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Introduction

The characteristics of a linear component are known t© be com-

pletely determined by its steady state frequency response which relates

the output of the component to its input „ Hence ? the analysis and

synthesis of a complex system are simplified when the frequency response

of each unit making up the system is known For such a system,, the

overall amplitude ratio of output to input for any frequency is obtained

by multiplication of the amplitude ratios for each individual component

As a result of this property, a Isrge body of design procedure for

control systems has been based on linear frequency response methods

„

While the experimental measurement of frequency response for

electronic amplifiers, electric motors, and other electrical equipment

is generally not difficult, the application of a sinusoidal input with

constant amplitude and frequency to hydraulic or pneumatic components

is often impractical,, When the nature of the physical component

prohibits measurement of the frequency response, a transient response

test (to a suitable step or impulse input function) may be permissible

If a method were available by which the frequency response could be

ierived from this transient response, frequency response design tech-

niques could be applied for the system incorporating this component.

The mathematical foundation for such a method would be the Fourier

transform or the Laplace transform, with the complex number restricted

o values of J^r „ When the time response is not in analytical form*
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numerical methods of applying the Fourier or Laplace transforms must

be used. The rest of this paper will describe such a method. The

method requires that the input function be known analytically and that

both the input and the component output functions tend to a constant

rate of change after a finite time.

Deviation of Method

Figure 1 shows an output quantity vs. time response curve in which

the time axis has been divided into equal intervals and straight lines

drawn between the corresponsing points on the output curve. This

approximation of the curve by straight line segments can be as exact

as desired by reducing the size of the intervals. Further, the approxi-

mation can be decomposed into a series of straight line curves. This

is shown in Figure 2. In this figure, the slopes m , nu, etc. are of

such a value that the approximate analytic expression for the output

becomes the series.

xtf) « mot r m,Ft - cr± r m2 [t - 2&-J -t • * • -+

rrtn -,{t-(ri-£)ir] +mn[± ~(n-ftcr] + -
. - (i)

The Laplace transform for each component of the series (1) may

be taken and the sum representing the transform of the approximate

output transient may be written.
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* 2
(2)

In a typical application of (2), it would be more convenient to

express the slopes m in terms of the output quantity and time. The

first two slopes in terms of x and t are:

rr\o ~ *l

The value for m2 is the slope of the third segment less the

slope of the second segment.

rn 2 s x? » x e. _ X* - X*

_ Xj-<3X2 -/-X/ (4)

Then the general term becomes

(5)
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Equation (2) in terms of the ordinate of the output curve for

simplicity is written as a summation.

x(s) **4v // ^2_^Xk ~^k~'^k'z)c \
(6)

The expression for the transfer function can be obtained by dividing

(6) by Laplace transform of the input y.

00

Y(s) ' Gc>>*^r2^-^c
] m.

K^Z

The frequency response is found by substituting J CO for s in (7).

G(i) = "j^
I*'

+ 2(* -**-. +
fcJfe^f (8)

Euler's relation

C^ ^^st - jVnfc

applied to equation (8) gives
pO

$Cu) =
"ar^ ^X-^-<^)^-')™
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Conveniently generated input time functions are the impulse, step

displacement and step velocity (ramp) with corresponding Laplace trans-

form 1, l/s, l/s

Substituting these in (9) gives the following useful equations.

Impulse:

CO

-j£ (fa -ay<-i -t-^k-2)
*'* (k-i)^-^

KW

Step displacement:

(11)

/C*2

Step velocity:

^[ X/ r 2(>X ^" e2X>r-'^^-2)^ 6 fr' , )<3-^
(

/

A-.2.

(12)
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Dead time , the time difference between the initiation of an

input to the system and the beginning of the output response , is handled

automatically by the above method.

Referring to equation 8, the first term will be zero if the time

increment is less than the dead time and then all terms will contain

the exponential factors representing linear added phase shift correspond-

ing to a time delay.

Example

As an illustration of this method one example is used based on

analytically determined system -response curves for which the actual

frequency response is determined for comparison A second-order

system transfer function

^ ^-^tt^Ltt^j (13)

is shown in Figure 4 for the critically damped case with Co set

equal to unity. This curve can be obtained directly by replacing

s by J to in equation 13.

Setting £ - j

6(s) - ;

to^^-f /

J 7,
—~775 (U)(i r^ z

)
a

($-<#*)*

\

\
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and the time response of the system with

to an impulse is given by

7L * t c - t
<W)

Equation 15 is plotted in Figure 3o Choosing £T as one half second, the

required value's of x substituted into equation 10 gives

. &0 3 SCO* (/*>"*>J V- OtOlOCO&iZ*^) +" tXOIdto^co)

-+zouc~ns(hs~c<)) _ j jdz^s^^oj - octree**

-h 0,0,2. &m(f,A5Tco )1

The equation was solved for frequencies 0.1, o 3, o7, 1 and 2 radians

per second and the values obtained are indicated on Figure 4

=>
f c
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Figure 1. Transient response and straight line approximation

Time

Figure 2. Components of the transient
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