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PREFACE

The Office of Naval Research Project, Number NR-

064-22, for the study of the anticlastic bending in

elastic plates and bars, was awarded the United States

Naval Postgraduate School on 15 June 195U. The resig-

nation of the present writer from the staff of the

United States Naval Postgraduate School has made nec-

essary the termination of this project after only one

year* This report, then, presents the progress of the

work during the period from 15 June 1950 to 29 June .

1951* The work is incomplete but the results thus far

obtained are of sufficient interest to be presented in

the form of a report.

The authors wish to express their gratitude to the

Office of Naval Research for sponsoring this project.

The authors are also indebted to Captain H. T. Walsh *

Assistant Superintendent, and to Dean R. S. Glasgow

for making available the laboratory and shop facilities

of the United States Naval Postgraduate School.
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INTRODUCTION

Anticlastic bending is a phenomenon that occurs in

varying degrees during the transverse bending of plates

and bars. The origin of anticlaatic bending is in the

Poiason effect. For limited bending, i.e. if the cur-

vature assumed by the plate or bar during bending is

vanishingly small, anticlaatic bending is assumed to

occur. For other than vanishingly small curvatures in

pure bending, anticlaatic bending is assumed to occur

if the plate Or bar under consideration is "thick";

anticlastic bending is assumed to be restrained if the

plate under consideration is "thin". The assumption of

either free or restrained anticlastic bending ia based

on a rather nebuloua differentiation between a "thick"

and a "thin" plate.

Between the two limits, i.e. between entirely free

and completely restrained anticlastic bending, there is

a transitional range or region, in which the anticlas-

tic bending is only partially restrained. The flexural

rigidity of a plate in free anticlastic bending is well

known. The flexural rigidity of a plate in restrained

anticlaatic bending is also well known. The flexural

rigidity of a plate in partially restrained anticlas-

tic bending, however, is not known. The behavior of

the plate under partially reatrained anticlastic bend-

ing, the stress condition at boundaries and the effect
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of passing from free to restrained anticlastic bending

are not known o Not only has this transitional range

between free and restrained anticlastic bending not

been studied, but there has been no specification of

the limits for the transitional range*

It was the purpose of this investigation to carry

out s concurrently, a theoretical and an experimental

study of the transition range in anticlastic bending

for elastic plates and barso The effect of plastic de-

formation on the anticlastic bending was not to be con-

sidered in this study The first approach to a theore-

tical solution of the problem is contained in this

report o The theory presented is only approximate but

the indications are that it yields results well within

expectations o In fact, the classically assumed shape

of a "thin" plate in completely restrained anticlastic

bending is predicted by the theory presented •> The exper-

imental results are very limited due to the rather un-

expected and early termination of the project « The

instrumentation has been designed and constructed

o

Tentative observations have been made, checking the de-

sign and the construction e If data are available be-

fore this report is submitted, they will be attached as

an appendix

o
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•I, THBU«BTIgAL CONSIDERATIONS

ItJ> Stat agent of ' the Problem

It Is the purpose of this investigation to more

completely describe the mechanism of the deformation

of structural members in bendingo This first analysis

is concerned only with elastic plates and bars of rec-

tang ilar cross-section, loaded in pure bending parallel

. to one of the two principal axes of the croas-section

Throughout the analysis, the structural material is as-

sumed to be the idealized material with which the clas-

sical theory of elasticity is concerned

•

In the classical derivations of the equations of

equilibrium and compatibility and again in the appli-

cations of these equations, there is one basic assump-

. tion. This basic assumption is that the deformations

occuring in the deformed structural member are such

that neither the boundary conditions nor the state of

( 1

)

stress are affected by the deformations

o

x This as-

aumption has been employed to solve the problem of a

( 2

)

beam in pure bendingo The deformed shape of the

beam given by this solution is shown, exaggeratedly

in figure (£)•

(1) Timeshenko, So, Theory of Elasticity , 1st Ed

«

9

p» 202, McGraw-Hill Book Company, Inc., (1934)

(2) Timoshenko, So, op»cito, pp« 221-226





The longitudinal axis of the beam, which waa coin-

cident with the z-axis in the unstressed state, is now

bent to a radius of curvature, R, given as;

R * BI/M

Here* E is Young's modulus of elasticity, I is the se-

cond moment of the cross-sectional area, assumed rec-

tangular, with respect to the gravity axis parallel to

the axis of bending, and M is the applied bending

moment o

Although not considered in the solution of the

above mentioned problem, the transverse axis of the

beam which was coincident with the y-axis before bend-

ing is now bent to a radius of curvature H/n, , in

which u is Poisson's ratio o All lines which were

parallel to the longitudinal and transverse axes of the

beam, respectively, remain parallel to these axes

although in the deformed state , they are curved « The

aides of the beam section which were straight and

vertical remain straight but become inclined symmetri-

callyc The problem is symmetrical about any cross-

section; hence any cross-section and therefore all

cross-sections must remain planeo

Cursory experimental analyses of beams of nearly

square cross-section have indicated that this solu-

tion is correct . In fact, the anticlastic shape of





( 3 J
beams has been used to determine Foisson*a ratiCo '

Aa oppoaed to the agreement between theory and exper-

iment for beama of nearly square crosa~sectional area*

plates (beams having large width to thickness ratios)

subjected to pure bending in one dlmenaion do net is*

aume the shape predicted and observed in the above

problemo Actually* no experimental investigation Is

knewn(by the present writers) to have been made en

the true shape assumed by a plate in pure bending

o

Host workers in t he f ield assume that the cross-sec-

tions of these plates remain rectangular a It has

been the practices in applications of the thin plate

theory, to attribute the configuration assumed for

thin plates to a moment distribution applied parallel

te £he z-axls<>* '

This difference in behavior between the thick

beam and the thin plate subjected to pure bending

must stem from the assumption that the equations of

equilibrium and conpatibility are derived for ? and

the boundary conditions applied to^, the unstressed

geometry of the elastic beam or plate , since no other

assumption has been allowedo It is* then, the task

of thia project to formulate and to establish methods

•f analysis of beams and plates in pure bending which

(3) TimosfaenkOj, So , op<>eIto.9 Bo 225

(i,) TlmesnenkOs So* opoelto, p c 227





reduce the aforementioned difference to a minimum*

Ideally, a derivation of the exact equations of equil-

ibrium and compatibility and the exact expressions

of the boundary conditions is desired * Such a deri-

vation could possibly be made; the resulting equations,

however, could not, currently, be solved for the gen-

eral case* Several alternatives suggest themselves *

The alternative chosen is to partially correct the

solutions made from the existing theory by attempting

to compensate for particular inconsistencies which

become apparent in specific problems <»

Io2 A Method of Analysis * 5 *

Consider the beam solution which was discussed

in the proceeding section* It is proposed to analyze

that solution and to attempt to correct the individual

faults which may become apparent as a result of the

present analysis*

The results of the previous problem are given aer

Thus, any longitudinal fiber may be regarded indepen-

dently as a member in simple tension or simple compres-

sion. This combination of tension in some fibers and

compression in others, accompanied by the Poisson con-

traction and expansion (figure 2) accounts for the an-

ticlastic shape of the deformed beam* If the bending

of the beam is other than vanishingly small, these

tensions and compressions will have radial components,

perpendicular to the principal axis of curvature*

These radial components are not recognized to exist in

(5) A detailed derivation of this method of analysis
is given in appendix I*





the classical solutions o\ It is well to examine the

alteration in the deformation of the beam which follows

from the action of them<>

Befer to figure 4« The cross-sectional shape of

the beam shown is that which is produced by completely

wfree w sntielastic b ending; I e<> by denying the pre-

sence of any stress component which is not parallel to

the z=axia» The neutral surface of the plate or beam

must become cylindrical as bending occurs j hence it can

no longer coincide with the midsurface of the beam*.

Although the beam is bent to a curvature 1/R, it will

( 7

)

be assumed that the straight beam theory holds o
'

Thus the stress varies directly as the distance from

the neutral surface It is seen from figure 4 f then,

that there are more fibers in compression than in ten-

sion in the midportion of the beam and that there are

more fibers in tension than in compression In the side

portions of the beam

Now s account is taken for the radial components

of O^ o From the anti-symmetry of C^ with respect to

the neutral surface (figure 4) there follows the anti-

symmetry of the radial components of <3^ We will call

these radial components G^'* figure 5o More descrip-

tively $ there are, In the center of the beam, more

(6) Timoshenko, So, opccito pp c 221=227

(7) This assumption introduces a maximum error of
0o66$ o This error is calculated In Appendix 1

5„





fibers which exert radial components of greater mag-

nitudes away from the principal axis of curvature than

towards it* and there are, in the side portions of the

beam s more fibers which exert radial components of

greater magnitudes towards the principal axis of cur-

vature than away from ito Such an unbalance of those

components would seem to tend to reduce the anticlas-

tic curvature of the beam.. Specifically, the aim of

this analysis is to determine the distortion of the

free anticlastic shape produced by considering these

radial components

»

Imagine a portion of the beam of figure 5 between

two cross-sections separated by a unit arc at the neut-

ral surface to be another beam s figure 60 Ideally,

the radial component of O^.
s i e CyJ' , of figure 5,

may be thought of as a body force which varies in

proportion to the distance from the neutral surface <>

However^ it is important to understand that because

the body force at any point in the beam is a function

of the position of that point and because these pos-

itions are changed by the action of them s the body

forces vary under their own actions. Thus a method of

solution is proposed

.

lo Bend a rectangular sectioned beam to a principal

radius of curvature R, and specify that no radial

component of stress shall exist (elementary theory)-





2o Determine the cylindrical neutral surface by

stating that the longetudinal stresses vary line-

arly from it and that their integral over a section

la uroo

3 Consider a section of the b earn between two cross-

sections separated by a unit arc at the neutral

surface to be an Isolated elastic body

4© Allow the actions of the radial components in the

slab to exist (as body forces) , but deny the ac-

l 8 )

tions of the longitudinal stresses

5o The principal radius of curvature is to be fixed,

l e the neutral surface of the beam is to be

cylindrical In shape and of fixed radius, R»

60 Due to the specifications, the problem assumes a

radial symmetry with respect to the principal

axis of curvature o We may now mathematically ex-

press the radial components of the stress in the

fibers as a linear function of the displacement of

the fibers relative to the neutral surface « Thus

these components vary only as a result of the rel-

ative motion of their fibers with respect to the

neutral surface and not as a result of a change in

the apparent stiffness of the original beam since

R Is maintained constanto

7o Include these body forces In the equations of

(8j See Appendix 1°





equilibrium and take ail body forces to be zero<>

The beam which has been described , figure 6, would

be a difficult one to study, mathematicallyo The prob-

lem can be greatly simplified with the introduction

of a small errorf (a} by assuming that CJ^'acts through

the center of anticlastic curvature and (b) by summing

the body forces of figure 6 in that direction a nd thus

(9 )

by applying them as an edge loading, figure 7e ' Of

course, this edge loading must vary under its own ap-

plication o This variation in the edge loading can be

handled with relative ease by introducing a change in

variables o Thus the problem illustrated in figure 7

is altered to the problem illustrated in figure 8» The

deflection curve found for the beam of figure 8 will be

realtered to correct for this change . The problem of

figure 8 is precisely that of a bgam on an elastic

foundation subject to a prescribed loading* That is

to say that the elastic foundation acts to compensate

for the necessary variation in the edge loadingo

The solution for this problem is indicated in

Appendix 1„ The fins result is given here ass

(9) Timoshenko, So, opocit., p, 87. Along with this
simplification, it will be assumed that only the
deflection of the mid-aurface of the beam in fig-
ure 7 is sought and that the thickness of the beam
in the radial direction does not vary

8





The constants are found to have the valuess

o*ay+*R*0sQ (23)

(24)

^^^u^/t^QirdptiC^^L (25)

Io ^ Reaulta of thia Analyaia

Equation (22) of the previoua aection la suffici-

ently complex in form to require a viaual analyaia of

lta graphs for a number of apecific caseso The para-

metera which may vary to apecify a particular problem

ares /6 s Poiaaon'a ratio; R, radiua of curvature of

the neutral aurface; £, half height of beam; b, half width

of beam* Foiason'a ratio variea only alightly, between

1/4 and 1/3, for moat structural materialao* Hence, it

ia given the value of 1/4 for all computations <, Of

the three remaining parameters, a, b and R, one may be

fixed since it is reasonable to assume that some form

of geometric similitude must exist in the problemo

Therefore, b is set equal to lu The following two

families of cases are solvedo In the first case,





a_ is varied

2

a = 2, 1, 1/2, 1/10, 1/100
R 20
b » 10

/6 - 1/4

and In the second case* R Is varied:

R - 20 s 50, 100
« « 1
b * 10

^- 1/4

Figures 9 and 10 are graphs of the former and latter

families j respectively o In each case the transverse

curve of the mid-surface for completely free anticlas-

tic bending is included in dashed lines o Prom a study

of these graphs , the following conclusions may be

drawn

o

lo There exist tworanges of restrained anticiastic

bending

o

a° One range in which the radius of anticiastic

curvature is increased and becomes variable

over the width of the plate « Bending in this

range will be termed partially restrained an -

ticiastic bendlngo

bo The second range is one in which there no long-

er exists any semblence of the original anti-

clastic curvature o In this range , the trans-

verse curve of the midsurface appears to assume

a sinusoidal form of exponentially increasing

10





amplitude aa the edge of the plate ia approach-

ed o Bending in thia range ahall be termed re-

atrained anticlaatic bending*.

2o In the firat family , the boundary between partially

reatrained and reatrained anticlaatic bending Ilea

in the interval that separates the cases _a = 1 and

a = 1/2, for R = 20

3o In the aecond family, the boundary between nearly

free and partially reatrained anticlaatic bending

liea near the caae R - 10U 9 a — L
4o The degree of reatraint ia very poasibly an in-

verse function of £ and Ro

Since the expression for the deflection of the

midaurface ia sinusoidal the question arises whether or

not the edges of the midsurface will in any caae of re-

atrained anticlaatic bending have negative deflection,

i ee will the edge of the midaurface lie on the same

side of the neutral surface aa the principal axia of

curvature o Equation (22) haa been aoived in Appendix

II for the deflection of the edgea for the general case

It ia proven there that the edgea of the midaurface will

never, for any degree of pure bending of the beam, have

a negative deflection . Physically, this would be ex-

pected; this proof was to check the mathematical sol-

ution©

11





The foregoing conclusions suggest that the bound-

ary between free and partially restrained anticlastic

bending may be investigated by merely solving for the

deflection of the midsurface at its center line<> For

convenience of analysis , the degree of partially re-

strained anticlastic bending is defined as: luu times

the ratio of the difference between the d ef lections of

the midsurface at their centers of the completely free

and the partially restrained curves to the deflection

of the completely free curve o From figure 10, we have

r 100

The parameter IP was calculated for the following

cases (it- 1/4 s b - 10);

a R Kf a R ^
1 50 28
1 100 7
1 500 1

1 1000
l/lo. 50 -

1/10 100 =

l/lo 500 28

1/10 1000 7

1/10 5000 1

1/10 10000
1/100 5000 28
1/100 louoo 7
1/100 50000 1

1/100 100000

From this table of values and from conclusion (4)

above, it would seem that ^f is an inverse function' of

the product aRo It will be remembered that b has been

held constant in all cases e On the basis of geometri-

cal similarity, then^ one might conclude that f is a

p
function of the dimensionless parameter b /aRo Refer-

ence to equation (22) will indicate that the quantity

12





S to may be written In the form:

Thua y might as well he written as a function of b.

In the light of these indications and also because

of the values found in the computations for other terms,

equation (22] can be more intelligently analyzedo

In all the computations, the term

Is small, and its variation smaller, compared to the

deflection o Hence, it may be dropped ° Furthermore,

the coefficient, E, may be simplified ass

It can be shown in all the computations, that the se-

cond terms of the expressions for both F and G may be

neglected for ail cases' of partially restrained bend-

ing and for those cases of restrained bending which lie

near the range of partially restrained beindingo This

is not true for some cases in w hich the beam is bent well

within the restrained range » Thus equation (22) may be

approximated bys

and, with the exception of some cases which lie well

within the restrained ranges

13





From the foregoing equation it becomes clear that

the form of Hf» depends entirely upon /§b and, conae-

2
quently, upon b /aHo Thus on the basis of the table

for ^, £ and R given above the indication that ^ is

a function of (5 b alone, the g raph in figure 11 is

plottedo

Io4 Conclusions and Discussion of Results

According to the analysis made in the preceding

sections , the manner In which prismatic bars are de-

formed in pure bending may be separated into three

cla ssif ications , depending upon the value, of the par-

ameter b /aR where a is less that R/luu, see figure 11 , *

lo Completely free anticlastic bending,, b /aR ^l/5o

In this range the deformed shape of the beam is

within 1% of the shape found by the application of

f 11

)

the elementary theory ,
x l

2o Partially restrained anticlastic bending, 1/5 ^.

b
2/aR <, 7o5

(lu) See Appendix I

(11) Timoshenko, So, op* jit. pp 221=227





In thia range, the deformed ahape of the beam

reaemblea the free anticlaatic bending ahape <> How-

ever, the anticlaatic radius of curvature haa been

increased and becomes variable over the width of the

beamo The value of R, here denoted by R' , may be

approximated by the relations

r'~ * '

a,* ~s? '-*/><*
(18 ,where Y ia taken from the graph in figure llo^ x<w

^ 2
3o Restrained anticlastic bending, 7o5<b /aRo

In this range, the deformed shape of the beam no

longer resembles the free anticlastic shape- The

midsurface becomes corrugated; the amplitudes of the

corrugations grow almost exponentially as the edge

of the beam is approached, see figure 9. It is seen

that only the last negative and positive aweepa of

these corrugations are apparent and that the center

of the beam is essentially flat (to within Ud

mieroinches)

»

This analysis has been an attempt to closely ap-

proximate the trutho The reaaonability of many of the

assumptions, which have been made here, is difficult to

judge Hence, the experimental phase of this investi-

gation is left with the task of appraising the work.

Should experimental data not agree with the present sol-

ution, there are opportunities in the theoretical ap-

proach for further corrections or modlficationa

(12) See Appendix II
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II S3CFEHIKBNTAL APPROACH

II ol Required Analysis

The results of the theoretical analysis which were

presented in the previous sections must he compared with

experimental data to establish their validity** It is

proposed 9 hereto explore hy experimental methods , the

limits established by theory for the transitional range

in anticlastlc bendlngo With this in mind, test spec-

imen were chosen to closely follow those suggested in

section Io4.

Instruments have been designed and constructed to

supply' the necessary data It Is the object of the fol-

lowing paragraphs to briefly describe these instruments e

IIo2
(

Beam Specimen

'Hie Brown and Sharpe Company of rrovidenee* Rolo

produce a flat ground stock of first quality tool steel

in sizes which cover the desired range of size very

nicelyo The previous results suggest that the range of

specimen size 4 <^b/a<^loo be chosen* Twelve thick- -

nesses of stock*, all 1 1/2 M wide were obtained that

covered this range

o

+The methods for exploring the contours of the bent

specimen are such that the test surface must be smooth

and flato Accordingly , a lapping machine was designed

and constructed o This lapping machine is of sufficient

16





size to prepare a teat area of 1 1/2 W (the width of the

specimen) by 2"o The contours to be explored must be

sufficient to determine the principal radiua of curva-

ture and the transverse curvature

o

II.3 Method of Loading Specimen

It is desired to load the specimen in pure bending.

A test jig has been constructed and checked o Tuckerman

strain gages were used on a trial specimen in the test

jig and, within the limitations of the strain gages,

the test specimen was found to be in pure bendingo The

test jig is somewhat along standard lines <> The only

modification incorporated is a worm-gear combination

designed to maintain the lever arms horizontal regard-

less of the curvature assumed by the test specimen

o

II °4 Contour Measurement by_ a Light Interference Method

The first method to be employed in measuring the

contours of the bent beam is a standard, reflection, in-

terference method o The interference fringes will b e re-

corded photographically o Since this is a well known

method, no more will be said concerning it.

There is, however, one serious difficulty encoun-

tered in the application of this method <> The contours

of the beam specimen must be determined before loading

is applied and again at successive increments of loading*

It is planned to rest the optical fiat on the beam. As

the beam is bent, extreme care must be taken to maintain

17 o





the proper orientation of the optical flat ° As this

method is applied, it may become necessary to support

the optical flat in a manner independent of the beam°

II o5 Contour Measurement by a Pneumatic Micrometer

Within relatively recent years, a pneumetic micro-

meter has been developed 1 and applied as the ampli-

fication element in strain gages, inspection gages,

flattness gages, etco The magnification and sensitiv-

ity are both very high and the calibration of the system

is quite stable o A contour measuring device has been

designed employing this principle « fliia device has not

as yet, been checked out but every confidence is plac-

ed in its ability to meet the needs of this investigation

An interferometer calibration device has also been

constructed for the calibration of the pneumatic device

.

Several novel modifications have been incorporated in

this calibration device j aside from these modifications

,

however, it is along standard lines

.

(13; WI1BHACK, WoAo, Versatile Pneumatic Instrument
Based on Critical IF

1 low, RevoScIdnatr., 21,
£o^$u TT93Q)

~
de IBIHIS, Ho, 3ur la Me sure des Constantes Elas -

tl^ues par Amplification Pneumatique d eaHBeforma »

tlona , 5th Interd^CongoApploMech. ,Proc • ( 1939

)

BtJtiNUlS,WATTSBUT 9 (JUTIN,deLSIHI3,BBNSIMON and
MICOJUAU, La Metrologle Pneumatique , Mecanlque,
69=83 (Mar-Apr 19;

de JjEISISj, Ho S Sur une flouvelle Methode d 'Ampli -

fication Pneumetlque et ses Amplifi ca t ion en Bx-
tensometrique , *7"feh InlfernoCongoAppl o'K'echo , Proc »

I5T=I57 (W48)
RAUMjMo, Pas Pneumatlsche Pr&fyerfahren , Zeits°f
Techn.Physo, noo 6, 46-53 (1943J
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AP?IttDlX I

BETA IUSD DERIVATION JJ£ A METHOD OF THEORETICAL ANALYSIS

We will consider a long beanij illustrated in fig-

urea 1 and la« whoae z-axia has been bent in completely

free antlclastic bending to a principal radius of cur-

vature of El We wish to determine the normal stresses

parallel to the z axis aa functions of r and ©° All

letters and symbols that are not shown in the figures

are defined as they are Introduced e

We assume that plane cross-sections remain plane

after bendingo Therefore?

<% = J (*-«•)

where 0"i Is the normal stress and J is a constant of

proportionality o We have s heres

Then 2

Since the beam Is in pure bending ^ we may write one of

the boundary conditions as:

o^V4 -o

19





or

.« % **-

J (\-±-/J***)Aj4«t&

where A la the cross-sectional areao From the above,

then* we may writes

(3J

The second moment of the cross-sectional area, with

respect to the neutral axis, is defined ass

4r

I
<*-$**

and the bending moment may be written ass

Prom these two equations, and employing equation (1),

we haves

i- a
Since* from the elementary beam theory?

* 'are.
or /1 =

£7,

We then have

J
4)

20





The normal stress, CJ» * may now be written as;

We will substitute

The normal stress is now written ass

ai :
-# (a'-/*- "f*^) (5)

Refer to figure 3a» The radial component of the

normal stress , indicated as ^ , is written, for the

differential element shwon , ass

The resolution of the stresses is illustrated in

figure 60 Consider the slab shown as an isolated elas-

tic bod/o The radial components of 01 , ioeoCJ^ , are

seen to act as ??body forces' 8

» It will be noted that

along any given principal radial ordinate, these stresses

are not necessarily balanced Consequently, these "body

forces" are thought to be "responsible", at least in

part, for the partial and complete restraint Df anticlas-

tic bending of bars and plates If this latter is true,

it seems reasonable that the deflection shape of the

21.





slsb shown, under th* eotior of these tody forces » will

be that of tilt final transversa shape assumed by the

actual beano it mn*t be remembered , however, that these

body forces are dependent upon the deflection shape and,

therefore, miat be introduced ea functions of that shape*

Ifce solution of the b earn problem described above is

a difficult one* Consequently, the lean is simplified

to the one shown in figure 8 by (a) assuming the resui-

taate act through the anticlastic center of curvature,

(b) integrating the body forces across the bean in the

radial direction Unfeioleatic* end by representing these

body foroes as an edge loading, (e> etreightening the

beam, thus melting the »id~plane (8 » constant ) be along

tme x-axis s end K4l ecmpentetiog for the variation in

edge loading » 89 a faction vt the deflection shape, oy

piecing the) beam on to elastic foundation <>

Accordingly;, the edge leading , i(S) ; is written*

Transfer ef tme • coordinate system ef figure 8 yields*

& 2 tt ^ l©>

2a.





We may then write:

9)

where

e^c^vKi* (10)

1h« differential equation for a beam loaded on an

elastic foundation ia written ass

Where (II
#
)' ia the "plate" rigidity per unit width, or

(12;Set V •a
' -

«** <-

ttie plate rigidity has "been used rather than the beam

rigidity {%!) because the slab, as a result of actually

being part of the original beam* is completely restrain-

ed in its transverse direction

It is necessary to determine the value of k in equ-

ation (11) o As stated above, the purpose of the elastic

foundation is to account for the variation in CT^ and

therefore Xi(x» ) as the beam la deflected by L(x»)° A

variation in V of the coordinate system of figure 8 is

analogous to a variation of x in the coordinate system

of figure 6 (allowing simplification (c) stated above Jo

23,





Sine© Gmwas given to vary directly with x s then L(x')

varies directly with y 9
o Hence the constant k may "be

written?

*.*&<*') (13)

It has been allowed that

h*TQ<, x is the x coordinate of the mid-plane in figure
s

la o Then

s

«,'«£(<** -a) U4)

and

It follows 9 then * thats

Equation (11) nay then be written

s

Equation (16) may now be written

Vfc

ft'* y
|*V B c ^d" ***%*') (

M

'

5b« particular integral of aquation (18; Is

(19

24*





The complementary solution las

We 3ee that y' must be symmetrical with respect to the
c

y'-axis and so C~ and G
4
must be equal to zero. At the

ends of the beam, the shear force and bending moment are

both equal to zero This yields?

where .

(

6/ --fr
*&»

Thus C n and C_ are determined and so y 1 is defined. It12
will be recalled s however, that the beam was not straight

originaily Consequently s its original deflection must

be subtracted from y 9 since it was, in effect, added when

the beam was considered to have been straightened. Then:

%•-$- do*)': &#--&»)
where y'l^. i 3 the value of y' from equation (14 j. Prom

equations (d), (14), (17), (ly) and (20), we have:

where

:

OS KM*

a^UtfOjS)
(23;
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APPENDIX II

lo Consider the value of the constant E in equation (24)

Since we have specified that a is less than R/lOu, the

first and second terms in the first factor of the denomi-

nator of equation (24) may be compared

o

W TL. v.

SrA 000002

Hence the first factor will be dropped and we have:

£* j^^f^K
[30^)J^[c^p6/>^f^ ^^Mi/^J^^

2o Consider the first terms in the constants F and G

as compared to the first terms in these constants « It

2
is specified that ja be less than R/luu and that b /aR

be less than 9o Then F may be written as:

4 Jk^-fe^— ^-$>
where b/r^U 3, from information given above „ The

terms shown in the brackets are of the same order of

magnitude; this also applied to the constant G.

Hence compare the maximum value of the coefficient of

the second with the minimum value of the coefficient of

the firsts

27





Hence , In th

+
fiu

3 It la to be

in ail caaea

E in equation

of b aince thepi

waya equal to oz

nometric functi

kets in the equa

tive for the ai

of JCb/K will

lie within the rs

term in the

cauae all factoi

at x = b ia poj

conaidered o

(22) la poaitive

Dr all value

a

motions ia al-

of the tri go-

at aet of brac-

is alwaya poai-

tric functions

of >ub/R which

2) applied o The

alwaya poaitive bo-

;oe the value of y*

ithin the range





4, To determine the relationship?

R'-4
!

S- I- tym

We have defined the quantity ^ as

/-

7™ T"

but

#*^-^-i)
from equations (loj and (14 J where £ <g/100 o Expand-

ing?

r~v* t <? 'J

£
£*

Assume the R* exists, then

s^

Hence:

i£-
r

(j-rf? "_f^.

or

Jt

R'*(^)T~tyZ
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Figure 3.

Fiber Showing Resolution of Forces
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Figure 6.

Derived Beam

(From Figure 5)
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'Flat" and ''..ui.obth" surfaces
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Figure 15.

Undercut Specimen





Figure 16

Proposed Bending Jig
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Figure 17.

Bending Jig for Electric Strain Gages
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