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ABSTRACT

The purpose of using feedback in a control system

is not merely to improve its static and dynamic performance

and eliminate or minimize the effect of noise, but also to

eliminate or minimize the effect of unpredictable changes

within the plant itself. Such changes are expressed in terms

of variations in the plant's parameters, i.e., gain constant,

plant poles, plant zeros.

This paper starts with a definition of "root sensi-

tivity", relating the changes in plant's parameters to corres-

ponding changes in the system's roots. Interesting properties

of root-sensitivity are shown, then applied to the derivation

of a laborless graphical method for obtaining the sensitivity

of a given root. Finally a compensation design method is

proposed, which not only secures a desired location for the

system's dominant roots on the s-plane, but also simultaneously

satisfied conditions concerning the sensitivity of these dom-

inant roots to the varying plant parameter (ters). Examples

are solved using the proposed method, and the results verified

with the analog computer.
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CHAPTER ONE

Root Sensitivity to Parameter Changes

I - 1: Introduction

It is well established that the reasons for wrong feedback in con-

trol systems can be classified as follows;

1 - To improve static and dynamic performance of the system ., Feed-

back can stabilize an unstable system or increase the stability

of a stable system. Feedback can shape the system response in

to some desired pattern. Feedback can reduce the steady-state

error of a class of control systems. This aspect of feedback

has been dealt with abundantly in the past 8 and well known re-

sults may be found in the literature as well as textbooks.

2 - To minimize the effects of man's ignorance of the plant's en-

vironment . What man cannot predetermine in the plant's en-

vironment is commonly referred to as disturbance or noise.

Feedback in fact reduces the effect of this ignorance on the

system output to an acceptable value. This side of the pro-

blem also has been carefully investigated and the related

results well established.

3 - To minimize the effects of man's ignorance of the plant it-

self . Man's ignorance of the plant, which he wishes to con-

trol, can be of various categories. Some plants cannot be

readily analyzed and a mathematical model cannot be readily

obtained. Such is the case for problems in biology, medicine

or other natural sciences. Other plants are easier to anal«=

yze, but a rigid mathematical model is difficult to obtain

due to the changing nature of the plant, resulting in vari-

tions in the plant's parameters. Such is the case with pro-

blems in economy, industry, or management. Such is also the

case with a large number of engineering problems, of which

a few examples will be given in the next section. Plant para-
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parameter variations result either from the .basic nature of the

plant itself (chemical processes) , or from environmental changes

(climatic and other ambient conditions)

.

Variations of system" s response as related to plant parameter changes

are expressed by the "sensitivity" of the system- The sensitivity-re-

duction aspect of feedback is the purpose of this report « This chapter

introduces the notion of root-sensitivity and its properties . Chapter

Two will make use of them in a design procedure,,

At this point, it seems necessary to classify plant parameter changes

into two kinds? incremental or small parameter changes , and large para-

meter changes . The technique for treating each class of problem is diff-

erent and no extension from one class to the other seems to be possible

nor recommendable- Examples for small parameter changes can be found

in many situations: chemical processes where the speed of various chem-

ical reactions changes with pressure , with ambient temperature., humidity;

electronic circuitry where component values change with temperature or

aging; rotating generators where small changes in the field resistance

cause proportional changes in the voltage gain as well as in the time

constant; pneumatic or hydraulic systems in which fluid properties change

with temperature and aging; mechanical systems in which friction, spring

characteristics, etc., are far from being constant.

Larger parameter changes, on the other hand, are common in a number

of other problems, ranging from automatic steel rolling mills where the

thickness of the slab varies within wide limits s paper mills where roll

diameter starts from zero and ends up at its maximum value, to the more

recent problems of missle and space technology s where the vehicles are

called upon to function at extreme environmental conditions, with wild

changes in mass due to the burning out of fuelc

This report will be concerned with analysis and synthesis methods

for problems with small parameter changes

.

1-2; System sensitivity and root sensitivity?

Several definitions of sensitivity have been used in the past- The
_. 1
first one, as far as is known to the author s is by Bode

s
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sensitivity of the overall transfer function T to the gain constant K ass

d K
T £ K . Sin K
K d_T din T

T

Horowitz took the inverse of Bode's definitions

d T
T A T
K d K

K
T

Defined one way or the other, S is generally known under the name of "class-
ic

ical sensitivity" or more suggestively "system sensitivity" since it relates'

the change in system transfer function to the change in parameter K.

Another kind of sensitivity is based on the location of system's dominant

roots. Such a sensitivity relates the change in q. (i— dominant root of the

closed-loop system) to the change in x; where x may be the gain constant, or an

open-loop zero, or an open-loop pole of the plant*, The sensitivity thus de-

fined is known as "root-sensitivity".

Formal definitions of root-sensitivity vary from author to author. H-or-

10 2
owitz and Ur defined the sensitivity of closed-loop root q. with respect to

parameter x(where x may be gain constant, or pole, or zero) ass

S = --3: C 1 )x ox x '

X
3

Huang , on the other hand, useds

i & ii
S
x = ~^~ < 2 >

x

4
More recently, McRuer and Stapleford prefer different definitions for sensi-

tivity to gain (K), and sensitivity to poles or zeros (x)i

s
i * ii. (3)

K

s
1 ^
x

a H
ox
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It will be shown in Section 1-5 that definitions (3) and (4) are most suit-

able for the work presented here, and therefore will be adopted

.

1-3; Survey of previous works and scope of this chapter ;

a) As far as large parameter variations are concerned, the most signi-
10

ficant work known to the author is Horowitz's book in which an exten-

sive treatment of passive-adaptation is given, concerning systems with

one or more parameters varying simultaneously and independently within

wide ranges. Horowitz's methods are mainly based on frequency response,

and since
P
o

T o
+

P-
o f

T. L + 1
f o

(L =loop transfer function. Subscript o means original value, f means

final value) , the problem is to select L ( jco) so as to achieve tolerances
T P

on _o , despite the variations in _o . This is called "loop shaping" of

L .

T
f

P
f

o

Variations in P are represented on the polar plane as an area (section

3.5, reference 10). As a consequence, the method becomes impractical for

more than 2 changing parameters. Horowitz's work extends well beyond the

limits of the sensitivity problem alone, but in the treatment of the latter

his certainly is one of the most valuable contributions up to the present

time.

Along the same passive-adaptive line is the recent work of Liu, Han and

Thaler . For a second order system with tachometer feedback, the three

parameters are gain K, open-loop pole p, and tachometer gain K . A graph-

ical method is proposed to determine the optimal values for K and K , when

p changes, in order to maintain the damping-ratio £ ^within a certain limit.

When K changes, p and K are similarly determined graphically. The pro-

cedure is also extended to third order systems. This is the economical

way to solve the problem, using to its best the limited amount of passive-

adaptation inherent to any feedback systems.

On the other hand, in many cases, passive-adaptation may not be suffi-

cient and one must have recourse to active adaptation, which has been the

subject of a profuse literature. Mention must be made of the APRACS tech-
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nique, for "Amplitude and Phase Regulated Adaptive control sys-

terns", and the recent work of Horton and Eisner , who propose

a method whereby the system's dominant poles are maintained fixed

despite changes in the plant P(s) . In order to do so, gain and

phase of the controller C (s) must change in such a way as to com-

pensate for similar changes in P. A test signal is injected into the

system and the output measured. Amplitude and phase of such output

are compared with the input test signal. Differences are used as

driving force to adjust gain and phase of C(s) in order to null the

affects of changes in P.

b) Turning next to small parameter changes, a great deal of work

has been done in the recent past concerning the analysis of the pro-

blem but so far no significant effort has been spent on synthesis.
2

Ur derived interesting root-locus properties and proposed a graphical

method for evaluation of S, . Huang showed- by a number of examples

the usefulness of root-sensitivity in a wide variety of analysis pro-

4
blems. McHuer and Stapleford derived interesting properties of root

sensitivity and worked out various graphical and analytical methods

for computing S , not all of which are practical.

Considering what has been done in the past, the remainder of this

chapter will be devoted to a study of root-sensitivity properties, and

in the next chapter, use will be made of these results to formulate a

design method.

In the literature mentioned above as well as in what follows, em-

phasis is laid on the location of dominant system roots. One may argue

on the validity of such a philosophy when applied to synthesis, since

nothing guarantees that dominant roots remain dominant after the system

has been compensated. In practice, however, it usually happens that if

any extra root is introduced by the compensation, either it is far away

enough, to be negligible, or it will be close enough to a system zero,

so that its effect on the transient is thereby cancelled. In case of

doubt, however, it is advisable to perform an analytical or analog-

computer check after a solution has been obtained, in order to make sure

it does satisfy the specifications.
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1-4; Root-sensitivity; definition

In this section, it will be shown how a definition of root-sensitivity

is arrived at. In the next three sections, some important properties of r&ot-

sensitivity are derived. Let P be the transfer function of the plant to be

controlled, C that of the cascade controller, and F that of the feedback con-

troller(fed back around C and P) . We define G =PC as forward transfer function,

and L =GF =PCF as loop transfer function of the system. Then the system char-

acteristic equation is

1 + L =0

and if q. is a systems root, then

1 + L(s) =s 's =-q.

If K is the gain constant of L(s), and z

then one can write:

p its open- loop zeros and pol«

L = L (s,k,z ,p.)

and take the total differential of L:

n

<" - li
ds +

it * •

dz
j=l

dz. +
J

m

j=l

dL .

On a root locus, L =-1 =constant, ie; the total differential dL is zero for

s - -q.. Let dL = and s =q. in the above equation, this gives;

Rearranging:

=- dL
ds

, oL
dq

i
+
.Bi

S=-q, s =-q

dq, -
1

C
50^..

J

S =-q.

(5)
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But q. itself is a function of K, z. and p.

q. = q. (K, z. , p.)

.

Taking the total differential of q.:

dq
i dK y\

K +
^_ oz

dz. + ^ d
bt:

dp
j

(6)

Equation (6) suggests that dq. be written as:

**<
,i dK
*K K (7)

Equations (6) and (7) thus define the sensitivity of root q. to gain K as;

(8)

and the sensitivity of root q. to open- loop zero z. as:

A *\
zj dz (9)

and the sensitivity of root q. to open-loop pole p. as:

(10)

Equations (8) through (10) are the same as definitions in equations (3) and (4)

given earlier, used by McRuer and Stapleford. S relates the change in q, with

the corresponding percent change in gain K, while S . and S . relate the change

in q. with the total change in z. or p.. There is no reason why other definitions
i J J

cannot be adopted. It is just a matter of convenience.

1-5: Property 1: Relationships between S , S and S

Comparison of equations (5) and (7) yields:
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i /pL/ok
)

K \^dL/dK/ s = -q
£

dL/dz

:j
"~\ dL/ds y s =-q.

i
(oL/dp.

s
pj Tawfe S / S =-q,

(11)

(12)

(13)

But

L = K
5 (s + z )

iii i J

m
n (s + Pj )

Then

ft ( s +:z;)

ft ( S + P.)
s=-q.

s=-q
4

K

Then (11) becomes

s
1

=
K

Similar derivation for

- 1

(14)

leads to:

Z .

J

4
zj-"i

s
1

=
S
K

"i-Pj

(15)

(16)

Equations (15) and (16) show; the convenience of the definitions used. The

sensitivities to all singularities are directly proportional to S , and in-
K.

versely proportional to the distance between q. and the singularity in-
1

i i
volved. Thus, whatever properties are found for S may be extended to S

i
K z

or S . A particular case of equation (16) is for P = 0, ies the root-

sensitivity to the pole at origin of the s-plane.
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s
1 =-
Po q

(17)

1
S is proportional to S , the constant of proportionality being —

(complex quantity)

.

1-6: Property 2: relationship between root-sensitivity of -q. and res-

idue at -q.

.

i i i
In section 1-5 it has been shown that S , S and S are all proportional

Jx. 2 p

In this section it will be shown that, if q. is a single system root, then

S
K " F

-,,
Qi (18)

where F (-q.) is the feedback transfer function F evaluated at s = -q., and

Q. is the residue of the system transfer function at q . . For unity feedback,

(18) very simply becomes:

K x
i

(19)

Finally it will be shown that when q is an N— order pole, (18) becomes:

S
K = <" 1 >

N" 1
F

<-«i> ^in (20)

For unity feedback it becomes:

S.
1

= ( -l)"-
1
Q in

(21)

The remainder of this section, is concerned with proofs of equations (18)

and (20).

The overall transfer function is

L(s)
T (s) s P(s) C (s) = MS)

^S;
1 + L (s) F(s)Ll + L(s)J

The residue of T(s) at q. is

Q
i
S

< S + q i ) T(s)
(s + q

£
) L(s)

s --

q

4
F (s) [1 + L(s)]

g

- 9 -





Let the rightmost expression be denoted as R., ie, by definition

\ (-^i)
=

Qi (22)

F (1 + L) R
±
=(s + q i

) L

Take the drivative with respect to s of both sides:

OR,

|f [1 + L] R1+,FRt |5 + F Cl + L] §a- L + (s + q,) |&

At s - -q , , ie: at a point on the root locus, L = -1 and the above equation

reducees to:

o,L
FR

i os
1 - -1

: -q.

or:

R ( -q
t )

-
-1

v Hi|9s:J s = -q.

(23)

Compare (14) with (23) and obtain equation (18) which is thereby proved.

Turning now to the case of N— order root at q .
, theory of HeaHrside's

partial fraction gives:

T (s) =
s + q.

•i2
QiN

(s + q±y
(s + q

± )
N

other roots

+ terms from

(24)

where

<u-ik (N -k)!

o
N"k (s + q t

)L

os
n"k F(l + L)

(25)
s = -q

;

Again defining the quantity inside the small bracket as R. , then repeating

the operations as for equation (22) above, one obtains after repeated diff-

erentiation:

~ - "'-Ml ... (26)
iN

FC-q,) §i
os

N
S = -q.
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The next step in the derivation of equation (20) is to obtain the

equivalent of equation (14) for the casej; of N— order root at -q.. In

the repeated differentiations leading to equation (26), it is found that

the derivatives of L:

o
k
L(s)

OS
= for 1< k< N-l (27)

s = -q.

This means that for N £- 2 /^ = and the original definition of

s = -q.

root sensitivity as by equation (14) becomes infinite.

In order to avoid this difficulty, a more suitable definition is

suggested by writing an expansion of the total differential dL to include

higher order terms, then retain only the lowest order terms for each para-

meter and at the following equation, counterpart of equation (7)

.

dq,= 4 I
s +7^ dz. +YV dp.

K K Z_ z, j ^l__ p^ *j

1

N
(28)

s = -q^

from which:
(-1)

N
N!

(29)

s = -q
;

which is the counterpart of equation (14). Complete derivation of the

above may be found on Appendix lrCombining equations (26) and (29) dir-

ectly yields equation (20' which is thereby proved.

Appendix 2 shows that equations (15) and (16), which relate S with
i i tY\

S and S , are still valid when q. is a N— order system root,
z p ^i

1-7: Property 3: Sum of all S
1

and S in a system.
z. p. iu 1 ;

J J

When -q is a single-order system root, the sum of the sensitivities

- 11 -





of -q. to all open-loop zeros and poles is equal to 1.

f-s*r-» (30)

J
J

J

This is easily seen by referring to the construction of root loci. If all

open- loop zeros and poles are displaced by the same amount § > then all

closed-loop roots are displaced by the same amount, i.e., if dz = dp. = 6

for all j, then dq = 6 for all i. This interesting property will be of

great utility later on.

When -q. is a N— order system rdot, setting dK = in equation (28),

and using the same reasoning as above, i.e., shifting all open-loop zeros

and poles by 6 , one obtains

d,
t
-

But closed-loop roots shift by the same amount 6 . Then the above equation

becomes

:

Vs 1
fs1 =6N" 1

Li z. Lt p. -

j
J

j
J

which no longer has a universal character as equation (30) since it depends

on the magnitude of shift 6

.
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CHAPTER TWO

A Sensitivity Design Method

II - 1: Introduction

In chapter one, a number of properties of the root-sensitivity to

gain, poles and zeros have been derived . In particular it was shown

(equation (30)) that for any system, the sum of the sensitivities of a

system root q. to each and every open-loop singularity, is always equal

to unity. It was also shown (equation^ 15,16) that the root-sensitivity I >

to each singularity is directly proportional to the root-sensitivity to

gain, and inversely proportional to the distance from the root to the

singularity involved.

It is now desired to apply these results to a number of design pro-

blems where specifications include condition) on the sensitivity of the

dominant roots. These specifications may be in the form of an upper

limit for the magnitude of the sensitivity of the dominant root, or for

the change of damping factor, or the change of natural frequency and

bandwith, when gain and/or singularity (ties) of the plant vary with

time.

This chapter will be presented in the following sequence. The

practical aspect of problems with small parameter changes is discussed

first. Then a graphical method to obtain root-sensitivity values is

formulated and other properties of sensitivity are derived therefrom.

Finally a design procedure is presented and applied to several examples.

II - 2; Practical aspects of problems with small parameter changes .

In section I - 1 a number of situations where small parameter changes

frequently occur have been mentioned. A desirable quality of control sys-

tems is undoubtedly the reliability of their response under varying oper-

ating conditions, and perhaps one of the most objectionable shortcomings

is the unpredictable variations in system response, variations due to the

combined effects of small changes in the plant gain or time constants or

both.

- 13 -





The question then arises as to when the plant gain is affected

when the plant time constants are, and whether they affect each other in

mutually. There is no unique answer to this question, and for each in-

dividual problem, an analysis is needed to determine, from physical sit-

uations, what parameters are changed and what is the extent of the change

.

A simple example may be found in the amplidyne whose transfer function

is

g i
T T

; + PjKs + p2 )

where e is output voltage, e the control voltage ,1 subscript q refers to

the quadrature field, subscript c refers to the cosftrol field One can

see that if r changes with temperature, only p. is changed . If r changes,

only p is changed proportionally . But if an inductance value changes,

not only the corresponding pole varies, but K does so as well.

As another example, take a mechanical system with inertia and friction;

J 6 + f 6 = KE

where E is the driving error signal

»

i a K u
K
/j

Js + fs s(s + -
)

In this case, a change in the friction modifies the time constant alone,

while a fluctuation in the value of the inertia causes both gain and time-

constant to vary accordingly

.

In some instances, even the open-loop pole at the origin of the s-plane

varies. This is the case of the above mechanical system when a shaft, intended

to be rigid, is twisted under load, or when a transmission belt, designed to

be of fixed length, is elongated under tension. Thens

£» K Vj
E

Js
2
+ fs + k ls?

f
+ T +

K
/j

\)

(s -
»- P )(s + Pi)

14 m





where

J
= Po

+ p
l

and

J ° 1

The last equation shows that in the ideal case, k giving p = 0,
o

but if some k exists, then p exists. As long as inertia J is fixed, the

K
°

gain constant — does not vary. If k alone varies, then both p and p. are

changed since the sum p + p = — is constant. If both torsion k and
O X, <J

friction f vary, p may change alone, or change simultaneously with p.. „

Finally if J varies, then both gain constant and poles p , p. are changed

proportionally.

Another similar example of parameter change may be found in mechanical

systems with springs the constant of which varies in use.

II - 3; Graphical method for determining root-sensitivities .

Equations (15) and (16) derived in chapter one suggest that to singu-

larities which are close to system root -q„» q. is more sensitive, and for

singularities which are farther away, q. is less sensitive until it becomes

insensitive to singularities at infinity. The above concerns the magnitude

of sensitivities. But sensitivities are vector quantities, since the change

of a parameter may move the roots in different directions. It is then help-

ful to make use of equation (30) together with equations (15) and (16)

.

Refer to equation (15), where z and p indicate open-loop singularities

and q. is the system root in question. Draw a vector from q. toward each

and every pole, and away from each and every zero. The length of each vector

will be inversely proportional to the distance from q„ to the singularity

concerned. Then construct the sum U of all th^se vectors, which is a vector

itself. If U is taken as unity vector in magnitude and phase, then the other

vectors measure the sensitivity of q to each singularity respectively. Here«

after, the vector
-4

U = le
will be baptized "unity vector for root-sensitivities to poles and zeros"1

,

or more conveniently "unit-sensitivity vector". The first lengthy name
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emphasizes the fact that this unity scale, applies to sensitivity poles and

zeros only, i.e., S and S , since equation (30) only concerns these two
z . p

.

.

quantities. This unity scale does not apply to S .

The diagram just described is from now on referred to as the "vector

diagram", as compared to the Vcircle diagram" to be introduced later . The

vector diagram offers a quick way to measure both magnitude and phase of the

vectors S or S for any j. Only one little detail needs be kept in mind;
z . p

.

phase of sensitivity vectors must be measured as positive in the clockwise

sense starting from the U vector. This seemingly arbitrary sign convention

I in fact comes from equations (15) and (16) which are the basis of the vector

diagram:

i
S
K

S
K

S
K

s
Pj "i^ ' <-Pj5 - <-<.

t >

S— (3l)

The denominator is the vector from root (-q.) toward pole (-p.) as

shown on figure 2: The phase relationship of the above equation is:

S
X

n
= S^ - V (32)

where the hat sign reads "phase of". The above is true no matter what

conventions are applied to the measurement of the angles. Since the U-

vector has been found to be equal to le^
}

as far as S and S are con-
"2* p z

cerned, angle. S will be measured starting from U as zero phase. On the
/J\p. /\

other hand, Sv and V are measured in the conventional way, i.e.,

starting from the positive real axis and counting positively counter-

clockwise. In equation (32), the quantity S is not dependent on j, i.e.,
K

it is the same for all j's. Thus, for each j:

/} s\
S = constant - V

.

meaning that the larger the value of V
. , the smaller must be S . ^Sincey\ j p,^>

V is measured conventionally (positively counter-clockwise) J S must

be measured positively clockwise. ^
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As an example, on figure las

.37
s
1

P2
1.05

= .352

si = + 120°
P
2

This means that if pole p moves by dp = .1 (to the left) while other

parameters remain constant, then q. will move by dq. = (.352 /120 )

( .1 lQ ) = .035 /120° . To say that q. moves by .035 /120° means

that the root (-q.) moves by .035 /-60 , since q. and -q. are two oppo-

site quantities and move in opposite directions.

Finally note that the difference in the ways the sensitivity vectors

are drawn for poles and zeros ( toward the former, away from the latter)

comes from the different signs in the denominators of equations (16 and

(15). A different sign corresponds to a rotation of 180 .

Before this section is ended, another interesting feature of the

vector diagram is presented. This concerns the root-sensitivity to gain,

S , which so far has not been mentioned on the vector-diagram. One recalls,
i i

however, that at the end of section 1-5 a relation between S.. and S was
K ai p

Q
given, p being the open- loop pole at the origin of the s-plane

s

S - -*- (17)
p q.

x 'ro ni

Equation 17 shows that, for a particular system root under investigation,

S is equal to S x q. the phase relationship is:

°y\ y\ /\

Figure 2 shows the angles q. and S = a , the latter being measured

from U. Since q + S gives the direction of U on the s-plane, it is thus

established that on the s-plane, Sv always lies on U. Since S„ indicates
K K

the direction in which the root moves when K varies, i.e., the direction

of the root locus, the above result can be stated as follows?

- 17 -





"At any point on the root-locus, the U vector is tangent to the root-

locus .

"

*

Again note that the direction of U-vector indicates the direction in

which q. moves when K increases. The direction in which (-q.) moves when

K increases differs by 180 .

It seems worthwhile to state once more the results obtained in this

section which the reader should keep <$>n mind before going on; Phases of

root-sensitivities to p and z are measured positively clockwise starting

from the U vector. Phase of root-sensitivity to gain K is measured in the

conventional fashion, that is from the horizontal and negatively clock-

wise. On the s-plane, S always lies on U which is tangent to the system

root locus at the point of contact.

II - 4s An example of application of the vector diagram .

In order to show the practical character of the vector diagram, the

following numerical example is taken from reference 4, but solved by use

of the vector diagram. A look at the lengthy arithmetical and graphical

methods of reference 4, some exact and others approximate by nature, will

convince the reader of the rapidity of the vector diagram. Results ob-

tained here and those obtained in reference 4 are compared to show the

relative degrees of accuracy.

Given the open- loop transfer function

P- K
s(s + l)(s + 5)

For K 2.07, the closed-loop roots are at locations indicated on figure

3. It is desired to calculate the sensitivity of the root at -q. to the

gain K: (other sensitivies can be readily obtained, it is merely a matter

of measuring a length and a phase on the graph)

.

The vector diagram is constructed and U - vector is drawn on figure

3. From measurement of vectors and phases, it is found that

S
2

- HI ZlSl! = .753 /-51°
Po

2.07

*: this result may be very useful in the construction of root loci, since
it readily gives the orientation of the root locus at any point.
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(Minus sign because clockwise from U-vector)

Since the system root -q2 is at 0,64/135 , q is at 0.64 /-45

Then

2 2
S
K " S

P
X

"2
*• o

(0.735 /-51°) (0.64 /-45°

= (0.481 /-96

Note that on s-plane, the U-vector also lies in the direction -96 .

2
Hence, S is a vector lying on U. Note the tangency of U to the root

&
locus at point -q_.

The same example is worked in 10 different ways in reference 4.

Results of only 5 of the most accurate methods are reproduced here for

the purpose of comparison (order of increasing accuracy)

.

(1)

(2)

(3)

(4)

(5)

(6)

Method
2

Value obtained for S
K

Root locus method* by gain
perturbation

0.356 /262°

Closed loop Bode Asymptotes 0.451 /270°

Root locus method by phase
perturbation

0.457 /264°

Open loop Bode and £ plot 0.491 /266°

Direct calculation 0.492 /264? 47

Method of this report 0.481 /264°

The vector diagram method is in fact an exact method since no approx-

imation of any kind was made in the derivation. The more accurately the

diagram is constructed and measured, the better the results. In order

to improve accuracy, one may choose a scale for the sensitivity vectors

different from the scale used for the root-locus.
1~1h

II - 5; Particular case of open-loop singularities of N— order .

Looking at the construction of the vector diagram as illustrated on
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figure la, intuitively one can see that in case of a double pole or double

zero (or higher-order), the same construction still applies, providing

two vectors be drawn toward the double pole (or away from the double zero)

,

This can be seen by assuming that pole -p~ moves toward and reaches pole

-p. . Simultaneously the sensitivity vector of -p_ would move toward that

of -p, and reach the same magnitude as that of -p.. . Note that in such

case, the length of the sensitivity vector of each pole at -p. remains

the same as before, but the actual value of the sensitivity of -pi is

different, since the scale-vector U has changed.

The same result may be obtained analytically as follows.

L has an nr— order pole at p. , then

Assume

L - *(•-••)
*

( ...)(s -»-

P]L )
n

But

%
1

-° +L

dL

* n <s + Pi>

(s + P
1
)

n-1

n

*

(s + p
x
) n

h
(s + p

L
) n

D
s + Pi

S + P n

is equal to r— if p. were a single pole. Also, from equation

dL
(51), S is proportional to r— . Then the a'bove result

oL
a Pi

= n x

V
x

is
th

order pole

dL
* P

1
_ _ if p, were a single pole

is equivalent to saying that the root-sensitivity to a

n times that to the same pole assumed single.

The same reasoning applied to a

elusion.

th
order pole is

order zero leads to identical con-

II - 6: A design philosophy

It has been shown from the vector diagram that the root-sensitivity of

q with respect to each singularity is given by the vector associated with

that singularity, measured with U-vector as unity scale, both in magnitude

*; Casual reader may skip.
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and phase.

If the U-vector is changed, either in magnitude or in phase or both,

then root-sensitivity changes. In particular, the larger the magnitude of

U-vector, the smaller the root-sensitivity value, i.e., the more insensitive

the system root.

This leads to a design philosophy whereby the U-vector would be mod-

ified in order to meet particular specifications or restrictions imposed on

the sensitivity of the dominant root of the system under investigation. In-

tuitively one can see - and this will be shown to be true later - that in

a given situation it is possible to maximize the magnitude of U-vector in

order to minimize root-sensitivities; or to orient U in a certain fashion

so to make the damping factor insensitive to the variations of a certain

pole, or to make it insensitive to the variations of gain-constant, etc.

In a number of control problems, the system response specifications

are expressed as a desired location on the s-plane for the dominant sys-

tem roots. Such a location determines a damping factor £ and a natural

frequency CO for the system. Thus, fixing the location of the dominant

roots and fixing the frequency response of the system with phase-and gain-

margins and bandwith, are two ways of expressing the same conditions.

One can find, in the literature, a comprehensive treatment of the

problem of compensating a given system in order to place the dominant roots

where they are desired. The simplest way is to use lead or lag networks

in cascade in single or multiple-stage. In fact, there exists an infinite

number of solutions to the problem of forcing the root-locus of a system

to go through a certain point on the s-plane. All what is needed is that

the lead- or lag-network contribute the desired phase shift so to make

the total phase at that point equal to 180 .

Hoever, if another contraint is placed on the system, the number of

possible solutions decreases and eventually becomes unique. Such is the

case of the problem in which the desired location of the dominant roots,

and the steady-state accuracy of the system are to be satisfied simul-

taneously. The latter condition fixes the value of gain constant when the

dominant roots are at their assigned location. This problem was solved in
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7 8
detail by Ross, Warren and Thaler , also by Pollak and Thaler , and re-

9
cently Hsu proposed a graphical method.

The following is concerned with two simultaneous conditions? loca-

tion of dominant roots, and sensitivity of these dominant roots. The

second condition on sensitivity may take a number of different forms,

such as sensitivity of £, or sensitivity of a) , with respect to vari-
D

ations of gain or poles or zeros. In other situations, the dominant

roots may be restricted to moving only within a certain area. As stated

earlier, the philosophy of the design method is to modify U in mag-

nitude and/or in phase. Thus the first step is to investigate what the

possibilities are in modifying U using lead or lag networks % in other

words, how the U-vector changes on the s-plane.

II - 7; Locus of U on the s-plane .

This section, as a preliminary to the design procedure to be pre-

sented next, is devoted to the determination of the geometric locus of

the tip of U-vector on the s-plane. Knowledge of this locus tells the

designer how and how much he can change magnitude and phase of the U-

vector, and what good such change will do.

Consider the plant to be compensated:

K(s + z
1 )

G =
s(s + p

1
)(s + p2 )

and the desired dominant-root location -q as indicated on figure 4a. A

spirule measurement shows that an additional phase of + is needed at

location -q. Thus a lead network with a zero at Z and a pole at P is

needed. The question iss how does the tip of the U-vector move on the

s-plane, when Z and P take all possible values on the negative real axis?

(avoid positive real axis to avoid possible conditional instability)

.

Figures 4a, b and c illustrate the answer to the above question.

First, ignore the compensator irregularities Z and P, and draw the

unity vector for the irregularities p , p., p_, and z. , alone. This

"uncompensated" unity vector is labeled QI on figure 4a. Now if a pole

P is added, it has associated with it a sensitivity vector Qin of mag-

nitude r-r- . Then the unity vector QI is augmented by the vector quan-
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tity IM = Qm.

Similarly, when a zero Z is added, it has associated with it a

sensitivity vector Qu, directed away from Z and of magnitude jrr— . Then

the unity vector QM is augmented by the vector quantity MU = Qu. The

question is to find the geometric locus of U. Figure 4b shows that when

P moves along the real axis, since QM tt: , m moves on a circle of

radius R = -rr- , resulting from geometrical inversion of the real axis,
2d

inversion with center Q and ratio 1. Such a circle will be referred to

as the (M) circle for convenience. The locus of point M is the (M) circle,

of radius R -r-r- and with I as its uppermost point.
1

Figure 4c shows that IU - 2R sin -r sin which is a constant quan-

tity for each problem, and hence U move on a circle centered at I and of

radius r = — sin 0. The reasoning attached to figure 4c is as follows.

Draw vector IN equal and opposite to MU. Since Z is a point on the

real axis, Nis on the (M) circle due to figure 4b. Then MN = 2R sin 0,

and since I U = MN, I U = 2R sin = constant. The circle on which point

U moves will hereafter be known as the (U) circle.

The (M) circle, locus of point M, of radius R= -z. and the (U)' circle,

locus of 'point U, of radius r - -r sin are shown on figure 4a. For con-

venience in terminology, the diagram just drawn will be given the name of

"circle diagram", as opposed to the "vector diagram" shown on figure 1.

For purpose of reference, the above result is restated below!

The geometric locus of the tip of the unity vector is a circle, cen-

tered at I and of radius r -r sin 0; where I is the tip of the "un-

compensated" unity-vector, d the imaginary part of the dominant system

root, and the phase shift to be introduced by the compensation.

II - 8; Limit of locus of U

It does not make sense to define a geometric locus without specifying

its limits. This is the purpose of this section.

There must be 2 limit points on the locus of U, a right hand limit U ,

and a left hand limit IL . Point U is defined by the extreme condition

where Z, the compensator's zero, would be at the origin, and P on its left,

such that PQZ = 0. Point LL is defined by the other extreme condition with
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P at -» and Z on its right, such that PQZ = 0. Any other possible case is

between these two extremes.

Determination of U and IL may be done by first noting the following

detail on figure 4a (or 4c); IN // QZ? IM // QP» if J is the midpoint of

MN then iU is perpendicular to OJ

I U J_ J

This can be used to obtain U when P and Z are known; draw IN// OZ; draw

IM //OP; take midpoint Jj draw IU J_ OJ. A quick way is to take the angle

NOJ = 0, thus avoiding the trouble of obtaining the midpoint of an arc.

Conversely, and this is more important, one can start from any de-

sired location of U and go back to obtain the corresponding Z and P, by

doing the above construction in reverse order . This is the essence of

this design method, whereby one changes the U-vector by proper compensation.

When a particular location for U on its locus is chosen to satisfy some

specification (next sections), obtain P and Z as follows;

Draw OJ _j_ IU which cut (M) circle at J. On (M) circle, measure arc

JN JM = 0. Then the direction of IN is the direction of QZ (thus one

gets Z), and the direction of IM is the direction of QP (thus one gets P)

,

An example is shown on figure 6a. A desired U is given (purely as an

example, for no particular reason). Perform the construction as indicated

above and obtain ap and a as angles of the direction of P and Z with re-
X la

spect to the vertical. This determines the compensator pole and zero as on

figure 6b. Obviously a + a„ - 0.

One may now go back to the problem of determining the limit points

U and IL of the locus of U. This is merely a pair of problems similar to the

one just solved.

For the extreme right case (subscript r), refer to figure 5a. A

measure on figure 4a shows that when Z is at the origin, QZ makes -30

with the horizontal. Draw IN at -30 from the horizontal. N is the
r r

extreme-right position of N. Measure NOJ =0 and draw IU 1 OJ . Urr r -1— r r
is the extreme right limit of the locus of U

.

For the extreme-left case (subscript Jfc), refer to figure 5b. Here P
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is at -». This calls for rotating angle N I M of figure 5a, until it reaches
r i

the extreme-left position N*I M, of figure 5b . Then M. is at I, and N^ is

at intersection of the two circles. The same construction JU. J_ OJ. gives

IL, the left limit of the locus of U.

Once the limits are found, one can see how far one can change the mag-

nitude and phase of the unity vector, which is represented by QU on figure

6a. As an example, on figure 6a, the maximum magnitude that the U -vector

can reach is QU , and the rightmost direction it can have is given by QU*.

Finally note that in the case of a lag network, the points M and N are

simply interchanged and the determination of limit points U and U. is still

the same, with P at origin in one limit case, and Z at infinity in the other

case. Throughout the work, point M will be associated with pole P, point N

will be associated with zero Z to help the reader follow the argument more

easily.

II - 9; Design techniques .

In the above section it has been derived a method for finding P and Z,

given the desired location of point U on its locus, i.e., the magnitude and

phase of QU, the unity-vector. This method is re-stated below in a step-by-

step form (refer figure 4a)

.

Step 1 - Considering Q as if it already were a point on the root locus,

draw the vector diagram at Q for the uncompensated system and

obtain QI, the Muncompensated M unity vector.

Step 2 - Draw the circle diagram , composed of % the (M) circle, of

radius R = tt and whose uppermost point is I.; and the (U)

circle centered at I and of radius r = —r- sin 0. Fix the
d

limits of the locust of U on the (U) circle.

Step 3 - Given QU as the desired unity-vector for the compensated

system, draw OJ _J IU which cuts (M) circle at J. Draw

angles JON = JON (or arcs JN JN = 0). Then Z and P

are determined by drawing QZ // IN and QP // IM.

In this section, it will be seen how the U-vector (i.e., QU, t-vfU, the

location of U on its locus) is selected to satisfy a particular condition.

a) Design for minimum root-sensitivity .

Since the U-vector is the scale used to measure the individual sensi^
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tivity vectors, the larger the scale, the smaller the magnitude of the

sensitivity measures. Thus one possibility is to design the compensation

for maximum magnitude of U-vector, that is, minimum root sensitivity to

open loop singularities. Figure 4a shows that maximum magnitude of QU

is obtained by placing point U near the lowermost part of the (U) circle,

or more exactly, on the extension of QI. If such point is not within the

locus of U, then it canfibt be a location for U, and one must select the

lowest poi^t which is_ on the locus. In figure 6a, this is point U .

Thus, QU i,s the selected unity vector, and with this given, one can

proceed to the 3 step procedure outlined in the beginning of this section.

With such a design, S and S are all minimum, for all 1*8. For ex-
p. z.
i i q

ample, the minimum value of " S will be equal to the ratio of the

sensitivity vector associated with p divided by vector QU , both in

magnitude and phase. Note that these are minimum values of sensitivities

obtained with only one filter stage. It will be seen later that by use

of multiple-stage filters, results may be improved, but more often than

not, improvements are small and do not justify the extra cost. Design

example No. 1 given in the next section applies the above technique.

b) Design for constant damping when gain K variesfyefer to figure 4a)

Another practical problem is to compensate a system in such a way

that when gain K varies about its nominal value, the dynamic response of

the system doesn 9 change. This calls for a constant £, i.e., a root-

locus that remains tangent to the radial line OQ at the neighborhood of

Q.

How can Z and P be found to obtain such a root- locus? It is now

shown that this can be done by merely selecting point U so that the

unity vector QU goes through the origin of the s-plane . In other

words, choose U so that Q, 0, U be in line. (If the locus of U doesn"

t

permit such a choice, this means it is not possible to obtain a constant

C about Q for the given system. One can then choose the best solution

available, by taking the U location that is closest to a straight line

with Q0)

The above statement can be proved very simply if one recalls

- 26 -





equation (17) of Chapter One

i A
Po q

i

The specification here is to force Sv to have same direction as Q0 9 thus
K

-i
making q. move on a radial line when K varies . This means S must be

equal to the phase of QO (namely -30 on figure 4a) which is also phase

of q., or q . But from equation (17)

i i / x
s - s

K
- , =

rO

i i
The phase of S must be 0, this means that the sensitivity vector S

P P*o ro

must lie on the U-vector, or conversely, the U-vector must pass through

p at the origin of the s-plane, qed.

A faster way to prove the above is to come back to section II - 3

i
where it has been shown that Sv always lies on the U vector. In order to

i
keep £ constant, S^. must be radial, thus U-vector must be radial.

Design example No. 2 of next section illustrates this part.

c) Design for constant damping when a singularity varies .

Again refer to figure 4a. Another practical design problem is the

following: the nature of the plant is such that pole -p. varies more

than the other singularities, (see section II - 2). It is desired to

compensate the system in such a way thats 1-the dominant roots be at

-q, and 2-that the sensitivity of the damping factor £ with respect to
r

changes in p. , namely S be nullified, or at least made as small as

1
possible. y\

i
It is now shown that such problem is solved by simply making S

equal to q or -q , that is, forcing the U-vector to a postion such

that the phase of S , be equal to the phase of q. or of -q„. The latter

differ by II, so the above underlined condition may be written as;

S
P,

=
«i O n

p
l
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/\
qt

where q. (V) n reads 5 "e

the condition for £ to be insensitive

Note that, as for previous desig:

limits of the locus of U do not permit a s

one, or q. + II "o

, that is for S = 0.
P
l

ems, it may happen that the

(33) be satisfied . In such case it is

by making S as close to q. (+) II as poi
p
l

illustrates this method

.

The following is proof of condition

remark (see fig. 7a, d)t for £ to be kej

g of U-vector such that

c
s possible to minimise S

ssible. Design example No«3
"I

The proof is based on this

1 in q .
s,
that

is dq, , must a the same radial line as q. s i.e..

where the (V) sign has same meaning as in equation (3. If dq. q 4 s

the natural frequency 60 increases „ If
a

,
= q„ + n, co decreai

li 1 n
From the definition of root-sensitivity.

changes bys

>- , root q .

dq. = S dp.

or, phasewise;

/\ /} /N
dq

i = V + dh
Since p varies

/N
negative real axis, dp, - (+) II

1 ^-vv^\

:3s:

more

detail, if the pole at -p. moves to the left 9 dp. > 0, and dp. = 0= If

pole moves to the right, dp.< 0, and dp
1
= II. Combining equations (34)

and (35), the following condition for S = C

/\ y\^Qn^t®*
which is the same as equation (33), since an addition of n to the right

hand side is equivalent to the same addition to the left hand side..

d) Other possible sensitivity designs using the U locus

Three practical design problems have been discussed; a) design for

minimum root sensitivity! b) design for constant damping when K is per-
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turbed s and c) design for constant damping when a plant singularity is

perturbed o Still otter problems may be solved using the same technique,,

If it is desired to keep co constant (constant bandwidth) when gain

K or plant irregularities vary 9 then dq„ must be perpendicular to q

and condition (32) be«

y\ A n
dq

i
* q

i ± 2

Combination of (20) and (21) yields:

AN

that is

n
+ n= q ± 2

A
= % ± ? <37 >

^ A n A n
or S =s q.+ 9

, "5 n=q„+-r (same)
p. 3L — * i ^ 2

which is the condition for keeping GO constant when p. is perturbed..

It is also possible to design the system in such a way that a part"

icular plant-parameter pertubation has stabilising effect (or destabil-

izing effect^ if it is so wished") on the system response, Fig° 7b

shows that if -* has a phase between and II, i.e., 0< dq - q< n ,"
dq

the root variation has stabilising effect <, Figure 7c shows that if —

*

has a phase between Ft and 2TIj i*®<, $ II < dq - q< 2 <
s thea

variation has destabilising effect <> A reasoning similar to that of

part (c) of this section will yield the conditions for obtaining one

or the other of the above effects

„

II - 10; Design examples .

The preceding section shows that the proposed sensitivity design

technique is an exact method , involving no approximation or cut~and-

try« It is a reasonably quick method, all that is required as pre-

liminary work is the construction of the U-locus., It is versatile,

can be readily applied to various practical design problems involving

small plant-parameter perturbatj





In this section three design problems will be worked out in details

in order to illustrate the techniques presented above, then analog computer

simulations are done to check the results

„

a) Design example No. Is

The plant to be compensated has the transfer functions

K

s
(<T7

+1Xo3 +1)
Dynamic and bandwidth requirements lead to the desired location for

dominant roots at -q = -0*2 + jO»35 = 0-4 </120° , that is, q = 0*4 /-6Q° .

All three plant poles are subject to fluctuations . It is desired to de-

sign a cascade compensator satisfying the above dominant root requirmerat,

and in addition, guaranteeing a minimum value of sensitivity of q to the

poles' fluctuations

.

Plant singularities and desired root location are represented on

figure 8o

Step 1 ; Considering -q as if it already were a point on the root locus,

the vector diagram is drawn and the "uncompensated" unity vector

QI obtained (figure 8) . Using a spirule, measure the phase shift

necessary to make root- locus pass through -q„ Found = -38

(lag network needed)

.

Step 2 : Circle diagram (figure 9)s

Draw the (M) circle, of radius R °r-r~ s 7TT = 1°43

Draw the (U) circle, of center I and radius

r = 2R sim = 2 X 1,43 * sim 38° =1*76

The geometric locus of U is on the (U) circle,,

The limits of this locus are found as explained in II - 8s For

extreme right limit, filter pole P is at origin, then QP makes

30 with vertical . On circle diagram of figure 9, draw IM

making 30< with vertical . On circle diagram of figure 9, draw

IM making 30 with vertical <> Draw angle HO J = = -38
,r . r r

thus get J . Draw IU J (see explanation of section

II - 8, thus get right limit-point U
r
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For extreme left limit, filter zero Z is at minus infinity,

then QZ is horizontal . On circle diagram, draw IN* horizontal

(N. coincides with I). Draw angle N^O J^ = 38 , thus get J^,

Draw Ilk _J J., giving the left limit-point IL » Here IL

is simply the intersections of the (M) circle and the (U) circle

This is true for all problems where a lag filter is needed

„

(Observe on figure 5b that for problems where a lead filter is

needed, the left limit-point U- is diametrically opposite to

the intersecting point of (M) and (U).

Step 3 % Select a location for U , and from this derive the necessary

compensator . In this problem, it is desired to minimize the

sensitivities, thus one must maximize the magnitude of U-vector.

The maximum length that this vector can reach is Ql). , U» being

on the extension of QI<

Now from U, , find P and Z, using the construction presented in

section II - 8. Draw OJ,
|

IU. . Measure arcs J-.N, J
i
M
i
=

= 0. Then the direction of IN is the direction of QZ(thus

get Z = 0°§ as shown on figure 9b . The direction of IM, is the

direction of QP (thus get P = ,36 on figure 9b) . The complete

compensated system's pole zero configuration and corresponding

U vector are shown on figure 9b

.

b) Design example No. 2 ,

It is desired to compensate the plant given in design example No 1

in such a way that; 1 - the dominant roots be located at -q = 0, 4/120 ,

and 2 - when plant gain K is perturbed, dominant root may move about the

desired location but the system's damping factor will not change,
r

This amounts to designing for Sz, = 0, or to say the same thing diff-
K

erently, to force the system root- locus to follow a radial line in the

vicinity of -q.

From part b) of section II - 9, it has been determined that this can

be done by forcing the U-vector to go through the origin of the s-plane.

This means, for this problem, that U-vector must make 30 with the vert-

ical direction; that is, it must occupy the position QU
?

indicated on

- 31 -





figure 10a. Thus the location of U is fixed . (Subscript 2 used for this

example)

The design is accomplished by performing the now familiar construction*

Draw 0J
2

I IlU, this gives J . Measure arcs JJL = J L = 0» Then P is

given on figure 10b by drawing QP // IM , and Z is given by QZ // IN
2

» The

result is P = ol4, Z * .39.

The complete compensated system's pole-zero configuration is drawn on

figure 11 and U -vector is constructed thereon. As expected, it goes through

the origin of the s-plane. As a check, the entire root locus is drawn on

figure 11 and it does follow the radial line in the vicinity of -q.

The same problem is simulated on the analog computer and the results

obtained are reported later in this same chapter.

c) Design example No. 3 .

In the plant given in previous examples, it is observed that the pole

at the origin, -p 0, fluctuates most. Moreover, since -p is the closest

to Q among all plant poles, it has most effect on the location of Q (sensi-

tivity relatively highest, at least in magnitude). The compensator must

be designed such that the effect of the fluctuations of the pole at -p = 0,

on the damping factor £, be nil or minimized.

From part c) of preceding section, it was found that, in order to make

£ insensitive to p , one must have:

/\ /\

s' = qt
©n

Fo

A O
In the present problem, q. -60 , and the above condition becomes

S
1

- -60° or + 120°
Po

Recalling that this phase is measured negative counter clockwise, the

above condition calls for a U -vector making an angle of 60 with Q0 and on

the left of Q0. A look at figure 12, however, shows that the leftmost -position

U can reach is U^, which gives a Z at minus infinity and a P at -0.65, as

showi^on figure 12b.
\ This yields a U-vector making only 48 with QO instead

of the required^ 60 . This is the best one can do to minimize S^ , using a
po
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single stage compensator. By use of multiple stage, this result can be

improved by making the angle UQO exactly 60 , as will be seen later in

section II - 12.

Another remark may be made on figure 12b . According to equation (37)

if some pole p. is so located that S = q. + -r , then variations in p.
J P. i - 2 ~ J

j / \ n g
do not affect to , but greatly affect £. In this example, q. + -r = 30 or

-150 . There exists no pole p. such that S 30 or -150 , but pole p.

i o i
does have S - 56 . One then can expect p. J to have more effect on C than

Pi /\ i

other singularities do, and the closer S approaches 30 (I.Ee., when p.
p
l

moves to the right), then more effect p will have on £ .

This is found to be true when the system is simulated on the analog

computer, the results of which are presented in the next section.

II - 11; Analog computer simulation .

The compensated systems as resulting from example 2 and 3 are simulated

on the analog computer as shown on figure 13, and step responses for various

values of gain and parameters are shown on figure 14 through 16.

The following is the equation for analog computer set-up; Let V(s)

be the output from the compensator and Y(s) the system output. Then;

IL*1 s
V(s) (s + pQ

)(s + Pl )(s + p2 )

where the nominal values of the poles are p = 0* p, 1.43, p9
- 3.33

K

V(s) 3
, , % 2 , xs + (po+ p^ p2

)s + (P Pj+ PjP2+ P P
2
> S + PDplP2

3 2
s Y + (pQ+ pj+ P

2
)s Y + (pQPx

+ PXP2+ P2P3
)sY + P P

1
P2
Y = KV

s Y - "(P^ P2
)s Y "(P^ P

1
P2 + P

2
P
3 ^

sY " PoPlP2
Y + KV

s
2
Y " M (po

+ p
l
+ P

2
)S Y + (Po

P
l
+ P

1
P
2
+ p2P3

)sY + PoPlP2
Y "KV

J
dt

= - \[a
9

s
2
Y + A

g
s Y + A

?
Y - A

6
V

J
dt

whe*e AQ prt + p, + Po = a
9 gg
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A
8
S PoPl

+ P
1
P2

+ P
2
P
3

= a
8S8

A
7
E PoPlP2 " a

7
8
7

A
6
2 K = a

686

The above equation leads to plant simulation set-up of figure 13

Compensatoxmis simulated separately, for example 2%

s + Z
C r

s + P

where Z = . 39 and P . 14

V= ±±£ E
s + P

w£-
ŝ + P

Let V (s + Z) W where

Then V = sW + ZW

S « sW + PW

or sW = E - PW

or -W * V [

E

- PW dt

now V = E - PW + ZW

V = E + (Z-P) W

-v -[e + (Z - P) w
J

The above equations giving W and V lead to set-up of figure 13 for the

compensator

.

For example 3, C r
, p where P = 0.65

S + c

E
V =

s + P

sV E - PV

-V = - \[e - PV
J

dt

thus one integration with feedback will be needed (see figure 13)
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For example 2:

a
3
8
3

= P * * 14 -7 a
3
= .14

•3-1

a
4g4

= X /

8a- 1

a
5
g
5
= Z -P = .25 ? 'a

5
= .25

u = 1

a
686

= K (variable) ^> a, variable
6

g6
« 10

a
?
g
7
= PoP]LP2

= S a
?
=0

.^
>
88 * PoPl

+ P
1
P2
+ P

2
P3

= 4 ' 76 7 |
"8a = .476

For example 3:

p varies

:

g
8
= 10

a
9
g
9 V P

l
+ P

2
= 4.76

a
3
8
3
= P - .65

Ve" K= * 935

->

"7 (•<

-7 j
a rt .476

g
9

=

.65

8,- 1

.0935

- 10

P - / "8a„
=

a rt =

.476

.476

a
?
= .238

C
a
8

=

o
'

a
9
= .481
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(•7--V*

Po= .1
1 a

g
= .524

/ a
9
»= .486

2-?, varies:
l

(a
7
=0

a
7

=

P.- -if*" •*»

a
9

=

P
L
= 1.43 <

a
8 .476 p£ = U33 Va .444

/
a
9
— .476

f
7

P^l.23^
J
a
8

.41

I*'

= .456

C
7
=

Px
- ,83

<
a
8
= .276

N = .416

a
9
= .466

a
7
S °

p = 1.03 J

a

g
- .343

a
9

=

Discussion of results:

For example No. 2, step responses are displayed on figure 14 for

different values of gain K, varying about the nominal value K = 1 ,45,

It is found that there is essentially no change in damping for values of

K between 1.2 and 1.6. Even beyond these values, damping change is rather

slow. This agrees with root locus of figure 11.

For example No. 3, with fluctuations of the pole at origin, step

responses for -.K'p / ,1 are presented on figure 15. Note that the

damping is not changed for the above variations in p , the magnitude of

which is not negligible considering the proximity of p to the dominant

roots. Also note the faster rise time when p increases. This is due
o

to an increase in co • i.e.. increase in bandwidth.
n

When p moves away from the origin, the system has some steady-state
O y>

error. However, the purpose here being the study of S , only changes in

£ are of interest.
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For example No. 3 with fluctuations in pole-p.,, the step responses for

various values of p. are presented on figure 16. It is unfortunate that

in this example, J S is 56 (figure 12b), while a sensitivity phase c

o 1
of 30 is needed to make p, have maximum effect on £ (last remark, section

II - 10). However, even at 56 , a small variation of .1 in the location

of p. (1.43 to 1.33) changes M from 1.15 to 1.20, i.e., £ from 0.53 to

0.45, using 2nd order approximation.

Although the design was done on the basis of small parameter changes,

p was moved further to the right (toward the position where S would
o 1

approach the value 30 ), and as predicted by the theory, the change of
i o

damping is more and more violent as the condition S = 30 is approached.
Pi

Therefore, the analog computer study has shown that, for the compensation

ts

scheme used, fluctuations of p have very little or no effect on £ while

those of p change £ appreciably, even for a small variation. The resul
/^ o / iN o

would be still better if S were equal to -60 and $ were + 30 as

So Pl
computed in section II -10c?.

II - 12 t Single-stage or multiple-stage compensation ?

a) The above designs have been done on the assumption that oply one-stage

compensators are to be used. The question arises as to whether any im-

provments can be obtained by using more than one stage.

When the magnitude of 0, phase shift needed to bring Q on the system

root locus, is beyond a certain value, then one stage of compensator will

not be sufficient. But even when is small enough so that one stage

of compensator will do, one still has to ask the same question.

Further, in case of multiple stages, stages may be identical or diff-

erent. Once the number of stages is decided, if identical stages are used,

then the number of degrees of freedom remains the same as before, i.e., only

one. But if different stages are used, then additional freedoms are intro-

duced and possible improvements may come therefrom. "Improvement " here is

used in the sensitivity-design sense, i.e. decrease in sensitivity i.e.,

increase in the magnitude of the scale vector U.

b) It will now be shown that in general, only negligible improvement is

introduced by using h identical stages of compensation^ (each giving a
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phase shift of ™
) instead of one stage (giving 0); and most of this

negligible improvement is done by taking n = 2. Thus there is no reason
i

to take n > 2. Besides, there is a risk of conditional instability in-

volved .

If non-identical stages are used, conceptually it is possible that for

some fortunate choices of compensator stage, an improvement is obtained

,

However, this involves cut-and try work, and no rules can be stated nor any

definite results predicted

.

c) A short remark is necessary before the proof of the above statement can

be undertaken. It concerns the construction of the (U) circle and the U-

locus when compensators have n- (identical stages. Refer to figure 4a,

assume that the compensator is double-staged. P is then a double pole.

Two sensitivity vectors QM must be drawn, and when added to QI, they give

a vector IM twice as long as the one in figure 4a. Thus, radius R of (M)

has doubled. On the other hand, the radius r of (U), which was equal to

2R sin for the one-stage compensator, now becomes -r sin *j (the factor
d 2

2 comes from the fact that radius R has doubled, the angle ~ is phase

shift from each of the two stages.) More generally, for n - identicalIn 1

stages, radius R = -r-r- becomes r-r- , and radius r = —-r- sin becomes
n .

r -7 sin &
.

n d n
d) To prove statement (b), the plant given in previous examples is used.

See figure 8 for pole-zero configuration, figure 9a for the U-locus for 1

stage compensation. was measured to be -38 . Now, successively two

stages giving r each, then three stages giving — each will be used.

For each case, the U-locus is drawn, as indicated on figure 17. Values

of R and r are given on figure 17 for each case. It can readily be seen

that the increase in the magnitude of U-vector, which, at best, equals the

increase in the radius r of the U-locus, is negligible, and thus is not worth

the use of additional stages.

It has been determined in the preceding paragraph, that for n ~ identical

stages, the radius of (U) is r -r sin ™ as compared to r, = -r s^ £°£
y ndn r Id

single stage. Elementary trigonometry shows that for small 0, sin =

n sin *-, and r. - r« , that is, there is no improvement in increasing the
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O
number of stages . For approaching 90 , n sin — > sin and some im-

jTTi

provement is possible . For the very best situations where = 90 ,

2 sin -r is 1.4 times sin 0, which gives an increase in r of 40%» However

the corresponding percent increase in magnitude of U is less, since

U = QI + r, and QI doesn't change

.

qQ
o

The curve of figure 18 shows the values of the ratio B
sin 90°

for n= 1,2,3 . ... It shows that most of the improvement is negligible

For > 90 , n sin — < sin and there is no interest in using many stage*

if one stage can do the job.

In conclusion, unless
O

comes out to be very close to 90 - in

which case, use of two identical stages may lead to some improvement in

sensitivity - it is not worth while to use unidentical stages when one

stage can give the necessary phase shift. In addition to cost increase,

the introduction of extra roots may be troublesome, while increase in the

magnitude of U is insignificant

.
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(a)

3

Fig \ 3/- Construction of the vector diagram

to r

*<\
\ >

Fig i'b- Vector addition to obtain U

Fig 2j- Phase relationship *
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Fig 4 J Geometric locus of point U

a/ Vector diagram and Circle diagram

b/ the (m) circle, moved down by QI, gives (MJcircle

c/IU has constant length=2Rsin4>
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Fig 5*: Determination of the limit points
of the geometric locus of U.

a/ right hand limit: compensator's
zero Z is at origin.

b/ left hand limit : compensator's
pole P is at minus infinity.
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-*.
-Pa.

«

Fig€: Determination of P and Z for a given U.

a/ obtaino(p ando<2 on the circle diagram.

b/ obtain location of P and Z on root locus.
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*V1 or 0<^-^<1(

(c;

TT< g <ZTT

or ir^daJj^rr

FigY: Variations in dominant poles.
a,d: stability unchanged.

b: stabilizing effect.
c: destabilizing effect.
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i
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—

1

Fig & : Design example no 1. (compensation for minimum
sensitivities.) The "uncompensated" vector diagram.
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)

a/ Circle diagram, b/ Root locus.
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HART NO. RA2921 32 BRUSH IN! INSTRUMENTS division of clevit

p-, : 1.43 px
: 1.03
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p, : 1.33 px
: 0.83

R MARK II CHART" NO. RA2921 32 Fig |^ : Step response of

compensated system of exam,

pie 3» when plant pole -p-^

varies. Note the rapid

change of damping as Sp,

approaches 30 .

p, : 1.23
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2921 32 BRUSH INSTRUME

Pig \S : Step response of

compensated system of

example 3> when plant

pole _p varies about

the origin. Note that

damping is unchanged.
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Fig 16 : Step response of compensated system of
example 2 when K varies about its nominal

value.
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1 stage ; $=-38°

fl«l/2d «1.43

r * 2.86sin38°
.1.76

2 stage : $/2 s -19°

R » 2x1.4-3 = 2.86

r *5.72sinl9°

-1.86

3 stage : ^/J-.-
R -3x1.43

r.8.58sinl3°

-1.93

iQ

U-locus for

:

2L_£tage
%

2_stage

«Uu-i IT

(M)

/M r

Fig 17: U-locus for 1-stage, 2-stage, and 3-stage
compensators. Improvement is negligible
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Fig \% : Value- of sin90° for different n.

This .curve shows that most of the improvement,

if any, is given by use of a double stage comp-

-ensator. Use of more than 2 stages gives negli-

gible improvement.
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APPENDIX 1

Derivation of an expression

of a multiple-order system

lis derivation is taken fr

the sensitivity

(equation 29)

reference 4)

Write the expansion of

order terms?

total differential of L(s) to include higher*

a -q

+
21

= =
BL , SL ...s— ds + ^r dK +os oK I li,

iz
i

~

+ 1 Hi, % ] . == -q,

same bracket
]

+
i» [ ]

where
[|jf

ds + || dK ] =
os

<v i , 9 L
>) + i

i-1
dK +

3s ^K

o
l
L o

X
L

, 1-2 . r
— CdK) +""+ 1

ds OK oK

Next retain only the lowest order terms for each parameter and not

first (N-l) derivatives of L with respect to s are zero at s = -q

27) . Then
i

a^-

<-i>"
+1

*BI«*IS* -vIS*,]

A
ds

N

1

N

°q
i

ion

This suggests the following notations

d"i=[ S
K T + Z SV d2j+i S

p. *j]»

Comparison of the above 2 equations yields equation (29) of text, which is

thus proved

o
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APPENDIX II

i i i
Relationship between S„, S , S for

K z p,
the multiple-order system root-case.

Prove that equations (15) and (16) are still valid for the case of multiple-

order root at -q

.

t

From comparison of the last two equation of appendix I, one obtains t

But

Thus?

s
i £ (-i)f + 1

N ° r aL_
i

z . ^ N, L o z . J
J o L j s = -i<

oL _, L
oz .

" s + z,
J J

s
1

s
i „

SK
z. z. - q.
J J i

s = -q.

z. - q„
J i

Similar proof shows that

s
1 =-A_
p
j

that is, equations (15) and (16) are valid for multiple-order root at

-q. as well as for single-order root.
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