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ABSTRACT 

Comparative resistance calculations are performed for SLICE and SWATH hulls. 

For the purposes of this study, the primary difference between these two hull types 

is in the underwater pods. It is assumed that both ship types have identical surface 

piercing struts, speed, and displacement. The underwater pods are continuous for the 

SWATH design and discontinuous for the SLICE. Resistance calculations are based 

on I.T.T.C. skin friction, empirical regression of existing experimental data for form 

drag, and surface singularities distribution for wavemaking. Results are presented for 

two cases, length limited where the overall length between the two hull types remains 

constant, and diameter limited where the pod diameter remains constant. Parametric 

studies in terms of pod geometry, separation distance, ship speed, displacement length 

ratio, and draft indicate that a SLICE hull may offer decreased resistance compared 

to a similar SWATH, depending on the range of the above design parameters. 
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I. INTRODUCTION 

A. BACKGROUND 

The main idea of SLICE hull follows the successful design of SWATH; i.e., 

small waterplane area twin hull. The SWATH geometry consists of an approximately 

rectangular structure or deck box joined to submerged slender cylindrical hulls by 

streamlined struts or columns which can be one or two per hull. The submerged 

pods are the primary buoyancy providing modules, while the struts provide necessary 

structural rigidity (Rodriguez, 1995). Due to its small waterplane area, a SWATH 

experiences small exciting forces from waves and has excellent seakeeping properties. 

In the SLICE concept there are four submerged hulls, each having its own streamlined 

struts or columns. This configuration is suggested in order to reduce resistance while 

maintaining seakeeping characteristics at least as good as for a SWATH. 

For a given speed, the resistance of a body moving in a fluid is the force of 

the fluid acting on the body to oppose its motion. The resistance is equal to the 

component of the fluid forces acting parallel to the axis of motion of the body. The 

term resistance is the preferred term in ship hydrodynamics, while the term drag is 

generally used in aerodynamics and for submerged bodies. In this study we use both 

terms since we study the resistance of the submerged pods as explained in the next 

section. 

B. OBJECTIVE 

Resistance could be the main reason in selecting a SLICE hull form or SWATH. 

Therefore, comparative resistance calculations must be performed for both hulls in- 

cluding both the viscous drag (skin friction as well as form drag) along with wave- 

making drag. Since the presence of discontinuous struts could be a common feature 



for both SWATH and SLICE, in this work we concentrate on the submerged pods 

(Figure 1.1). The main question is whether two disconnected pods can offer reduced 

resistance compared to a single pod. It is assumed that in both cases the volume is 

the same (so that ship displacement does not vary) while either the overall length or 

diameter remains the same. We refer to the first case as the length limited or inactive 

diameter constraint, and to the second case as the diameter limited or inactive length 

constraint. 

Figure 1.1: SWATH and SLICE hull forms. 

In this study, the comparative resistance calculations are presented in Chapter 

II, starting with the definition of the pod geometry. The different parameters and 

all the coefficients are explained and formulated. A typical pod hull consists of three 



sections, the entrance (bow) the shape of a parabolic body of revolution, the parallel 

middle body of a cylindrical shape, and the run (stern) the shape of an ellipsoid of 

revolution (Jackson, 1992). Proper assumptions are very important in performing 

meaningful calculations. These assumptions are with regards to the two hull forms, 

in order to reduce the size of the problem and ensure better and fair comparisons. 

Also in this chapter viscous resistance calculations are presented in the form of fric- 

tional resistance, and form drag. The investigation in this case leads to a better 

understanding to the frictional resistance, and the effects of changing the different 

parameters defining the pod geometry on the results. The background theory of the 

wavemaking resistance, is discussed in this chapter. Formulation for calculating the 

wavemaking drag and brief explanation of the numerical solution techniques followed 

in this study are also presented. After exploring the above resistance types the total 

resistance is calculated, for which the final comparison is based on for the two hull 

forms. Chapter III presents these results. After determining the total resistance, for 

the two cases, limited length, and limited diameter, the results are focused on three 

effects. First the body shape effects dealing with the length to diameter ratio, the 

displacement to length ratio, and finally the prismatic shape factor are discussed in 

detail. Second the speed effects, and third the draft effects are presented. For easy 

presentation to all of these effects, the results are also tabulated. Conclusions from 

this work and recommendations for further studies are summarized in Chapter IV. 





II. CALCULATIONS 

A.    POD GEOMETRY 

The geometry for the underwater pod is typically similar to the geometry of most 

modern submarines. A generic body of revolution is considered, which is composed 

of three main sections. First is the entrance at the forward section of the pod, second 

is the parallel middle body, and third is the run at the after end of the pod. The 

following variables define the shape of the body, which is schematically shown in 

Figure 2.1: 

Figure 2.1: Basic geometry definitions. 

D   =   pod diameter 

£   =   pod length in the absence of parallel mid body 

L   —   pod length 



Lf = forward or entrance length 

La — aft or run length 

-^SHIP = overall length from entrance bow to run stern pod 

a = dimensionless pod separation for SLICE hull 

rif = forward shape factor 

na = aft shape factor 

PMB = parallel middle body 

From an article on submarine design concept (Jackson, 1992), the entrance is 

defined as a parabola body of revolution having a length, Lf, equal to 2.4 times the 

diameter. The run is defined as a ellipsoid body of revolution having a length, La 

equal to 3.6 times the diameter. Values of Lf and La are evaluated with, or without 

the parallel middle body. The parallel middle body has a cylindrical shape, where 

the difference of L -i is the length of the parallel middle body PMB, or the algebraic 

sum of the lengths, Lf, La, and LPMB is the overall length of the pod. 

The body coordinates which define the pod forward shape, as well as its aft 

shape without the parallel middle body are: 

D 1-feV 
D r.    (x Nn°'1 

*•   =   J 
1_,-a 

(2.1) 

(2.2) 

while the fore/aft lengths are given by, 

Lf   =   0.4*, (2.3) 

La   =   0.6*. (2.4) 



The shape factor coefficients n/ and na control the shape of the fore and aft 

bodies, respectively. Higher values of those coefficients correspond to full hull shapes, 

and lower values to finer shapes. The values of xj and xa are the offsets from the 

maximum pod diameter, and yj and ya are the pod radii at the respective offset 

points. Typical forms for different n/, na are shown in Figure 2.2. 

Figure 2.2: The effect of changing the shape factor coefficients on the pod 
shape. 



Using the above expressions, the pod volume, V, and the wetted surface area, 

S, can be easily calculated as follows, 

irD2 

V -\L — £ + LfCpf + LaCpa), 

S   =   TTD(L — £ + LjCwsf + LaCwsf , 

(2.5) 

(2.6) 

where the different coefficients are defined as, 

Cpf   =   fore prismatic coefficient 

Cpa   =   aft prismatic coefficient 

Cwsf   =   fore wetted surface coefficient 

G„ aft wetted surface coefficient 

and are computed by, 

a pj 

a pa 

a wsf 

cu 

= /. Jo 

=  / JO 

=  / Jo 

= /' 
JO 

These integrals are numerically eva! 

l-xn')2/n'<*x, 

l-xna)2dx, 

I - xnfflni dx , 

l-xna)dx. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

uated using the built-in "quad" function in 

Matlab, although analytic evaluation is also possible, 

Cpf   = \   nf) U/> 
nfT   1 + 

2nl 

33 

Cpa l + 3na + 2n2' 

(2.11) 

(2.12) 



Cwsf   =     j- pr- , (2.13) 

C„„   =   rr-, (2.14) 
1 + na 

where denoted the Gamma function defined in (Abramowitz and Stegun, 1970). 

B.    ASSUMPTIONS 

To proceed in performing the comparative resistance calculations between the 

SLICE and the SWATH hull forms, a number of assumptions have to be made, so 

that the results of these calculations ensure fairness between the two hull forms. 

These assumptions are with regards to the struts, the underwater configuration, the 

interaction between the pods, and finally the additional resistance. Each one of the 

assumptions is separately explained below. 

1. Struts 

As it was mentioned before the main difference between the SLICE and 

the SWATH is in the underwater pods, where it is continuous for the SWATH, and 

separated in forward and afterward pods for the SLICE. Therefore, in order to con- 

centrate on the underwater hulls only, it was necessary to assume that the SWATH 

design should have a continuous pod and disconnected struts as shown in Figure 2.3. 

Therefore, we can say that both SLICE and SWATH strut designs are identical, and 

disregard them from the comparative resistance calculations. 

2. Configuration Considerations 

For the sake of comparative resistance calculations it is important to con- 

sider some of the pod design configuration parameters to be kept the same during the 

calculation process. The reason behind it is to ensure a fair comparison between the 



SLICE and SWATH pod configuration. Therefore the following parameters are kept 

the same for both hull forms: 

• Displacement, V 

• Speed, U 

• Baseline length to diameter ratio, £/d 

Body shape factor, n/ and na 

struts 

SWATH 

e 
struts 

9 <= 

SLICE 

> 

Figure 2.3: Similarity of the strut designs for SWATH and SLICE. 

Two more parameters in addition to the above have to be considered. 

They are the length, ZSHIP, and the pod diameter, D. To keep both these parameters 

the same for both hull forms is impossible. The length, ISHIP, is related to overall deck 

area, and to have the same deck areas for both designs, the beam must be assumed 

10 



the same for SLICE and SWATH. Therefore, since the volume, V, and ZSHIP are kept 

the same this requires that the pod diameter, D, changes from SLICE to SWATH. 

We refer to this case as "length limited" or "inactive diameter constraint." Similarly, 

for the case where the diameter, D, is kept the same, this requires that the length 

LSHIP must change. We refer to this as the "diameter limited" or "inactive length 

constraint." 

3. Pods Interaction 

It is assumed that there is no viscous interaction between the SLICE pods, 

in other words the calculation will be performed for one pod, then multiplied by four to 

get the total resistance for all four pods. It should be emphasized that this is utilized 

for the viscous resistance only. The wavemaking part of the resistance depends heavily 

on the separation distance between the two pods. The lateral separation between 

the pods is neglected in computing the wavemaking drag. The justification for this 

assumption is that its effect is believed to be much smaller than the longitudinal 

separation. Furthermore, since both SLICE and SWATH designs have the same 

lateral pod separation, its effect on comparative resistance prediction will be minimal. 

Also the two pods on each side are in line and separated by a distance which is a 

function of the pod length, denoted by a. 

4. Additional Resistance 

It is assumed that all remaining forms of resistance such as air resistance, 

appendage resistance, and steering resistance, are the same for both the SLICE and 

the SWATH. This is because it is basically the same design except for the underwater 

pods. Therefore we will disregard all additional resistance from our calculations and 

concentrate on the frictional resistance, the form resistance, and the wavemaking 

resistance which make the total resistance for our predictions. 

11 



C.    VISCOUS RESISTANCE Rv 

For a fully submerged body in a fluid, the viscous resistance is the component of 

resistance associated with the energy expended due to viscosity of the fluid or viscous 

effect (Harvald, 1983). The viscous resistance is written as, 

Rv = \PU2SCv ■ (2.15) 

The viscous resistance coefficient, Cy, is defined as 

CV = CF + CA + Cr (2.16) 

where the different coefficients represent the following: CF is the frictional resistance 

coefficient, CA is the correlation allowance, and Cr is the coefficient due to the form 

or parasitic drag. 

1.    Frictional Resistance FR 

The frictional resistance is the component of resistance obtained by inte- 

grating the tangential stresses over the wetted surface area of the pod in the direction 

of motion. This is a function of Reynolds number only, defined by 

Re = — . (2.17) 
v 

where the U is the speed, L is the pod length, v is the kinematic viscosity of seawater. 

a. Introduction 

All fluids have viscosity, which causes friction. The importance of this 

friction in physical situations depends on the type of fluid and physical configuration 

or flow pattern. If the friction is negligible, the flow is called ideal. Viscosity is a 

measure of the fluid's resistance to shear when the fluid is in motion. 

b. Boundary Layer 

By boundary layer is meant the region of fluid close to a solid body 

where, owing to viscosity, the transverse gradients of velocity are larger compared 

12 



with the longitudinal variations, and the shear stresses significant. The boundary 

layer may be laminar, turbulent, or transition, and is sometimes called the frictional 

belt. 

c.    Frictional Resistance Coefficient CF 

Calculation of the frictional resistance coefficient is based on the stan- 

dard International Towing Tank Conference (ITTC) curve, 

0.075 

(\ogwRe-2Y 
CF=„        „      wxa- (2-18) 

The correlation allowance is assumed constant (Arentzen and Mandel, 1960), 

CA = 0.0004. (2.19) 

2.    Form Drag 

It is hard to evaluate the form drag numerically because it is related to 

boundary layers and separated flows. Therefore for the third coefficient, Cr, we em- 

ploy the following empirical calculation (Jackson, 1992) which is based on regression 

and curve-fitting of experimental data, 

D.    WAVEMAKING RESISTANCE 

The wavemaking resistance is the component of resistance associated with the 

continuous energy dissipation which comes only from the pod motion through the 

water creating or generating gravity waves. These propagated waves are maintained 

by the movement of the pod through the water, and absorbed by the ocean. The 

wavemaking resistance can be divided into two parts: the wave pattern resistance 

and the wavebreaking resistance. In general, wave resistance means the wavemak- 

ing resistance neglecting the effect of wavebreaking resistance (Harvald, 1983). The 

13 



wavemaking resistance is a function of the Froude number, defined by 

Fn = -^f. (2-21) 

1. Wave Pattern Resistance 

This resistance can be experimentally evaluated from measurements of 

the elevations of the waves generated from the pod, where it is assumed that lin- 

earized theory can be used to relate the subsurface velocity field and, hence, the 

momentum transfer of the fluid to the wave pattern. This resistance does not include 

wavebreaking resistance. 

2. Wavebreaking Resistance 

The wavebreaking resistance is the resistance part related to the break- 

down of the pod bow wave, and it is normally ignored. 

3. Wavemaking Resistance Calculations 

For the evaluation of the wavemaking resistance, it is important to start 

with defining a coordinate system for which the calculations can refer to. Therefore 

a right-hand x, y, z, coordinate system is selected, where the x-axis lies on the pod 

center line positive towards the bow in SWATH, and to the forward pod bow in 

SLICE. For the j/-axis, positive is always to the port side regardless of the hull form. 

Finally the positive 2-axis points upward. The origin of this coordinate system defers 

from SWATH to SLICE. For the SWATH hull form the origin is at the intersection of 

maximum diameter and the body horizontal centerline in absence of parallel middle 

body, and at the intersection of the middle of the parallel middle body and the 

horizontal centerline in the case of presence of PMB. On the other hand for SLICE 

the origin is normally at half the pod separation distance. The pod center line is at 

a depth H below the undisturbed waterline. Figure 2.4 illustrates the definition for 

the coordinate systems. 

14 



SWATH 

D 

SLICE 

z 
A 

Free Stream 
V 

<  

x 
-> 

z 
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^ 
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A 
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Free Stream 
V 

<  

^ 

3 
cx 

3 

Figure 2.4: Definition of the coordinate system for SWATH and SLICE. 
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For a submerged body moving in a fluid with a constant advancing speed 

U, the potential and the fluid particle speed changes from point to point. According 

to Bernoulli's equation the pressure is changing from point to point. We denote by $ 

the free stream potential, and (j> the perturbation potential due to the body motion 

only. The flow around the body can be solved by distributing a number of sources 

and sinks along the body surface, where the total potential considering inviscid and 

incompressible fluid (Doctors and Beck, 1987, Papoulias, 1993, and Papoulias and 

Beck, 1988) is given by, 

$(x,y,z) = -Ux + <f>(x,y,z), (2.22) 

This can also be written as, 

$(*,y,z) = -Ux+ f f  <x(£,r,,()G{x,y,z,£,r,,QdS, (2.23) 

where (x,y,z,) is field or observation point, <r(£,T),fl is the source strength, (£,??, C) 

is the source point, and G(x,y,z,£,T],() is called the Green's Function. Laplace's 

equation, the boundary value problem and the boundary conditions are written in 

terms of <j>. To do so, it is assumed that the value of 4> is small compared to Ux value, 

where Laplace's equation is written as, 

VV = 0. (2.24) 

Two free surface boundary conditions are involved in this problem, the 

dynamic and kinematics free surface boundary conditions. In the first condition the 

pressure on the free surface is constant and the wave elevation which is expressed 

as r)(x,y), is expanded using Taylor series about z = 0. Neglecting all higher order 

terms, we can reach at the following result, 

+ £ {(*.)'+ (*,)'+ (*.)'} =4^.    on z = r1(x,y), (2.25) 9V ■  2 
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where g is the gravitational acceleration. The second boundary condition is the 

kinematic free surface boundary condition. For this condition it is necessary to have 

no flow through the free surface, 

$*??* +$y% - $* = 0 ,    on z = r)(x,y). (2.26) 

The dynamic, (2.25), and the kinematic, (2.26), free surface conditions can be rewrit- 

ten as, 

gr] + ^{2U<f>x + (<j>x)2 + (<J>y)
2 + (<l>z)

2} = 0,    on 2 = 0, (2.27) 

and 

UT}X + <j>xr)x + 4>yr}y - <j)z = 0 ,     on z = 0 , (2.28) 

In order to get the linearized free surface condition the following steps must be done: 

• The quadratic terms in both equations, (2.27), and (2.28) are neglected. 

• Differentiate the dynamic free surface condition with respect to x. 

• Subtract the differentiation result from the kinematic free surface condition. 

Once these steps are completed, the following linearized free surface condition is 

obtained: 

&*+(jja)^ = 0   on z = 0, (2.29) 

The body boundary condition requires that there be no flow through the 

surface of the body. In other words: 

d$ 
-7— = 0,    on the surface f(x, y) — z = 0 , (2.30) 
on 

where the partial differential (d/dn) indicates the directional derivation of the three 

dimensional normal vector pointing into the body (n), and f(x, y) represents the body 
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surface. Equation (2.30) can also be written as: 

— = U -n = —U ,    on the same surface. (2.31) 

A fundamental solution of the Laplace's equation, (2.24), and the free 

surface boundary condition equation, (2.29), is the Greens function, which is given 

by, 

G(x,y,z,(,r},0=1--1; + G(x,y,z,t,r),0, (2-32) 

where (x, y, z) is the field or observation point, (£, rj, () is a source point of a strength 

on the body equal to —Air. The term r is defined as the distance between the field or 

observation point and the singularity point, where the term r' is the distance between 

the field point and the singularity point image with respect to the free surface. The 

term 1/r in equation (2.32) represents a source and sink distribution typically found 

in potential flow problems. Both r and r' can be written as: 

r,r (x - 02 + (V - rj)2 + (z+C)2}1/2 . (2.33) 

Finally, the wave part of the Green's function G is defined by: 

G(x,y,z,£,ri,Q   =   ——/    d0 
IT J—K 

f°° exPffl2 + C + Kx -£)cosfl + % -rj)sing]} 
ß->oJo (g/U2) — k cos2 9 — ifi cos 0 

(2.34) 

The term fi in equation (2.34) is the Rayleigh virtual viscosity. The ra- 

diation condition is satisfied if the value is small and positive. The 6 and k are the 

wave direction and wave number respectively. The remaining terms in equation (2.34) 

represent a series of waves in which the linearized form of the free surface boundary 

condition, equation (2.29), is satisfied. Therefore, all conditions are satisfied except 
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the body boundary condition equation (2.31). For a large volume of fluid containing 

the body, the following result can be obtained for the perturbation potential in terms 

of the unknown source strength, a: 

<t>{x,y,z) = ~JJS G(x,y,z,t,r,,(Mt,ri,OdS, (2.35) 

where dS is the body wetted surface area. To solve for the source strength, first 

differentiate the perturbation potential, equation (2.35), with respect to the normal 

on the body. Then equate the result to the body boundary condition which requires 

that the normal velocity on the hull be zero. Therefore, we can write 

Unx = -l-a-l-J js Gn(x,y,z,t,r,,0°(t,vX)dS, (2.36) 

To solve the above equation, the Hess and Smith method (Hess and Smith, 

1964) can be used, which divides the surface area of the body into plane quadrilateral 

panels as it is explained briefly in the next section. The approach is also known as 

the Neumann-Kelvin method. 

4.    Numerical Solution 

In this work the Source Panel Method by Doctors and Beck is used to 

solve for the source strength by satisfying the body boundary condition. The body 

surface is represented as a finite number of elements having constant source strength. 

The integral then depends only on the geometry at the various panels. The detailed 

approach is described below. 

We have the field or observation point (x,y,z), and from the last section 

the velocity potential was derived in equation (2.35) as, 

J>(x,y,z) = ~//5 G(x,y,z,t,r,,CWt,1,0dS, (2.37) 

The source strength 0-(£,»7,C) must De computed in order to satisfy the boundary 

condition on Sp. The source strength can be brought outside the integral if the surface 
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is represented by a finite number of elements each having constant source strength 

cr(£, 77, (). With a finite number of unknowns the boundary conditions can be satisfied 

only at an equal number of discrete points. The pod surface is then divided into TV 

quadrilaterals, the elements or panels. Constant source strength (TJ is assumed over 

each quadrilateral, where j is the quadrilateral surface, j - 1,2,3,..., iV. Now it is 

possible to move the source strength aj outside the integral before performing the 

integration, where the perturbation potential becomes, 

i=i V 47r/ J Js* y/{x - £j)2 + {y- rjj)2 + (z~ (j) 

the point (£,-, rjj, (j) is the source point at the jth panel, and dSj is the jth panel sur- 

face area. With this the integration can be performed algebraically in terms of x, y, z 

and the four corners (&,»/*,(/)» where £ = 1,2,3,4. By applying the body boundary 

condition at one point in each quadrilateral, and then solving the TV linear equa- 

tions for TV unknowns, the source strength aj can be determined. After determining 

the source strengths, it is possible to compute the control point velocities using the 

following formula, 
N 

Ui = -iU + JEVGij<Tj, (2.39) 

where the term VG.-j is the gradient of the total Green function. Ignoring the hydro- 

static pressure, the dynamic pressure is computed by using the Bernoulli Equation 

Pi = \p (U2 - U2) . (2.40) 

The Hess and Smith program uses two steps to perform this process in 

practice. The first step is the quadrilateral generation, where a number of points 

defining the body surface are inputted into the program. Then the program generates 

quadrilaterals as flat surfaces, computing the normal to these surfaces along with the 

null points, which can be defined as the point where the source of its own panel 
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produces no tangential velocity. At the end of this step it provides an output for 

checking the points. The second step is the solution. The program satisfies the body 

boundary condition at the null point of each quadrilateral to form N equations. Then 

the program proceeds to solve for the velocity and the pressure at each null point for 

unit inflow in x, y, and z. Moreover the velocity and the pressure of specified points 

off the body can also be obtained. 

E.    RESULTS PRESENTATION FORM 

The results of these computations are presented in terms of the following nondi- 

mensional parameters: 

The volumetric coefficient, 
V 

v = -, TT, (2.41) 
(O.IISHIP)3 ' ^ ' 

the baseline length to diameter ratio, 

i ' (2-42) 

the speed U in knots, the shape factors nf and na, and the pod separation a. 

Resistance comparisons are presented in terms of normalized SLICE resistance, 

(ß)sWATH ~ (ß)sLICE ™, (2 A3) 

(R) SWATH 

Positive values of this ratio indicate a higher SWATH resistance and are, therefore, 

in favor of a SLICE design. Negative values suggest that the SWATH would offer 

reduced resistance. These calculations are performed for both length limited and 

diameter limited. The details of the corresponding volume and geometry calculations 

are included in the next chapter. 
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III. RESULTS 

A.    INTRODUCTION 

In this study, the comparative resistance calculations are based on the pod total 

resistance. This total resistance consists of the viscous drag and wavemaking compo- 

nents. For the viscous drag, a Matlab program was used to perform the calculations 

for the skin friction and the form drag as outlined in the previous chapter. The 

program starts first by inputting the values for the following parameters, 

• v, the displacement to length ratio. 

• £/d, length to diameter ratio. 

• U, the ship speed in knots. 

• rij and na, the shape factors. 

Then the program computes the fore and aft prismatic and wetted surface coefficients 

using the Matlab quad function. Once these coefficients are computed, it is possible to 

solve for the coefficients of the following cubic equation for the SWATH hull diameter, 

CXD
Z + C2D

2 + C3D + C4 = 0 (3.1) 

The coefficients of the cubic are given by, 

Cx = (LfCpf) + (LaCpa)-£/d, (3.2) 

C2 = L, (3.3) 

C3 = 0, (3.4) 

C4 = (-2V)/*, (3.5) 
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By solving the cubic equation, the value of the SWATH hull diameter is determined. 

From this point the program proceeds to compute the hull wetted surface area by, 

WS = 2TTD
2
{[(L/D) - (i/d)] + (LfCwsf) + {LaCwsa)} . (3.6) 

The viscous drag for the SWATH hull is calculated using equations (2.16), and 

(2.17). For the limited length case, the computations start by finding the maximum 

SLICE pod diameter, and its minimum/maximum lengths, which are given by, 

<Ux   =   {V/^[(LfCpf) + (LaCpa)}}^, (3.7) 

4ün     =     (Wmax, (3-8) 

lm   =   0.5 1. (3.9) 

Now according to the changes in the SLICE pod diameter, the pod separation distance 

denoted by a, also changes. Therefore, the program monitors these changes and 

presents them in matrix form, where each change has its own wetted surface area and 

viscous drag. 

For the limited diameter case, the computations start by equating the SWATH 

hull diameter to the SLICE pod diameter. This is followed by computing the SLICE 

pod length, 
£ _ {VM ~ [(CFCP} + LaCpa - (£/d))D3) (JU0) 

Once the SLICE pod length is calculated, the wetted surface is calculated along with 

the viscous drag. For both of the above cases the viscous resistance is calculated for 

both the SWATH twin hull, and for all four SLICE pods. 

For the wavemaking resistance a FORTRAN program based on the Neumann- 

Kelvin method was used to calculate the hydrodynamic forces and moments acting 

on a moving body in a fluid with a constant speed. This program is based on (Doc- 

tors and Beck, 1987 and Papoulias and Beck, 1988), and it requires two data files. 
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The first file is IN.DAT, which includes the following parameters: RHO—water den- 

sity, G—gravitational acceleration, AL—body length (for SWATH is the hull length, 

where for SLICE is the length from the entrance of the fore pod till the run of the aft 

pod), B—pod beam, C—pod draft, V—the body speed, NX—number of points lon- 

gitudinally, NZ—number of points vertically, NH—number of points in 0-integration. 

Some of these parameters must be changed from one run to another according to the 

calculation case to be performed. In all runs the water density, gravitational accel- 

eration, number of points longitudinally, vertically, and in ^-integration values never 

change. The second file is SUB.DAT, which contains a set of longitudinal points along 

the pod, with their corresponding radius (R). These data are the results of equations 

(2.1), and (2.2), and these data change for each run. From these data a subroutine 

computes the y and z points from the following relations, 

y = Rsm{ir{IZ - 1.0)/(NZ - 1.0)), (3.11) 

and 

z = R cos{ir(IZ - 1.0)/(NZ - 1.0)) - H, (3.12) 

where IZ is a successive vertical point and H is the depth. With the above data, half 

of the pod surface is created. Another subroutine is used to create the second half of 

the pod surface, by reflecting the first half points about the pod centerline. Using this 

full shape, the program finds the solution to the hydrodynamic forces and moments 

by the Neumann-Kelvin method by discretizing into plane quadrilateral panels. 

The output results from the program are stored in a separate file named RES.OUT, 

from which we can get the different values for the input data as well as results such 

as the Froude number, the wetted surface area, the wavemaking resistance, and the 

wavemaking resistance coefficient. These results are utilized in this study. 
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In the next sections we present the results of the comparative resistance cal- 

culations. Each section shows the different effects on the results for the two cases, 

limited length, and limited diameter. For the limited length case results, we present 

the percentage total resistance ratio vs. the pod separation distance a. This distance 

is controlled by the diameter of the SLICE pod. Since the volume of the underwater 

pods is the same for the two hull forms, any change in the diameter leads to a change 

in pod length to maintain volume. Therefore, the distance a is directly related to 

the pod diameter, and in the calculation it is a function of the SWATH hull length. 

For the limited diameter case results, we present the percentage total resistance vs. 

v, £/d, U, na, and n/. The pod separation distance a in this case was fed to the 

program as a function of the SLICE pod length. Matlab was used to plot all results, 

and a cubic spline was introduced to smooth these curves for better presentation. 

Positive percentage total resistance ratio means that the SLICE hull experiences less 

resistance than the SWATH hull, while for negative it is the opposite. Therefore pos- 

itive is in favor of SLICE, and negative is in favor of SWATH. For both cases, unless 

otherwise mentioned, we take the draft to be equal to the pod diameter. 

B.    BODY SHAPE EFFECTS 

In this section we study the effects of the parameters defining the pod shape 

such as, u, £/d, na, and nf. Considering the limited length case first, by varying 

the volume to length ratio, v, and keeping all other parameters constant we get the 

results shown in Figure 3.1. For small values of pod separation distance a, the results 

are in favor of the SWATH. As the separation distance increases, a transition occurs 

at about a = 0.15, where the results change in favor of the SLICE. This continues up 
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Effects of v (8, 10, 12) for l/d=3, U=30 knots, na=nf=3.5, Draft=Diameter 
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Figure 3.1: Total resistance ratio vs. separation distance alpha for limited 
length case for different displacement to length ratios. 
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to a = 0.4, which is the maximum limit for a. Another conclusion that can be drawn 

from Figure 3.1, is the oscillatory nature of the results for certain values of v. By 

varying the length to diameter ratio, £/d, and keeping the other parameters constant, 

Figure 3.2, we get similar results as for variations in the displacement to length ratio. 

At small a the resistance calculations are in favor of SWATH, while as the distance 

increases they change to be in favor of SLICE. Finally by varying the prismatic shape 

factor, which controls the fore and aft pod shapes, and keeping the other parameters 

constant we get Figure 3.3. For small a and for na values of 3.5, and 5, both curves 

start in favor of SWATH and as a increases the values pass a turning point where 

the results change to be in favor of SLICE. 

For the limited diameter case, varying the displacement/length ratio, keeping 

the other parameters constant, and plotting the results for different values of the 

pod separation distance a we get Figure 3.4. For all these runs SLICE produces less 

resistance than SWATH, and this difference can be improved even better by increasing 

a. The increase in the percentage total resistance ratio is almost linear. By varying 

the length/diameter ratio, and keeping the rest constant we get Figure 3.5. It starts 

with results in favor of SLICE configuration, then as this value of i/d increases the 

percentage drops almost linearly except for a = 0.3. This shows that as the pod 

gets longer for the same diameter, it increases the total resistance for the SLICE. 

Also the higher the value of a, the better the SLICE advantage over the SWATH. 

Finally varying the na value while keeping the others parameters constant we get 

Figure 3.6. These results show that the SLICE hull configuration offers reduced total 

resistance than the SWATH hull. Although it drops at higher values of na it continues 

to maintain reduction in the total resistance. 
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Effects of l/d (2, 3, 4) for v=10, U=30 knots, na=nf=3.5, Draft=Diameter 

60 

£ 50 

<: 
CO 
(T 

40 
LU 
O 
_J 
co 
cc 30 

X 
h- 
< 20 
CO 
a: <^—-* 
o 10 
m 
a: 
Q 
Ü 
c 0 
+-• 
a) 
CO 
CD 
tf 
15 -10 
-f-» 
o 

-20 

3     / 

/     2 

4 

0.1 0.2 
Separation Distance Alpha 

0.3 0.4 

Figure 3.2: Total resistance ratio vs. separation distance alpha for limited 
length case for different length to diameter ratios. 
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Figure 3.3: Total resistance ratio vs. separation distance alpha for limited 
length case for different shape factors. 
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Effects of Separation Distance (0.3, 0.4, 0.5) for l/d=3, U=30 knots, na=nf=3.5, Draft=Diameter 
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Figure 3.4: Total resistance ratio vs.    displacement to length ratio for 
limited diameter case for different separation distance alpha. 
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Effects of Separation Distance (0.3, 0.4, 0.5) for v=10, U=30 knots, na=nf=3.5, Draft=Diameter 
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Figure 3.5: Total resistance ratio vs.  length to diameter ratio for limited 
diameter case for different separation distance alpha. 
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Effects of Separation Distance (0.3, 0.4, 0.5) for v=10,l/d=3, U=30 knots, Draft=Diameter 
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Figure 3.6: Total resistance ratio vs. shape factor for limited diameter case 
for different separation distance alpha. 
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C. SPEED EFFECTS 

First we start with the limited length case, where the total resistance ratio 

percentage is plotted vs. the pod separation distance for different speeds, 20, 30, and 

40 knots. The results are shown in Figure 3.7. We can see that the speed has a 

general oscillatory behavior, and the total resistance ratio becomes more positive as 

the pod separation distance a increases. The 20, and 30 knots speeds start in favor 

of the SWATH until a = 0.1, then in favor of SLICE until the maximum value of a. 

The 40 knots speed remains in favor of SWATH for the entire range of a, except at 

the maximum separation value. For the limited diameter case, the total resistance 

ratio plotted vs. ship speed is shown in Figure 3.8. The results were calculated for 

three different values of the pod separation distance, 0.3, 0.4, and 0.5. The results 

show that the resistance ratio has also an oscillatory behavior, where it starts with a 

high wave amplitude and a large period. 

D. DRAFT EFFECTS 

In order to assess the effects of pod draft, all previous calculations were per- 

formed for a draft of two times the diameter. The results are presented in Figures 

3.9 through 3.16, and there is a one-to-one correspondence with the previous results 

of Figures 3.1 through 3.8 for draft equal to the diameter. Comparing Figures 3.1 

and 3.9 we can observe the same qualitative features in the results, although the 

actual numbers are more negative; i.e., lower draft favor SLICE vice SWATH. The 

same conclusion is reached by comparing Figure 3.2 with 3.10, 3.3 with 3.11, 3.4 

with 3.12, 3.5 with 3.13, and 3.6 with 3.14. The difference between the two drafts 

were not as pronounced for the separation distance variations, as illustrated by Fig- 

ures 3.7 and 3.15. Finally, the speed variation of Figure 3.16 showed similar effects as 
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Effects of U (20, 30, 40 knots) for v=10, l/d=3, na=nf=3.5, Draft=Diameter 
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Figure 3.7: Total resistance ratio vs. separation distance alpha for limited 
length case for different speeds. 
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Effects of Separation Distance (0.3, 0.4, 0.5) for v=10,l/d=3, na=nf=3.5, Draft=Diameter 
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Figure 3.8: Total resistance ratio vs.   speed for limited diameter case for 
different separation distance alpha. 
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Effects of v (8, 10, 12) for l/d=3, U=30 knots, na=nf=3.5, Draft=2*Diameter 
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Figure 3.9: Total resistance ratio vs. separation distance alpha for limited 
length case for different displacement to length ratios. 
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Effects of l/d (2, 3, 4) for v=10, U=30 knots, na=nf=3.5, Draft=2*Diameter 
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Figure 3.10: Total resistance ratio vs. separation distance alpha for limited 
length case for different length to diameter ratios. 
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Effects of na=nf (2, 3.5, 5) for v=10,l/d=3, U=30 knots, Draft=2*Diameter 
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Figure 3.11: Total resistance ratio vs. separation distance alpha for limited 
length case for different shape factors. 
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Effects of Separation Distance (0.3, 0.4, 0.5) for l/d=3, U=30 knots, na=nf=3.5, Draft=2*Diameter 
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Figure 3.12: Total resistance ratio vs.    displacement to length ratio for 
limited diameter case for different separation distance alpha. 
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Effects of Separation Distance (0.3, 0.4, 0.5) for v=10, U=30 knots, na=nf=3.5, Draft=2*Diameter 
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diameter case for different separation distance alpha. 
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Effects of Separation Distance (0.3, 0.4, 0.5) for v=10,l/d=3, U=30 knots, Draft=2*Diameter 
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Figure 3.14: Total resistance ratio vs.   shape factor for limited diameter 
case for different separation distance alpha. 
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Effects of U (20, 30, 40 knots) for v=10, l/d=3, na=nf=3.5, Draft=2*Diameter 
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Figure 3.15: Total resistance ratio vs. separation distance alpha for limited 
length case for different speeds. 
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Effects of Separation Distance (0.3, 0.4, 0.5) for v=10,l/d=3, na=nf=3.5, Draft=2*Diameter 
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Figure 3.16: Total resistance ratio vs. speed for limited diameter case for 
different separation distance alpha. 
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Figure 3.8 for the shallower draft. The results are highly oscillatory, exhibiting peaks 

and troughs, mainly due to wave interaction effects between the two pods. 

E.    DISCUSSION OF RESULTS 

The previous results show that shallow drafts seem to favor a two-pod config- 

uration versus one. From the three main components of the resistance, frictional, 

form drag, and wavemaking, the one component that is mostly related to draft is 

the wavemaking. The waves generated by a body in proximity to a free surface, and 

therefore its wavemaking resistance, decay exponentially with distance from the free 

surface. Therefore, it appears that a SLICE configuration will owe its success over 

a SWATH to a reduction in wavemaking resistance. For deeper drafts where wave- 

making resistance is less of a problem, a SWATH configuration appears to be better. 

Therefore, a SWATH configuration offers less viscous resistance; i.e., frictional and 

form drag that a SLICE. 

In order to test this hypothesis, we offer the results shown in the following 

figures. For the limited length case, Figure 3.17 shows that a SLICE configuration 

has always larger wetted surface that a SWATH. The remaining Figures 3.18 through 

3.46 show that, in general, a SLICE configuration develops higher viscous resistance 

that a SWATH. This is predominantly due to a much higher form drag and less 

due to differences in skin friction. The wavemaking resistance of a SLICE can be 

made smaller that the corresponding wavemaking resistance of a SWATH, so that it 

develops less total resistance. This depends on a suitable selection of the parameters 

of the design as demonstrated in the previous section. 
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Effect of v (8,10,12) for l/d=3, U=30, na=nf=3.5 
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Figure 3.17: Wetted surface ratio for viscous resistance only vs. pod sepa- 
ration distance for limited length case for different displacement to length 
ratios. 
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Effect of v (8,10,12) for l/d=3, U=30, na=nf=3.5 
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Figure 3.18: Viscous resistance ratio vs.  pod separation distance for lim- 
ited length case for different displacement to length ratios. 
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Effect of l/d (2,3,4) for v=10, U=30, na=nf=3.5 
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Figure 3.19: Viscous resistance ratio vs.  pod separation distance for lim- 
ited length case for different length to diameter ratios. 
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Effect of U (20,30,40) for v=10, l/d=3, na=nf=3.5 
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Figure 3.20: Viscous resistance ratio vs.  pod separation distance for lim- 
ited length case for different speeds. 
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Effect of na=nf (2,3.5,5) for v=10, l/d=3, U=30 
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Figure 3.21: Viscous resistance ratio vs.  pod separation distance for lim- 
ited length case for different shape factors. 
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l/d=3, U=30, na=nf=3.5 
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Figure 3.22: Wetted surface ratio for viscous resistance only vs. displace- 
ment to length ratio for limited diameter case. 
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l/d=3, U=30, na=nf=3.5 
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Figure 3.23: Viscous resistance ratio vs.  displacement to length ratio for 
limited diameter case. 
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v=10, U=30, na=nf=3.5 
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Figure 3.24: Viscous resistance ratio vs. length to diameter ratio for lim- 
ited diameter case. 
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v=10, l/d=3, na=nf=3.5 
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Figure 3.25: Viscous resistance ratio vs. speed for limited diameter case. 
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Figure 3.26: Viscous resistance ratio vs. shape factor for limited diameter 
case. 
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Effect of v (8,10,12) for l/d=3, U=30, na=nf=3.5 
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Figure 3.27: Wetted surface ratio for skin friction only vs. pod separation 
distance for limited length case for different displacement to length ratios. 

56 



Effect of v (8,10,12) for l/d=3, U=30, na=nf=3.5 
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Figure 3.28:  Skin friction ratio vs.    pod separtion distance for limited 
length case for different displacement to length ratios. 
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Effect of l/d (2,3,4) for v=10, U=30, na=nf=3.5 
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Figure 3.29: Skin friction ratio vs.    pod separation distance for limited 
length case for different length to diameter ratios. 
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Effect of U (20,30,40) for v=10, l/d=3, na=nf=3.5 
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Figure 3.30: Skin friction ratio vs.    pod separation distance for limited 
length case for different speeds. 
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Effect of na=nf (2,3.5,5) for v=10, l/d=3, U=30 
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Figure 3.31: Skin friction ratio vs.    pod separation distance for limited 
length case for different shape factors. 
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l/d=3, l>30, na=nf=3.5 
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Figure 3.32: Wetted surface ratio for skin friction only vs.   displacement 
to length ratio for limited diameter case. 
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l/d=3, U=30, na=nf=3.5 
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Figure 3.33: Skin friction ratio vs. displacement to length ratio for limited 
diameter case. 
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v=10, U=30, na=nf=3.5 

x 

-24 

-18 

-20 

|-22 
CO 

HP 
o 
_J 
CO 

± 
h- 
g-26 
CO 

|-28 
c 
o 

|-30 
c 

CO 
-32 

-34 

x 

2.2        2.4        2.6        2.8 3 3.2 
Length/Diameter Ratio 

3.4 3.6 3.8 4 

Figure 3.34: Skin friction ratio vs.   length to diameter ratio for limited 
diameter case. 
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v=10, l/d=3, na=nf=3.5 
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Figure 3.35: Skin friction ratio vs. speed for limited diameter case. 
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Figure 3.36: Skin friction ratio vs. shape factor for limited diameter case. 
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Effect of v (8,10,12) for l/d=3, U=30, na=nf=3.5 
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Figure 3.37: Wetted surface ratio for form drag only vs.   pod separation 
distance for limited length for different displacement to length ratios. 
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Effect of l/d (2,3,4) for v=10, U=30, na=nf=3.5 
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Figure 3.39: Form drag ratio vs. pod separation distance for limited length 
for different length to diameter ratios. 
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Effect of U (20,30,40) for v=10, l/d=3, na=nf=3.5 
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Figure 3.40: Form drag ratio vs. pod separation distance for limited length 
for different speeds. 
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Effect of na=nf (2,3.5,5) for v=10, l/d=3, U=30 
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Figure 3.41: Form drag ratio vs. pod separation distance for limited length 
for different shape factors. 
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l/d=3, U=30, na=nf=3.5 
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Figure 3.42: Wetted surface ratio for form drag only vs.  displacement to 
length for limited diameter. 
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l/cl=3, U=30, na=nf=3.5 
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Figure 3.43: Form drag ratio vs.  displacement to length ratio for limited 
diameter. 
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v=10, l/d=3, na=nf=3.5 
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Figure 3.45: Form drag ratio vs. speed for limited diameter. 
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Figure 3.46: Form drag ratio vs. shape factor for limited diameter. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

This work focused on comparative resistance calculations for SWATH/SLICE 

hull forms for two different cases, limited length and limited diameter. For both cases 

the SWATH offers less viscous drag than the SLICE, but the wavemaking resistance 

plays the bigger role in the total resistance and the final results. Both viscous drag 

and wavemaking resistance depend upon the body shape, speed, draft, and the pod 

separation distance. From the different runs for each of the two cases, by changing 

one of the above parameters we reached a number of conclusions. 

For the limited length case we conclude, that the total resistance ratio resulting 

from varying the body shape parameters v, l/d, na, and n/ for draft of one diameter, 

is negative (in favor of SWATH) for pod separation distance starting from 0 to 0.15, 

then it changes to a positive value (in favor of SLICE) until the maximum range of the 

separation distance is reached. Second, once the draft increases to twice the diameter 

most of the results remain in favor of SWATH for the entire range of pod separation 

distance, except for some values of the parameters at the maximum separation dis- 

tance. Third, the total resistance ratio versus speed has an oscillatory shape with 

higher amplitude as the separation distance increases. Finally, lower speeds produce 

higher positive total resistance ratio, with a very minor draft effect. 

For the limited diameter case we conclude, that the higher the displacement to 

length ratio, the lower the length to diameter ratio, and the lower prismatic shape 

factor, the better the SLICE configuration over the SWATH for draft equal to the 

diameter. Second, as the draft increases to twice the diameter the results change and 

now the SWATH configuration produces less resistance than the SLICE. Third, the 

larger the pod separation distance the higher the positive value of the total resistance 

ratio. Fourth, as the speed increases it results in an oscillatory behavior of the total 
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resistance ratio. Depending on the draft, this may oscillate in the positive or negative 

region or oscillate back and forth between the two regions. Therefore to answer the 

basic question in the beginning of this study, whether SLICE hull offer less resistance 

than the SWATH hull, we need to consider the range of the design parameters. This 

means that by choosing the correct range value of the different body shape parameters, 

speed, and draft it is possible that the SLICE offers less resistance than the SWATH. 

Table 4.1 shows the speed range where the SLICE configuration is better in terms of 

resistance. 

Approach Cases Draft 

Ship Speed 
(in knots, at v — 10, 

£/d = 3, na = rif = 3.5) 
Pod Separation 

Distance 

Limited Length 
diameter 

30 
30 
40 

0.09-0.4 
0.1-0.4 

0.4 

2* diameter 
20 

30 

0.09-0.4 

0.38-0.4 

Limited Diameter 
diameter 

20 to 22 

27 to 34 
varies 

2* diameter 31 to 39 varies 

Table 4.1: Speed Range Where SLICE Configuration Produces Less Re- 
sistance than the SWATH for Constant Body Shape Parameters 

For further improvement of the comparative resistance calculations presented 

in this study the following recommendations are proposed. First, for the two pods 

on each side of the SLICE configuration one of the assumptions must be modified so 

that they are not inline any more. We must perform the resistance calculations and 

compare with the results from this study. Second, study the speed ranges similar to 

the results from the above table but for different values for the body shape parameters. 
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These results would greatly assist in choosing the best pod geometry along with the 

speed. Finally, study the effect of the wave making resistance as the draft increases for 

more that twice the diameter, for the same pod shape parameters and speed. These 

recommendations with the results presented in this study would increase the accuracy 

of the values for the different parameters which allow the SLICE configuration to 

produce less resistance than what produced by the SWATH. 
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APPENDIX A 

TABULATED RESULTS 

The data for the figures presented in Chapter III were obtained by running the 

programs for calculating the viscous resistance and the wavemaking resistance. All 

data are arranged in different tables presented in this Appendix. These tables contain 

the following: 

• The variable parameter. 

• Pod separation distance a, only for SLICE. 

• Viscous resistance (lbs.). 

• Wavemaking resistance (lbs.). 

• Wave resistance coefficient. 

• Froude number. 

• Wetted surface area (ft2). 

• The total resistance (lbs.). 

The total resistance percentage ratio for both limited diameter and limited 

length are presented in separate tables, computed using the information on the total 

resistance presented in above tables. 
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Variable 
Viscous 

Resistance 
(lbs) 

Wave 
Resistance 

(lbs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SWATH 
Total Res. 

(lbs) 

v = 8 1992.5 3747.4 0.00052752 0.99839 2849.0 5739.9 

v = 10 2287.4 5153.2 0.00064877 0.99839 3083.6 7440.6 

v = 12 2565.7 6648.0 0.00076397 0.99839 3490.0 9213.7 

U = 20 1051.7 6412.4 0.00181860 0.66556 1592.8 7464.1 

U = 22.5 1317.8 6290.0 0.00140970 0.74870 1592.8 7607.8 

U = 25 1612.6 5955.8 0.00108100 0.83195 1592.8 7568.4 

U = 27.5 1935.8 5750.2 0.00094183 0.87579 1592.8 7686.0 

U = 30 2287.4 5153.2 0.00064877 0.99839 1592.8 7440.6 

U = 32.5 2667.1 4802.8 0.00052347 1.07360 1592.8 7469.9 

U = 35 3074.7 4400.2 0.00040747 1.16470 1592.8 7474.9 

U = 37.5 3510.2 4060.2 0.00032751 1.24797 1592.8 7570.4 

U = 40 3973.4 3748.2 0.00026575 1.33110 1592.8 7721.6 

l/d = 2 2281.3 5397.6 0.00067488 0.99839 3207.6 7678.9 

l/d = 3 2287.4 5153.2 0.00064877 0.99839 3185.6 7440.6 

l/d = 4 2294.3 5076.6 0.00064297 0.99839 6166.6 7370.9 

na = 2 2297.0 5555.2 0.00070832 0.99839 3145.4 7852.2 

na = 2.5 2293.0 5353.4 0.00067872 0.99839 3163.4 7646.4 

na = 3 2289.8 5234.0 0.00066095 0.99839 3176.0 7523.8 

na = 3.5 2287.4 5153.2 0.00064877 0.99839 3185.6 7440.6 

na = 5 2282.6 5008.6 0.00062688 0.99839 3204.4 7291.2 

Table A.l: SWATH Resistance at Draft = Diameter 
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Variable 

Viscous 
Resistance 

(lbs) 

Wave 
Resistance 

(lbs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SWATH 
Total Res. 

(lbs) 

v = 8 1992.5 1584.6 0.00052752 0.99839 2849.0 3577.1 

v = 10 2287.4 2107.8 0.00064877 0.99839 3083.6 4395.2 

v = 12 2565.7 2651.4 0.00076397 0.99839 3490.0 5217.1 

U = 20 1051.7 3099.8 0.00181860 0.66556 1592.8 4151.5 

U = 22.5 1317.8 2973.6 0.00140970 0.74870 1592.8 4291.4 

U = 25 1612.6 1861.2 0.00108100 0.83195 1592.8 3473.8 

U = 27.5 1935.8 2533.0 0.00094183 0.87579 1592.8 4468.8 

U = 30 2287.4 2107.8 0.00064877 0.99839 1592.8 4395.2 

U = 32.5 2667.1 1863.2 0.00052347 1.07360 1592.8 4530.3 

U = 35 3074.7 4777.3 0.00040747 1.16470 1592.8 7852.0 

U = 37.5 3510.2 1469.7 0.00032751 1.24797 1592.8 4979.9 

U = 40 3973.4 1314.9 0.00026575 1.33110 1592.8 5288.3 

l/d = 2 2281.3 2480.2 0.00067488 0.99839 3207.6 4761.6 

l/d = 3 2287.4 2107.8 0.00064877 0.99839 3185.6 4395.2 

l/d = 4 2294.3 2065.0 0.00064297 0.99839 6166.6 4359.3 

na = 2 2297.0 2179.2 0.00070832 0.99839 3145.4 4476.2 

na = 2.5 2293.0 2140.6 0.00067872 0.99839 3163.4 4433.6 

na = 3 2289.8 2120.4 0.00066095 0.99839 3176.0 4410.2 

na = 3.5 2287.4 2107.8 0.00064877 0.99839 3185.6 4395.2 

na = 5 2282.6 2084.2 0.00062688 0.99839 3204.4 4366.8 

Table A.2 : SWATH Resistance at Draft = 2 x Diameter 
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Variable 
Separation 
Distance 
Alpha 

Pod 
Diameter 

(ft) 

Viscous 
Resistance 

(lbs) 

Wave 
Resistance 

(lbs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SLICE 
Total Res. 

(lbs) 

v = 8 

0.3738 8.353 3127.3 2131.8 0.000379 0.99839 2252.8 5259.1 

0.2803 7.521 2878.5 2479.8 0.000413 0.99839 2408.8 5358.3 

0.1869 6.918 2736 2884.8 0.000453 0.99839 2554.8 5620.8 

0.0934 6.450 2649.7 3342.2 0.000489 0.99839 2739.8 5991.9 

0.0 6.073 2596.6 3726.4 0.000529 0.99839 2821.2 6323.0 

v=10 

0.3254 8.998 3615 3202.6 0.000493 0.99839 2603.8 6817.6 

0.2440 8.249 3368.6 3633.0 0.000529 0.99839 2751.6 7001.6 

0.1627 7.679 3213.4 3325.2 0.000485 0.99839 2748.2 6538.6 

0.0813 7.224 3110.8 4609.4 0.000611 0.99839 3024.2 7720.2 

0.0 6.847 3041:6 5051.0 0.000643 0.99839 3150.8 8092.6 

v=12 

0.2831 9.562 4069.4 4462.8 0.000611 0.99839 2931.8 8532.2 

0.2123 8.893 3831.8 4953.6 0.000647 0.99839 3069.4 8785.4 

0.1416 8.364 3670.2 5468.0 0.000685 0.99839 3200.6 9138.2 

0.0708 7.928 3556.2 5993.8 0.000723 0.99839 3327.0 9550.0 

0.0 7.559 3474 6451.2 0.000750 0.99839 3448.2 9925.2 

U=20 

0.3254 8.999 1641.8 3884.8 0.001348 0.66556 2603.8 5526.6 

0.2440 8.249 1533.7 4439.8 0.001458 0.66556 2751.6 5973.5 

0.1627 7.679 1466 4055.4 0.001333 0.66556 2748.2 5521.4 

0.0813 7.224 1421.6 5842.4 0.001745 0.66556 3024.2 7264.0 

0.0 6.847 1391.9 6570.4 0.001884 0.66556 3150.8 7962.3 

U=30 

0.3254 8.998 3615 3202.6 0.000493 0.99839 2603.8 6817.6 

0.2440 8.249 3368.6 3633.0 0.000529 0.99839 2751.6 7001.6 

0.1627 7.679 3213.4 3325.2 0.000485 0.99839 2748.2 6538.6 

0.0813 7.224 3110.8 4609.4 0.000611 0.99839 3024.2 7720.2 

0.0 6.847 3041.6 5051.0 0.000643 0.99839 3150.8 8092.6 

t/ = 40 

0.3254 8.999 6333.9 2396.2 0.000208 1.33110 2603.8 8730.1 

0.2440 8.249 5892.3 2702.4 0.000222 1.33110 2751.6 8594.7 

0.1627 7.679 5612.9 2464.2 0.000202 1.33110 2748.2 8077.1 

0.0813 7.224 5427.4 3361.6 0.000251 1.33110 3024.2 8789.0 

0.0 6.847 5301.4 3650.0 0.000262 1.33110 3150.8 8951.4 

Table A.3 : SLICE Resistance for Limited Length Case at Draft =Diameter. v (8, 10, 
12) at U= 30 knots, l/d = 3, na =nf = 3.5; C/(20, 30, 40 knots) at v = 10, l/d= 3, na = 
nf = 3.5; l/d(2, 3, 4) at v = 10, U= 30 knots, na = nf = 3.5; na = nf (2, 3.5, 5) at v = 10, 
l/d =3, £/= 30 knots. 

84 



Variable 
Separation 
Distance 

Alpha 

Pod 
Diameter 

(ft) 

Viscous 
Resistance 

Obs) 

Wave 
Resistance 

Obs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sqft) 

SLICE 
Total Res. 

Obs) 

l/d = 2 

0.4852 10.3 4097.8 2783.6 0.000462 0.99839 2414.4 6881.4 

0.3639 8.818 3516.5 3222.4 0.000492 0.99839 2628.6 6738.9 

0.2426 7.784 3236 3954.8 0.000559 0.99839 2835.2 7190.8 

0.1216 7.196 3083 4669.0 0.000618 0.99839 3028.0 7752.0 

0.0 6.674 2996.3 5356.8 0.000669 0.99839 3211.2 8353.1 

l/d = 3 

0.3254 8.998 3615 3202.6 0.000493 0.99839 2603.8 6817.6 

0.2440 8.249 3368.6 3633.0 0.000529 0.99839 2751.6 7001.6 

0.1627 7.679 3213.4 3325.2 0.000485 0.99839 2748.2 6538.6 

0.0813 7.224 3110.8 4609.4 0.000611 0.99839 3024.2 7720.2 

0.0 6.847 3041.6 5051.0 0.000643 0.99839 3150.8 8092.6 

l/d = 4 

0.1828 8.175 3376.7 3779.8 0.000544 0.99839 2784.8 7156.5 

0.1371 7.834 3279.6 4053.8 0.000567 0.99839 2866.0 7333.4 

0.0914 7.538 3204.1 4333.6 0.000590 0.99839 2944.4 7537.7 

0.0457 7.278 3144.7 4610.6 0.000612 0.99839 3020.4 7755.3 

0.0 7.045 3097.5 4861.4 0.000630 0.99839 3094.2 7958.9 

na = 2 

0.2690 9.751 3972.6 2989.6 0.000457 0.99839 2622.0 6962.2 

0.2017 8.811 3600.4 3933.4 0.000496 0.99839 2743.6 6993.8 

0.1345 8.158 3384.5 3842.2 0.000538 0.99839 2862.4 7226.7 

0.0672 7.657 3244.7 4311.4 0.000581 0.99839 2976.8 7556.1 

0.0 7.252 3149.2 4765.4 0.000619 0.99839 3085.8 7914.6 

na = 3.5 

0.3254 8.998 3615 3202.6 0.000493 0.99839 2603.8 6817.6 

0.2440 8.249 3368.6 3633.0 0.000529 0.99839 2751.6 7001.6 

0.1627 7.679 3213.4 3325.2 0.000485 0.99839 2748.2 6538.6 

0.0813 7.224 3110.8 4609.4 0.000611 0.99839 3024.2 7720.2 

0.0 6.847 3041.6 5051.0 0.000643 0.99839 3150.8 8092.6 

na = 5 

0.3460 8.724 3491.9 3314.0 0.000512 0.99839 2595.6 6805.9 

0.2595 8.035 3284 3764.6 0.000549 0.99839 2752.2 7048.6 

0.1730 7.497 3150.5 4251.2 0.000588 0.99839 2899.8 7401.7 

0.0865 7.061 3062.1 4771.0 0.000629 0.99839 3039.6 7833.1 

0.0 6.697 3003.1 5468.2 0.000679 0.99839 3230.0 8471.3 

Table A.3: Com 
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Variable 
Separation 
Distance 

Alpha 

Pod 
Diameter 

(ft) 

Viscous 
Resistance 

Obs) 

Wave 
Resistance 

Obs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SLICE 
Total Res. 

Obs) 

v = 8 

0.3738 8.353 3127.3 948.7 0.000169 0.99839 2254.4 4076.0 

0.2803 7.521 2878.5 1099.8 0.000183 0.99839 2408.8 3978.3 

0.1869 6.918 2736 1266.7 0.000199 0.99839 2554.8 4002.7 

0.0934 6.450 2649.7 1461.2 0.000214 0.99839 2739.8 4110.9 

0.0 6.073 2596.6 1595.8 0.000227 0.99839 2821.2 4192.4 

v = 10 

0.3254 8.998 3615 1371.2 0.000211 0.99839 2603.8 4986.2 

0.2440 8.249 3368.6 1551.1 0.000226 0.99839 2751.6 4919.7 

0.1627 7.679 3213.4 1403.8 0.000205 0.99839 2748.2 4617.2 

0.0813 7.224 3110.8 1937.9 0.000257 0.99839 3024.2 5048.4 

0.0 6.847 3041.6 2097.8 0.000267 0.99839 3150.8 5139.4 

v = 12 

0.2831 9.562 4069.4 1841.2 0.000252 0.99839 2933.0 5910.6 

0.2123 8.893 3831.8 2039.0 0.000266 0.99839 3069.4 5870.8 

0.1416 8.364 3670.2 2249.0 0.000282 0.99839 3200.6 5919.2 

0.0708 7.928 3556.2 2417.8 0.000203 0.99839 3200.6 5974.0 

0.0 7.559 3474 2634.2 0.000306 0.99839 3448.2 6108.2 

U=20 

0.3254 8.999 1641.8 1527.9 0.000529 0.66556 2605.0 3169.7 

0.2440 8.249 1533.7 1873.3 0.000615 0.66556 2751.6 3407.0 

0.1627 7.679 1466 1802.6 0.000593 0.66556 2748.2 3268.6 

0.0813 7.224 1421.6 2712.0 0.000810 0.66556 3024.2 4132.6 

0.0 6.847 1391.9 2874.6 0.000824 0.66556 3150.8 4266.5 

£7=30 

0.3254 8.998 3615 1371.2 0.000211 0.99839 2603.8 4986.2 

0.2440 8.249 3368.6 1551.1 0.000226 0.99839 2751.6 4919.7 

0.1627 7.679 3213.4 1403.8 0.000205 0.99839 2748.2 4617.2 

0.0813 7.224 3110.8 1937.9 0.000257 0.99839 3024.2 5048.4 

0.0 6.847 3041.6 2097.8 0.000267 0.99839 3150.8 5139.4 

t/=40 

0.3254 8.999 6333.9 1245.5 0.000089 1.33110 3150.8 7579.4 

0.2440 8.249 5892.3 993.5 0.000082 1.33110 2715.6 6885.8 

0.1627 7.679 5612.9 893.8 0.000074 1.33110 2748.2 6506.7 

0.0813 7.224 5427.4 1214.4 0.000091 1.33110 3024.2 6641.8 

0.0 6.847 5301.4 1324.8 0.000095 1.33110 3150.8 6626.2 

Table A.4 : SLICE Resistance for Limited Length Case at Draft = 2 x Diameter, v 
(8, 10, 12) stU=30 knots, l/d = 3,na=nf = 3.5; U(20, 30, 40 knots) at v = 10, l/d = 
3j na=nf = 3.5; l/d(2, 3, 4) at v = 10, U= 30 knots, na=nf = 3.5; na = nf (2, 3.5, 5) at 
v=10, l/d=3, U= 30 knots. 
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Variable 
Separation 
Distance 

Alpha 

Pod 
Diameter 

(ft) 

Viscous 
Resistance 

(lbs) 

Wave 
Resistance 

(lbs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SLICE 
Total Res. 

(lbs) 

l/d=2 

0.4852 10.3 4097.8 1210.0 0.000205 0.99839 2367.8 5307.8 

0.3639 8.818 3516.5 1428.2 0.000218 0.99839 2628.6 4944.7 

0.2426 7.784 3236.0 1709.3 0.000242 0.99839 2835.2 4945.3 

0.1216 7.196 3083.0 1979.4 0.000262 0.99839 3028.0 5062.4 

0.0 6.674 2996.3 2238.4 0.000279 0.99839 3211.2 5234.7 

l/d = 3 

0.3254 8.998 3615.0 1371.2 0.000211 0.99839 2603.8 4986.2 

0.2440 8.249 3368.6 1551.1 0.000226 0.99839 2751.6 4919.7 

0.1627 7.679 3213.4 1403.8 0.000205 0.99839 2748.2 4617.2 

0.0813 7.224 3110.8 1937.9 0.000257 0.99839 3024.2 5048.4 

0.0 6.847 3041.6 2097.8 0.000267 0.99839 3150.8 5139.4 

l/d = 4 

0.1828 8.175 3376.7 1596.1 0.000231 0.99839 2766.8 4954.8 

0.1371 7.834 3279.6 1695.0 0.000237 0.99839 2866.0 4974.6 

0.0914 7.538 3204.1 1803.8 0.000246 0.99839 2944.4 5007.9 

0.0457 7.278 3144.7 1914.0 0.000254 0.99839 3020.4 5058.7 

0.0 7.045 3097.5 1921.1 0.000249 0.99839 3094.2 5018.6 

na = 2 

0.2690 9.751 3972.6 1212.7 0.000185 0.99839 2622.0 5185.3 

0.2017 8.811 3600.4 1392.3 0.000203 0.99839 2743.6 4992.7 

0.1345 8.158 3384.5 1574.7 0.000221 0.99839 2862.4 4959.2 

0.0672 7.657 3244.7 1755.0 0.000236 0.99839 2976.8 4999.7 

0.0 7.252 3149.2 1935.1 0.000251 0.99839 3085.8 5084.3 

na = 3.5 

0.3254 8.998 3615 1371.2 0.000211 0.99839 2603.8 4986.2 

0.2440 8.249 3368.6 1551.1 0.000226 0.99839 2751.6 4919.7 

0.1627 7.679 3213.4 1403.8 0.000205 0.99839 2748.2 4617.2 

0.0813 7.224 3110.8 1937.9 0.000257 0.99839 3024.2 5048.4 

0.0 6.847 3041.6 2097.8 0.000267 0.99839 3150.8 5139.4 

na = 5 

0.3460 8.724 3491.9 1473.8 0.000228 0.99839 2595.6 4965.7 

0.2595 8.035 3284 1642.7 0.000239 0.99839 2752.2 4926.7 

0.1730 7.497 3150.5 1831.6 0.000253 0.99839 2899.8 4982.1 

0.0865 7.061 3062.1 2028.2 0.000268 0.99839 3039.6 5090.3 

0.0 6.697 3003.1 2310.4 0.000287 0.99839 3230.0 5313.5 

Table A.4: Continued 
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Variable 
Separation 
Distance 

Alpha 

Pod 
Diameter 

(ft) 

Viscous 
Resistance 

Obs) 

Wave 
Resistance 

Obs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SLICE 
Total Res. 

(lbs) 

£7=20 

0.3 

6.596 1509.6 

4538.6 0.00107 0.55951 3799.8 6048.2 

0.4 4877.6 0.00116 0.54778 3800.4 6387.2 

0.5 5517.2 0.00131 0.53676 3801.0 7026.8 

U=22.5 

0.3 

6.596 1893.0 

4317.2 0.00081 0.62941 3799.8 6210.2 

0.4 4320.0 0.00081 0.61621 3800.4 6213.0 

0.5 4566.4 0.00085 0.60381 3801.0 6459.4 

£7=25 

0.3 

6.596 2318.1 

4071.8 0.00062 0.69939 3799.8 6389.9 

0.4 3875.4 0.00059 0.68473 3800.4 6193.5 

0.5 3871.6 0.00059 0.67095 3801.0 6189.7 

U=27.S 

0.3 

6.596 2784.5 

3964.0 0.00054 0.73624 3799.8 6748.5 

0.4 3694.8 0.00051 0.72081 3800.4 6479.3 

0.5 3602.0 0.00049 0.70630 3801.0 6386.5 

£7=30 

0.3 

6.596 3292.2 

3724.6 0.00039 0.83976 3799.8 7016.8 

0.4 3354.4 0.00035 0.82216 3800.4 6646.6 

0.5 3101.4 0.00033 0.80561 3801.0 6393.6 

£7=32.5 

0.3 

6.596 3840.7 

3605.4 0.00033 0.90254 3799.8 7446.1 

0.4 3226.2 0.00029 0.88362 3800.4 7066.9 

0.5 2927.0 0.00026 0.86584 3801.0 6767.7 

£7=35 

0.3 

6.596 4430.0 

3471.4 0.00027 0.97914 3799.8 7901.4 

0.4 3111.0 0.00024 0.95862 3800.4 7541.0 

0.5 2780.0 0.00022 0.93933 3801.0 7210.0 

£7=37.5 

0.3 

6.596 5059.9 

3362.4 0.00023 1.11330 3799.8 8422.3 

0.4 3019.6 0.00020 1.11280 3800.4 8079.5 

0.5 2706.6 0.00018 1.11210 3801.0 7766.5 

£7=40 

0.3 

6.596 5730.1 

3238.8 0.00019 1.11900 3799.8 8968.9 

0.4 2932.6 0.00017 1.11850 3800.4 8662.7 

0.5 2621.6 0.00016 1.11780 3801.0 8351.7 

Table A.5 : SLICE Resistance for Limited Diameter Case at Draft = Diameter. (7(20, 
2.5, 25, 27.5, 30, 32.5, 35, 37.5, 40 knots) at v = 10, l/d= 3, na=nf = 3.5; v (8, 10, 12) 
at 17= 30 knots, l/d =3,na = nf = 3.5; l/d (2, 3, 4) at v = 10, U= 30 knots, ««=«/ = 
3.5; na = nf (2, 2.5, 3, 3.5) at v = 10, l/d= 3, U= 30 knots. 

88 



Variable 
Separation 
Distance 

Alpha 

Pod 
Diameter 

(ft) 

Viscous 
Resistance 

(lbs) 

Wave 
Resistance 

(lbs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SLICE 
Total Res. 

(lbs) 

v = 8 

0.3 

5.878 2804.7 

2705.2 0.00032 0.84843 3337.2 5509.9 

0.4 2403.8 0.00029 0.83064 3337.8 5208.5 

0.5 2222.8 0.00027 0.81393 3338.4 5027.5 

v = 10 

0.3 

6.596 3292.2 

3724.6 0.00039 0.83976 3799.8 7016.8 

0.4 3354.4 0.00035 0.82216 3800.4 6646.6 

0.5 3101.4 0.00033 0.80561 3801.0 6393.6 

v = 12 

0.3 

7.249 3763.6 

4899.0 0.00046 0.83208 4231.6 8662.6 

0.4 4397.0 0.00042 0.81461 4238.6 8160.6 

0.5 3981.6 0.00038 0.79819 4232.8 7745.2 

l/d=2 

0.3 

6.522 3164.5 

4133.8 0.00046 0.86781 3633.0 7298.3 

0.4 3541.6 0.00039 0.84958 3633.6 6706.1 

0.5 3196.0 0.00035 0.83244 3634.2 6360.5 

l/d=3 

0.3 

6.596 3092.2 

3724.6 0.00039 0.83976 3799.8 7016.8 

0.4 3354.4 0.00035 0.82216 3800.4 6646.6 

0.5 3101.4 0.00033 0.80561 3801.0 6393.6 

l/d=4 

0.3 

6.674 3426.8 

3606.6 0.00036 0.81359 3982.4 7033.4 

0.4 3332.2 0.00033 0.79660 3983.2 6759.0 

0.5 3101.2 0.00031 0.78063 3983.8 6528.0 

na = 2 

0.3 

6.748 3292.5 

3972.0 0.00041 0.83644 3914.2 7264.5 

0.4 3570.4 0.00037 0.81904 3914.8 6862.9 

0.5 3259.6 0.00033 0.80236 3915.4 6552.1 

na = 2.5 

0.3 

6.679 3294.7 

3868.0 0.00040 0.83791 3865.0 7162.7 

0.4 3516.4 0.00036 0.82008 3865.6 6811.1 

0.5 3200.4 0.00033 0.80366 3866.2 6495.1 

na = 3 

0.3 

6.631 3292.0 

3784.8 0.00040 0.83902 3828.1 7076.8 

0.4 3416.6 0.00036 0.82112 3828.8 6708.6 

0.5 3150.2 0.00033 0.80463 3829.6 6442.2 

na — 3.5 

0.3 

6.596 3292.2 

3724.6 0.00039 0.83976 3799.8 7016.6 

0.4 3354.4 0.00035 0.82216 3800.4 6646.6 

0.5 3101.4 0.00033 0.80561 3801.0 6393.6 

Table A.5: Continued 

89 



Variable 
Separation 
Distance 

Alpha 

Pod 
Diameter 

(ft) 

Viscous 
Resistance 

Obs) 

Wave 
Resistance 

(lbs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SLICE 
Total Res. 

(lbs) 

£7=20 

0.3 

6.596 1509.6 

1597.1 0.00038 0.55951 3799.8 3106.7 

0.4 1370.9 0.00033 0.54778 3800.4 2880.5 

0.5 1333.8 0.00032 0.53676 3801.0 2843.4 

£7=22.5 

0.3 

6.596 1893.0 

1885.8 0.00035 0.62941 3799.8 3778.8 

0.4 1729.1 0.00032 0.61621 3800.4 3622.1 

0.5 1478.5 0.00027 0.60381 3801.0 3371.5 

17=25 

0.3 

6.596 2318.1 

1969.9 0.00030 0.69939 3799.8 4287.9 

0.4 1856.0 0.00028 0.68473 3800.4 4174.1 

0.5 1566.9 0.00024 0.67095 3801.0 3884.9 

17=27.5 

0.3 

6.596 2784.5 

1957.5 0.00027 0.73624 3799.8 4742.0 

0.4 1872.9 0.00026 0.72081 3800.4 4657.4 

0.5 1576.8 0.00021 0.70630 3801.0 4361.3 

£7=30 

0.3 

6.596 3292.2 

1852.8 0.00020 0.83976 3799.8 5144.9 

0.4 1831.2 0.00019 0.82216 3800.4 5119.4 

0.5 1528.7 0.00016 0.80561 3801.0 1820.9 

£7=32.5 

0.3 

6.596 3840.7 

1708.4 0.00015 0.90254 3799.8 5549.1 

0.4 1763.9 0.00016 0.88362 3800.4 5604.7 

0.5 1465.2 0.00013 0.86584 3801.0 5305.9 

£7=35 

0.3 

6.596 4430.0 

1867.9 0.00021 0.97914 3799.8 6297.9 

0.4 1846.9 0.00021 0.95862 3800.4 6276.9 

0.5 1392.0 0.00011 0.93933 3801.0 5822.0 

£7=37.5 

0.3 

6.596 5059.9 

1467.3 0.00009 1.11330 3799.8 6527.2 

0.4 1634.8 0.00011 1.11280 3800.4 6694.7 

0.5 1315.9 0.00009 1.11210 3801.0 6375.9 

£7=40 

0.3 

6.596 5730.1 

1437.8 0.00008 1.11900 3799.8 7167.9 

0.4 1332.5 0.00008 1.11850 3800.4 7062.6 

0.5 1196.3 0.00007 1.11780 3801.0 6926.4 

Table A.6 : SLICE Resistance for Limited Diameter Case at Draft = 2 x Diameter. U 
(20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5, 40 knots) at v - 10, l/d= 3, na=nf = 3.5; v(8, 10, 
12) at U= 30 knots, l/d = 3, na = nf = 3.5; l/d(2, 3, 4) at v = 10, U= 30 knots, na = «/ = 
3.5; na = nf(2, 2.5, 3, 3.5) at v = 10, l/d= 3, U= 30 knots. 
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Variable 
Separation 

Distance 
Alpha 

Pod 
Diameter 

(ft) 

Viscous 
Resistance 

(lbs) 

Wave 
Resistance 

(lbs) 

Wave 
Resistance 
Coefficient 

Froude 
Number 

Wetted 
Area 
(sq.ft) 

SLICE 
Total Res. 

(lbs) 

v = 8 

0.3 

5.878 2804.7 

1406.2 0.00017 0.84843 3337.2 4210.9 

0.4 1231.4 0.00015 0.83064 3337.8 4036.1 

0.5 1141.3 0.00014 0.81393 3338.4 3946.0 

v = 10 

0.3 

6.596 3292.2 

1852.8 0.00020 0.83976 3799.8 5144.9 

0.4 1827.2 0.00019 0.82216 3800.4 5119.4 

0.5 1528.7 0.00016 0.80561 3801.0 4820.9 

v = 12 

0.3 

7.249 3763.6 

2430.4 0.00023 0.83208 4231.6 6194.1 

0.4 2206.0 0.00021 0.81461 4238.6 5969.6 

0.5 2009.5 0.00019 0.79819 4232.8 5773.1 

l/d = 2 

0.3 

6.522 3164.5 

2346.6 0.00026 0.86781 3633.0 5511.1 

0.4 2078.8 0.00023 0.84958 3633.6 5243.3 

0.5 1787.5 0.00020 0.83244 3634.2 4952.0 

l/d = 3 

0.3 

6.596 3092.2 

1852.8 0.00020 0.83976 3799.8 5144.9 

0.4 1831.2 0.00019 0.82216 3800.4 5119.4 

0.5 1528.7 0.00016 0.80561 3801.0 4820.9 

l/d = 4 

0.3 

6.674 3426.8 

1843.9 0.00019 0.81359 3982.4 5270.7 

0.4 1672.2 0.00017 0.79660 3983.2 5098.9 

0.5 1487.2 0.00015 0.78063 3983.8 4913.9 

na = 2 

0.3 

6.748 3292.5 

2011.8 0.00021 0.83644 3914.2 5304.3 

0.4 1827.1 0.00019 0.81904 3914.8 5119.6 

0.5 1638.7 0.00017 0.80236 3915.4 4931.2 

na = 2.5 

0.3 

6.679 3294.7 

1992.1 0.00021 0.83791 3865.0 5286.8 

0.4 1694.9 0.00018 0.82008 3865.6 4989.7 

0.5 1564.5 0.00016 0.80366 3866.2 4859.2 

na = 3 

0.3 

6.631 3292.0 

1720.9 0.00018 0.83902 3828.1 5014.9 

0.4 1720.9 0.00018 0.82112 3828.8 5014.9 

0.5 1549.1 0.00016 0.80463 3829.6 4843.1 

na = 3.5 

0.3 

6.596 3292.2 

1852.8 0.00020 0.83976 3799.8 5144.9 

0.4 1831.2 0.00019 0.82216 3800.4 5119.4 

0.5 1528.7 0.00016 0.80561 3801.0 4820.9 

Table A.6 : Continued 
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Variable 
Separation 
Distance 

Alpha 

Resistance 
Ratio 

(Draft = Dia) 

Resistance 
Ratio 

(Draft = 2*Dia) 

l/d = 2 

0.4852 10.4 -11.5 

0.3639 12.2 -3.84 

0.2426 6.36 -3.86 

0.1216 -0.95 -6.32 

0.0 -8.78 -9.94 

l/d = 3 

0.3254 8.37 -13.4 

0.2440 5.9 -11.9 

0.1627 12.1 -5.05 

0.0813 -3.76 -14.9 

0.0 -8.76 -16.9 

l/d = 4 

0.1828 2.91 -13.7 

0.1371 0.51 -14.1 

0.0914 -2.26 -14.9 

0.0457 -5.21 -16.0 

0.0 -7.98 -15.1 

na = 2 

0.2690 11.3 -15.8 

0.2017 10.9 -11.5 

0.1345 7.96 -10.8 

0.0672 3.77 -11.7 

0.0 -0.79 -13.6 

na = 3.5 

0.3254 8.37 -13.4 

0.2440 5.90 -11.9 

0.1627 12.1 -5.05 

0.0813 -3.76 -14.9 

0.0 -8.76 -16.9 

«a = 5 

0.3460 6.66 -13.7 

0.2595 3.33 -12.8 

0.1730 -1.52 -14.1 

0.0865 -7.43 -16.6 

0.0 -16.2 -21.7 

Table A.7 : Total Resistance Ratio for Limited Length Case 
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Variable 
Separation 
Distance 

Alpha 

Resistance 
Ratio 

(Draft =Dia) 

Resistance 
Ratio 

(Draft =2*Dia) 

v = 8 

0.3738 8.38 -13.9 

0.2803 6.65 -11.2 

0.1869 2.07 -11.9 

0.0934 -4.39 -14.9 

0.0 -10.2 -17.2 

v=10 

0.3254 8.37 -13.4 

0.2440 5.90 -11.9 

0.1627 12.1 -5.05 

0.0813 -3.76 -14.9 

0.0 -8.76 -16.9 

v=12 

0.2831 7.40 -13.3 

0.2123 4.65 -12.1 

0.1416 0.82 -13.1 

0.0708 -3.65 -14.5 

0.0 -7.72 -17.1 

17=20 

0.3254 25.9 23.6 

0.2440 19.9 17.9 

0.1627 26.0 21.3 

0.0813 2.68 0.004 

0.0 -6.67 -2.77 

17=30 

0.3254 8.37 -13.4 

0.2440 5.90 -11.9 

0.1627 12.1 -5.05 

0.0813 -3.76 -14.9 

0.0 -8.76 -16.9 

U=40 

0.3254 -13.1 -43.3 

0.2440 -11.31 -30.2 

0.1627 -4.6 -23.0 

0.0813 -13.8 -25.6 

0.0 -15.9 -25.3 

Table A.7 : Continued 
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Variable 
Separation 
Distance 

Alpha 

Resistance 
Ratio 

(Draft = Dia) 

Resistance 
Ratio 

(Draft= 2*Dia) 

v = 8 

0.3/ 4.01 -17.7 

0.4/ 9.26 -12.8 

0.5/ 12.4 -10.3 

v = 10 

0.3/ 5.69 -17.1 

0.4/ 10.7 -16.5 

0.5/ 14.1 -9.69 

v = 12 

0.3/ 5.98 -18.7 

0.4/ 11.4 -14.4 

0.5/ 15.9 -10.7 

l/d = 2 

0.3/ 4.96 -15.7 

0.4/ 12.7 -10.1 

0.5/ 17.2 -4.00 

l/d = 3 

0.3/ 5.69 -17.1 

0.4/ 10.7 -16.6 

0.5/ 14.1 -9.69 

l/d = 4 

0.3/ 4.58 -20.9 

0.4/ 8.30 -16.9 

0.5/ 11.4 -12.7 

na = 2 

0.3/ 7.48 -18.5 

0.4/ 12.6 -14.4 

0.5/ 16.6 -10.2 

na = 2.5 

0.3/ 6.33 -19.2 

0.4/ 10.9 -12.5 

0.5/ 15.1 -9.60 

na = 3 

0.3/ 5.94 -13.7 

0.4/ 10.8 -13.7 

0.5/ 14.4 -9.77 

na = 3.5 

0.3/ 5.69 -17.1 

0.4/ 10.7 -16.6 

0.5/ 14.1 -9.69 

Table A.8 : Total Resistance Ratio for Limited Diameter 
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Variable 
Separation 
Distance 

Alpha 

Resistance 
Ratio 

(Draft = Dia) 

Resistance 
Ratio 

(Draft= 2*Dia) 

17 = 20 

0.3/ 18.9 25.2 

0.4/ 14.4 30.6 

0.5/ 5.86 31.5 

17=22.5 

0.3/ 18.4 -11.9 

0.4/ 18.3 -15.6 

0.5/ 15.1 -21.4 

£7 = 25 

0.3/ -15.6 -17.9 

0.4/ -18.2 -20.2 

0.5/ -18.2 -44.82 

17=27.5 

0.3/ 12.2 6.11 

0.4/ 15.7 4.22 

0.5/ 15.9 -2.41 

£7=30 

0.3/ 5.69 -17.1 

0.4/ 10.7 -16.6 

0.5/ 14.1 -9.68 

(7 = 32.5 

0.3/ 0.32 22.5 

0.4/ 5.24 23.7 

0.5/ 9.40 17.1 

£7 = 35 

0.3/ 5.71 20.5 

0.4/ 0.88 20.1 

0.5/ -3.54 11.4 

£7 = 37.5 

0.3/ -11.3 31.1 

0.4/ -6.72 34.4 

0.5/ -2.59 28.0 

£7 = 40 

0.3/ 4.82 -35.5 

0.4/ -12.2 -33.5 

0.5/ -8.16 -30.9 

Table A.8 : Continued 
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APPENDIX B 

MATLAB PROGRAMS 

In this Appendix, two Matlab programs are presented, one for each case, the 

limited diameter and the limited length. The purpose of these programs, as was 

explained in Chapter II, is to compute the viscous resistance (skin friction as well 

as form drag). Once the program is executed, it asks for the values for the different 

parameters, v, £/d, U, na, and nj so that it can continue performing the calculations. 

Both programs calculate the pod wetted surface area. 

97 



y. 

'/, Limited diameter. 
global na nf 
v=input('Enter displacement/length ratio 
l_d=input('Enter length/diameter ratio : 
U=input('Enter ship speed in knots : '); 
lf=0.4*l_d; 
la=0.6*l_d; 
nf=input('Enter nf : '); 
na=input('Enter na : '); 
cpf=quad('funcpf',0,1); 
cpa=quad('funcpa',0,1); 
cwsf=quad('funcwsf',0,1);     */. 
cwsa=quad('funcwsa',0,1);     '/. 
L=24.4; 
V=v*(0.1*L)~3; 
U=U*0.51444; 
nu=1.04*10~(-6); 
rho=1025; 
c(l)=lf*cpf+la*cpa-l_d; 
c(2)=L; 
c(3)»0; 
c(4)=-2*V/pi; 
Droots=roots(c); 
D=Droots(2,l) 
WS=2*pi*D~2*(L/D-l_d+lf*cwsf+la*cwsa) 
Re=U*L/nu; 
CF=0.075/(loglO(Re)-2)~2; 
DCF=0.0004; 
CR=0.00789/(L/D-l_d+lf*cwsf+la*cwsa); 
F_R=0.5*rho*(CF+DCF+CR)*IT2*WS*0.022481; 
d=D; 
1=((V/pi)-((CF*cpf+la*cpa-l_d)*D"3))/D~2 

ws=4*pi*d~2*(l/d-l_d+lf*cwsf+la*cwsa); 
Re=U*l/nu; 
cf=0.075/(loglO(Re)-2)"2; 
dcf=0.0004; 
cr=0.00789/(l/d-l_d+lf*cwsf+la*cwsa); 
f _r=0. 5*rho* (cf+dcf+cr) *IT2*ws*0.022481; 

ratio=100*(f_r-F_R)/F_R 
end 

'); 
'); 

*/, fore body shape factor 
*l,  aft body shape factor 
fore prismatic coefficient 

'/, aft prismatic coefficient 
fore wetted area coefficient 
aft wetted area coefficient 

'/, length overall (m) 
'/, displacement volume m"3) 

'/, ship speed (m/sec) 
'/, kinematic viscosity of seawater 

'/, water density (kg/m'3) 

'/.SWATH viscous drag in lbs. 

'/.SLICE viscous drag in lbs. 
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'/.Limited length. 
global na nf 
v=input('Enter displacement/length ratio : '); 
l_d=input('Enter length/diameter ratio : '); 
U=input('Enter ship speed in knots : '); 
lf=0.4*l_d; 
la=0.6*l_d; 
nf=input(;Enter nf : '); '/• fore body shape factor 
na=input(;Enter na : '); '/. aft body shape factor 
cpf=quad('funcpf' ,0,1); '/. fore prismatic coefficient 
cpa=quad('funcpa',0,1);        '/. aft prismatic coefficient 
cwsf=quad('funcwsf' ,0,1);     '/. fore wetted area coefficient 
cwsa=quad('funcwsa' ,0,1);     '/. aft wetted area coefficient 
L=24.4; '/• length overall (m) 
V=v*(0.1*L)~3; '/• displacement volume (m"3) 
U=U*0.51444; '/. ship speed (m/sec) 
nu=1.04*10~(-6); '/. kinematic viscosity of seawater 
rho=1025; '/. water density 
c(l)=lf*cpf+la*cpa-l_d; 
c(2)=L; 
c(3)=0; 
c(4)=-2*V/pi; 
Droots=roots(c) 
D=Droots(2,l) 
WS=2*pi*D~2*(L/D-l_d+lf*cwsf+la*cwsa); 
Re=U*L/nu; 
CF=0.075/(loglO(Re)-2)"2; 
DCF=0.0004; 
CR=0.00789/(L/D-l_d+lf*cwsf+la*cwsa); 
F_R=0.5*rho*(CF+DCF+CR)*lT2*WS*0.022481;   '/.SWATH viscous drag in lbs. 
dmax=(V/(pi*(If*cpf+la*cpa)))~(1/3); 
lmin=l_d*dmax; 
lmax=0.5*L; 
incr=50; 
c(1)=lf*cpf+la*cpa-l_d; 
c(3)=0; 
c(4)—V/pi; 
for i=l:incr;i; 

l(i)=lmin+(lmax-lmin)*(i-l)/(incr-l); 
c(2)=l(i); 
droots=roots(c); 
d(i)=droots(2,l); 
alpha(i)=l-2*l(i)/L; 
ws(i)=4*pi*d(i)~2*(l(i)/d(i)-l_d+lf*cwsf+la*cwsa); 
Re=U*l(i)/nu; 

cf(i)=0.075/(loglO(Re)-2)~2; 
dcf=0.0004; 
cr(i)=0.00789/(l(i)/d(i)-l_d+lf*cwsf+la*cwsa); 
f_r(i)=0.5*rho*(cf(i)+dcf+cr(i))*tT2*ws(i)*0.022481; '/.SLICE viscous drag in lbs. 

end 
ratio=100*(f_r-F_R)/F_R 
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APPENDIX C 

DATA FILES SAMPLES 

This Appendix contains sample data files used for calculating the wavemaking 

resistance. These files are the typical files for SUB.DAT as explained in Chapter II. 

The first column is the offset from the pod maximum diameter for the SWATH, or the 

offset from the middle of the pod separation distance in case of SLICE. The second 

column is the corresponding radii for these offset points. We show here one sample 

file for each hull form. 
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Offset Points Radii 

-40.0160 0.0000 

-39.1465 1.1016 

-38.2769 1.9077 

-37.4074 2.4719 

-36.5378 2.8441 

-35.6683 3.0700 

-34.7987 3.1911 

-33.9292 3.2439 

-33.0596 3.2539 

-32.1901 3.2608 

34.7987 3.2608 

35.1714 3.2607 

35.5440 3.2598 

35.9167 3.2566 

36.2894 3.2491 

36.6620 3.2352 

37.0347 3.2119 

37.4074 3.1757 

37.7800 3.1222 

38.1527 3.0451 

38.5253 2.9352 

38.8980 2.7771 

39.2707 2.5397 

39.6433 2.1386 

40.0160 0.0000 

Table C.l : SWATH Sample Data File 
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Offset Points Radii 

-52.9808 0.0000 

-50.3721 2.4719 

-47.7635 3.1911 

-45.1548 3.2608 

-12.1278 3.2608 

-11.3825 3.2598 

-10.6372 3.2491 

-9.8918 3.2119 

-9.1465 3.1222 

-8.4012 2.9352 

-7.6559 2.5397 

-6.9105 0.0100 

0.0000 0.0100 

6.9105 0.0100 

9.5192 2.4719 

12.1278 3.1911 

14.7365 3.2608 

47.7635 3.2608 

48.5088 3.2598 

49.2541 3.2491 

49.9994 3.2119 

50.7448 3.1222 

51.4901 2.9352 

52.2354 2.5397 

52.9808 0.0000 

Table C.2 : SLICE Sample Data File 
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