160 1U8

Note No. (1) (2) (3) (h) (h)
f

(1) No further significant changes in variables could be found after this

point.

(2) Method could not find a feasible replacement to the worst vertex at

this point.

(3) All step sizes become less than 10" at this point.

(1+) Solution terminated due to excessive computing time at this point;

final step sizes were approximately k x 10

The evidence of these tables seems to show that the Complex Method is

better than Tangent Search for solving this problem. The best result for

the latter method was with r = .25 . Finally, both of these algorithms

produce satisfactory solutions, even though Multiple-Gradient Summation

failed.
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PROBLEM 7

This is the practical problem which stimulated development of the

Complex Method by M. J. Box (3). He was unable to solve it either by the

method of Rosenbrock (T) or by certain other techniques.

The problem, as re-expressed here, is to minimize the following function

of five independent variables, x . , i = 1, 2,. ..,5:

F(x) = -
j

j_a
2yi

+ a
3y2

+ a
1+y 3

+ a^y^ + c
±

where,

+ c-, - C2

-C3(x
2

+ . Olx^) + k
31

+ k x
2

+ k oX_

+ k
3)A

+ k
35
X5] x

l
-2U3U5 + a^,

X
6

= ^\ + k
2
x2

+ k
3
x
3

+ k ^x k
+ k

5
x5) xx >

7i = k
6

+ k
T
x
2

+ k
8
x
3

+ k
9
x
U

+ k
10

x
5 '

y
2

= kH + k
12

X
2

+ k
13

X
3

+ kl>A
+ k

l 5
X
5 » H

Y
3

= k
i6

+ k
17

X
2

+ k
l8

x
3

+ k
l<A

+ k
20

x
5 '

^ = k
21

+ k
22

x
2

+ k
23

X
3

+ k
2fc
x
U

+ k
25

X
5 >

X
T

= (y
i

+ y
2

+ y
3

} X
l '

x
8

= (k
26

+ k
2T

x
2

+ k
28

x
3

+ k29x U
+ k

30
x
5

} X
i

+ x
6

+ X
T

;

subject to the constraints

£ x
1

1.2 £ x £ 2.U

20 £ x
3 £ 60

9.0 ± x
h

£ 9.3

6.5 £ x £ 7-0

o £ x, 6 29U000
o

i. x £ 29U000
7

- x_ £ 277200 .

o
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The numerical values of a. , ( i=0 , 1,...,T) and k , (j=l,***, 35) are to
1

J

be found in the Appendix of the paper of M. J. Box (3). In the function

definition above, take

c n
= 781+0 a,

1 o

c = 100,000 a
Q

c = 50800 a~ .

The initial point, specified by M. J. Box, is

x
x

= 2.52

x
2

= 2.0

x
3

= 37-5

x
u

= 9.25

x = 6.8

F = -2,351,2^3.5,

which is feasible. According to Box the correct solution is:

xls = k. 537^3

x
2s

" z.n

X
3s

= 60

x
Hs

= 9.3

X
5 S<

= 7-0

*Bs
= 277,,200

F
s

= -5,280,33^

The paper of Box (3) gives results achieved by him in two trial runs.

These figures will be labelled "B ", and "B " in the tables below. For&
1 ' 2

this problem three initial random complexes were employed by the present

author in trial runs with the Complex Method. These will be labelled

a , b , and c .
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A comparison of results among these and three Tangent Search calculations

is given in Table Vila for points comparatively early in each run. Step

sizes for the latter method began at .1 for all variables.

TABLE Vila

Criterion: Approximately 520 Constraint Evaluations

Algorithm Evaluations Obj.
FunctionComplex Method Const. Obj. Funct.

B 527* * -5,236,850
' — ' 1

a 538 U25 -5,280,169
b 527 U02 -5,261,088
c 521 U02 -1^269,^06

Tangent Search
52U 261 -5,273,23^r = .250

r = .375 53k 2U8 -5,276,780
r = .500 518 2U7 -5.253,

W

* At 300 permissible trials and 517 total trials.

Here it seems that Tangent Search achieves roughly comparable results

early in the calculation with considerably fewer objective function eval-

uations. Comparisons at another convenient point, available for various

runs, are provided in Table VIlb. »

TABLE Vllb

Criterion: Approximately 1200 Constraint Evaluations

Algorithm Evaluations Obj .Funct.

(xlO 3
)

Note
Complex Meth. Const. Obj. Funct.

B~ 1206 ? -5,280.3 (1)
c.

a 821 6U5 -5,280.3 (2)
b 118U 922 -5,278.9 (3)
c 1032 7^5 -5,271.8 (3)

Tan gent Search
1186 587 -5,27^.2 (U)r = .250

r = .375 1201 538 -5,280.2 (5)
r = .500 1201 565 -5,265.1+ (6)
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(1) Reported "by Box as 620 permissible moves out of 1196 trial moves.

(2) Calculation stopped after only 8ll trials, U06 of which were

permissible, with correct constrained minimum!

(3) These calculations terminated with the results shown because the

algorithm was unable to generate a feasible vertex to replace the

current worst vertex. In both cases the complex seemed to be con-

tracted almost to the limits of significance of floating-point

numbers on the CDC 160U. This may indicate that larger over-reflection

factor would be helpful; 1.3 was used, as recommended.

(k) This is the 225th base point, found after 2 conventional and 83 tangent

explore moves.

(5) This is the 192nd base point, found after 2 conventional and 90 tangent

explore moves.

(6) This is the lU5th base point, found after 7 conventional and 90 tangent

explore moves.

Table VIIc gives terminal results for the Tangent Search calculations

.

Included are the results of a run with r = .375 but using a coupling cycle

slightly different from that described in earlier parts of this paper.

This column is labelled "Special". All of these began with initial step

sizes at .1 for all variables. They were terminated normally.
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TABLE VIIc, Tangent Search

End Criteria: D. ^ 10 ~° for all i = 1, 2,..., n.

Final Normal Algorithm Special
Result r = r =

• 375.250 .375 .500

xl U.6180U k. 53810 U.5UU38 U.537 1^
x 2.25576 2.39875 2.38736 2.39997
X 59.9997 59.9916 59.9999 59.9991
J

X), 9.30000 9.30000 9-30000 9.30000
Xr 6.99999 7.00000 7.00000 7.00000
r -527^279 -5280269 -52798H -5280332

Moves

298 235 Ul8 511Base
Explore 3 6 27 Ik
Alt. 107 12 k 336 2kk

E valuations
Constr. 1539 1779 U88H 3^23
Obj. Funct. 778 805 2092 1616

The special run with r = .375 gives the best Tangent Search result for

this example. It is almost exact. However the coupling cycle it uses was

much less satisfactory on other problems than the one described here. The

intermediate step reduction size is best with either coupling cycle. Sat-

isfactory performance of Tangent Search seems marginal on this problem; it

is highly dependent on coupling modes and choice of r. The Complex Method

appears to be somewhat more dependable; however, it did not work perfectly

for all initial random complexes.

PROBLEM 8

This example was constructed by the author to test Tangent Search's

special expedient for dealing with convex constraint boundaries. The

objective surface is the bottom part of the interior of a hemisphere. A

convex constraint boundary lies between the initial point and the lowest

point of the surface. The constraint is chosen in such a way that the base

must always move along it in order to reach the correct solution.
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Specifically, it is desired to minimize

F(x,y) = y(x-5) 2 + (y-10)
2

subject to the constraint,

G (x,y) = Ikk - (x-5)
2

-(y+10) 2 Z 0.

The initial point is

x = 11. 5 i y = o, f = 11.9269 ...

and the solution is

x = 5, y = 2, F = 8.
s s s

Initial step sizes for Tangent Search calculations were .1 for both

variables. Results for the usual Tangent Search and Complex method runs

are given in Table VIII.

TABLE VIII

End Criterion1: I/ (x-x )

2
+ (y-y )

2
£ .0001

V s s

Algorithm Evaluations Trials /Moves

Complex Meth. Const. Obj.Funct. Total Permiss

.

a 138 61 131 60

b 1U2 66 137 60

Tangent Search
161 lU?

Base Expl. Alt.

r = .250 62 12 31
r = .375 1U9 151 52 16 31

r = .500 133 138 Ul 17 29

The Complex Method seems more efficient for this example. With Tangent

Search the reduction factor, r =.5, appears best.

PROBLEM 9

The Multiple-Gradient Summation Method failed on this example,

which corresponds to number seven of Klingman and Himmelblau (l). The

objective function is the same as that of Problem 5 above, i.e.

,

F (v,x,y,z) = -((z-l)
Sin X

+ (w-y) ).
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However, the constraints of this problem are

* w < 1

< x < 2

-1 < y < l

1.05 < z < 2

2 2 2 2
x + y + z + w < 2.

As before, these must be re-expressed in the following manner for

Tangent Search:

G = w £
1

G = 1 - w Z
2

G = 2-x2 - y
2

- z
2 - w2 £ 0.

9

Trial calculations with Tangent Search and the Complex Methods were initiated

at the feasible origin,

w = x = y = .001

z = 1.051

F = -.99703 ...

Initial step size for the former algorithm was .0625 for all variables.

Examination of the problem shows that the constrained minimum lies at the

intersection of the 3rd, 7th, and 9th constraint boundaries; specifically,

this solution is:

w
s

= .66988805...

x
s

=

y = -.66988805...
s

z
s

= M5
F
s

= -2.795.
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The Complex Method run beginning with random vertices chosen by

sequence "a" failed to develop a satisfactory solution. It stopped after

the U69th trial (262 permissible) with the following centroid:

w = 1.0 x 10-9

x = 2.1 x 10"9

y = .9^73648

z = 1.050000

F = -1.8975 • •

•

No significant changes in the variables had taken place during the last

eight permissible trials; this constitutes the usual end criterion for the

Complex Method.

Results of the "b" calculation and the usual three Tangent Search runs

are given in TAble IXa for a point closer to the true solution.

TABLE IXa

End Criterion: (w-w ) + (x-x )

2
+ (y-y )

2
+ (z - z_)'

s s s s
^ .0075

Algorithm Evaluations Trials /Moves

Complex Meth. Constr. Obj.Funct. Total Permiss.
a Failed - - -

b 773 1*28 751 1+20

Tangent Search

503 263
Base Exp. Alt.

r = .250 100 1 uu

r = .375 U85 217 57 1 ko

r = .500 601 255 U9 2 58

Ihe Complex Method, run "b", did not proceed to a more accurate solu-

tion after the point tabulated above. Best results achieved for the three

Tangent Search runs are given in Table IXb.
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TABLE IXb, Tangent Search

End Criteria: D. < 10~10 for all i = 1, 2, ..., n,
1

Final
suit

Step Reduction Factor
Re .250 .375 .500

w .67296U .670272 .669901
X 5.6E-11 i+.OE-ll 1.1E-11

-.666798 -.66950U -.669875
z 1.05000 1.05000 1.05000
F -2.79^96 -2.79500 -2.79500

Moves
169 170 103Base

Explore 1 2 6

Alternate 98 135 lUl

Evaluations
10U9 1^99 1507Constr.

Obj . Funct

.

512 6^5 617

These results for Problem 9 are clearly favorable to the Tangent Search

Method over both the Multiple-Gradient Summation and Complex Methods. An

additional observation is that a less accurate solution (Table IXa) is

achieved most easily with r = . 375 • However the most accurate final

answer is found (with fewer evaluations) by r = .500.

PROBLEM 10

This illustration is taken from the article of M. J. Box (3) where it

appears as "Problem B". As re-expressed here, the minimum of

F (x) = - (x
2

3
[ 9 - (x

x
- 3)

2
] / 271TT

is required, under the constraints,

G-l (x) = x
±
2

Gg (x) = Xr

G
3

(x) = x-j/Ti - x
2

>

G
h

(x) = x
3
Z

1G^ (x) = 6 - X-, — 0, where x„ = x n
+ T3 x

j 3 1;
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The initial point, as specified by Box, is

x = 1, x = .5, F = -.01336 .

1 2

Initial step sizes for Tangent Search calculations were .1 for both

variables. The correct constrained minimum is

x_ = 3, x =f37 F = -1.
Is 2s s

Each independent variable must have explicitly-designated upper and

lower bounds for the purposes of solution by the Complex Method. Since

the upper bound of x is not stated by Box (3), the present author chose

6.0 for the value.

Results of the usual two Complex Method and three Tangent Search calcu-

lations are given in Table X.

TABLE X

End Criterion: F< -.99995

Algorithm r Evaluations Trials /Moves
Complex Meth. Constr. Obj.Funct. Total Permiss.

a 133 6k 122 60

b 122 .59 111 55

Tangent Search Base Expl. Alt.
r = .250 121 91 55 k 26
r = .375 153 110 51 7 36

r = .500 159 107 38 10 36

The Complex Method seems to solve this problem more economically.

With Tangent Search the smallest step reduction factor seems the best

choice.

PROBLEM 11

This is the Post Office Parcel Problem, originally proposed by

Rosenbrock (7)> but here subject to the constraints imposed by Box(3)<

Expressed as a minimization problem, the objective function is

F(x) = -x-j^ x
2

x ,
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and the constraints to be observed are,

6r v £ 20

£ x
2

6. 11

^ x ^ 142~ 3 -

x
n

+ 2(x + x^») £ 72 .

1 2 °

The designated origin for all computations is

x, = 18, x =10, x =16, F = -2880 .

1 ' 2 3

Initial step size on Tangent Searches was unity for all variables.

The correct answer for Problem 11 is

x =20, x = 11, x =15, F = -3300.
Is 2s 3S s

The usual trial runs with Complex and Tangent Search algorithms were

made. A comparison of results is provided by Table XI. As stated prev-

iously
?
the centroid (or corresponding objective function value) is the

reference compared with the end criterion for Complex Method calculations

The base point is similarly the reference for Tangent Search.

TABLE XI

End Criterion: F *. -3299-9

Algorithm Evaluations Trials /Moves
Complex Meth. Constr. Obj .Funct. Total Permiss

.

a 289 209 271 150
b 368 258 359 190

Tangent Search
195 107

Base Expl. Alt.

r = .250 38 1 30
. r = .375 186 97 25 1 28
r = .500 268 131 27 3 U0

The evidence of Table XI seems favorable to Tangent Search, and with

that method the intermediate step reduction factor produces the best result,
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Conclusions

The following general summary of the results of trial computations

tabulated above is based to some degree upon qualitative judgments. Results

with different methods for a particular problem are called "similar" if the

total number of function evaluations required to reach a valid solution of

pre-defined accuracy are approximately the same. This total for each run

includes both objective and constraint function calls.

Otherwise, a method is termed "superior" to another for anv particular

problem if a valid solution is attained with substantially fewer evalu-

ations. Also, of course, a method is superior if it achieves a valid con-

strained minimum while the compared method fails to do so. Finally,

Tangent Search is never rated superior to another if a better result is

achieved with only one of the step reduction factors considered. The con-

verse concepts define when one algorithm is considered inferior to another.

Table XII provides a summary of these judgments applied to the tables of

the previous section.
TABLE XII

Number of Examples for Which Tangent Search Was Similar, Superior, or

Inferior to Other Methods

Qualitative
Comparison

Multiple Gradient
Summat i on

Sequential
Search

Complex
Method

Similar 1 1 1

Superior k 1 6

Inferior h

Total Cases 5 2 11
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It appears from this summary that the Tangent Search Method

can be considered a reasonably-efficient means of locating a constrained

minimum, provided the other methods are so classified. However, it must

be remarked that all but one of the examples considered are text-book or

artificial problems. Problem 7 is the only practical example and for it

the performance of the Complex Method was somewhat superior.

Another general conclusion would be that with Tangent Search a step

reduction factor of .25 or .375 seems better as a generally-applicable

choice than . 5 • On only one problem, the 8th, was the largest factor

superior in performance to both of the others. It also appears that

calculations with r = .25 converged toward the solution more rapidly than

the others at the beginning of problems in k or 5 dimensions. However,

more accurate final results were often obtained for runs with r = . 375 or

.500 (at the cost of extra evaluations). In particular, the best final

values for Problems 5 and 7 were achieved with r = . 375 5 and best final

values for Problems 6 and 9 were for r = .500 . These examples of higher

dimensionality were the most troublesome considered. The step reduction

factor r = .25 seemed to work well for problems of dimensionality 3 or less.

As a final conclusion, based upon intuition alone, the author wants to

endorse an often-stated opinion of most other investigators in this area;

viz . , the final word on the best method of obtaining constrained minima/

optima remains to be said. The method of Davidon (9)» the foundation of

the method of Fletcher and Powell (10), has emerged as a tentative "optimum

optimizer" for the unconstrained problem. However, no such leading can-

didate for solving the general problem of non-linear mathematical program-

ming has yet been heralded.
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Future Work

Several avenues for further investigations have been opened in the

previous discussion. The present author hopes to investigate some of these:

(1) The step reduction factor in Tangent Search probably should be sub-

ject to modification by the algorithm, itself. Probably it should

start at the smaller end of some range and become larger in the vicinity

of a solution.

(2) Preliminary results of computational experiments now in progress show

that partial derivatives should be calculated by the method of Wengert(5)

or, perhaps, that of Smith (6). A package of subroutines allowing users

to utilize the former method conveniently has been developed at the

Computer Facility, U. S. Naval Postgraduate School. All necessary jumps

and calling lists are generated by the Fortran-63 Compiler; therefore,

the user is not inconvenienced by the fact that the derivatives are ac-

tually developed in subroutines. Of course the constraint functions must

be capable of explicit statement if such a method is to be used.

(3) Explicit constraints should be treated separately to avoid useless

evaluation of partial derivatives which are always either zero or unity.

For the same reason the procedure which calculates derivatives of the

implicit constraints could utilize a simple switch so that only those

presently needed would be evaluated.

(h) More computational comparisons between Sequential Search and Tangent

Search will be necessary to establish whether or not one method is gen-

erally superior.

(5) The author feels that more investigation of the parameters oc. and k is

necessary in establishing their best general values in the Complex Method.
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M. J. Box chose °C = 1.3 and k = 2n on the basis of results after only 200

trials on only two examples. However, in several of the calculations re-

ported above a complex became totally contracted before the correct solution

was attained. This might be remedied by using a larger value for the over-

reflection factor or more vertices.
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