

DIFFUSION APPROXIMATIONS FOR THE COOPERATIVE SERVICE OF VOICE AND DATA MESSAGES
by
J. P. Lehoczky
and
D. P. Gaver
February 1980

-ved for Public Release; Distribution Unlimited.

NAVAL POSTGRADUATE SCHOOL

 MONTEREY, CALIFORNIARear Admiral J. J. Ekelund
J. R. Borsting
Superintendent
Provost

This report was prepared by:

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NPS55-80-007	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtlite) Diffusion Approximations for the Cooperative Service of Voice and Data Messages	5. TYPE OF REPORT \& PERIOD COVERED Technical
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) J. P. Lehoczky and D. P. Gaver	8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, CA 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, Ca. 93940	12. REPORT DATE February 1980
	13. NUMBER OF PAGES 39
14. MONITORING AGENCY NAME \& ADDRESS(lf different from Controlling Office)	15. SECURITY CLASS. (of thit report) Unclassified
	15a. DECLASSIFICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.
17. DISTRIBUTION STATEMENT (of the abstract ontored in Biock 20, If difforont from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse alde If noceaary and identlify by biock number)

Queues Semigroup Theory
Communications Probability Modeling
Data Transmission
Voice Transmission
20. ABSTRACT (Continue on reverse ide if necoesary and identlify by biock number)

A probability model is presented for a set of communication channels that share the service of data and voice transmissions. A diffusion-theoretic approximation is derived, utilizing new results of Burman (1979). It is shown that the data queue (which is of low priority relative to voice) is approximated by a Wiener process.

DIFFUSION APPROXIMATIONS FOR THE COOPERATIVE SERVICE OF VOICE AND DATA MESSAGES

by
J. P. Lehoczky
Carnegie-Mellon University
Pittsburgh, PA
and
D. P. Gaver
Naval Postgraduate School Monterey, CA

INTRODUCTION

In this paper we study the behavior of a queueing system which arises in the study of certain communication networks. Specifically we study a queueing phenomenon which arises with the SENET network, as described by Coviello and Vena (1975) or Barbacci and Oakley (1976). This network allows for both voice and data messages to be transmitted over the same channels by using a special type of integrated circuit and packet-switched multiplexor structure. The two classes of traffic have substantially different performance requirements. Voice messages tend to possess great redundancy, and hence not to be sensitive to channel error rates, while data is very sensitive to channel error, having essentially no redundancy. Voice messages on the other hand have critical timing requirements and cannot be queued, while data is
relatively insensitive to timing and can be queued. Additionally, voice messages tend to be very long relative to data messages which can be broken up into small packets. These special requirements have led to the following queueing network. A node of the network consists of $c+v$ channels or servers. The voice messages are assigned to v channels and do not queue. Thus the voice messages operate as a loss system. Data messages may use c channels exclusively and any unused voice channels; however, voice preempts data using voice channels. Data messages are queued if necessary. Typical performance measures that one may wish to calculate include the loss rate of voice traffic and the mean data queue length.

We make standard probabilistic assumptions. Specifically, we assume voice traffic arrives according to a Poisson (λ) process and each voice message has an independent exponential(μ) service time. Data messages are assumed to have independent exponential(n) service times and arrive according to a Poisson(() process. With these assumptions voice is an $M / M / v / v$ loss system, and data is an $M / M / S$ system where $S=c+v-V(t)$ with $V(t)=$ number of voice messages in service. The stochastic process $\{(X(t), V(t)), t \geq 0\}$ is Markov with state space $Z^{+} \times\{0,1, \ldots, v\}$ where $X(t)=$ data system size at time t. One can easily write the Kolmogorov forward equations appropriate for this system; however, these equations do not yield a closed form solution. To describe this system
one must either numerically solve the forward equations or introduce approximations.

This system has been studied previously by a number of researchers including Halfin and Segal (1972), Halfin (1972), Fischer and Harris (1976), Bhat and Fischer (1976), Fischer (1977), Chang (1977), and Gaver and Lehoczky (1979a,b). The last two papers introduce a "fluid flow" and a diffusion approximation and derive explicit formulas for data queue behavior. These papers focus on the important case in which $\rho_{\mathrm{d}}=\delta / \eta>c$. In such a situation the data messages must have access to voice channels for the system to be stable. Furthermore, it was assumed that n / μ was large, say 10^{4}. Under these circumstances the data flow could be treated deterministically. Suppose we define $\rho_{V}=\lambda / \mu$ and $q=\left(\rho_{V}^{V} / v!\right) / \sum_{j=0}^{V} \rho_{V}^{j} / j!$, the Erlang B blocking probability. The total traffic intensity on the $c+v$ channels is given by $\rho_{d}+\rho_{V}(l-q)$, or we could define $\rho=\left(\rho_{d}+\rho_{V}(l-q)\right) /(c+v)$. A heavy traffic approximation can be derived for this case $\rho \not \uparrow$ l. Such an approximation was derived in Gaver and Lehoczky (1979b) assuming n / μ was large; a Wiener process with reflecting boundary was found appropriate. In this paper we derive a heavy traffic approximation for the system without the fluid flow assumption that n / μ is large.

The methodology is drawn heavily from the approach of Burman (1979). In this approach one characterizes a Markov process
by its infinitesimal generator. One next suitably normalizes the process so that the generator converges to a limiting infinitesimal generator (in this case to that of a reflected Brownian motion). This convergence allows the conclusion that the finite dimensional distributions of the normalized Markov process converge. The diffusion approximation consists of treating the actual process through its limiting behavior. The details are somewhat complicated by the presence of a boundary.
2.

Let $\{(X(t), V(t)), t \geq 0\}$ be a bivariate Markov process with state space $S=Z^{+} \times\left\{0,1, \ldots, v^{+}\right.$. Here $\{V(t), t \geq 0\}$ is marginally an $M / M / v / v$ loss system with arrival rate λ and service rate μ. Conditional on $V(t)$, $\{X(t), t \geq 0\}$ is an $M / M /(c+v-V(t))$ queueing system with arrival rate δ and service rate η. We say that the V process subordinates the X process. We let

the infinitesimal generator of the V process.
The generator of the (X, V) process is given by

for $f: S \rightarrow R$ continuous where

$$
\begin{array}{r}
Q f(x, k)=\rho_{V} f(x, k+l)-\left(k+\rho_{V}\right) f(x, k)+k f(x, k-1) \tag{2.3}\\
v \geq k \geq 0
\end{array}
$$

and $f(x,-l)=f(x, v+1)=0$. Clearly $Q f(x)=0$, that is Q annihilates functions of x alone. We next normalize the (X, V) process by defining $X_{n}(t)=X(n t) / \sqrt{n}$ and $V_{n}(t)=V(n t)$. One can calculate the generator of the Markov process $\left\{\left(X_{n}(t), V_{n}(t)\right), t \geq 0\right\}$ having state space $S_{n}=\{0,1 / \sqrt{n}, 2 / \sqrt{n}, \ldots\} \times\{0,1, \ldots, v\} \quad$ to be

We assume $f(x, k)$ has three bounded derivatives in x for each fixed k. With this assumption one can expand terms in (2.4) in a Taylor series and rewrite as

$$
A_{n} f(x, k)=\left\{\begin{align*}
n Q f(x, k) & +n^{l / 2_{f}} f_{x}(x, k)(\delta-n(c+v-k)) \\
& +\frac{1}{2} f_{x x}(x, k)(\delta+n(c+v-k)) \\
& +0\left(n^{-1 / 2}\right) \\
& i f \quad x \geq(c+v-k) / \sqrt{n} \\
n Q f(x, k) & +n^{l / 2_{f}} f_{x}(x, k)(\delta-n \sqrt{n x}) \tag{2.5}\\
& +\frac{1}{2} f_{x x}(x, k)(\delta+n \sqrt{n x})+O\left(n^{-1 / 2}\right) \\
& \text { if } x=0, l / \sqrt{n}, \ldots, \quad(c+v-k) / \sqrt{n}
\end{align*}\right.
$$

with $f_{x}(x, k)=\frac{\partial}{\partial x} f(x, k)$ and $f_{x X}(x, k)=\frac{\partial^{2}}{\partial x^{2}} f(x, k)$. We ultimately wish to prove that the finite dimensional distributions of $\left\{x_{n}(t), t \geq 0\right\}$ converge to those of a Wiener process with reflecting barrier at the origin. This can be restated in terms of semi-groups. We let $\left\{T_{t}^{n}, t \geq 0\right\}$ be the semi-group of operators associated with $\left\{\left(X_{n}(t), V_{n}(t)\right), t \geq 0\right\}$ and $\left\{T_{t^{\prime}}^{\infty} t \geq 0\right\}$ be that associated with a Wiener process having reflecting barrier at 0. Let g be a continuous function $g: R^{\prime} \rightarrow R^{\prime}$. Knowledge of the semi-group is equivalent to knowledge of the transition functions by taking a sequence of g^{\prime} 's which approximate indicator functions. We wish to prove $\left|T_{t}^{n} g(x, k)-T_{t}^{\infty} g(x)\right| \rightarrow 0$ as $n \rightarrow \infty$ for all (x, k). Here $T_{t}^{n} g(x, k)=E\left(g\left(X_{t}\right) \mid X_{N}(0)=x\right.$, $\left.V_{n}(0)=k\right)$. The presence of the variable k prevents this
from being done directly. The method we use is to construct a convenient sequence of functions $\left\langle g_{n}\right\rangle_{n=1}^{\infty}$ which converge in some sense to g. We write

$$
\begin{align*}
\left\|T_{t}^{n} g-T_{t}^{\infty} g\right\|_{n} \leq \|\left(T_{t}^{\infty}\right)_{n} & -T_{t}^{\infty} g\left\|_{n}+\right\| T_{t}^{n} g-T_{t}^{n} g_{n} \|_{n} \\
& +\left\|T_{t}^{n} g_{n}-\left(T_{t}^{\infty}\right)_{n}\right\|_{n} \tag{2.6}
\end{align*}
$$

where $\left\|\|_{n}\right.$ refers to the sup norm over S_{n}. Both T_{t}^{n} and T_{t}^{∞} are contraction semigroups.

$$
\left\langle\left(T_{t}^{\infty} g\right)_{n}\right\rangle_{n=1}^{\infty} \text { is the sequence of functions constructed }
$$ from T_{t}^{∞}. Our goal is to show that each of the three terms on the right side of (2.6) converges to 0 . The first and second terms can be handled similarly. For any function 9 , we must guarantee that the constructed $\left\langle g_{n}\right\rangle_{n=1}^{\infty}$ sequence satisfies $\left\|g_{n}-g\right\|_{n} \rightarrow 0$. It will follow that $\left\|\left(T_{t}^{\infty}\right)_{n}-T_{t}^{\infty}\right\|_{n} \rightarrow 0$. Moreover, since $\left\{T_{t^{\prime}}^{n} t \geq 0\right\}$ is a contraction semi-group $\left\|T_{t}^{n} g-T_{t}^{n} g_{n}\right\|_{n} \leq\left\|g-g_{n}\right\|_{n}$ which also converges to 0 . The sequence $\left\langle g_{n}\right\rangle_{n=1}^{\infty}$ will be chosen in such a way that the third term converges to 0 .

We focus on a convergence determining class of functions g, those which are bounded and have three bounded derivatives. For such a function $g(x)$ we define

$$
\begin{equation*}
g_{n}(x, k)=g(x)+\frac{1}{\sqrt{n}} u(x, k)+\frac{1}{n} v(x, k) \tag{2.7}
\end{equation*}
$$

where u and v have two bounded derivatives in x for each fixed k. The functions u and v will be determined explicitly later and are chosen to control the third term in (2.6). Clearly when g_{n} is defined by (2.7), $\left\|g_{n}-g\right\|_{n}=O\left(n^{-l / 2}\right)$ and therefore converges to 0 as required.

One can apply the generator A_{n} to g_{n} to derive
where $u_{x}(x, k)=\frac{\partial}{\partial x} u(x, k)$. Recall that 0 annihilates functions of x alone, thus $n \Omega g(x) \equiv 0$. We want to have $A_{n} g_{n}(x, k)$ converge to a finite limit and to have that limit be independent of k. For this to occur, the $n^{1 / 2}$ term must be controlled and the functions u and v must be chosen in such a way as to eliminate the variable k.

The $n^{1 / 2}$ coefficient in (2.8) can be rewritten by adding and subtracting

$$
\sum_{k=0}^{V} \pi_{k} g^{\prime}(x)(\delta-\eta(c+v-k))=-\eta(c+v)(1-\rho) g^{\prime}(x)
$$

We next pick $u(x, k)$ to be a solution of

$$
\begin{align*}
\varrho_{u}(x, k) & =-\left(g^{\prime}(x) \eta\left(\rho_{d}-(c+v-k)\right)+g^{\prime}(x) \eta(c+v)(1-\rho)\right) \\
& =-g^{\prime}(x) \eta\left(k-\rho_{v}(1-q)\right) \tag{2.9}
\end{align*}
$$

When $u(x, k)$ is any solution of (2.9), the coefficient of the $n^{1 / 2}$ term in (2.8) becomes

$$
\begin{array}{ll}
-g^{\prime}(x) \eta(c+v)(1-\rho) & \text { if } x \geq \frac{c+v-k}{\sqrt{n}} \\
g^{\prime}(x) \eta\left((c+v) \rho-n^{1 / 2} x-k\right) \text { if } 0 \leq x<\frac{c+v-k}{\sqrt{n}}
\end{array}
$$

Equation (2.9) can be solved explicitly. Define $a_{k}=-g^{\prime}(x) \eta\left(k-p_{V}(1-q)\right) / \mu$, so that (2.9) can be written as

$$
\begin{align*}
-\rho_{v}(u(x, k)-u(x, k-1))-(k-1)(u(x, k-1)-u(x, k-2)) & =a_{k-1}, k=1, \ldots, v \\
-v(u(x, v)-u(x, v-1)) & =a_{v} \tag{2.10}
\end{align*}
$$

Equation (2.10) has a solution since $\sum_{k=0}^{v} \pi_{k} a_{k}=0$, where $\left\langle\pi_{k}\right\rangle_{\mathrm{k}=0}^{\mathrm{V}}$ is the stationary distribution associated with Ω, or $\pi_{k}=\left(\rho_{\mathrm{v}}^{\mathrm{k}} / \mathrm{k}!\right) /\left(\sum_{i=0}^{\mathrm{V}} \rho_{\mathrm{v}}^{\mathrm{i}} / \mathrm{i}!\right)$. The solution is given by

$$
u(x, k)-u(x, k-1)=\frac{\sum_{i=0}^{k-1} \pi_{i} a_{i}}{\rho_{v} \pi_{k-1}}=\frac{-g^{\prime}(x) \eta T_{k-1}}{\mu \rho_{v} \pi_{k-1}}
$$

where

$$
T_{k}=\sum_{i=0}^{k} \pi_{i}\left(1-\rho_{v}(l-q)\right) \quad \text { and } \quad T_{v}=0
$$

Clearly

$$
\begin{equation*}
u(x, k)=u(x, 0)-\frac{g^{\prime}(x) \eta}{\mu \rho_{v}} \sum_{i=1}^{k} \frac{T_{i-1}}{\pi_{i-1}}, 1 \leq k \leq v \tag{2.11}
\end{equation*}
$$

where $u(x, 0)$ is arbitrary. We let $u(x, 0)=\frac{1}{2} g^{\prime}(x)$ so

$$
\begin{equation*}
u(x, k)=g^{\prime}(x)\left(\frac{1}{2}-\frac{\eta}{\mu \rho_{v}} \sum_{i=1}^{k} \frac{T_{i-1}}{\pi_{i-1}}\right), 0 \leq k \leq v \tag{2.12}
\end{equation*}
$$

For the choice of u specified by (2.12) we next wish to insure that the limiting generator is independent of the variable k. The function v is chosen to eliminate the dependence on k. The $O(1)$ term of (2.8) is given, for $x \geq(c+v-k) / \sqrt{n}$, by

$$
\begin{aligned}
Q v(x, k)+ & g^{\prime \prime}(x)\left[\frac{1}{2}-\frac{\eta}{\mu \rho_{v}} \sum_{i=1}^{k} \frac{T_{i-1}}{\pi_{i-1}}(\delta-\eta(c+v-k))\right] \\
& +\frac{1}{2} g^{\prime \prime}(x)(\delta+\eta(c+v-k)) \\
= & Q v(x, k)+H(x, k) .
\end{aligned}
$$

Let $\bar{H}(x)=\sum_{k=0}^{V} \pi_{k} H(x, k)$ and consider $Q v(x, k)+(H(x, k)-\bar{H}(x))+\bar{H}(x)$. We now let $v(x, k)$ be any solution of

$$
\begin{equation*}
\operatorname{Qv}(x, k)=-(H(x, k)-\bar{H}(x)) \tag{2.13}
\end{equation*}
$$

Equation (2.13) has a one-parameter family of solutions, since $\sum_{k=0}^{V} \pi_{k}(H(x, k)-\bar{H}(x))=0$. When $V(x, k)$ is chosen to be any solution of (2.13), the $O(1)$ term of (2.3), for $x \geq(c+v-k) / \sqrt{n}$, will become $\bar{H}(x)$ and will therefore be independent of k. It remains to calculate $\bar{H}(x)$.

$$
\begin{array}{r}
\bar{H}(x)=g^{\prime \prime}(x)\left[\sum _ { k = 0 } ^ { v } \pi _ { k } \left\{\left(\frac{1}{2}-\frac{\eta}{\mu \rho_{v}} \sum_{i=1}^{k} \frac{T_{i-1}}{\pi_{i-1}}\right)(\delta-n(c+v-k))\right.\right. \\
\\
\left.\left.+\frac{1}{2}(\delta+\eta(c+v-k))\right\}\right]
\end{array}
$$

$$
\begin{equation*}
=g^{\prime \prime}(x)\left[\delta-\frac{\eta}{\mu \rho_{v}} \sum_{k=0}^{V} \pi_{k}(\delta-\eta(c+v-k)) \sum_{i=1}^{k} \frac{T_{i-1}}{\pi_{i-1}}\right] \tag{2.14}
\end{equation*}
$$

$=g^{\prime \prime}(x)\left[\delta-\frac{\eta^{2}}{\mu \rho_{v}} \sum_{k=0}^{v} \pi_{k}\left(k-\rho_{v}(l-q)\right) \sum_{i=1}^{k} \frac{T_{i-1}}{\pi_{i-1}}\right.$

$$
\left.+\frac{\eta(c+v)(l-\rho)}{\mu \rho_{v}} \sum_{k=0}^{v} \pi_{k} \sum_{i=1}^{k} \frac{T_{i-1}}{\pi_{i-1}}\right]
$$

The second term can be rewritten by interchanging the order of summation. The third term is $O(1-\rho)$. We find

$$
\begin{aligned}
\bar{H}(x) & =g^{\prime \prime}(x)\left[\delta-\frac{n^{2}}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}}{\pi_{i}} \sum_{k=1+1}^{v} \pi_{k}\left(k-\rho_{v}(1-q)\right)+o(1-\rho)\right] \\
& =g^{\prime \prime}(x)\left[\delta-\frac{\eta^{2}}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}}{\pi_{i}}\left(T_{v}-T_{i}\right)+o(1-\rho)\right]
\end{aligned}
$$

with $T_{v}=0$ or

$$
\begin{equation*}
\bar{H}(x)=g^{\prime \prime}(x) \eta\left[\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}+o(1-\rho)\right] \tag{2.15}
\end{equation*}
$$

For the functions u and v specified by (2.12) and (2.13), equation (2.8) can be rewritten as

$$
\begin{align*}
& \left(\begin{array}{l}
-n^{1 / 2}(1-\rho)(\sigma+v) n g^{\prime}(x) \\
+n\left[\rho_{d}+\frac{1}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}+O(1-\rho)\right] g^{\prime \prime}(x)+O\left(n^{-1 / 2}\right),
\end{array}\right. \\
& \text { for } x \geq(c+v-k) / \sqrt{n} \\
& A_{n} g_{n}(x, k)= \tag{2.16}\\
& n^{1 / 2} n\left[(c+v) \rho-n^{1 / 2} x-k\right] g^{\prime}(x) \\
& +n g^{\prime \prime}(x)\left[\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}+o(I-\rho)\right. \\
& \left.-\left(c+v-k-n^{1 / 2} x\right) \frac{n}{\mu \rho_{v}} \sum_{i=0}^{k} \frac{T_{i}}{\pi_{i}}\right]+O\left(n^{-1 / 2}\right) \\
& \text { for } x \leq(c+v-k) / \sqrt{n}
\end{align*}
$$

We now introduce the "heavy traffic approximation."
In order for the generator to converge to a limiting generator we must have $1-\rho=O\left(n^{-1 / 2}\right)$. Specifically, we assume $\rho=\rho_{\mathrm{n}}=1-(\theta / \sqrt{\mathrm{n}})$ for some $\theta \geq 0$. In this case, $n^{1 / 2}(1-\rho)=\theta$, and (2.16) becomes
$-\theta n(c+v) g^{\prime}(x)+n\left[\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}\right] g^{\prime \prime}(x)+o\left(n^{-1 / 2}\right)$
for $x \geq(c+v-k) / \sqrt{n}$

$$
\begin{aligned}
& n\left[(c+v) \rho-n^{1 / 2} x-k\right] n^{1 / 2} g^{\prime}(x) \\
& +\eta g^{\prime \prime}(x)\left[\left\{\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}\right\}\right. \\
& \left.-\left(c+v-k-n^{1 / 2} x\right) \frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{k} \frac{T_{i}}{\pi_{i}}\right] \\
& \text { for } x \leq(c+v-k) / \sqrt{n}
\end{aligned}
$$

We now define a limiting generator A_{∞} with domain consisting of all functions g having three bounded derivatives and $g^{\prime}(0)=0$. Let

$$
\begin{gather*}
A_{\infty} g(x)=-\theta \eta(c+v) g^{\prime}(x)+\eta\left[\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}\right] g^{\prime \prime}(x), \\
x>0 \tag{2.18}
\end{gather*}
$$

A_{∞} is the generator of a Markov process which corresponds to a Wiener process with drift $-\theta n(c+v)$, scale

$$
2 \eta\left[\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-l} \frac{T_{v}^{2}}{\pi_{i}}\right]
$$

and a reflecting barrier at 0 . The $O\left(n^{-1 / 2}\right)$ terms involve the first three derivatives of g which are bounded. It is clear from a direct comparison of (2.16) and (2.18) that $\left|A_{n} g_{n}(x, k)-A_{\infty} g\right| \rightarrow 0$ as $n \rightarrow \infty$ for all $x>0$ and k arbitrary. In addition, $g^{\prime}(0)=0$ is necessary for the generator to converge at $x=0$. Unfortunately even assuming $g^{\prime}(0)=0$,

$$
\left|A_{n} g(0, k)-A_{\infty} g(0)\right| \rightarrow(c+v-k) \frac{\eta^{2}}{\mu \rho_{v}} \sum_{i=0}^{k} \frac{T_{i}^{2}}{\pi_{i}} g^{\prime \prime}(0) \quad \text { as } \quad n \rightarrow \infty
$$

rather than to 0 . One needs a special argument to handle this lack of convergence at the boundary.

We set out to prove the third term in (2.6) converges
to 0. Standard semi-group results (see Burman, 1979, p. 33) give

$$
\begin{equation*}
\left(T_{t}^{\infty} g\right)_{n}-T_{t}^{n} g_{n}=\int_{0}^{t} T_{t-S}^{n}\left(\left(A_{\infty} w\right)_{n}-A_{n} w_{n}\right) d S \tag{2.19}
\end{equation*}
$$

where $w=w(t, x)=T_{t}^{\infty} g(x)$. Recall that $w_{n}=w+(1 / \sqrt{n}) u+(1 / n) v$ with u and v defined by (2.12) and (2.13) with g replaced by w. It follows that

$$
\begin{aligned}
& \left\|T_{t}^{n} g_{n}-\left(T_{t}^{\infty} g\right)_{n}\right\|_{n} \\
& =\left\|\int_{0}^{t} T_{t-S}^{n}\left(\left(A_{\infty} w\right)_{n}-A_{\infty} w+A_{\infty} w-A_{n} w_{n}\right) d S\right\|_{n} \\
& \leq \int_{0}^{t}\left\|T_{t-S}^{n}\left(\left(A_{\infty} w\right)_{n} A_{\infty} w\right)\right\|_{n} d S+\left\|\int_{0}^{t} T_{t-S}^{n}\left(A_{\infty} w-A_{n} w_{n}\right) d S\right\|_{n} \\
& \leq \int_{0}^{t}\left\|\left(A_{\infty} w\right)_{n}-A_{\infty} w\right\|_{n} d S+\left\|\int_{0}^{t} T_{t-S}^{n}\left(A_{\infty} w-A_{n} W_{n}\right) d S\right\|_{n}
\end{aligned}
$$

The first term is clearly $O\left(n^{-1 / 2}\right)$. It remains to show that the second is $O\left(n^{-1 / 2}\right)$ as well. We have shown $\left|A_{\infty} W-A_{n} W_{n}\right|=O\left(n^{-1 / 2}\right)$ except at the boundary where it is $O(1)$. We split the integral into two parts, for one of which the process is away from the boundary, and for the other, near the boundary. The integral away from the boundary has an integrand which is $O\left(n^{-1 / 2}\right)$. The integral near the boundary is also $O\left(n^{-1 / 2}\right)$ since under a heavy traffic assumption the process is rarely near the boundary. The details are merely summarized here; they are based on the ideas of Burman (1979).

Let $I_{\text {on }}$ be the indicator function of

$$
\left[0, \frac{c+v-k}{\sqrt{n}}\right)
$$

and $I_{l n}$ be the indicator of

$$
\left[\frac{c+v-k}{\sqrt{n}}, \infty\right)
$$

We have

$$
\begin{aligned}
& \left\|\int_{0}^{t} T_{t-S}^{n}\left(A_{\infty} w-A_{n} W_{n}\right) d S\right\|_{n} \\
& \quad \leq\left\|\int_{0}^{t} T_{t-S}^{n}\left(A_{\infty} w-A_{n} w_{n}\right) I_{l n} d S\right\|_{n}+\left\|\int_{0}^{t} T_{t-S}^{n}\left(A_{\infty} w-A_{n} w_{n}\right) I_{0 n} d S\right\|_{n} \\
& \quad \leq\left\|\int_{0}^{t}\left(A_{\infty} w-A_{n} w_{n}\right) I_{l n} d S\right\|_{n}+\left\|A_{\infty} w-A_{n} w_{n}\right\|_{n}\left\|\int_{0}^{t} T_{t-S}^{n} I_{0 n} d S\right\|_{n} .
\end{aligned}
$$

The first term is $O\left(n^{-1 / 2}\right)$, since $\left|A_{\infty} w-A_{n} W_{n}\right|=O\left(n^{-1 / 2}\right)$ off the boundary. The factor $\left\|A_{\infty} w-A_{n} W_{n}\right\|=O(1)$, thus it remains to show that

$$
\left\|\int_{0}^{t} T_{t-S^{I}}^{n} 0 n d S\right\|_{n}=O\left(n^{-1 / 2}\right)
$$

This gives the total time in $[0, t]$ spent near the boundary. We bound

$$
\left\|\int_{0}^{t} T_{t-S}^{n} I_{n} d S\right\|_{n}
$$

by first introducing a function $h(x)$ not in the domain of A_{∞}. We let $h(x)$ have bounded support, be infinitely differentiable and be given by $h(x)=x$ for x near 0 . One can construct $h_{n}(x)$ using (2.7) and apply A_{n} to h_{n} to find

$$
A_{n} h_{n}= \begin{cases}0(1) & \text { if } x \geq \frac{c+v-k}{\sqrt{n}} \\ n^{1 / 2} n\left((c+v) \rho-n^{1 / 2} x-k\right)+o(1) & \text { if } x<\frac{c+v-k}{\sqrt{n}}\end{cases}
$$

One has

$$
\begin{aligned}
T_{t}^{n_{n}}-h_{n} & =\int_{0}^{t} T_{S}^{n^{A}} A_{n} h_{n} d S \\
& =\int_{0}^{t} T_{S}{ }_{S} A_{n} h_{n} I_{l n} d S+\int_{0}^{t} T_{S} n^{A}{ }_{n} h_{n} I_{0 n} d S .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|\int_{0}^{t} T_{S}^{n} A_{n} h_{n} I_{0 n} d S\right\|_{n} & \leq\left\|T_{t}^{n_{n}}{ }_{n} h_{n}\right\|_{n}+\left\|\int_{0}^{t} T_{S}^{n_{A}}{ }_{n} h_{n} I_{l n} d S\right\|_{n} \\
& \leq 2\left\|h_{n}\right\|_{n}+O(1) .
\end{aligned}
$$

We have shown $\left\|\int_{0}^{t} T_{S}^{n_{n}} A_{n} n^{I} I_{n} d A\right\|_{n}$ to be bounded. in n. An application of (2.2) shows

$$
\left\|\int_{0}^{t} T_{S}^{n} A_{n} h_{n} I_{0 n} d A\right\|_{n}=n^{1 / 2} n\left|(C+v) \rho-n^{1 / 2} x-k+O(I)\right|\left\|\int_{0}^{t} T_{S} I_{0 n} d s\right\|_{n}
$$

is bounded in n. It follows that $\left\|\int_{0}^{t} T_{S}^{n} I_{0 n} d S\right\|_{n}=O\left(n^{-1 / 2}\right)$.

This finally concludes the argument which shows $\left\|T_{t}^{n} g_{n}-\left(T_{t}^{\infty}\right)_{n}\right\|_{n}=O\left(n^{-1 / 2}\right)$, hence by (2.6) $\left\|T_{t}^{n}-T_{t}^{\infty} g\right\|_{n}=O\left(n^{-1 / 2}\right)$. We have thus shown that the finite-dimensional distributions of the $\left(X_{n}(t), V_{n}(t)\right)$ process converge to those of a Wiener process with drift $-\theta n(c+v)$ scale

$$
\eta\left(\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}\right)
$$

and reflection at 0 . The diffusion approximation treats $X_{n}(t)$ as though it were such a Wiener process. For instance, the limiting Wiener process has a stationary exponential distribution with parameter

$$
\frac{\theta(c+v)}{\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1}\left(T_{i}^{2} / \pi_{i}\right)}
$$

This is a distribution for $X(n t) / \sqrt{n}$ and suggests $X(t)$ will have a steady state distribution given approximately by an exponential with parameter

$$
(c+v)(1-\rho) /\left(\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}\right)
$$

The steady state mean data queue length would then be

$$
\begin{equation*}
E(X(t))=\frac{\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}}{(c+v)(1-\rho)} \tag{2.21}
\end{equation*}
$$

It is interesting to consider the special case $c=0$, $v=1$ where the two types of traffic use the same channel. Under heavy traffic $\rho=\rho_{\mathrm{d}}+\rho_{\mathrm{v}} /\left(1+\rho_{\mathrm{v}}\right)$, so $\rho_{\mathrm{d}} \approx\left(1+\rho_{\mathrm{v}}\right)^{-1}$. The mean data queue length derived from the diffusion approximation (2.21) will be

$$
\left(\rho_{\mathrm{d}}+\frac{\eta}{\mu} \frac{\rho_{\mathrm{v}}}{\left(1+\rho_{\mathrm{v}}\right)^{3}}\right) /(1-\rho) \approx \frac{\rho_{\mathrm{d}}}{1-\rho}\left(1+\frac{\eta}{\mu} \frac{\rho_{\mathrm{v}}}{\left(1+\rho_{\mathrm{v}}\right)^{2}}\right)
$$

The latter is the exact expression derived by Fisher (1978) for this case. The expression (2.21) represents a generalization of the results of Gaver and Lehoczky (1979b). In this paper, a diffusion approximation is given based on the fluid flow assumption for the data. For this case the result is the same except that the scale is given by

$$
\frac{n^{2}}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}
$$

rather than

$$
\eta\left(\rho_{d}+\frac{\eta}{\mu \rho_{v}} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\pi_{i}}\right)
$$

The results derived in this paper therefore definitely generalize
the results of Gaver and Lehoczky (1979b) since the variability in the data queue is now included. When η / μ is large, the second term dominates, and the fluid flow approximation is satisfactory.

The Wiener process approximation for the $X(t)$ process provides a method for studying the dynamics of that process. For instance, suppose the data queue were at level x at time t where x is large. One might wish to study the time that elapses until the queue becomes empty. This is essentially the duration of the busy period under heavy traffic and corresponds to a first-passage time for a Wiener process. Let us denote it by T_{x}. Straightforward martingale arguments provide for its transform

$$
\begin{equation*}
E\left(e^{-s T} x\right)=\exp \left[\left(\frac{x}{\sigma}\right)-\left(\frac{m}{\sigma}\right)-\sqrt{\left(\frac{m}{\sigma}\right)^{2}+2 s}\right] \tag{2.22}
\end{equation*}
$$

where

$$
\begin{aligned}
m & =\theta(c+v) n \approx n^{1 / 2}(1-\rho)(c+v) n \\
\frac{\sigma^{2}}{2} & =\eta\left(\rho_{d}+\frac{n}{\mu \rho_{v}} \sum_{i=0}^{n-1} \frac{T_{i}^{2}}{\pi_{i}}\right)
\end{aligned}
$$

It is also easy to find the mean first-passage time

$$
\begin{equation*}
E\left(T_{x}\right)=x / m \tag{2.23}
\end{equation*}
$$

One might also be interested in the area beneath the sample path until emptiness occurs, since this area represents the total time waited by all data customers involved in the busy period. If A_{x} represents this area, simple backward equation arguments give

$$
\begin{equation*}
E\left(A_{x}\right)=\frac{x^{2}}{2 m}+\frac{\sigma^{2}}{2 m^{2}} x \tag{2.24}
\end{equation*}
$$

where m and σ^{2} are given in (2.22).

Acknowledgment. This research was supported in part by a contract from the Office of Naval Research.

BIBLIOGRAPHY

Barbacci, M. R. and Oakley, J. D. (1976). "The integration of Circuit and Packet Switching Networks Toward a SENET Implementation," l5th NBS-ACM Annual Technique Symposium.

Bhat, U. N. and Fischer, M. J. (1976). "Multichannel Queueing Systems with Heterogeneous Classes of Arrivals," Naval Research Logistics Quarter 23

Burman, David Y. (1979). "An Analytic Approach to Diffusion Approximations in Queueing," Ph.D. Dissertation, New York University, Courant Institute of Mathematics.

Chang, Lih-Hsing (1977). "Analysis of Integrated Voice and Data Communication Network," Ph.D. Dissertation, Department of Electrical Engineering, Carnegie-Mellon University, November.

Coviello, G. and Vena, P. A. (1975). "Integration of Circuit/ Packet Switching in a SENET (Slotted Envelop NETwork) Concept," National Telecommunications Conference, New Orleans, December, pp. 42-12 to 42-17.

Fischer, M. J. (1977a). "A Queueing Analysis of an Integrated Telecommunications System with Priorities," INFOR 15

Fischer, M. J. (1977b). "Performance of Data Traffic in an Integrated Circuit- and Packet-Switched Multiplex Structure, DCA Technical Report.

Fischer, M. J. and Harris, T. C. (1976). "A Model for Evaluating the Performance of an Integrated Circuit- and Packet-Switched Multiplex Strucutre," IEEE Trans. on Comm., Com-24, February.

Gaver, D. P. and Lehoczky, J. P. (1979a). "Channels that cooperatively service a data stream and voice messages," Technical Report, Naval Postgraduate School, Department of Operations Research.

Halfin, S. (1972). "Steady-state Distribution for the Buffer Content of an M/G/l Queue with Varying Service Rate," SIAM J. Appl. Math., 356-363.

Halfin, S. and Segal, M. (1972). "A Priority Queueing Model for a Mixture of Two Types of Customers," SIAM J.Appl. Math., 369-379.

Lehoczky, J. P. and Gaver, D. P. (1979b). "Channels that Cooperatively Service a Data Stream and Voice Messages, II: Diffusion Approximations," Technical Report, Naval Postgraduate School, Department of Operations Research.
Defense Technical Information Center 2
Cameron StationAlexandria, VA 22314
Library Code 2Code 0142Naval Postgraduate SchoolMonterey, CA 93940
Library Code 55 1Naval Postgraduate SchoolMonterey, Ca. 93940
Dean of Research 1
Code 012A
Naval Postgraduate SchoolMonterey, Ca. 93940
Attn: A. Andrus, Code 55 1
D. Gaver, Code 55 25
D. Barr, Code 55 1
P. A. Jacobs, Code 55 1
P. A. W. Lewis, Code 55 1
P. Milch, Code 55 1
R. Richards, Code 55 1
M. G. Sovereign, Code 55 1
R. J. Stampfel, Code 55 1
R. R. Read, Code 55 1
J. Wozencraft, Code 74 1
Mr. Peter Badgley 1ONR Headquarters, Code 102B800 N. Quincy StreetArlington, VA 22217
Dr. James S. Bailey, Director 1Geography Programs,
Department of the Navy
ONR
Arlington, VA 93940
Prof. J. Lehoczky 10Dept. of StatisticsCarnegie Mellon UniversityPittsburgh, PA. 15213

CFFICE CF AAVAL RESEARCF
1 NEH YORK \＆REA CFEIC 715 Bf门日［WAY－ETF FLDO？
ATTN：CK．FOĒ侖 GRAFTCA
NEW YORK，NY
12053

DIRECTCR \quad CFFICEGF AVAL RESEARCF ERANCH OFF 1 536 SCLTH CLAFK STREET ATTN：DEPUTY ANO CHIEF SCIENTIST CHICAGO，IL 60605

LI ERARY

92152

AAVY LIBRAFY TECHNOLCGY LAB 1
NA YIONAL SPACE TECHNOLCGY LAB AT TA：NAVY LIERARIAN
BAY ST．LCUIS
MS
こ乌522

AAVAL ELECTRONIC SYSTEMS COMMAND 11
MATIUNAL CENTER NJ． 1
ARLINGTOA
VA
20360

OIFECTCR RAVAL REAEARCF LAECRATORY
ATTN：LIERARY（JNRL）
CCEE O I
WASHINGTEN．C．C．
TECHMICAL IAFCMMATION EIVISION 1 AAVAL FESEASCM LABJRATOR：
WASHIMGTCH. C. C.

```
FRCF C. R R \(\triangle\) KFR
                                    1
DFPARYPENT ræ̈ STATISTICS
LNIVEGSITY CFF ACTRH CAFCLIAA
CHAFEL HILLINA
NCFTH
\(27 E 14\)
FRCF. R E BECFトOFER 1
CEFARTMENT CF CPERATICNS RESEARCH
CCFNELL LNIVORSITY
ITHACA
NEW YORK 14850
```

FRCF A J J EERSHAC
SCHOOL CF ENCINEORING
UNIVERSITY CF CALIFCRNIA
IRVINEROIA
92664
PAFJOTMENTKOL STATISTICS
CEFARERSITYCF CALIFCRNIA
berkeley ，CALIfCRNIA

FPOF F．W．BLOCK
DEPARTNENT CF NATHENATICS
UNIVERSITY CF．PITTSBURGH FITTSBUEGH

15260
PROF．JCSEFF ELUN
1
DEPT：OF MATHEMATICS，STATISTICS AAC COMPLTER SCIENCE
THE ANERICAN LNIVERSITY WASHINGTON
CC 20016

PROF R A A BRAD！EY 1 DEFARTMENT CF STATISTICS
TALLAHASSEE，FLCRIDA $323 C 6$

```
FROF. R. E. ESRLDW
OFERATICNS RESENRC:GCONTER
CCILECE CF FREINEEFIDG
UNIVERSI TY CF LALIIOCRIIIA
BEFKLFY
CALIFCFNIA 94720
```

```
MR. C. A EENAETT
NAVAL CCASIAL SYSTEHS LAECRATORY
CClE p7Cl
FAMAl:A CITT,
Flcrida
1

FRCF．H．R．EIISCHKE
DEPT：CF GLAATITATIVE
EUSINESS AMALYSIS
LNIVEKSITY CF SCLTHEFM CALIFCRNIA
90007
CR DERRILL JJ ECRDELON
AAVAL UNCEFWATER SYSTEMS EENTER AAVAL U
COCE 21 NELPORT
RI
02840
1
J．́PE：COYER JR
SOUTHERM METHCDIST UNIVERSITY OALLAS

FREF： \(\begin{aligned} & \text { CF CHERNCFF } \\ & \text { DEPT：CF THENATICS }\end{aligned}\)
NASS INSTITUTE CF TECHNGLOEY
CANBRIDEE．
MASSACHUSU̇ETS 02135

FFOF C CERMAN
DEFARTMENT TF CIVIL EVGINEERING AND ENGINEミSI NO HCCHANICS COLUMEIA LUIVERSITY
```

PRCF R R L. OISNEY
VIFGINIA FCLYTECFHIC INSTITLTE
ANDSTATELAIVERSITY
DEFT. ÉF INCUSTRIAL ENGIMEERING
AND DFERATICNS R'EうこのRCH
ELACKSEURE, VA24061

```
MR GENE H. GLEISSNER ..... 1AFFLIEE MATトEAATICS LARGRATCAYCAVIO TA YLCR AA IAL SHIF RESEARCHANC CEVELCFMENT CENTEREETHESDAMD
20084
FROF. S. S. CLPTA ..... 1
OEPARTMENTOFSTATISTICSPLRCUE UNIVERSITY
LAFAYETTE
INOIANA 47907FFOF C C I HAASCN1DEPT OF NATH. SCIENCES
STATE LNILERSITY OF NEW ..... YCRK,BINGHAITCN
BINGHAMICN
NY ..... 13901
Prof. M. J. Hinich ..... 1
Dent. of Economics Virginia Polytechnica Institute and State University
Blacksburg, VA ..... 24061
Dr. D. Depriest, ..... 1
ONR, Code 102B
800 N. Quincy Street
Arlington, VA 22217
Prof. G. E. Whitehouse ..... 1
Dept. of Industrial Engineering Lehigh University
Beth1ehem, PA 18015
Prof. M. Zia-Hassan ..... 1
Dept. of Ind. \& Sys. Eng.
Illinois Institute of Technology
Chicago, IL 60616
Prof. S. Zacks ..... 1
Statistics Dept.

Virginia Polytechnic Inst.

Blacksburg, VA 24061
Head, Math. Sci Section ..... 1
National Science Foundation
1800 G Street, N.W.
Washington, D.C. 20550
```

Dr. H. Sittrop
Physics Lab., TNO
P.O. Box }9696
2509 JG, The Hague
The Netherlands

```
PROF－EECPCE S FISHMAN

LNIV. CF ACTTF CARCLIAA

CUR. Ili CR AINO SYS. ANALYSIS

PHILLIFS ANAEX

CHAPEL HILL, ICFTH CARCLINA

20742
DR．R GAAMACESIKAN

EELL TELEFFCh: LAE

HOLPDEL, \(\mathrm{N}_{\text {。 J. }}\) 。

07733

DIV. 2CS:CZ, ADMIN A A
L. SA DEPT. CF CC.
20234

\section*{HEST GERNANY}
```

DR. P. T. HGLMES
CLEMSCN LNIV.
CLEMSON SCUTH CAROLINA
29631
Dr. J. A. Hocke 1
Bell Telephone Labs
Whippany, New Jersey
07733
Dr. RobertHooke 1
Box 1982
Pinehurst, No. Carolina 28374

```
LR. D. CR. LCLEFART  STANERFRO94305Dr. D. Trizna, Mail Code 5323Naval Research LabWashington, D.C. 20375
Dr. E. J. Wegman, ..... 1
ONR, Code 436
Arlington, VA 22217
DR. H. kGearastl ..... 1
IBN
NE Y YORK10598
OR A ALENGINE
10 CUINCA ST.
FALO ALTC. ..... CALIFGRNJA
94301
CR.J. NECGUCEN LOS ANCELES LOS ANGELE90024
Prof Kneale Marshall ..... 1
Scientific Advisor to DCNO (MPT) Code Op-0.1T, Room 2705 Arlington Annex Washington, D.C. ..... 20370
DR. M. MAZUNCRR ..... 1
NATH. DEP ..... ESTINCHOLS: FES LABS

CHUKCHILL BCFC

FITTSELREH

PENNSYLVANIA ..... 15235

INSTITLTE CH NATHEMATICAL SCIENCES NEH YURN UNIVERSITY
AEh YCFK
NEE YG̈RK \(1 C 453\)

FRCF. J. R. KACANE
DEFARTH CHT CF STATISTICS
CAFNEGGE-HELLDN
FITTSEURCR
15213

DR. RICHARC LAU
CFFICECF AAVAL RESEAFCF ERANCH OFF 1C30 EAST EREEN STREET

PROF. N. LEADEETTEP.
DEFARTHENT OF STATISTICS
CHAPEL HILL
NOFTH CAPOLINA 27514

```

CEPT CF
EICI
$C H$
EINCIVIO (F FLCFIDA
GAINら: iLl.E
FLCFIUA= $=$ CCil

```

\title{
FRCF G. LIEPERHAN
}

No. of copies

DR JANES R. MAAR
NA IICNEL SECURITY AGENCY FORT MEADE NARYLAND 20755

FPCF R M M MALSEN
OEPARTMEATCF STATISTICS
CNIVERSITY GF HISSLURI
COLUNEIA
MO

DR MENCE R MANA
SCIENCE CENTER ROCKHIEL IATERASICNAL CORFCRATICN F.C. ẼOX 108 TFCUSAND CAK:
CALIFGRNIA CJIEヒC


Dr. Leon F. McGinnis
School of Ind. And Sys. Eng.
Georgia Inst. of Tech.
Atlanta, GA 30332

02139
DR. M. REISER
IEN
THOMAS J. hATSCA RES. CTR. YCRKTOWN HEIGHTS AELi YCFK

10598

DR. J. RICRCAN FCCKEF:LLER UMIV.
NE H YORK
AEH YOFK
10021

OR.LINUS SCHR\&GE
LNIV. CF CFICAEC
GFAD. SCFOGL OF ELS.
\(58 \equiv 6\) GFEEAKECE AVE.
CHICAGC, ILLIMO IS
60627
Dr. Paul Schweitzer
University of Rochester
Rochester, N.Y. 14627

Dr. V. Srinivasan
Graduate School of Business
Stanford University
Stanford, CA. 94305
Dr. Roy Welsch
M.I.T. Sloan School

Cambridge, MA 02139

MR．\(\quad\) NISSELSCN
BLREALC GF TFE CENSUS

\section*{S1711}

\section*{ROC：M 2025．}

FFEERAL EUILCINE
3
HASHI AGTCA

MISS E．SORLEANS
MAVAL SOMASYSTENS COMHAND
（SEA OSO
FM IOSCS
ARLINGTON VIREINIA 20360

FRCF．C．E OHEN
OEPARTMET CF STATISTICS
SOUTHE
JEXAS
75222

Prof．E．Parzen 1
Statistical Sceince Division
Texas A \＆M University
College Station TX 77843
```

DR A FETRASCVITS \quad RCCM $2 O T E$ FCCE AND LRLG ELDG.

```

1
TUNTVYIS PASTLCC
CTTOHA ，CNTARIC K1A－CL2，
CAAADA
 ..... 1 AERGSPACE ENGINEERIIGG
cornell
AY ..... 14850
OR ARECTCR．POWELL ..... 1
CFFICE OF NAVAL RESEARCH BRANCH OFF 455 SUNMER STREET ECミTC゙N MA ..... 02210
MROD FO R R FRICFI GOASL TEST AND ONRS ..... 1
EVALUATICHFJKCE UUTEVFJR）AND ONRS A「ill：LK，

vikClijIA

20300
```

PROF. M. L. PURI
DEFT. CF NATHEMATICS
P.C. BGX F
INCIANA LNIVERSITY FOUNOATICN
elcominetca
IN
47401
FROF. H RCPEINS
DEFARTMENT OI HATHEMATICS
1
CCLUMEIA UNIVEFSITY
NE W YORK.
NEEW YOKK 1CJ27

```
    PFOF. M ROSENBLATT
    1
DEPARTMEAT CF NATHEMATICS
OEPARTNEAT CF NATHEMATICS SAN DIEGO
LA JCLLA
CALIFRRNIA
FRCF. I RUEIN
SCHOOL OF ENGINEERING AND AFPLIED ..... 1
UNIVERS ..... \(0 F\)
LCS ANGELES JOO24
FRCF CEPART:AENT CA SAVAE1
YALE UNIVERSITY
NEM HAYENOT
CCNMECTICUT
C6520
FRCF L \(L\) : SCFARF JG ..... 1
COLORAEJ STATE UNINEOSITY
CTIORACO
EO521
PRCF. R. SERFLING
CEPARTNENT CF STATISTICS ..... 1
FLCRIDA STATEFLOR IDA三230t
PROF ORAMR SCHLCAIY ..... 
SOLTHERK METHCCIST UNIVERSITY CDLLAS.

\(7 E \times 4 S\)

\section*{\(\$ 4305\)}

FRCF. M. L. SHGJHAN
DEPT:CF ELECTFICAL FNGINEERING
POLYTECH:NIS I:NSTITUTE CF NEW YORK BRCCKLYí,
AEん YORK
12<01

DR:AR SLAFKOSKY
1

1 1 COFMANENAV DF TFE MAR INE CORPS hashI Átici
D.
2020

P C BCX 618
STATE COLLEGE
PENNSYLVANIA
16801

PROF H. \(L\) SNITH
GEFARTHENT OF STATISTICS
LNIVERSITY CF İERTH CARELIMA
CHAPEL HILL
ACFTH CAFCIINA
27514

Dr. H. J. Solomon
1
ONR
223/231 01d Maryledone Rd
Loridon NiWl 5TH, ENGLANiL

MF. GLENN F. §TAHLY.
1
ASTICTAL SECURJTY AGENCY
FORT HEACE
MARYLAND 20755
Mr. J. Gallagher
1
Naval Underwater Systems Center New London, CT

Dr. E. C. Monahan

Galway, Ireland
```PRCF. JOFN H. TIJKEY1FINE FALL
FRINCETON UNIV.
PRINCETON
NEW JERSEY
```

CR THCMAS C VARLEY CODE 424 ARLINGTCA VA

```
FRCF.G. hATSCA
FINE: HALI.
FRINCFTA:A UNIV.
PRIんC!-6
NEh JERSEY
1
```

NR. CAVIC A SinlCK 1
ADVANCEO PROJECTS GROUP
COCE Q1C?
AAVAL KESEARCF LAB.
hASHINGTCCA
CC
NR. WENDELL G. SYKES
ARTHUR C. LITTLE: INC. LCCRN PARK CANBRICGE
PROF.J.R. ItCNFSON

OEPARTMEAT OF MATHENATICAL SCIENCE

```
PROF.HMAM. THCNFSCA
1
LNIVERSIYY CF NISSCURI
columeia
MISSOUKI
65201
```

> No. of Copies

```
PRCF A \(A\) VEINOTT
DEFARTMENT C官 CVERATICNS RESEAP.CH
STANFORL UNIVERSTITY
ST ANFCRC
CALIFCRNIA
¢4305
```

CANIEL H hAGNER
STATION SULERE JNE
FACLI FENASYLVANIA 15301

PRCF GRACE HAHRA
LEFT: CF STATISTICS
NALISON
hil
53706
FRCF. $k$. T. HALLENIUS
DEFART:ロNTOF OATHEHATICAL SCIENCES.
CLEJSTMH UNIVER§ITY
CLEMSCHI,
SOLTH CARCIINA 25631


```
 1
STANFCKE ELECTFLNEC
STANFURU UAIVERITY
STANFCRC
CA
```

OFFICE CF AAVAL RESEARCH
SAN FFANCISCO AREA CFFICE
760 MAFKET SIREET
SAN FRAACISCC GALIFCRNIA 94102

TECHNICAL LIERARY
AAVAL CRCNANCE STATION I
INCIAN HEAC MARYLAND 2C64C

AAVAL SHIP ENGINEERING CENTER

```
BLREAU DF AAVAL FFESONNEL
```

LNIVERSITY CF ACRTH CARCLINA
CHARLCTTE
NC

```
FROF. T. H. ANEERSON 1
STANFORD LNIVEREITY
STANFCRC, CALIFCRNIA• S43C5
FRCFIFAJJONSCOMBEICS 1

YALE UivIVERSITY

AEK HAVEN

CCANECTICLT CE520
```

PRCF L. A. ARCIAA
1
INSITIUキE rF INCUSTRIAL
ACHINISTMATIEN
UNIMA COLLI:CO
SCrevéthoyajou

```
U191393```

