
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

1995-06

Preparations for testing a full scale OH-6A rotor

system with HHC installed

Hagwood, Derle G.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/31444



NAVAL POSTGRADUATE SCHOOL 
MONTEREY, CALIFORNIA 

THESIS 

PREPARA TIONS FOR TESTING A FULL SCALE 
OH-6A ROTOR SYSTEM WITH HHC INSTALLED 

Thesis Advisor: 
Second Reader: 

by 

Derle G. Hagwood, Jr. 

June, 1995 

E. Roberts Wood 
. Jon D. Raggett 

Approved for public release; distribution is unlimited 

19960116 034 

G 



REPORT COCUMENTATION, P'AGE FOlm'A~ 

OMS-No: 0704-(}'118! 

P'JOuc r~I"q OutQ~ to' UU\ (ollKtlon ot InformlllO" 1\ e1t1mIlPO to ."'e-flq. I "Our Off" fll!1OOttW. InCIUCln9 tl"IlIt tit". for r~f""lnq 1'""""Cllom. ~el'(ntnq ~,u,tl"q alII !tOur,". 

~:I=:~n~=~~~~:;'::=;:t:=~~::=;,t1ot:==c::=,::~=~g=t~!'~:"'=C:;:;==t:,::~~:~= 
0_ 1109-"', lu". '2~. 4'''_. VA 2220204302 •• .., '0 , .... Offl<. ot .... n_ • .., SlOOqft ......... .,... ."""""on """en (070.&.01811. W .... 'nqton. DC 20503. 

1. AGENCY USE ONLY (L •• _ ol.nld 12. REPORT DATE 
June 1995 

13. REPORT TYPE- AND OATES COVERED 
Engineer's Thesis 

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS 

PREPARATIONS FOR TESTING A ?ULL SCALE OH.-iJA ROTOR 
SYSTEM WITH HHC INSTALLED 

6. AUTHOR(S) 

Hagwood, Derle G. , Jr. 

7. PERfORMING ORGANIZATION NAME(S) AND AODRESS(E5) 8. ?ERFORMING ORGANIZATION· 
REPORT NUMBER 

~aval Postgraduate School 
~onterey, CA 93943-5000 

9. 5PONSORINGI MONITORING AGiNCY NAME(S) AND ADDRESS(ES) , O. SPONSORING I MONITORING 
AGENa' ~EPORT NUMBER 

". SUPPLEMENTARY NOTES 

The 'liews expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U. S. Government. 

,~. DISTRIBUTION I AVAILABWTY STATEMENT 12b. DISTRIBUTION CODE 

Approved for public release; distribution is unlimited. 

, 3. ABSTRACT (Millt/mum ;'00 WOrds) 

In the 1970's and 1980's Hughes Helicopters, now ;1cDonnell Douglas 
Helicopters. in conjunction '..rith the U. S. Army and NASA developed and flight tested 
::he first successful Higher Harmonic Control system for the ?urpose of reducing 
helicopter vibration levels. In addition to the reduced vibration levels interesting 
iJenefits were also noticed in che areas of acoustic signature and helicopter power 
requirements. For many years the reduced power requirements could not be axplained 
and cherefore '..rere downplayed and not publicized. In the past three years research 
at the ~aval Postgraduate School has been conducted regarding this phenomena and it 
has been sufficiently 2xplained. The next step in the process is to mount a full 
scale OH-6A main rotor system on d. ::est stand and conduct testing in order to 
7alidate the earlier documented power savings. This thesis documents efforts that 
have been made in 1994 and 1995 towards accomplishing that goal. 

14. 5UBJECT TERMS 
Helicopter, OH-6A, Unsteady Aerodynamics, Higher Harmonic 
Control, Testing 

17. SECURITY CLASSifICATION 18. SECURITY Cl.ASSIFlCA flON 19. SECURITY CLASSIFICATION 
OF REPORT OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified Unclassified 

.\JSN 7540-01·280-5500 

15. NUMBER OF PAGES 
90 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 
-}tanaara .arm ,98 (Rev L·89) 

~'f"KrlO1O b'I ':'N~I )l~ l19·18 
,98"02 



ii 



Approved for public release; distribution is unlimited. 

PREPARATIONS FOR TESTING A FULL SCALE OH-6A ROTOR SYSTEM 
WITH HHC INSTALLED 

Derle G. Hagwood, Jr. 
Major, United States Marine Corps 

B. S., The Virginia Military Institute, 1982 

Submitted in partial fulfillment of the 
requirements for the degree of 

Accesion For 

NTIS CRA&I 
DTIC TAB 
Unannounced 

~ 
0 

Justification 
~ .. ------- ...... ----.. -...... -..... -... 

Author: 

AERONAUTICAL ENGINEER 

from the 

NAVAL POSTGRADUATE SCHOOL 
June 1995 

By ........ __ . __ ._ .. _. __ 
Distribution, 

Availability Codes 

Dist 
Avail and lor 

Special 

IIl .. l 

Approved by: __-  _ 
E. Roberts Wood, T&sis Adviser 

Department of Aeronautics and Astronautics 

iii 



iv 



ABSTRACT 

In the 1970's and 1980's Hughes Helicopters, now McDonnell Douglas 

Helicopters, in conjunction with the u.s. Army and NASA developed and flight tested 

the first successful Higher Harmonic Control system for the purpose of reducing 

helicopter vibration levels. In addition to the reduced vibration levels interesting benefits 

were also noticed in the areas of acoustic signature and helicopter power requirements. 

F or many years the reduced power requirements could not be explained and therefore 

were downplayed and not publicized. In the past three years research at the Naval 

Postgraduate School has been conducted regarding this phenomena and it has been 

sufficiently explained. The next step in the process is to mount a full scale OH-6A main 

rotor system on a test stand and conduct testing in order to validate the earlier 

documented power savings. This thesis documents efforts that have been made in 1994 

and 1995 towards accomplishing that goal. 
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I. INTRODUCTION 

A. GENERAL 

Dynamics playa major role in the design and development of the helicopter. 

Vibratory characteristics have been the decisive factor in many helicopter acquisition 

competitions and have been the cause for cancellation of others. Low vibratory 

levels are desirable for many reasons: increased airframe life, increased component 

fatigue life, passenger comfort, crew comfort and crew fatigue. Since the mid 1950's it 

has been the goal of the Defense Department and industry to decrease helicopter vibration 

levels to the equivalent offixed wing levels, approximately 0.02 g's. Figure 1 shows the 

trend of helicopter vibration levels from 1955 through 1985. Note that while there has 

been a dramatic decrease in the vibration levels, the decrease goes asymptotic at 

approximately O. 1 g. 
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The overwhelming majority,. Ibration control schemes are passive concepts such 

as vibration absorbers and isolators. A passive vibration control device treats the 

vibratory loads after they have been generated and entered the airframe. While passive 

devices may be very effective at decreasing vibrations at specific locations, they do very 

little for the overall airframe. The vibratory energy has already entered the airframe and it 

must go somewhere; it will usually manifest itself where it is least desired. The key to 

controlling helicopter vibrations, and to likewise reap the benefits of low vibration levels, 

is to attack the vibratory loads with an active control system at their primary source, the 

rotor disk. 

Higher Harmonic Control (HHC) is an active computer controlled vibration 

suppression system which alters the aerodynamic loads on the rotor and therefore reduces 

the vibratory forces and moments which enter the airframe. It accomplishes this by 

continuously monitoring the vibrations created by the rotor and suppresses them through 

high frequency feathering of the rotor blades. Two schemes currently exist for the 

implementation of HHC, direct HHC and individual blade control (mC). Direct HHC 

works by oscillating the stationary swashplate to modify the airloads of the rotor blades 

collectively. With mc each rotor blade has its own actuator which is used to control the 

pitch of each rotor blade individually. To date there have been several wind tunnel 

studies and four flight test programs dedicated to the understanding and possible 

implementation ofHHC. The majority of that work has been done with direct HHC. 

Research is currently ongoing in industry with mc. In addition to the expected results in 

the area of vibration reduction, there are several other potential benefits associated with 

HHC: 

1. Reductions in power required 

2. Reductions in acoustic signature 

3. Possible use as a blade deicing mechanism 
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B. SCOPE 

The purpose of this thesis is to document efforts made since July, 1994 to initiate a 

research program to study the effects oflllIC on helicopter hover and low airspeed power 

requirements, external acoustic signature, vibration reduction capability, and possibly its 

use as a rotor blade deicing mechanism. The research program is a cooperative effort 

between the Naval Postgraduate School (NPS), the U. S. Naval Academy (USNA) and 

McDonnell Douglas Helicopters (MDHC). Recently, SATCON Technology, a controls 

engineering firm, has been awarded SBIR's from both the Army and Navy to study the 

feasibility of installing lllIC in UH-60 and SH-60 helicopters. They are very interested in 

the proposed research and have contacted all of the included parties in an attempt to also 

be included. The intent of the research initiative is to mount a fully instrumented, lllIC 

equipped OH-6A main rotor system on the rotor test facility located at the USNA and 

acquire quantitative vibration, acoustic signature and power required data. Specifically, 

this thesis will address efforts to acquire a rotor system and present preliminary plans for 

the work required to complete the research program. 

3 
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II. BACKGROUND 

A. HELICOPTER VIBRATIONS 

Helicopter vibration is primarily the oscillatory response of the helicopter airframe 

to rotor hub forces and moments. Reference 2 offers a very good discussion of the 

subject. There are other sources of helicopter vibration, but the rotor system is the major 

contributor. In steady state forward flight, the periodic forces at the blade root is 

transmitted to the airframe producing a periodic vibratory response. Therefore, the 

vibratory response of the helicopter fuselage can be characterized as a harmonic response 

to the rotor system. The frequency of the forcing function is primarily at the one per 

revolution ( IP) frequency and the n per revolution (nP) frequencies. (n is the number of 

blades). Other contributions are made by higher harmonics of the nP. The vibration 

amplitudes are generally low in a hover and increase with increasing forward flight speed 

to high levels at the maximum forward flight speed. There is also a high level of vibration 

during transition to forward flight and transition from forward flight to a hover due to the 

interaction of the rotor blades with the shed vortices of the preceding blade, known as 

blade-vortex interaction (BVI). 

One per revolution vibrations are caused mainly by aerodynamic and inertial 

dissimilarities between the blades. The aerodynamic and inertial dissimilarities can 

normally be eliminated through tracking and balancing of the rotor system. The inertial 

dissimilarities can be eliminated by the addition of balance weights and the aerodynamic 

dissimilarities can typically be eliminated by adjusting trailing edge trim tabs or pitch rods. 

N per revolution vibrations are due to the higher harmonic loading of the rotor. 

The sources of the higher harmonic loading are the rotor wake, the effects of advancing 

blade compressibility and retreating blade stall. In a hover where the aerodynamic 

environment is nearly axisymmetric the vibration level is low. The only sources of higher 
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harmonic loading in a hover are the small asymmetries due to the aerodynamic 

interference with the fuselage and other rotors. During transition to forward flight there 

is a peak in the vibration level due to the wake induced loads on the rotor. At the low 

advance ratios associated with transition, the drag of the fuselage is low enough so that 

the rotor disk incidence angle is small and the tip vortices remain close to the tip path 

plane. At the same time the advance ratio is high enough so that the rotor blades 

encounter the tip vortices of the preceding blade. This blade-vortex interaction produces 

an impulse type loading which is the source of significant higher harmonic blade loading. 

As speed is increased the tip r (1 plane is tilted forward to provide propulsive force, the 

wake is convected away fromlle helicopter and wake induced vibrations decrease. At 

still higher speeds the vibrations begin to increase once again due to the higher hannonic 

loading created by advancing blade compressibility effects and retreating blade stall. 

Figure 2, from Reference 3, illustrates the varying airloads in forward flight as well as the 

convention used to measure rotor azimuthal position. 

B. ROTOR AS A FILTER 

Regardless of the type of rotor system (articulated, rigid, teetering, etc.), there is 

some method incorporated into the rotor hub design to relieve the flapping and lead-lag 

bending moments at the blade root. However, flapping and lead-lag shear forces still 

exist at the blade to hub attachment point. These forces sum at the rotor hub and fonn 

the vibratory forces that are transmitted to the fuselage. Many of the root shear 

summations are zero. Reference 2 gives a good explanation and derivation showing that 

the forces from all of the blades will exactly cancel at the hub except for those at 

harmonics of the nP. Therefore, in effect the rotor acts as a filter, transmitting to the 

fuselage only those forces which occur at integer multiples, or harmonics, of the nP. This 

result is based on the assumption that the rotor system is symmetric, that all of the blades 

are identical and that they all have the same periodic motion. While these assumptions 

6 
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are not always perfectly true, ~.J harmonics still dominate the vibratory content of 

real rotor systems. This filtering process makes the task of vibration reduction or 

avoidance much easier in that fewer vibratory frequencies need to be considered. Table 1 

lists the forces and moments present in the rotating frame along with their frequency 

components and the corresponding forces and frequencies that are filtered through to the 

non-rotating frame. 

Rotor force andfrequency 
(rotatin ame) 

vertical shear at n per rev 
lagwise moment at n per rev 
in-plane shear at n +/- 1 per rev 
flapwise moment at n +/- 1 per rev 
feathering moments at n per rev 
feathering moments at n +/- 1 per rev 

Fuselage force and frequency 
(non-rotatin rame) 

thrust at n per rev 
torque at n per rev 
fore/aft and lateral forces at n per rev 
pitch and roll moments at n per rev 
collective control system forces at n per rev 
cyclic control system forces at n per rev 

Table 1. Transmission of helicopter vibration from the rotating to non-rotating 
frame. (After Ref. 2) 

As an example, consider the case of the OH-6A helicopter which has a four bladed, 

articulated rotor system: 

• 3P and 5P flapwise blade root shears in the rotor result in 4P pitching and 
rolling moments in the airframe. 

• 4P flapwise blade root shears in the rotor result in 4P vertical forces in the 
airframe. 

• 3P and 5P chordwise blade root shears in the rotor result in 4P longitudinal 
and lateral forces in the airframe. 

• 4P chordwise root shears result in 4P yawing moments in the airframe. 

Since the normal rotational speed of the OH-6A rotor is 483 rpm the IP exciting 

frequency is approximately 8 cycles/second and the 4P is approximately 32 cycles/second. 
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The higher harmonics of the of the 4P (8P, 12P, 16P, etc.) are computed in the same 

manner. However, the amplitudes of the higher harmonic forces are much smaller than 

the nP and are often ignored in analysis. 

C. VIBRATION ALLEVIATION 

Much time and effort is expended during the design and development of a 

helicopter to analyze its vibratory characteristics and alleviate the vibrations. The 

airframe is normally designed to avoid resonances with the 1 P and nP of the rotor 

rotational frequency. However, components mounted within the airframe, such as 

avionics and crew stations, must usually be isolated in order to help prevent damage and 

crew fatigue. The most common way of accomplishing this is through the use of 

vibration isolators or absorbers which are tuned for a specific piece of equipment and for 

specific frequencies. Some helicopter designs utilize more elaborate means, such as the 

vibration suppression system in the Bell AH-I W SuperCobra or the nodal beam absorber 

in the Bell 222. Westland has developed an elaborate hydraulic force canceling system 

which utilizes active feedback control. In some cases these types of suppression systems 

alleviate the vibration in one component at the expense of another, actually causing 

damage to other components. These types of vibration suppression are adequate for 

specific applications, but the vibratory forces have already entered the airframe and can 

therefore cause damage throughout the airframe. The most effective way to alleviate the 

inherent vibrations and vibratory loads of the helicopter is to attack the problem at its 

primary source, the rotor. 

D. IDGHER HARMONIC CONTROL 

As previously stated, the major source of helicopter vibrations is the rotor system. 

These vibrations occur essentially at one frequency (IP) and the harmonics of that 
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frequency (nP). They can be suppressed with an active vibration suppression system such 

as Higher Harmonic Control (HHC). As the name implies, HHC works by modifying the 

aerodynamic loads of the rotor blade at the higher harmonics of the nP. For the purposes 

of this discussion, HHC is a computer controlled, active vibration suppression system 

which counters the nP vibrations induced by the main rotor. It does this by continuously 

monitoring rotor induced vibrations, and counters these inputs by high frequency 

feathering of the rotor blades. The feathering is at integer multiples of the nP, hence the 

name. Two methods currently exist for implementing HHC, direct HHC and Individual 

Blade Control or mc. This paper will be restricted to direct control HHC. 

Direct HHC works by superimposing nP swashplate motion on the basic collective 

and cyclic control inputs through the existing helicopter control system. For clarity, 

Figure 3, from Reference 3, shows a schematic of a generic helicopter control system. 

From the figure it can be seen that the swashplate transfers control motion from the non­

rotating to the rotating frame. In the direct HHC method the existing stationary 

swashplate is oscillated in the collective, longitudinal and lateral directions by actuators 

that are fixed to the airframe. The amplitudes are small and the oscillation frequency is at 

the nP. When properly phased, these oscillations create incremental airloads on the 

blades which cancel the normal vibratory loads encountered in flight. The three modes in 

which the swashplate can be moved are described as follows: 

• collective mode- refers to the collective movement of the swashplate in the 

vertical direction so that all of the rotor blades receive the same pitch change 

simultaneously. 

• lateral mode- refers to the lateral tilting of the swashplate. 

• longitudinal mode- refers to the fore and aft tilting of the swashplate. 

10 
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(From Ref. 3) 

Past testing indicates that optimal vibration reduction is accomplished by introducing the 

oscillations in combinations of the three modes. Referring to section B of this chapter, 

the filtering process of the rotor also works in reverse. An nP longitudinal or lateral tilt 

of the swashplate results in (n-l)P and (n+ I)P blade feathering motion. By varying the 

amplitude and phase of the IlliC input, any combination of (n-l)P, nP and (n+l)P blade 

feathering may be obtained. 

E. HUGHES HEUCOPTERS, Inc. OH-6A HHC PROGRAM 

In 1976 Hughes Helicopters, Inc. teamed with the U. S. Army and NASA in an 

effort to develop a tlightworthy IlliC vibration control system. The system was 

successfully flight tested in 1982 through 1984. While it was realized that IlliC could 

provide numerous benefits in addition to vibration reduction, it was felt that the 

11 



pursuance of too many objectives at one time could be counter productive. For that 

reason the primary objective of the Hughes program was to design and test a system to 

minimize the 4P vibration of the OH-6A fuselage. The purpose of this section is to 

describe the overall HHC system concept used during the flight test as detailed in 

Reference 1. 

The aircraft used for the Hughes program was an OH-6A. The OH-6A is a four 

bladed light scout helicopter. It utilizes an articulated main rotor system which 

incorporates lead-lag, flapping and feathering hinges. The main rotor rotates at 483 

RPM. Therefore the IP is approximately 8 Hz and the 4P is approximately 32 Hz. The 

standard OH-6A utilizes a reversible control system which makes it unsuitable for use with 

HHC due to the amount of control feedback the pilot would feel in the cockpit. For that 

reason an OH-6A that had been previously used to develop a 1500 psi hydraulic boost 

system for the primary controls was baled to Hughes for the program. 

The primary elements of the Hughes HHC system were: 

1. acceleration transducers to sense the vibratory response of the fuselage 

2. a higher harmonic blade pitch actuator system 

3. a flightworthy microcomputer 

4. an electronic control unit (ECU) 

Briefly, the system operated as follows. Tri-axial accelerometers mounted beneath the 

pilots seat sensed vertical, lateral and longitudinal vibrations and passed these signals to 

the ECU. The ECU converted these signals into an electronic format which could be read 

by the computer. In the conversion the ECU separated the sine and cosine components 

of the 4P signal. The computer analyzed the input signals and determined the amount of 

blade feathering required to cancel the vibration. This information was sent back to the 

ECU in computer format. The ECU would then convert this information to 4P analog 

signals which were the electrical input to the three high frequency servos that were used to 

drive the stationary swashplate collectively and in pitch and roll. The process was 
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repeated approximately every two rotor revolutions. The system was evaluated with both 

open and closed loop flight test programs. 

F. HUGHES HELICOPTERS, Inc. HHC SYSTEM DESCRIPTION 

Designing and incorporating an HHC system into an existing helicopter was a 

challenging task and called for clear, well thought out design objectives. Following is a 

partial listing of the more important design objectives, taken from Reference 1, with a 

brief justification of each, and a brief description of the HHC system as it was installed on 

the OH-6A. 

In designing the HHC system for the OH-6A, Hughes had four primary design 

objectives: 

1. To locate the HHC actuators in the stationary portion of the control system. 

Doing this avoided the need to generate 3P, 4P and SP signals since any 

combination of those signals can be produced by the proper phasing of 4P 

signals to the stationary swashplate in collective, pitch and roll. Also, by 

placing the actuators in the stationary system there is no need for a rotating 

hydraulic slip ring and manifold assembly. 

2. To design the system for one goal only, vibration reduction. The program was 

a proof of concept demonstrator; it was known that there were other possible 

benefits from the implementation ofHHC but it was felt that to pursue too 

many objectives at one time would complicate the issue and be 

counterproductive. 

3. To provide an HHC system that was completely independent of the primary 

control system. In that way the HHC signals were superimposed on the 

primary control signals. This objective offered many benefits. By being 

independent of the primary control system, the HHC system had little effect on 

the basic rotor trim in flight and it also allowed complete helicopter control to 

13 



revert to the basic primary control system in the event of an HHC system 

failure. Also, by being completely independent, the HHC system and the 

primary control system could utilize separate hydraulic systems that best suited 

the needs of each. Finally, the HHC actuators could be located where they 

would be most effective. This last point is very important because the HHC 

actuators need to be located where they will be reacted by a high impedance in 

order to minimize lost motion from the actuator output due to control system 

flexibility and freeplay. 

4. Isolate the 4P signals from the accelerometers by analog means. Initially it 

would seem logical to use a Fast Fourier Transform (FFT) to isolate the 

signals. However, the problem with FFT is the record length that is required 

and the record length was limited in this case by the sampling rate. F or this 

system an electronic analog technique was applied that precluded the need for 

FFT methods and provided an essentially continuous signal. 

Modifying an existing OH-6A to accommodate a I-HIC system established a 

number of challenging requirements which are summarized below, from Reference 1: 

1. Development of high bandwidth HHC servo actuators. 

2. To update the primary flight control system to permit high fidelity blade 

feathering 

3. To work within the existing helicopter framework 

4. Development of an adequate HHC controller 

1. HHC Actuator Design 

The actuators replaced existing drive links between the mixer assembly and the 

stationary swashplate as shown in Figure 4. The actuator design was driven by the 

14 



Figure 4. Swash plate actuator installation 
(From Ref. 1) 
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frequency response requirements. Piston are~ drill passage diameter, seal friction and 

electro-hydraulic servo valve characteristics were all optimized to enhance the installed 

frequency response of the actuator. The actuators, designed and manufactured by 

MOOG, Western Development Center, were designed to have a total collective blade 

angle authority of two degrees or ± 0.20 inches of stroke. The usable frequency 

response was approximately 90 Hz for the installed actuator at command amplitudes of 

one degree of collective authority. Hydraulic operating pressure of the actuators was 

3000 psi. A center-driving lockout device was incorporated to drive the actuator to the 

neutral position in the event of an actuator failure. Hydraulic power for the HHC servos 

was provided by a Sperry-Vickers variable displacement pump which operated at 2800 

RPM. A Bertea integrated manifold/reservoir provided the distribution network needed 

to filter, cool, accumulate and route the hydraulic fluid to the actuators. 
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2. Primary Flight Control System 

During the initial checkout of the high frequency HHC actuators it was determined 

that the existing OH-6A mechanical flight control system was incapable of transmitting the 

high frequency feathering motion to the rotor blades because of excessive freeplay and 

flexibility of certain control system components. A test program to isolate the principal 

sources of lost motion revealed that there was a considerable amount of freeplay in all 

three control axes. However, true freeplay 

(i.e. zero stiffuess) contributed less to the freeplay than did bearing, bushing, bolt and 

bell crank flexibilities. Through the use of precision tolerance bearings, bolts, bushings, 

metal to metal rod end bearings and redesigned mixer components, an 80% reduction in 

total system freeplay was realized along with a 90% increase in system stiffuess. 

3. System Controller 

At the heart of the HHC system is the controller and the control algorithm. In a 

direct HHC system the controller attempts to reduce vibrations in a measured response, 

usually vibrations measured in the vicinity of the pilots seat. The controller is responsible 

for sensing fuselage vibrations, computing the appropriate values for the transfer matrix 

and sending the appropriate signals to the HHC actuators for collective, lateral and 

longitudinal swashplate excitation. 

The Hughes HHC controller model was based on the following equation, 

(2.1) 

Equation 2.1 assumes a linear transfer between the command input and the fuselage 

vibrations. The equation states that the system response 'Z/ consists of a baseline 

response 'Zoi' plus a response which is related to the command input 'u:j' by the transfer 

. 'T' matnx ij. 
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Reference 4 gives a good overview of controller types. In general there are two types 

of controller models which can be utilized, a global model or a local model. The global 

model assumes that the control law is linear for the entire range of its control. The local 

model, on the other hand, assumes that the control law is linear about a current control 

value and is applicable even for non-linear conditions since the transfer matrix (T) is 

linearized about a current value and the swashplate excitation (u) is small. 

The transfer matrix (T) and the baseline vibrations vector (Zo) can be identified in two 

different ways, off-line or on-line. In the off-line method, the components of the transfer 

matrix and the baseline vibrations matrices are generally computed from wind tunnel 

testing or flight test and are considered invariant. Off-line controllers can be further 

classified as fixed gain or scheduled gain controllers. F or the fixed gain controller the 

control law matrices remain fixed throughout the flight envelope. Scheduled gain 

controllers use predetermined matrices that are phased into use based on some aircraft 

flight parameter. Off-line controllers are suitable for use only with global control models. 

With the on-line method, the characteristics of the matrices are continuously updated. 

These controllers are also called adaptive controllers since the control gains vary with the 

flight conditions. On-line identification is applicable to both global or local models. 

There are many versions of this type of identification scheme, some update only the Zo 

vector while others update both the T matrix and the Zo vector. One popular method for 

updating and predicting the values of the matrices is the use of Kalman filters. Finally, 

many controllers use caution terms in the algorithm in order to prevent large 

discontinuities in the control laws between updates. 

The control algorithm used by Hughes in their HHC program was developed by 

John Molusis of the University of Connecticut and is reported in Reference 5. It was 

considered both cautious and self adaptive due to the presence of caution terms to prevent 

large changes in the control inputs from one iteration to the next and the use of a Kalman 

filter to estimate the various parameters of the T matrix and Zo vector at each iteration. 

The control inputs at each iteration were then based on an optimal solution of the model. 
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This approach allows i.he use of the algorithm without prior knowledge of the system 

being controlled and has the advantage of being transportable from one helicopter to 

another without doing extensive flight test to develop control derivatives and gains as a 

function of flight regime. 

In order to facilitate further discussion, equation 2.1 is reiterated here. 

Zi= ZOi+ l~iuj 

In the OH-6A controller, Zi was a 6xl vector of the measured vibrations at the pilots seat 

with HHC on, Zoi was a 6xl vector of the measured baseline vibrations with HHC off, Tij 

was a 6x6 matrix which related the change in vibration levels to HHC inputs and Uj was a 

6xl vector of the commanded HHC inputs. Although only three quantities are measured, 

(the longitudinal, lateral and vertical accelerations) the 4P component of each of these is 

separated into its sine and cosine elements, which gives the six elements for the vectors. 

The Hughes HHC controller utilized the on-line method to identify the values of the 

Zoi and Tij matrices. During the open-loop flight testing the method chosen to initialize the 

Zo and T matrices was a straightforward application of open-loop control inputs. First, 

baseline vibration levels were recorded and then open loop inputs were applied for each 

element of the control vector individually and the responses measured. In this way the 

respective columns of the T matrix could be determined for each input. Figure 5 is a 

schematic of this process. Note that there was a pause incorporated after each control 

application to allow the vibrations to stabilize before the measurements were recorded. 

Once the controller was initialized, a new estimate of Zo and T were obtained at each 

iteration and the optimal controls were based on these calculations. Once initialized, the 

system operated as depicted in Figure 6. The flight conditions under which the controller 

was initialized did not appear to have a significant influence on controller operation. 

During closed loop flight testing the controller initialized itself during the auto cal 

phase. Figure 7 is a strip chart of a typical engagement and operation of the HHC system 
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at 60 Knots indicated airspeed (KIAS). In Figure 7, time increases from right to left. 

Engagement of the HHC system can be seen on the three L VDT traces during the 

initialization, or auto-cal phase. During the auto-cal phase each actuator was operated 

individually and the response was measured. From each individual channel response three 

elements of the T matrix were generated. Shown in the figure are the time histories of the 

three HHC actuators and the sine components of the 4P longitudinal, lateral and vertical 

accelerations measured at the pilots seat. The longitudinal trace appears noisy due to less 

stiffness in the longitudinal axis than in the other axes, therefore the longitudinal actuator 

was being overdriven. Once initialization was complete the closed loop controller had 

sufficient information to operate the system. Notice the gradual decrease in the vibration 

levels after the controller begins operation. This is evidence of the caution terms in the 

algorithm. Disengagement of the HHC system is readily apparent at the sudden jump in 

the vibration traces back to the baseline values. 

G. FLIGHT TEST RESULTS 

The purpose of the open loop flight testing was to obtain a data base for 

subsequent closed loop testing. The objective of the closed loop testing was to evaluate 

the performance of the HHC system in simultaneously minimizing the longitudinal, lateral 

and vertical vibrations measured at the pilots seat. Level flight testing, both open and 

closed loop, was conducted at a hover and from 40 to 100 KIAS in 10 knot increments. 

Several mission maneuvers such as coordinated and windup turns, approaches and flares 

and accelerations and decelerations were also performed. In both cases the procedure for 

gathering data was to stabilize on the desired airspeed, collect baseline HHC off data and 

then to engage HHC and record the HHC on data. 

As previously explained, the HHC manual controller could be operated in one of 

three modes or in a combination of the three modes. The modes were the 4P longitudinal 

and lateral cyclic and the 4P collective modes. During open loop flight testing each mode 
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was operated independently at each airspeed throughout the tested envelope. At each 

airspeed, HHC blade angle motion was set for each given mode and a phase angle sweep 

was conducted from 0 to 360 degrees at 30 degree increments in order to determine the 

optimum input phase angle for maximum vibration reduction. Each open loop data run 

took between 10 and 15 minutes. The input phase was referenced to a specified azimuth 

position taken from a nominal zero position. A separate instrument recorded this 

position. It refers to the phase of the swashplate tilting in relation to the main rotor 

position. Note that for a four bladed rotor 360 degrees of phase corresponds to 90 

degrees of rotation of t> e rotor. 

As designed and installed on the OH-6A, the HHC system had a maximum ± 2.0 

degrees of blade pitch authority. Preliminary wind tunnel testing indicated that this was 

probably more than would be required and an electronic limit was designed into the ECU 

which restricted the blade angle authority to ± 1.0 degrees. The open loop flight testing 

was flown using only half of that. Accounting for lost motion and component flexibility, 

the HHC inputs were approximately ± 0.33 degrees of blade pitch motion. 

1. Vibration Reduction 

Figures 8-12 show the effect of HHC lateral swashplate excitation on vibrations 

during open loop testing at 60, 70, 80, 90 and 100 KIAS respectively. In the figures, 

vertical and lateral vibration levels, as measured at the pilots seat, are plotted on the 

vertical axis in units ofg's versus the phase angle of the commanded HHC input on the 

horizontal axis. Also plotted on the figures in dashed lines are the baseline vibration data 

taken for each particular airspeed. 

Several things are common to all five of the figures. The general shape of all of 

the plots is the same and it is readily apparent that HHC can increase vibrations as well as 

decrease them. Note from Figures 8, 9 and 10 that the maximum amount of vibration that 
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was induced into the airframe W Jproximately 0.4 g vertically and 0.2 g laterally for 

40,50, and 60 KIAS. In Figure 1 and 12 these values jump to 0.51 g vertically and 

0.26 g laterally for 90 KIAS and 0.66 g vertically and 0.28g laterally for 100 KIAS. The 

increase in maximum vibration levels at 90 and 100 KIAS were attributed to a 

combination of the main rotor excitation and the oscillatory impingement of the rotor 

wake on the tailboom. In general the minimum vibration occurred with an input phase 

angle of approximately 300 to 330 degrees. It is not surprising that this is approximately 

180 degrees out from where the maximum vibrations occurred. On average, the 

maximum reduction in vibration levels from baseline was approximately 71 % in the 

vertical axis and 73% in the lateral axis. These are significant reductions and were a 

result of HHC inputs in only one axis. 

As previously stated the purpose of the closed loop testing was to evaluate the 

effectiveness of the HHC system in simultaneously reducing the vibrations in all three axes 

to a minimum. Therefore after system initialization, the full transfer matrix was utilized in 

obtaining the optimal solution to the control law governing equation, with the controller 

determining the proper input amplitudes and phase angles. Figures 13 through 15 show 

the effect ofHHC closed loop operation on accelerations at the pilots seat during initial 

closed loop testing. In Figures 13 through 15 the Kalman filter had not yet been 

optimized. Shown is the fourth harmonic of the accelerations in all three axes plotted 

versus airspeed. It can be seen that HHC was successful at attaining significant reductions 

in the lateral and vertical vibration levels throughout the speed range tested. In the 

longitudinal axis significant reductions were obtained below approximately 65 KIAS. 

Also note that in the vertical axis the vibration reductions at the higher airspeeds are not as 

great as they are at the lower airspeeds. At these higher airspeeds there was no tendency 

for the controller to drive the swashplate towards the electronically set limits of the 

system, so it was concluded that the reduced effectiveness was not due to inadequate 

control authority. 
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There are two other possible explanations for the reduced effectiveness. First, 

time history traces of the actuator motions indicated that the controller was commanding 

predominantly longitudinal inputs with only small lateral inputs. This contradicts data 

obtained in the open loop testing where it was seen that inputs in the lateral axis had the 

greatest effect on overall vibration level reductions. Furthermore, the longitudinal axis of 

the control system was the least stiff of the three axes and only one actuator drives the 

swashplate in the longitudinal direction vice the two for lateral and three for vertical. 

These factors point to the longitudinal axis as being the least effective for the purposes of 

HHC inputs. 

The second possible explanation is the possibility of the system being nonlinear. If 

this were the case the controller would drive the vibrations to a local minima vice a global 

minima. In that case the controller would be very sensitive to the initialization conditions. 

F or the data presented in Figures 13-15 the controller was initialized at the airspeed at 

which the data was taken. 

Figure 16 shows the higher harmonic blade angles that were required at each of the 

data points plotted in the preceding three figures. The data in Figure 16 shows the blade 

feathering angles required for the third, fourth and fifth harmonics. Since the feathering 

angles were measured in the rotating system all three of the higher harmonic feathering 

angles could be measured directly. Notice that the blade feathering angles are less than 

0.5 degrees through the speed range tested, which agrees with earlier wind tunnel testing. 

Another indication of the effectiveness ofHHC is the longitudinal and lateral mast 

bending moments. The OH-6A employs a stationary mast concept wherein all of the 

rotor loads and moments are transmitted directly to the fuselage through a static mast vice 

through the transmission as in other helicopters. Consequently it is relatively easy to 

measure the vibratory loads and moments that are being transmitted to the fuselage 

directly from the static mast. Figures 17 and 18 show the 4P longitudinal and lateral mast 

bending moments respectively versus airspeed for the OH-6A. Once again it can be seen 

that HHC has a beneficial effect throughout the speed range tested, but has less of an 
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effect at the higher airspeeds, which is consistent with the accelerometer data taken at the 

pilots seat. 

Flight testing performed in 1984 utilized an improved control algorithm which 

reduced calculation time from 167 ms to 58 ms and resulted in a total update reduction 

time from 257 ms to 163 ms. Changes in the algorithm related to the way in which the 

computer performed calculations and in the way the Kalman filter determined the values 

for the gain vector. These changes resulted in tremendous overall improvement of the 

HHC system, especially at the higher airspeeds, and graphically indicate the importance 

of the controller to the overall performance of the system. Figures 19 through 21 show 

the results of closed loop testing with the new HHC algorithm. 

2. HHC Effects on Power Requirements 

An unexpected benefit from the use ofHHC was a reduction in rotor power 

required. The primary purpose for the HHC investigation was to investigate its effects on 

vibration reduction and therefore the aircraft was not heavily instrumented for 

performance measurements, however engine torque pressure and main rotor shaft torque 

were measured and recorded. Figures 22 and 23 show the effects of HHC on the main 

rotor torque and engine torque pressure versus airspeed for the speed range tested. 

Figure 24 shows the effect of a selected set ofHHC inputs on power required 

during open loop testing. The data is more graphically presented in the polar plots. In 

Figure 24, from Reference 6, each data point indicates the power savings associated with 

HHC inputs applied at the corresponding phase angle. Note that the power savings are on 

the order of 10010 for a hover. The power savings seems to be independent of the type of 

input but it does seem to be sensitive to the phase of the input. Figures 25 through 27, 

from Reference 6 present the same type of data for forward flight at 60,80 and 100 KlAS. 

It can be concluded from Figures 22 through 27 that HHC has a beneficial effect on 

helicopter power requirements ranging from approximately 10% in a hover to 
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approximately 15% in forward flight at 60 to 80 KIAS. The power savings then begin to 

wash out at the higher airspeeds. Given the fact that current helicopter tactics require 

that helicopters to spend approximately 50% of their flight time in a hover or the low 

airspeed regime (10-40 KIAS), there could be sizable fuel savings associated with the 

implementation ofHHC. The power margin also translates to increased payload and 

agility. 

H. THE UNSTEADY AERODYNAMICS OF HHC 

A recent masters degree thesis and doctoral dissertation, as well as ongoing 

research in the Aeronautical Engineering department of the Naval Postgraduate School, 

indicate that the mechanism by which HHC achieves the indicated power savings is the 

unsteady aerodynamics associated with HHC. This is logical considering that HHC, by its 

very nature, creates an unsteady flow field by inducing rotor blade pitch oscillations which 

in tum create plunge oscillations. 

It has long been known that a purely plunging airfoil creates a propulsive force, 

known as the ''Katzmayr effect". This is how birds and fish propel themselves. It is also 

known that an airfoil acting in pure pitch will typically produce drag at most values of 

reduced frequency. Couch and Abourahma, in References 7 and 8 respectively, showed 

that in the presence of layers of shed vorticity from a leading airfoil, the "Katzmayer 

effect" of a trailing airfoil can be greatly enhanced. In addition, they showed that with 

the proper phasing of the shed wakes, wake spacing and reduced frequencies, the layers 

of shed vorticity help create a propulsive force from the pitching motion as well, similar 

to the "Katzmayr effect" of a plunging airfoil. 

In Reference 7 Couch modified the classic wake induced flutter theory with infinite 

wakes of Loewy so that it could be applied to a finite number of wakes. Figures 28 

through 30, from Reference 7 show the propulsive force coefficients obtained for various 

wake spacings plotted against frequency ratio for pure plunge, pure pitch and coupled 
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pitch-plunge for the case of a single wake. In these figures the following definitions 

apply: 

1. Cpx is the propulsive force coefficient 

2. "m" is the ratio of the oscillation frequency to the rotational frequency. 

(J) 
m=-

n 
3. "h" is the non-dimensional distance between layers of shed vorticity. 

h= 2m' 
bQn 

where: v = freestream velocity 

b = semi chord 

Q = number of blades 

n = rotational frequency of the rotor 
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4. "k" is the reduced frequency. 

k= oiJ 
v 

5. "110" is the oscillating plunge amplitude. 

6. "alphao" is the oscillating pitch amplitude. 

7. "a" is the nondimensional elastic axis location measured from the midchord. 

These plots show that there are indeed certain combinations of frequency ratios and wake 

spacings that create a propulsive force. The situation where m= 0.5 corresponds to two 

succeeding wake layers being 180 degrees out of phase with each other. Figure 31 

graphically shows the vortex interaction which occurs when the wakes from a preceding 

airfoil and the current airfoil are 180 degrees out of phase. The logical question that is 

now raised is that of multiple wakes. Figure 32 shows the effect that multiple wakes 

have on the propulsive coefficient. Notice that as additional wakes below the rotor disk 

are included in the analysis, the frequency ratio for the maximum propulsive coefficient 

shifts. Also notice from Figures 28 through 30 and Figure 32 that as the number of wakes 

Figure 31. Vortex interaction when wakes are 1800 out of phase (m = 0.5) 
(From Ref. 7) 
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Figure 32. Propulsive force coefficient in coupled pitch-plunge as a function of the 
number of wakes at h = 2.0. (From Ref. 7) 

considered or the wake spacing increases, the propulsive coefficient decreases. This 

effect can be seen in Figure 33 which is the power required curves for the OH-6A with 

HHC on and off. Notice that there is a power savings associated with the use ofHHC 

throughout the speed range tested, but at either end it is considerably less than in the mid 

range. This is consistent with the theoretical results obtained from References 7 and 8. 

At the lower airspeeds and at hover the number of wakes present increases and 

approaches infinity. At the higher airspeeds the spacing is increased towards infinity. As 

explained previously, both cases result in a lower Cpx . 

In his analysis of the HHC data and in an attempt to explain the power savings 

associated with HHC, Couch correctly concluded that it was a result of the coupled pitch­

plunge motion of the blades. However, he could not justify the amount of savings 

documented in the HHC data. 
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Figure 33. OH-6A power requirements with and without HHC 
(From Ref. 8) 

In Reference 8 Abourahma goes through a lengthy and detailed analysis of the 

lllIC data using the unsteady panel code at the Naval Postgraduate School and CFD 

methods. Using these tools he was able to fully justifY the power savings associated with 

the use ofllllC. He did this by continuing the analysis of Wood, et al. of Reference 9. 

In Reference 9 Wood, et aI. divided the blade into sections and then, using Garricks 

analysis of a plunging airfoil, computed what the propulsive force of each section would 

be for a unit plunge deflection. Comparing this analysis to the actual blade deflection data 

from flight test and taking into account the contributions of each harmonic up through the 

12th, Wood et aI. were able to account for the majority of the power savings. 

Abourhama took into account the effects of the pitching motion as well and was able to 

fully justifY the power savings. 
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I. CONCLUSIONS 

In this chapter it was explained how helicopter vibrations are created and enter the 

airframe and how the primary objective for the NASAl ArmylHughes HHC program was 

to reduce these vibrations as much as possible. The theory behind HHC and its 

application to the OH-6A were explained in some detail. Data was shown which 

documents the effectiveness of HHC as a vibration control device. The theory of 

unsteady aerodynamics as it relates to HHC was explained and data from previous studies 

were presented which show that indeed a propulsive force can be generated through the 

coupled pitch-plunge motion of a rotor blade in the presence oflayers of preceding shed 

wake vorticity. Finally, an explanation was offered for the power savings associated with 

the use ofHHC during the NASAIArmyIHughes HHC flight test program of 1982. What 

was not presented here, but is a very important consideration, are results of acoustic 

testing that was conducted during the flight test program. Those data are unavailable due 

to their nature. 
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III. PROPOSED RESEARCH 

A. GENERAL 

Given the. demonstrated benefits ofHHC in the area of vibration reduction and the 

promising advantages in other areas as a result of its use, it is surprising that the helicopter 

industry has not incorporated it into existing and emerging helicopter designs. In the 

spring of 1994 The Honorable Mr. George Singley, Undersecretary of the Army for 

Research, Development and Technology, directed that a research center for helicopters 

be established along the same lines as the Army's National Automotive Center. The 

National Rotorcraft Technology Center is a cooperative effort between the four major 

helicopter manufacturers of this country, NASA and the FAA. Each member contributes 

financially to the center and votes on the most promising areas in which to conduct 

research in order to aid the U. S. helicopter industry. The direction from the Department 

of the Army is to emphasize research in the areas of vibration reduction, external noise 

reduction and reduction in power requirements. Since HHC has a major effect on all of 

these areas it is logical to once again begin intense research and experimentation in this 

area. However it is extremely costly to perform flight test, so a more cost efficient 

method of demonstrating the advantages of the use of HHC should be utilized until 

sufficient interest is generated to justify a flight test program. This chapter documents 

efforts that have been made from July, 1994 through May, 1995 to renew research efforts 

in this area and progress towards that research. 

The intention of this research initiative is to mount a full scale, fully instrumented 

OH-6A main rotor system, with HHC installed, on a rotor test stand and conduct testing 

that will duplicate, to the extent possible, the flight testing conducted by Hughes 

Helicopters in the early 1980's. Since the testing will be done in an enclosed laboratory 

and not in a wind tunnel the testing must be restricted to hover and near hover conditions. 

Data will be collected in the areas of vibration reduction, rotor power requirements, 
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relative acoustic measurements, flow visualization of flow through a full scale rotor, and 

flow visualization of blade vortex interaction. This research is a cooperative effort 

between The Naval Postgraduate School, the United States Naval Academy and 

McDonnell Douglas Helicopters. Recently, SATCON Technology has expressed an 

interest in participating in this program to help them fulfill the requirements of two 

recently awarded SBIR's. Appendix A is a statement of work prepared by MDHC and 

delivered to SA TCON delineating work items that must be accomplished enroute to 

completing the research program. To proceed in an orderly manner and to begin testing 

with a known baseline against which to compare results the HHC system to be utilized will 

be the same one that was used by Hughes Helicopters in 1982 -1984. If the testing 

proceeds as anticipated, modifications to the HHC system may be made in the future. 

In order to progress with this initiative there are several objectives that must be 

met, the major ones are listed below. It should be remembered that as with any 

experimental program there are always problems that emerge, therefore this list should not 

be taken as comprehensive in any manner. 

1. Obtain an OH-6A main rotor system 

2. Instrument the rotor system 

3. Locate a test facility 

4. ModifY and update the test facility as required 

5. Design and assemble a control system for the test rotor system 

What follows are the steps that have been taken towards accomplishing these objectives. 

Any designs for modifications included here should be considered as preliminary designs 

only until further progress is made to a point where the designs can be finalized. 
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B. ROTOR SYSTEM ACQUISITION 

In this cooperative effort it is the responsibility of the Naval Postgraduate School 

to acquire a rotor system. Efforts to accomplish this objective have been ongoing since 

July, 1994. This initiative comes at opportune time in that the U. S. Army is in the 

process of deleting the OH-6A from their helicopter inventory. Initial contact was made 

with the OH-6N Cobra Program Office at ATCOM in St. Louis, Mo. in July of 1994. 

While the personnel at that facility have been pleasant to deal with and helpful to the 

extent possible, working through bureaucratic channels is slow and painful and often not 

fruitful. In March of 1995 LtGen Forester, the U.S. Army Military Deputy to the 

Assistant Secretary of the Army for Research, Development and Acquisition visited the 

NPS to receive a briefing from Dr. E. R Wood concerning the Vertical Flight Research 

Institute that has been established here. The General is very supportive of the efforts 

being made in the area of rotary wing research at the NPS. The problems encountered 

with the OH-6A acquisition were made known to him and he has taken steps to help 

ensure that NPS receives an OH-6A as the Army releases them from service. The point 

of contact for this acquisition is now Dr. John Johns, Chief of the Research Support 

Division for the U.S. Army Aeroflight Dynamics Directorate. Dr. Johns can be reached 

at comm. 314-263-0345. At this point it appears as though NPS will receive 2 OH-6A 

helicopters in the June 1995 timeframe. 

The NPS could greatly benefit from having one or more helicopters in its 

possession. In addition to the HHC research planned for the OH-6A rotor system the 

remainder of the airframe will be used for dynamic modeling and analysis. They will 

make a superior lab tool for the purpose of designing and implementing a fly-by-wire flight 

control system, since there is not yet one in use, and for human factors and cockpit design 

studies. Having one or more helicopter fuselages will also enable the school to conduct 

full scale fatigue testing on tailbooms, where helicopters historically have fatigue 
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problems, and investigate methods of alleviating them. They will be a great asset to the 

Aeronautical and Mechanical Engineering Departments. 

C. ROTOR SYSTEM INSTRUMENTATION 

The actual testing portion of this program is being conducted with all of the care 

and safety considerations that would be present with a flight test program. In some ways 

conducting laboratory experiments of this type may be more hazardous than a flight test 

program. Because of this concern for safety, the rotor system and test pylon that it will 

be mounted on will be heavily instrumented. In addition to the safety of test parameters, 

there are also a considerable number of data parameters called for. While the number of 

parameters may seem excessive, it is easier to over instrument in the beginning and collect 

as much data as possible than to conduct an entire test program and then have the results 

disputed due to a lack of supporting data. 

McDonnell Douglas Helicopter Corporation will be responsible for the 

instrumentation of the rotor system. An instrumentation list is included as Table 2. The 

list was compiled jointly by the author and Mr. Gene Munson, Director of the Controls 

lab at MDHC. Mr. Munson can be reached at comm. 602-891-3776. Mr. Munson was 

the flight test engineer for the NASAl Army/ Hughes IillC flight test program in the 

1980' s. The instrumentation list is based on the instrumentation utilized during the flight 

test program and the collective experience of Mr. Munson and the author. The data will 

be transmitted to the data acquisition equipment over 2 PCM streams. At this time it is 

undecided as to whether the data will be passed through sliprings and on to the collection 

equipment via wire or if it will be transmitted via a rotating mux bus, which would 

preclude the need for sliprings. Once the rotor system is acquired and delivered to 

MDHC it is estimated that approximately 3 months will be required for the 

instrumentation and instrumentation checkout. The system will then be shipped to the 

U.S. Naval Academy where the test facility is located. 
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D. ROTOR TEST FA( ifY 

The United States Naval Academy has a fully enclosed rotor test facility located on 

the ground floor of Rickover Hall. The facility is controlled by Dr. Jerry Hall of the 

Aeronautical Engineering Department of the USNA. Dr. Hall can be reached at 

DSN 281-3284 or commercial 410-293-3284. The facility, shown in Figure 34, consists 

of two areas, the laboratory and the control room. The laboratory contains the rotor test 

pylon and the adjoining control room contains the operating controls and displays as well 

as data acquisition equipment. 

The laboratory is a chamber which is 38 feet square with 21 feet of headroom from 

the floor to the overhead trusses. The floor of the laboratory area is steel grating. Roll up 

doors on the east and south walls and a roll back roof system allow an unrestricted flow of 

air through the rotor system. The rotor wake passes through the grated floor and is 

exhausted through louvers which are located beneath the roll up doors. Bird screens are 

permanently installed on the roll up doors to prevent bird ingestion and a railing is built 

around the roll back roof to prevent person ingestion. 

The test pylon, shown in Figure 35, is located in the center of the lab and is 

primarily a support and housing for the rotor drive mechanism. It also houses thrust 

pickup sensors, a photoelectric sensor which provides operating pulses to a stroboscope 

located on the lab wall, torque sensors, thermocouples and a slip ring with terminals for 

up to 35 data channels. The pylon is an inverted cone of semi-monocoque construction 

consisting of a 0.25 in. thick aluminum skin over an aluminum frame made up of welded 

angles. The top of the pylon is a 1 in. thick aluminum plate. The pylon is 9. 16 ft. in 

diameter at the base and 1.94 ft. in diameter at the top. It is 12.28 ft. tall. The pylon is 

mounted on a concrete base which houses the drive motor. The rotor drive system 

currently consists of a 50 hp DC motor with attached tachometer pickup and a tubular 

steel drive shaft which terminates at a mounting plate at the top of the pylon. The drive 
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Rotor Laboratory 

A fully-instrumented rotor test facility 

Operated by: 
Aerospace Engineering Department 

U.S. Naval Academy, Annapolis, Maryland 

Figure 34. Rotor Test Facility 
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Figure 35. Rotor Test Pylon 
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motor is capable of infinitely variable speed from 0 to 2000 RPM with a red line limitation 

of 1500 RPM. 

Operating controls are located in the adjacent control room. A six bay console 

contains the operating controls and instrumentation. The control room is located on the 

second floor and looks down on the lab. The rotor tip path is at approximately eye level 

to the observers. Bulletproof glass windows allow test personnel to observe the rotor 

operation. Stroboscobic lighting permits the "stopping" of blades in any position during 

operation. Provisions are incorporated for mounting a video camera on the rotor head to 

provide a view of the blades in the rotating frame of reference. 

E. ROTOR FACILITY MODIFICATIONS 

To accommodate the OH-6A rotor system and to gather data in the most efficient 

manner there are several modifications and upgrades to the existing facility that are 

required. Some of these modifications are specifically for the OH-6A rotor system and 

others are upgrades to maintain state of the art data acquisition capabilities. 

In order to mount the OH-6A main rotor system on the test pylon an adapter will 

have to be devised that will provide secure attachment of the rotor system to the pylon, 

maintain the proper control rigging for collective and cyclic controls and allow sufficient 

accessibility to mounting bolts and the driveshaft for inspection and maintenance purposes. 

A coupling adapter will also be required to mate the rotating mast of the OH-6A rotor 

system to the driveshaft of the test pylon. The data acquisition capabilities of the facility 

will be upgraded with a system that will allow data acquisition and recording of two pulse 

code modulation (PCM) streams and real time monitoring of 32 data channels 

simultaneously. Finally the 50 hp motor currently installed in the pylon will be replaced 

by a larger one of either 100 or 250 hp. 
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1. Rotor to Pyh .adapter 

Planform views of the OH-6A main rotor system footprint and the top of the test 

pylon are shown in Figures 36 and 37 respectively. As can be seen from Figure 36 the 

attachment points of the rotor system are not symmetrical about its center in that the front 

feet do not project as far laterally as do the rear feet. The top of the pylon is constructed 

of a 1 inch aluminum ring which is welded about its entire perimeter to the sides of the 

pylon, which are 0.25 inch aluminum. The pylon top is further supported by 3 sets of 

gussets located on 120 degree centers. The gussets are welded to the underside of the 

pylon top as well as to the pylon sides. Concentric to the aluminum ring which forms the 

top of the pylon is a free floating aluminum plate which rides in a channel formed in a 

collar about the inner diameter of the ring. The driveshaft rides on a bearing in the center 

of this plate. The plate is prevented from rotating by 3 shear bolts. Connected to the 

underside of the plate are three load cells, which are in tum connected to the inner frame 

of the pylon. The OH-6A main rotor system will be mounted 6 inches above the pylon 

via an adapter plate that will be separated from the pylon by spacer blocks. The rotor 

system must be raised above the pylon for the following reasons: 

1. To clear the top of the collar on the inner diameter of the pylon top. 

2. To more closely align the angle the control rods make with the vertical to that 

of the helicopter. 

3. To allow room to perform maintenance and visual inspections of the rotor 

system to driveshaft coupling. 
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BEARING RACE 

Figure 37. Rotor Test Pylon Top 
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The spacer blocks will be as depicted in Figure 38. They will be spaced about the 

top of the pylon in four locations as depicted in Figure 39. A sufficient number of blocks 

should be utilized so that the bottom of the adapter plate clears the pylon top by 5 inches. 

The actual number of spacer blocks required will depend on the material used to 

manufacture them. Since the blocks will be carrying very little compressive load and no 

tensile load it is recommended that the spacer blocks be manufactured of a high quality 

plywood such as Baltic or some other plywood of equal quality. 

The adapter plate will be as depicted in Figure 40. It will be a ring with the same 

outer diameter as the top of the pylon. It is recommended that the adapter plate be made 

of aluminum plating. The adapter plate will be bolted to the pylon top with 0.5 inch SAE 

Grade 8 bolts which pass through the center of the spacer blocks. These are the same 

type bolts that are used to secure the rotor system to the helicopter. It is recommended 

that the bolts be installed so that the nuts are in the up position (on the adapter plate) and 

that the nuts be torque striped for easy visual inspection. Flat washers should be installed 

between the bolt head and the Pylon top and lock nut washers should be installed between 

the securing nut and the adapter plate. 

The rotor system will be secured directly to the adapter plate. The mounting 

holes for the rotor are also depicted in Figure 40. The mounting holes for the rotor 

system should be oversized to allow slight position adjustments when the rotor is mounted 

so that the rotor driveshaft can be properly aligned with the pylon driveshaft. Oversized 

washers will be required to account for the oversized holes in the adapter plate. Once 

again, SAE Grade 8,0.5 inch diameter bolts should be used to secure the rotor system to 

the adapter plate. 
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As previously mentioned the bolts which secure the rotor system to the aircraft are 

SAE Grade 8, 0.5 inch diameter bolts. To dispel any fears that these bolts may not be 

large enough, a briefload analysis follows: 

From Mark's Standard Handbook for Mechanical Engineers the proof strength of 

SAE Grade 8 bolts is 120 ksi. Using a nominal cross sectional area of O. 1963 in. 2 for a 

0.5 inch diameter bolt yields a capacity of 23,5561bf per bolt. From Reference 3 the 

following equation was used to estimate the amount of thrust that can be developed by an 

OH-6A rotor system being driven by a 250 hp motor. 

T= thrust-

hp= horsepower 

T = 38(hp)(FM) 

.JDL 

FM= figure of merit, approximately 0.75 for the OH-6A 

DL= Disk loading, approximately 4.6 psffor the OH-6A 

(3.1) 

Using the above formula, the thrust that will be generated is estimated to be 

approximately 3,334 lbr. This results in a load per bolt of 833.5 lbf. The factor of safety 

is then 28.26. 

Since the mounting points for the rotor system are not symmetrical about its 

center, to ensure that the reaction per bolt would be equal, a finite element model of the 

rotor system was constructed using rigid bars and a 1000 pound vertical load was applied. 

The vertical reaction per bolt was 250 lbr. COSMOSIM software was used for the finite 

element model. Even though the reactions will be slightly higher when the tip path plane 

is tilted, they will not be considerably higher and given the factor of safety involved, will 

not be a concern. 
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2. Rotor System Rotatin~jriveshaft to Pylon Driveshaft Coupling 

The OH-6A helicopter utilizes a concentric stationary and rotating mast concept 

wherein rotational motion is transmitted to the rotor from the transmission via a rotating 

mast within the static mast. The static mast transmits all flight loads to the airframe and 

the rotating mast carries only torsional loads. 

The lower end of the rotating mast protrudes below the static mast system 

approximately 2.25 inches and mates with the transmission. A male spline gear with a 

2.22 inch major diameter is integral to the lower end of the rotating mast. The driveshaft 

for the test stand is a tubular steel shaft with a 5 inch outer diameter and a 2 inch inner 

diameter. When the rotor system is mounted atop the pylon the two shafts must mate 

together. It is proposed that the pylon driveshaft be modified to accept.an adapter that 

will accommodate the rotating shaft of the rotor system. It is felt that it will be easier to 

manufacture an adapter and modity the pylon driveshaft to accept the adapter than to 

modity the rotating mast of the rotor system. 

Preliminary drawings for the adapter are presented in Figure 41. It is proposed 

that the adapter be a cylindrical section 2.5 inches deep with a 3 inch outer diameter. The 

interior of the cylinder will be milled to accept the male spline fitting of the rotating shaft 

of the rotor system. The adapter will be secured to the pylon driveshaft by two 3/8 in. 

square keyways. It is recommended that the coupling and key be milled from ASTM 

A36 steel with a minimum yield strength of36 ksi or from a higher grade steel. 

The spline utilizes a major diameter fit. The spline data, taken from MDHC 

drawing number 369D25133 is given in Table 3. In order to accept this adapter, the 

center of the pylon driveshaft will have to routed from the current 2 inch inner diameter to 

3 inches and to a depth of 2.5 inches along its longitudinal axis. 
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Adanter Snline Data 
Number of Teeth 34 
Diametral Pitch 16/21 
Pressure Angle 20° 
Maior Diameter 2.2200 - 2.2245 in. 
Pitch Diameter Ref. 2.1250 in. 
Form Diameter 2.200 in. 
Minor Diameter 2.030 - 2.035 in. 
Base Diameter Ref. 1.9968 in. 
Root fillet radius curvature 0.005 in. 
Min. effective cif. space width 0.0982 in. 
Max. effective cir. space width 1.001 in. ref. 
Min. actual cif. space width 0.0999 in. ref 
Max. actual cif. space width 0.1018 in. 

Table 3. Adapter Spline Data 

A load analysis for the key and the spline pins follows. The torque transmitted by 

the pylon driveshaft being driven by a 250 hp motor is computed by equation 3.2, which 

is found in chapter 15 of Reference 10. 

HP = T(in -lb )xRPM 
63,025 

(3.2) 

For the purpose of this thesis the RPM is 483 and the applied horsepower is 250. 

Rearranging and solving yields a torque of32,622 in-Ibs. which is carried by the pylon 

driveshaft. F or a coupling radius of 1.5 inches the force that will be applied to the keys 

is: 32,622 in-Ib/l.5 in. = 21,748 lbs. The required cross sectional area of the keys can be 

found by dividing the applied load by the allowable shear stress. From paragraph 

1.5.1.2.1 of Reference 11 the allowable shear stress is 0.4 Fy , which yields 14,400 psi 

allowable shear stress for this application. Therefore Arcq = 21,748 lbs/ 14,400 psi = 1.51 

in.2
. The total cross sectional area of two 3/8 in. keys is (2)(0.373)(2.5) = 1.875 in? 

which is greater than 1.51 in. 2 therefore is sufficient. 
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From paragraph 1.5.1.5.1 of Reference 11 the allowable bearing stress on milled 

surfaces is 0.9Fy, which for this case yields an allowable bearing stress of 32,400 psi. 

The required bearing area of the keys is therefore (21,748Ibs./32,400 psi) = 0.67125 in? 

This in tum yields a required width of(2)(0.67125 in'/2.5 in2)= 0.52 in. The total width 

of two 3/8 in. keys is (2)(0.375 in.)= 0.75 in. 0.75 is greater than 0.52 therefore two 3/8 

in. keys is sufficient. 

Knowing the torque carried by the shaft, the total load that is carried by the 

coupling teeth is computed just as it was for the keys, only the radius used will be the 

pitch radius of the rotor system male spline, which is 2.125 in'/2. The total load carried 

by the spline is then calculated to be 2(32,622 in.-lb)/2.125 in.= 30,703 lbs. The load 

carried per tooth is 30,703 Ib./34 teeth= 903 lbs. per tooth. 

3. Upgraded Data Acquisition System 

The Data acquisition system at the Naval Academy was state of the art 20 years 

ago when it was installed. The current system is all analog and can accommodate only 35 

data channels. LORAL Test and Information Systems of San Diego, CA has agreed to 

donate to the Naval Academy a LORAL Model ADS 100 data acquisition system. The 

ADS 100 is a state of the art, user friendly data acquisition system that can be easily 

tailored to meet the users needs. The system is built around a base system that is the core 

of the Advanced Decommutation System (ADS 100A) and the Serial Systems Analyzer 

(SSA 100A). The base system contains 15 card slots which hold the base system and 

option modules. The base system modules provide the basic platform for all system 

operations. User defined option modules can be added to tailor the system to the users 

needs for real time data acquisition, data processing, simulation, storage and 

distribution. A block diagram of the system is shown in Figure 42. Specific features of 

the system that are of particular interest to this project is that it can accommodate two 
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PCM streams that can be recorded onto a 12 track digital recorder. Up to 32 of the most 

important channels can be decommutated and monitored real time on strip charts. 

4. Upgraded Motor 

The motor currently installed in the test pylon is a 50 hp dc electric motor. From 

Figure 33 it can be seen that 50 hp is well below the power required curve of the OH-6A. 

Testing a full scale rotor with a motor of this size would be fruitless. The Naval Academy 

has a 100 hp motor that will fit into the pylon in place of the 50 hp motor but the 

controller for the 50 hp motor will not handle the electrical load required by the 100 hp 

motor. 100 hp equates to approximately the 40 KIAS point on the OH-6A power curve 

with HHC on, which is the bucket of the curve. Testing with a 100 hp motor would not 

be ideal, but adequate data could still be obtained. It is desired to install at least a 250 hp 

motor and associated controller for this testing. At this time a motor has not been 

acquired. However, efforts are underway to acquire one. 

F. HYDRAULIC AND ROTOR CONTROL SYSTEM 

Hydraulic power will be required to control the basic cyclic and collective settings 

of the rotor as well as to operate the HHC system. The main actuators which will control 

the rotor system will either be the same Bertea actuators which were utilized for the 

hydraulic boost system of the OH-6A in the Hughes flight test or Lucas actuators of the 

type which are currently being used on the MD 900 Explorer. Both types of main 

actuator require 1500 psi for operation. The HHC actuators require 3000 psi for 

operation. The actuators will be connected to the rotor system by control rods with 

standard aircraft rod end bearings on either end. 

For the purposes of this project all hydraulic power will be provided by a single, 

standard hydraulic maintenance cart routinely used in a fleet helicopter squadron. 
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Hydraulic lines will be standard aircraft braided lines. After the supply line leaves the 

hydraulic cart it will be split so that one pump can provide hydraulic power for both 

systems. Each branch will have its own accumulator and manifold for distributing 

hydraulic fluid to its servos. Return lines from both systems will return the fluid to a 

common reservoir from which the hydraulic cart will pump. A 5 micron filter will be 

included in the supply line to the hydraulic cart. The hydraulic fluid will leave the 

hydraulic cart at a pressure of 3000 psi. After the system splits into two branches, the 

branch that feeds the main servos will include a pressure regulator to step the pressure 

down to 1500 psi. 

The main servos and the manifold system for the HHC system will be mounted 

near the top of the pylon. All other components will be securely floor mounted. 

McDonnell Douglas Helicopters is in possession of the required components except for 

the hydraulic supply cart. At this point it is too early to contact a fleet unit for use of a 

cart. 

The rotor will be controlled from within the control room by a sidearm type 

controller. The controller will actually be a high grade video joy stick which will be run 

through a Pc. Aircraft sidearm controllers are available but do not have the resolution of 

the video joystick. Signals from the PC will then be routed to servo amps on each main 

actuator. Mechanical as well as electronic stops will be utilized to limit the control travel 

to no more than 50% of that of the actual aircraft for cyclic control. Control position 

indicators will be included in line with the control system so that the operator knows the 

position of the tip path plane. George Lukes from the MDHC controls lab is designing 

this system. 

The HHC system will be controlled by the hand held open loop controller that was 

used during the open loop flight test in 1982. MDHC, formerly Hughes Helicopters still 

has possession of it and it is still in working condition. Prior to its usage for this program 

it will be thoroughly tested and evaluated to insure its proper operation. 
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-------------------------------------

G. FORESEEABLE PROBLEM AREAS 

There are always problems that arise during any research or experimentation 

program, some are foreseeable and others are not. Following are three areas associated 

with this program which mayor may not present problems. If given prompt and correct 

attention these areas should not delay the conduct of the experimentation. 

1. Larger Test Stand Drive Motor 

The largest problem associated with a new drive motor is finding a 250 hp motor 

that can be mounted so that the output driveshaft is vertical and will fit within the physical 

constraints of the current 50 hp motor. If a motor with these characteristics cannot be 

found then a means of turning the output of a horizontally mounted motor 90 degrees 

must be devised. 

2. Rotor Diameter 

The diameter of the OH-6A rotor system is approximately 26.4 feet. It will fit 

quite easily into the rotor test lab which is 38 feet square, but there is concern about edge 

effects from the walls affecting the airflow through the rotor. At this time it has not been 

decided whether or not the rotor blades will require shortening. If they do require 

shortening, MDHC must be consulted on the best way to shorten the blades and whether 

or not blade tip weights will need to be replaced in the tips of the shortened blades. 
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3. HHC Feedback 

The currently proposed scheme to mount the rotor system to the test pylon 

essentially creates a rigid connection which may not provide sufficient vibratory feedback 

to operate the HHC controller. If this proves to be the case, the spacers beneath the 

mounting ring for the rotor system will have to be replaced with a more elastic material. 

H. CONCLUSIONS AND RECOMMENDA nONS 

In this paper the theory of HHC has been explained and data have been presented 

which substantiates its merits. The results of theoretical research which help to explain 

the unexpected power savings associated with its operation during flight test have been 

presented and explained. Finally plans for future research were presented. Further 

research is justified in this area and it is recommended that another Thesis student follow 

up on this work. What follows is a brief summary of what has been accomplished and the 

major points of what needs to be accomplished. The Appendix is a statement of work 

prepared by MDHC and presented to SATCON Technology as to specific work items to 

be completed. It is an in-depth summary of work to be completed prior to testing. Some 

of the items in the list have already been completed or are in work at this time. 

1. Work Accomplished Thusfar 

Work accomplished thusfar towards mounting an OH-6A rotor system on the test 

stand at the Naval Academy is as follows: 

a. A rotor system has been requested from the Dept. of the Army. 

h. Preliminary plans for an adapter and coupling to mate the rotor system 

to the test stand have been made. 

c. An instrumentation list has been made. 
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d. Preliminary plans for a hydraulic system have been made. 

e. Preliminary plans for a rotor control system have been made. 

f. An updated data acquisition system for the Naval Academy Rotor Test 

Facility has been obtained. 

2. Work to be Accomplished 

Following is a list of the major tasks to be accomplished in preparation for the 

testing. A specific listing of the sub-tasks is contained in the Appendix. 

a. Inspect and rework the ffilC system as required. 

b. Determine whether or not the rotor blades will require modification. 

c. Once an OH-6A is delivered, remove the main rotor system and ship it 

to MDHC for instrumentation. 

d. Prepare a specific test plan and matrix. 

e. Assemble the rotor control system at the Naval Academy. 

f. Mount the rotor system. 

g. Conduct a safety review board prior to testing. 

h. Conduct final inspections prior to system runup. 

i. In addition to the specific items contained in Appendix A, it is 

imperative that a vibration analysis be conducted of the test pylon to 

insure that no structural modes of the pylon are excited during testing. 

3. Safety Considerations 

Prior to system runup a specific test plan should be prepared that includes a matrix 

of the testing to be performed during each test period. Prior to first system runup and 

subsequent to system assembly at the Naval Academy, a safety review should be 

conducted to review the test plan, procedures, and test matrix to insure that everyone 
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who participates in the testing will have a thorough understanding of the program and to 

insure that no safety considerations have been overlooked. A thorough system inspection 

should also be conducted at this time. The safety review should include personnel who 

are knowledgeable in the subject area but have not been involved in the planning and 

assemblage of the system. Testing should begin with a thorough system operational 

checkout and should then proceed from known conditions to unknown conditions in small 

increments. Prior to each test period a briefing should be held which specifically covers 

the data points to be conducted during that session as well as any possible malfunctions 

and emergency procedures. Subsequent to each test session a thorough debriefing should 

be conducted to document the testing that was actually conducted and to solicit feedback 

and input for the next test session. 
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TECHNOLOGY 
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