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<'OllnkIlJlll:ltlve 

ABSTRACT 

ill Autonomous Underwater Vehide (AUY) 

robo\<;, Ixcall~e they operate: in a remote :llld h,17ardOll~ 

pllysical dynamics and sensing modalities are 

comprehen,ivrly model all .,ali(;nt 

of the real world in real time, Thi,~ virtual world i') 

,te,'l~'lIed frOl~l the P.')spective of the robot, enilhling re(jlisti~' AUV evaluation 

Illd in [he liibor:J.wry, Three-dimensional real-time computer graphic') 

of robot interanions within a virtual world pennits 

of robot pelformance that are otherwise unavailable 

Sonar 'hllalization permits researcher, to accurately "look over the robot's 

through the robot's eyes" lD intuitively U111ierstand 

'cn~rl[-erlYiroliment intcrJ.ctions. E.\tending the theoretical deri.ution of a set of 

hydrodynamic, equ<ltions ha., provided a fully general 

model capable of prodllcing highly non-linear yet experimentally-

Distribution or underwater virtual world components enables scalability 

:,r:d re,tI-tirue re~ponse_ The [EEI Distributed Interactive Simulation (DIS) 

protocol i, used tor compatiblc interaction with other virtual worlds. 

J"\e rwoJk connections allow remme demonstJated via Mullicast Backbone 

I MO om::-1 audio and video collaool(l1jon with researcher.~ at remote locations. 

lnlt'grdting the World-Wide \\-feb allows rapid 

the llllernet 

to resources disnihmed 

rhis cti,';\ertation present~ the frontier of 3D real-time graphics to support 

undnwiitn robotiC';, ~(:i(;Jltific ocean (;.\pIOlation, sonar \iisuilliLation and 

worldwide ;:oIJaboraLion 
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I A VIKTl'AL WOHLD FOR AN ALiTONOMOllS I ' \OER\NATER VEHICLE 

,\. I\TIWDLCnON 

tnlller_tck ill AlJtonCllKHl.) Underwater Vehicle (AUV) des ign 

deve lop: l!trl t_ It i, Iremcndou, ly ditfj..;:u lt to observe. commlJJlicate with and test 

lJ ilcief\,,~rer rubor , _ b~c::wsc lh:y operate in d remote and haLardou~ e nvironmcnt where 

phy, il il l drd sensi ng modali ties (lie <:oulltertntuitive. An lJ nderwater virtlJal 

WOI d l' oI11rrehensivc:ly model nil nt:ce~~ary fu nctional c haracteristics of the real 

111 red l tillle, This vinual world i, d~"igl1ed hcm the pcr~pec ti ve of the robot, 

(n ~b l i ng AUVeva lua tion tcsting in the laboratory_ 3D redl'l ime grap~l i cs 

_,re our willdow in to the virtual world _ A networked archi tel:ture enables mu ltiple 

" orld l omponents tu oper~te (() lI ectivdy in real time. and abo permits world -wide 

OClSe rVJtl{)11 and LolI""b()[-J t ~OIl with other S(iCnliSiS imerested in the wbot and vir tual 

\\or lel , Th i, M(hireClilre fir ,t proposed in (B rlJtz man 92d) 

di",elwtion develops dnd descri bes the software ~chitectur~ of an 

l! nde I' W~l le l virtual wo~ l d for autono mous underwater robot. Mult iple componet1t 

mod r h provlde interauivc rea l-limc response for robot and human users. 111eoretical 

cJtveloprnerll d scabble d istributed ne twork approach. intcrop('rabili ty between 

models. phYS1,',; -based repruduction of rea l-world re~ponse. and compatibility Wilh 

open 'iy~lelTl~ apwoaches_ Implcmentation of the underwater virtual world and 

~u tonumOll~ ur;cle r" ~ter robot Clre doclJmented in a companion software reference 

H. ,\-1OTlV .i\TIOI\' 

Under.v :'t~r robots are normal ly cdlkd AutonomOlJS Unrkr w:uer Vehiclcs 

:A UV,L not becalJse t lley are intended to carry people but mlhe r because th('y ar~ 

(k.'igned lIJ in telligen tl y ami illdcpendel1 tly convey sensors and payloads. AllYs muSt 

"Lump lish (omplex and diverse missions whi le maintaining stable physical 



Lonuol with ,;palial degrees of freer1olll. Little or no communication WiTh distant 

h u rn~n su pelV' i~ors is possible. When com pared to indoor. grou nd, airbornc or space 

erwI:-onmenlS, the underwater clornain typically imposes the most res trictive physical 

control c.nct ,cnsor iimit,\tions upo n a robot. Underwater robot desig n requirements 

rioodQle I l l otiv~te th l' ~xarnin 3.tion, Considerations and co nclusions remain pcninent 

ex'lln ple,\ relative to other enviro nments 

pp c:x i,t\ be- twcen the proJections of theory and tile ,Ictual practice of 

und~ rwater robot d ~ ,;ign, Despitt a large [lumber of remotely operated submersibles 

~Hl d ~ mh fie ld of all\OnOmOllS robot research results (Iyengar 90a, 90b), few AUVs 

Jnrl tile ir- c:~p<lbilitie,'i are li mitcd , Cost. inaccessibility and scope of AllV design 

re,rr id the number ::tnd reach of players involvect. Interac tions and intcrdcpendencies 

betwee n h.miwafc ~nd software compon ent probkms art: poorly understood_ T esting 

is r1 iffi(uIL ter1ious, infrequent and potentially hazardous, Meaningful ev aluation uf 

r~,ub io; hampered by ove~all problem complexity, se nsor inadequacies and human 

irUbllity to ct \r ~ o:.:t ly otlscrve the robot in siru. Potenti.alloss of an autonomou s 

unde rwater :'obot is generally intolerable ctue to tremendous investment in time ~nd 

likelihood th~t any b ilurc will become l'atastrophie and difficulty of 

r~L'Ovcry 

C llderwJrer robot progress has been slow and painstaking tor ma ny reasons fly 

11 CLc:\sity mo:;t r("~edfch is performed piecemeal and incremen tall y_ For example, a 

narrow prob lem might bc identified as suitable for solution by a particular artificia l 

rntc lli"ence (AI) parad igm anct thcn cxaminrd in great detail. Conjenures and theories 

_,[(" u-;ed to crc;rte an implementation wh ic h is tested by building a model or simUlation 

'pec ifica lly <;uitc(i to tfie problem in ques tion. Test succcss or failurc is used to 

,nterprer validity of conclusions. Unfortunatel y, integration of the design process or 

fina l reslllts into a worki ng robot is often d ifficult or impossible. Lack of 

Inre~rated testing prevents complete verification of conclusions. 

AUV ct (" sign muq provide JlllOnomy. stability and reliability with little tolerance 

fur error. Control ,ystcms :-equire particular attention si nce closed-form solutions for 



Il1Jny hyd rod ynall1ic~ contro l i.-; . .;ues are unknown. In addi tion . AI 11lC"t hodologies dre 

c,'e nt i;iI for many n itic ~ 1 robot softwwe components. bUl the interaction complexi ty 

a ll d ~ I nerge n t bellJvior 01' multiple 1Il 1e rdcting AI p rocessc~ is poorly understOod . 

rJrely lest.:.-d :Inc! impOSS ible to fo rmJl ly specity (Shank ( 1). Better JPproac hes are 

n~c ded to ' ll p pOrt Loorctimllerl research, design and implementation of undenvatel 

rouUl , 

De,p lle the,e many handicap, . the nu mero us challenges of operating in the 

ulld~ [ \\;Jter environmel1t force designers to blli ld. ro hots tha t Me truly rObllS!, 

.Jlltollo<nou:;. mobile and .;table. T his fi ts \veU with a motivating philosoph y of 

H~'I1~ ,\llofC!.vec (Moravel 1\3. 1\1\): 



C. ()BJECTIVES 

This dissertat ion addresse~ the follow ing research qucstions 

What is the \oftwme an.:h itenure 
:m dLJ lOnOIliO US underwater 

to builo an underwater vi rrual worlo 

How all lll',dcrwatcr robot be Lonnectco 10 a virtlla l world so seamlessl), that 
op<"Lltioll in th~ rral ""ori el or :t v irtual world is transparent to the robot? 

!Jow l<lrl 3D real-t ime 

porta bi lity to 

are pertinent to conSlrllC(Jon 

AUV, and wh at are the 
sWTounding environment" 

\Vhat J ,e the ne r.work ,;oftwdre component s needed to build a virtual 
world that i:<lIl lip to very ldrge numocrs of interacting model s, datasets, 
info rmJtion streams and users! How can l/l1;.':SI;.': network 

foe 

and rime: 

How ~~n these ~onccp t s be implemented in a working system? 



I). DISSERTATION OR(;ANIZA1'ION 

rhe real wor ld IS J place Virtual wcrlds must also be comprehensive and 

i; tht"y arc 10 penmt cred ible reproductions of real world beh'lVior. A var iety 

cO ll1.pone nb rt~e (ksctihed in this disscrtat i o~. Ways to scale up and 

the underwater vir:ual world to include very large numbers of us~rs. 

models -Ind information resources are inc llJ(led throughou t 

Chapter If reviews re lated work ~ n underwater robotics. robotics simulation, 

lI l1d t"rwJter veh ide hydrodynamics. robot simulUlion, computer networking. and 

Visualization of sonai' morieh. ChJpter m pro, ices precise problem 

,Llt~, menl.> ann so lution overv iews. be th for the general dissertation topic as \.vell as 

Inci lvldual world cOll1pon~rHS _ ChJpter IV present" the functional characteris tics 

ot' the NPS AU\'. the ur.derwater robot which has been networked with the underwater 

... irt ua l world , Chapter V describes the requirements and riesign lk('isions made in 

iJuilrhng In obl::ct-oriented reJ l-tim~ interacti"'!;: 3D computer graphics vic""':' 

Ch,~p ter VI der ives novel t:xtensions to an underwater vehicle hydrodynamics model 

whic h permilltal-time networAed response. standardized nomencialurt, suitability for 

par,lllleterized lise iJy other und~rwater vehic les, and correctness both in ~m ise and 

hovtr Inodes, Ch~pter VII identifies Jnd examines the four network capabilities 

r, eLes,~ry fo r ,caJablt and globally d istrilluta ble virtual wor lds. Network 

cO ~ lslder4tio~ s includ<:', both tight anc loose ttmporal coupling. low-hanriwidth and 

hj:~h-Ilanclwid i h i nform~tion streams, aucio. video, graphics. multimedia, postllre 

upd:.ttC's lI\ ing [he lJistributeli Jmeractivt :;imuJation ( IJI:; ) protoC'o!. and very large 

numbers of connecting. illOdels anc uscrs. Chapter VIIT outl iTles a general sonar 

model, presents an example geometric sonar model, and descri bes how xienrific 

visual ization techniques might he appl ied to rencier the large set of imponam 

values which jeslribc sonar be havior, Chapter IX presents experimental 

for tt:e i]ydrodyn~mic:s model and network performance during distributed 

ne' LJ;tS Chapter X sununarizes the ma ny dissertation conclusions identified in 



pre<.;ecting dw.pte[~. An auonym appendix is provided for readcr convenience. Finally 

;In ;I::companying video appendix documents performance of the NPS AUV operating 

l il tr.", \lll d t:rw~tt'Cr virtual wodd and presents a variety of exercise scenarios 

,;flu:tllre of the ~ccompanying soflwan: reference (BrutlrnHn 94e) parallels 

th", ot' thi s dissertation , A11 source code, support files and comp iled 

e-;,eul[,!ble rro~r~ms are also freely (!vailablt: via Internet access us ing anonymous fi le 

The software reference indudes help files and source 

cock tor arc hive in\t:JlIation, the NPS AUV robot execution' leveL 3D computer 

grdphi,'s viewer, hydrodynamics, sonar morieling, uelwor.k.ing, and use of the 

World-Wick Web (\V\\'W) and Multica,;;t Backbone (MBone). 



If. REVIH\, OF RELATED WORK 

-\. IVflWI) L"CTfO :'>.' 

['hi , cha pter pr~vious :lIld current r~"rarc-h peltinent to the creation of an 

1I 1l (krW~lCl vlrt l.:.1i world for il n AUV. Whi le 110 other underwater virtual worlds were 

~nl ollll ' cn::d dur ing lhi , lilClat ure searc h. the diversity of the many components 

d~vdcl per1 in th is di ss~n~l ion invite backgrou nd e.'l.aminations on a wide rang~ of 

Sli bied' exami ned in thi, chapter include underwlllel' robOlics. robotil:s and 

Il ~ tworke ct virtual worl ct eonullunications, ~onar modding and 

J l1d ongoing alld future proJects, In order to avoid bccom.ing op~n-~nded 

of rntirc bodies of Sl:ientifil' literatun:, the following projeu reviews an~ 

limiled lO directly ptrtallling to lhis r1 issenation 

R. UNDER\VATER ROBOTICS 

T he AUV rn~~rch community is small but steadily growing Key papers in this 

fi el d , lr~ l-illfllarily fou nd in annlli1. l (.:onf~ren(.:es (indud<:d thro\lghout the accompanying 

'efere [l ~e;:.) whic h reac h back over a decade. These include the [EEE O~~anic 

[n!,'lnel"ring Socie lY (OESj Autonomous Unlier.t'iUer Vehicle (AUV) symposia and 

OCEANS ~onfcrl: nu.:s, Unmu/lw!i Unrelilered Submersible Techn()l()gies (UUST) 

and f/ltel'fliH!()/lal Advanced R()botics Programme (lMP) : .lv/obile Hobols 

[ 'I .'Jr()l:ml!flts wo: b hops. A r~cent survey of prev iously unknown reSearch 

"lIblTler s i bk~ Ll l1zk.rsea tel'h llologies in Ukraine ann Russia appears in (WTEC 93) 

C UTWnl capabil ities in Jemotely operated veh icle (ROV) opcrHtions me descri.bed in 

(N,·wman 92· 93), t\ survey of AUV .:~.pabilities emphasizi ng potential for commercial 

dep loy rnen t appears in (Walsh 43· ':)4). !\ detai led des~r iption of the j\,'"PS AU V 

JPpc.( r ~ III Chapter IV This se~ Tj o n orovide s an overview of several sign ificant 

t\L v,. Far ~ dynamic vil:w of ullde rw,1 tn robotics. video segments of state ·of-th~·ar t 

AUV op~ra r. i (' n" appeal lJl recent vidco conference proceedings (Bnllzman 93a. 94a) 





A ,mvl::Y ,11 1 AUVs is not appropriate. but representative and pcl'tinent AUV 

~LJmm: Lrl zerl tx: lcw 

ARP A/Navy Un manned Unde rsea Vehicle (ULl Y) 

T he ARPA lJUV prognlill bl::gan in Ins whl::l1 the Charles Stark Draper 

we lt LO lltrJcted to bui ld two b rge UUVs for tactical navai missions, 





p;JrIi..::uhHly open-ocean minefield search. These vehicles are the largest, the most 

cap~! b!e and (at approximntely $') million to tal) the most expensive AUVs bui lt to date. 

The ARPA UU Vs use high-density silver zinc batteries for 24 hours of operational 

~ Lld ura nLe at 5- 10 knots ~ubmerged. Weighing 15.000 pounds in air. the vehicles have 

Titani um hulh whkh permit ~ leSt dept 11 of 1,01)0 feet. The UUVs successfully 

deployed Jovanced sonar processors. laser communil:ations and a variety of other 

adv<1no,;ed technologies in its 2M-pound-capacity payload section. Hybrid sim ulation 

(~o,;hniq ucs were used to test vehicle hardware and software prior to at-sea deployment. 

Simu lation components induded si:<-degJee-of-freedom hydrodynamics and tether 

dyn,.lIni..::, modcl~ . along wit h hardware subcomponent models and wireframe computer 

gr..tphi.:s. Vch l(]e overviews can be found in (Pappas 9l) (Brancart 94), and extensive 

V!(ieo footage of various test ing milestones is included in (Brotzman 93a. 94a) 

Fibure 2.2 . ARPAINavy Unmanned Underwater Vehicle (UUV) internal layout 
(Pappas (1) 

"' In March 19<,13. the [ARPA I Maritime Systems Technology Office successfully 
o,;ompletcd a series of m-seJ tests that demonstrated the Mine Se~rch System 
(MSS). a prototype minehunting system. In these demonstrations. a ship with 
the UUV in [he lead repeatedly made safe transits through deep and shallow 



mine f:dct". 
were 

re~pe~t to the 
l l m~ l he v~lu~ sen,>ors in a nune lOllntrmleasurcs rok." 
' from Brancart's ARPA abstract. Brutlman 943) 

r ile A]<.PA VUVs have been first to accomplish many irnponant AUV 

tasb. Ilut the ir LOSt is high and tecilnical details remain out of the published literature. 

\Vhik they h ~ve been an e.'I.cellent testbed for new ti':chnologies. the high co~t of 

"ehic lt: 'llpport :\nd opcrJtions place,; them beyond the reach of most research effons. 

I\bssaehusetts Insl.itute uf Technology (MIT) Odyssey Class AUVs 

The /I."ilT Underwater Vehicles Laboratory Sea Grant College Program has 

l'eel bu ilo ing JnJ dep loying a series uf low COSt AUVs for a number of yeaTs 

'Bdlirtg:ilJIlI 94) (Fricke 94). The current Odyssey fl. prtd~cessor Odyssey! and 

Fi gure 2.3 

\ 
='r.'r,..:: .... ~:".:.,. 

MIT II in under-ice configuration . Deep-ocean configuration 
includes avoidance so nar, strobe light. altimeter sonar ;md 
video camera (Bell ingham 94). 

St;U Squirt v~hjlks are characlcril~o by rrardrop hul l forms, 17" glass sphere iIltemal 

prcssulc vesse ls. low power consumption. single 68030 microprocessor, single 

10 



Hn allgment~d fonn ot subsumptivc 

video, in ertial sensors, 

Stable ctyna:nic control is 

Future work indudes a variety ()f oceHnographic missions 

commUllJeallOlI~ as pan 01 

(kcanographie Sampling ]\ctwork [AOSN) ICunin 93'1 

J. I\Llrine Sysl.ems Engineering I.ahoratory RiVE Vehicles 

Th~ FXi~ril1lt:~ltil.l ,A.uwr,omou<, Vthicl ~ (EAVE) ot ALVs [uSl 

f c1 l:": mO'~SlrM~c1 autonomous underwaler pipe lollowing 

Subs~qu~nt missions havc included navigalion using 

'iuhmagec .s~rUClure cleaning, llndl:":rwal~r dod:.ing and p<uking, 

"n,~ multiple AL'V 'lll>lTIt'Tg~d L'()lTIlTIulliulli()1l clllU mi~sion ~'oordinHtion. EAVF; d"ss 

L'onsrrllct('C on op~n trilmc:s llsing large watcnight eans for t:kctronic:s and 

compOI1ent'i. Sensors indude H varkty of sonars, c:ompass, temperatmt and 

presslire ·:dep[h) acollstic modem arid video_ The Marine 

initiaLly locitted at Uni.,.""sity of 

T.oved (0 .\()nheaslnn Univ~r~itv in 19114. Notable conoiolllions 

include implemenling multiple level sof[\Var~ archi[~ctur~s, multiple 

aJ.:oustk c:onununi~arion languages, anri 

II 



Figure 2.4. Marille Systems Engi neering Laboratory (MS EL) E;o;peri mental 
Aurono111011S Vehicle EAVE Jf equ ipment layo ut (Blidberg 90). 

ulli que miss ion, such as rapid-response oil spill underwater survey (Srutzman 93a) 

4. Florida Atlantic llnivcrsily (FAU) Ocean 'Voyager II 

Tr.e Ocean Voyager 11 is a long-range AUV designed for coastal 

oce:.Ulography. d~bsify ing bOllom types by flying at a constant altitude above the sea 

t loor while measuring bottom albedo, light absorption and other parameters (Smith 94) 

IBrlltnnan 94a). ResuJts of large-area ~u r\ieys will be used to calibrate satellite 

measuremen ts which currently have few correlation checks availa ble with ground truth 

Thl"" possibiJ ity of rapid response rneans that th is AlIV mission is also suitable for 

oceanograp hy. Vehide hull form is similar in sizt and shape to the M11 

OJY.lsey vehicle~, ~s are most components . Navigation is by ultra-short and IOll g 

baseline :l.collstil' neTworks , doppler water velocity log and differential global 

12 
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Figure 2.5 Florida Atlantic 

IDGf'S). Communications ate by 2400 Kbps acoustic rrl(xiems or a 

(RF) "ntcnna when ne'ar the surface. Vehicle enduram.:e is 

payloads comprising over halt of thr. 

corrdllioll and cvaluation of large ocr.anogr~phic: datasets are 

tel' :m under\VJter vinu<ll \vorld 

5. Munterey B'I), Aquarium Resear{'h Institute DIBARI) 

Ocean Technolog:li Testhed for Engineering Research (OTTER) 

in .\'1:mterey Bay Aquarium R.e<;earch Institute (.\'lBARn ami rIle' 

a testbed for vision-based sc]"voing for v~hicle 

video of the oceiln fioor (Marks 92, 94a, 94b) 

Stereo vineo camera, provide high-handwidth .,t;"eams ,-,,·hich Me 



,ubS3mplec1 and filt~n:d using vis ion-processing hardware for real-timc response. A~ 

dCillomtratefi by (Mllks 94a), sequentially applying a signum function, a Laplacian 

function and a Gaussian correlat ion function produces images which can be adjusted 

~'or ,tereo disparity and correlated between s ilbseqllent frames. This result produces an 

opt:c flow output which can then he useo for feature tracking. Once a feature has 

been identified, dynamic feedback to thrusters/planes/propellers contro llers permits the 

GrIER vehicle to fo llow that object or navigate re lative to the bottom. The same 

corre lation algorithm can b~ Llseo to match physically adjae~lI t images into a 

large scale video mosaic in real time. often providing a better match than is possible 

using marlual methods_ Acoustic transmittal of video mosaics is possible in real time, 

while transmittal o f unculled video is infeasible due to e](cessive bandwidth 

requirements. Both o~ject (e.g. sea creature) tracking and bottom mapping are 

~x t rcme ly valuable oceanographic capabilities, and are also essential it' AUVs are to be 

pra..:t io..:al too ls for ocean exploration. Video mosaic mapping and observation of 

undersea creatures in situ arc fundamental behaviors for automatic data collection and 

underwater vi.nual world database construnion. 

14 



6. Wonds Hole Oce~nogr!lphic Institution (WHO!) 

AulunulTIOus Benthic Explorer rABE ) 

The Woo(is Hole Oceanogr<!phic institution (WHO!) has designed ar.d 

purpose: AUV for long·term :; urvey~ of r.he deep ocean noor 

Autonomous 
Benthic Explorer 

• $iill POW"HKi 
• prrl-progmmmBd 
-b'!} liw (lyJJaI) 
• can mOVtJ SO IwJ iff I .~I1C1 

• ,.mffls films & CeD ~/Jlll<Ull 
• ~'wllM C ro & fNu",",,_omatl,!r 
·"Ufl"!I'y m.ar M 9YlVI/r~r.11 

(Yoerger 9 1,94)_ The Autonomous Benthic Explorer (ABE) can moor at a fixed 

l o~atiOll for long periods of time in a "sleep" mode ancl periodically awake. perform a 

sun ey by navigat ing within a shon baseline acoustic transpo nder field while 

water paralfll;:u:rS ancl t:J.king low light charge-coupled diode (CCD) camera 

D hoto grap h~ . then reattach to the mooring_ Power consumption is extremely low in 

order to w pport 16 ho urs of manellvering endurance spread over nussions lasting up 

15 



[0 "yeaI'. Scien..::e missions indwic observation of deep ocean hydrothcrmal vcnts and 

benthi..:: biologic- ..::ommunities. Tile vrhi..::le is rrrrieved following an acollstic 

L O ILl l n~nd (0 (hop b;illilst and rrtllrn to lhe surface. /o.B£ operational ranges and 

clld u r1 ll ~e can be s ignifj~alHly inrrrJsed by auaching the mooring to a magnetic 

ind Cl lt ion power t:ansft'r devi..::e and acoustic communications relay. Potentially high 

nll~s anri lhe po)sibili ty of making gt:ologic mt:asurements with rcal·time 

ii11 port~n~-(" m:lke ABE deployments a natural application to be networkcd wilh an 

u!lderwater virtual world 

7. Explusive Ordnance Disposal Robotics Work Package (E:ODRWP) 

The Lockheed Explosive Oronance Disposal Robotics Work Packagc 

(EOLJRWP) is J UUV designed to assist divers in locating, classifying and neutrali7.ing 

11 ll(ierwatrr mines (Trimble 94a, 94b) (BrutlllHlIl 94a). Although tethered in order to 

provide power ;md controller communications, the EODRWP has a sophisticated suire 

of rule-based behaviors to intelligently perform signal processing, classification, 

dymunics ,,;on\IOI. mission planning and mission execution with minimal human 

~llpervi"ion . Shore·bas~d graphi,,; al simulation connectt:d to vehicle hardware in the 

lanoratory is con~idered an essential capabi lity and is ust:d to visualize and test the 

EODR\VP prim to ~t - sea tes ting. Particular contributions of th i,; project include 

gllid;mce , navigation, conrrol and mission task integration of human and robot. Use of 

an unrierwaler virtual world combined with EOD R'Nl' and externally-controlled 

synthetic humans has the poten tial to improve mine neutralization tactics while 

leduc ing risks to navy divers and ships. 

16 



K Miniature AUVs 

With exponentially improving price/performance ralios in computer 

microprocessors, it is natural to expec t Ihat miniature AUVs might provide capabilities 

[flal avoid the power and propulsion handicaps of larger vehicles. The Smart 

Communications System (S MARTCOM\'ts) I Frank 94) is representative of such 

~ffOlts , As fundamenta l AUV pro blems of low· power sensing, low-levd dynamics 

control and high-level mission control are resolved, miniaturization awl optimization 

ot veh icles becomes cost effe(live. II is likely th at large numbers of inexpensive and 

moderately \:apable AUVs will ~come availabk in the near future. Corrununicaling 

with ancl coordimuing these vehicles in the context of massive environmental datasels, 

17 



rlumewus data str~ams and larg~ ocean areas will be a signific ant challenge. 

I\,ctworking large numbers of thes~ vehicles wi thin an underwater virtual world can be 

J jHJct:c.:t1 so lution. 

C. ROBOTICS AND SIMl'LATION 

A very great number of robotics-related simulations have bren procluced, out few 

involve mobile robotics. Those 5imul ations which are avai lahle are typically restricted 

by LOmmon limi;;ltions of simulation: problems and solutions are approached in a 

piecemeal and fragmented fashion. Thus simulation results remain susceptible to 

fail ure when deployed in The real world due to the untrsted complexity of multiple 

interJcting processes operating within the hard real·time constraints of unforgivi ng 

environments. There is no safr and complete "practice" environment for AUVs, sinl"r 

test tanks l"annot reproduce the variability of critical parameters found in the ocean. 

and silKe any in-water failure may lead to vehiele damage or loss due to flooding. 

Known si mulation efforts pertaining either to AUVs or construction of robot-centered 

v~rtua l worlds follow 

NPS AUV Integrated Simulator 

Research preliminary to this dissertation established 'integratrd simulatio n" 

~ ~ a necessary too l for AUV development (Bflltzman 92a, 92c, 92e) (Compton 92). 

Intcgrated simu lation was ide nti fied as a suite of simulation tools to assist in The 

design and testing of all vehicle hardware and software components. An integrated 

simulator was built that provided real world fu nc tionality and visuali7.ation for a 

v"ri~ty 01 AI -related tactical software programs. Integration of simulation throughout 

the software design p[(~cess was shown to havc tangible benellts in producing reslllt~ 

that might otherwisc have been impossible. Pertinent work preced in g that thesis 

inc ludes (J urewicl 90) (Zyda 90) (Healey 92a). Confirmation of integrated simulation 

conc lusions were ~ubsequently reported following the successful developm~nt of the 

Multi-Vehicle SirJlltlator (MVS ) wilh the Twin·13urger AUV (Kuroda 94) 

(Brutzman 94a) . 
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Figure 2,'.1 Nf'S A llV Liltegr~led Simu lator showing playback of pool miss ion with 
~utonoJnous sOllar ~ Ia ssifi catjo[l expert results 
(BllItzmilil rJ2~. 92L' , 92e) (Compton 

I ntegr~ttd siln\J l ~tion differs sign ificantly from the virtual world produceo 

it; th is dissertation in that rohol-specific hardware and software were completely 

oil-·hlle, real-time response wa~ not required. simulation Illodds were not connected or 

Il elwol-ken, simu lations wen~ single user programs and vrhic le hydrodynamics response 

only dvai!ahk by playi ng back in-water test results. Developing and 

imp lementing the loncepts involved in integrated siJnu lation were important 

pren~lI \l isite~ to cO llceiv ing the notion and defining requirements to build an 

underwater "irtua l wor ld for an AUV (Brlltlman I,l2d). 

1. AIU'AIN~H·.v LTliV H.vbrid S imula tor 

The ARPA/Navy UUV devb!opment lab at Charles Stark Drape! 

L~lboriltmi(~s i!;c lulies 3 simula tor which COnS iStS of a mainframe computer. models of 

hyrlrodYlHl ln ics and sensor response . ann highly detailed componenl-level monels of 

illrlividuul UUV internal equipmellt (such as mOlor electrodynamics models) 

(Pappas ( 1) (B rancarl 94) (Brutzman 93a. 94a). A Simulatiull Interface Unit (S t U) 

a c ustom hardw<!l t intcrfm;e between mllinframe computer and vehicle. 
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YkdHl llisll1s are provided to It: ~t individ ual vehicle components. Al-sea test dive 

profiles ,ltC under takc n in the lailoratory prior to operational tesling. Wireframe 

plo viJe :1 "in, pie lenderill g of vehicle posture during hardware-in-the lou!! 

le-stln t; 

rhe ARPA/Navy LJUV Hybrict Simlliator has much of the f\lnction~lily 

needed for a rouot-based underwater virtllal world , bu t severa l important capabilities 

missing. The algorit hms and source corle for the hybrid simula tor arc not publicly 

dvadabk dna mally cljLJipmcllt components are proprietary. Since aU software 

(:omponcnts (inl'luding computer graphics) are in a si ngle loop on a large mainframe 

<'omputer, (he: softwH rc: ;i[chitect ll re CJI1110t 'icale up indefini tely wi th the additio n of 

new worl d models_ Graphi cs <He part icula rly bounri since the frame rate of scree n 

' Ipdates are tied to the timi ng of the robot/simu lator loop. No mechanisms are 
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pl'Ovickrl for networked collaboration. OveralJ , the ARPA/Navy UUY hyhrirl 

s ilTlub !or is one of the iJeq of all "h~[dw<lre in the loop" simulations, willofe computer 

\ i' llliidtio ll ~nr1 Urger sy;;tem Me dosely cct.:pleci in isolation from any orher intrraction 

Illcl i1 lJci ., The ARPA UUY Hyb~ld Simu lator COII~titUles a trcmcnc10us 

",,,,,,,,1"',,,,.,", which rwv icte<1 inspiJ'a,101l and po ints of comparison for several parts 

MIll is 

J. NASA Ames Intelligent Machines Gmup (lMG): 

!'elepresence I~~rn()tcly Operated Vehide (TROV ) 

Tile NASA Ame\ lntelligrn ! MilChines Group (IMG) has worked o n a 
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of providing effective telepresencc for scientific expior,uion of other planetary 

,urfaces, such a~ on .Vlars (Hine 94). Tdepre,ence is defi nerl as the projection of 

human senscs llliO remOte loc ation s. and its effect iveneS5 is measured by the 

l j s~flJl ness of tc lcpr~s~ rKe robot ics in conducting actual scientifIC invc:st igat ions 

H:Jm,\n ~cnse of presence can be enhanced by virtual reality input/output devices (such 

'lS hearhet and d Jta glovd logether with virtual world representations combining 

Interactive 3D graphics with low-bandv.'idth high-latency network links to rem ote 

robots. [n 1993 "iA SA Ames deployed the Tclcprcscncc Remotely Operated Vehic le 

(TRO V) uncil:r Ross Sea ice near McMurdo Science Slation, Antarctica. The 

undcrwdter vehicle was an opcn-fr:uJ1e Phantom S2 ROV with four thrusters, stereo 

video l'arneras, a gripper manipulator. oceanographic sensors, acoustk transponder 

navigiuion, four comrnandahlc degrees of freedom and 1000 fr depth capabil ity. 

C OTn;nu [l ieation wi th the 7ROV was via a twisted-pair umbilical terhrr to the TROV 

controller topside and then using Internet Protocol ([P) packets over infrared 

(IR) I.aser. microwave and intercontine ntal satellite links. 111is varied communications 

pdth induced _,ign ificant latencies, Jlbeit still less than those ex.perienced at 

interpld netary distances. T he V irtual Environment Vehicle Interface (VEVT) modular 

operator interface for cl irect tel~opeTation and mpl;.':rvisory (task-I~vd) !.:ontrol 

tnlegrated all inputs and outpu'-5 , includi ng a head device for steering the viewing 

lJmeraS and ir.crerncntally updated graphic s models for terrain and other pertinent 

phySICal objects. Science leams running the two-month mission focused on marine 

biology. chemi!.:al oceanography and benthic ~cology. Slien!.:e objectives were met 

:lnd teleopera tion was proven feasible frorr. a variety of locations around the globe 

Stereo displays provided excellent depth perception, and controller t irn ~-delay 

modifications lor task level control and predictive teleoperation respons~ proved 

S llc (;~ssf\lL Rdaled work inclildes the DA:-.fTE robot ex.ploratioll of thc Alaskan 

volcano Ml. Spurr and possible regional collaboration in derp AUV {",xploration of 

r>vlonterey Bay. TROll is representative of the most sophiqicated teleoperaterl robots 
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/\ ,urvey and ~rlalysi~ of tekrobotics c<lpauililies and trends appears in (Duriach (4) 

Pnncip,ti rdaenee in the teieroboties field remains (Sheridan 92) 

4. UlliYers it~' uf Hawaii: Omni.Oirectiunallntelligent :\Iavigator (ODIN) 

The Universi ty of Hawaii Ornni-Directiol1al Intelligent Navigator lOD1/'.') 

prl)j e~'t combine, Jl1 I\UV with an integrated graphics simulation for devdop!m~nt of 

aoaptive >lynJmics ~ontrol algorithms (Choi ( 4 )- ODIN is a smal! spherical AUV with 

Figure 1.12 Un iversity of Hawaii Onmi-Directional Intelligent Navigator (ODIN) 
(Choi 94). 

a _,ingie manipulator <lnd four steerahle vertical thrusters, capable of posture control in 

.';ix dct!f<~es of frccdom. Pri mary research conducted using ODIN concems 

determination of hydrodynamics coefficients, linear controllers, nonlint:ar controllers, 

and adaptive controllers utilizing fault detection and automatic reconfiguration using 

neural networks. [ntegration of a single graphics workstation with ODIN demonstrates 

the fl lnclionality indepe ndently descri bed in the NPS AUV Integrated Simulator 

(Bnllzmal1 1)2a, 1)2<:) 
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5. Tuohy: "Simulation Model for AU V Na~'igalion" 

(Tuohy ;!.1) developed ~ simul~tio rt model to te~t AUV navigation 

An cbi ~c;t -o: i e(]ted approach organiled the overall ~imu j ati o n IlIodel into 

envirOllmtlll:J i model<. (consist ing of terrain and water column maps) and physical 

objell (c-oll \ istin g of sensor. conunand/program and dynamics moods). 

(\JIltlibulio ns of th is inc lude a proposed general model panitioning suitabk (or 

Jnri 'lrllctures. !::mphasi, on map decompositioll using spatial data 

,lrUlwre" , and ("ode l i[1tegr:ltion wi th 3D graphics 

(j. Chen: "Simulation and Animation of Sensor-Driven Robots" 

(Chen '141 describe how mo~t robotics simulations includt rooot and 

envuonmem while ex:duding sensors . and identify the creation of n::alistic simulation 

"lid dlli rnatio n software a,<; an important robotic s reserucli issue, They present a ,ystcm 

tor ~ i rnuL\!ion and animation of srnsor drivr:n rooot manipulators and indoor mobi le 

cobot~. Th~ system hlerarchy includes models for rohot. tool in work cell . srn sors and 

physical objr:-:ns. Physically-based morlels for pro,\imity, point laser raoge. laser range 

depth imagery and vision intensity sensors arr: included . with research continll ing on 

forCe/to rque :l.lld taniie ,enSOrS. Three -dime n~ional interactive graphics rue used for 

robot and sensor visualization . although real-time performance is nOL guaranteed. 

Robots ran be integraL~d into the si mulation sysrem to pr:rrnit running in real modr: or 

Vlrt lldl Illode . tllhtr interactive ly or through record ing playback. In real, mode, robot 

control ler sub\ystem electronics are pll)'sically connected to po r t~ on the simulating 

worbtation for two-way commllnication of command and sensor information. In 

virnld l mode , robot software is run on the same workstation as the computer graphics, 

in ckpen<iently ot robot hardware , Primary conclusion of th is work is that a simulator 

for ,In integratr:-:i1 sr:-:flsor-driven robot ic system must incorporate simulation of sensory 

illforllld lioll fe edbac'(, Planned futu rr:-: work includes im.:orporat ion of ,\ 

voile -rel'ogniti on module in the robot and adding dynarnic model s to other objects in 

the similimion environment 
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7. Yale Univer~ity: Ars Magna Abstract Robot Simulator 

n!": Ars Magna mobile robot slmubtor provide~ an ab~tract planar world 

d Al pla nner is ab le to control the movement of a mobile robot 

(Enl!!": I "oll 92.). The obj~c.:tive of the simu lator is to prov ide a more challengi ng ,lOd 

re,ili,t!c environment for oeveiopi ng and evaluating planning systems than was 

previously available. Vehicle Illotion is purely ki ncmatie and is based on a single 

point . SlJl1u lJted manipulators ale included. Sensor values are provided by geometric 

nnge 1110dds with adjus table noise distributions. Robot planning programs are wrinen 

in a variant of thr Lisp programming language. Thr useful but limited capabilities of 

the Ars Magna are representative of most other robot simulalOrs currently in use. 

I). UNDERWATER VEHICLE I)YNAMICS 

The ciludy of dynamics anrl physiCS-based mO!ion has long been recognized as a 

prcrcquisitc for realis tic computer graphics rendering and valid robotics 

perf[)rm;m..:~ mocklin g. Although numerous articles pertaining to underwater 

hydrodynaIT.i..:, ~xist. almost without exception they focus on some small aspect of 

hydrodynamics pe~formance. A completc hydnxlynamic model suitable for r~al-tim~ 

sil11ulation response nas not been available prior to this dissertation. An overview 

":OJllparison of dynamics models in different ~nvironmcntS appears in the 

hydnxlynamirs chapt~J. In this scction key referenc~s prec~ding the ncw 

hydrodyn<lmics model are identi fied 

Healey: Underwater Vebicle I)ynamic.~ Model 

An earlier underwater veh icle hydrodynamics model presented in 

(Hc<lky 92c. 93) provided the fundamental basis for the general hydrodynamics model 

Strrng ths of the model included theorctical rigor. completencss for cruise operations 

usi ng propellers/rud(1ers/plane surfaces. and several years of empirical testing which 

produced an initial worki ng sct of hydrodynamics coefficients. Limitations include 

mi~s i ng trrms for thruster fOTcrs and moments, missing terms for low-speed hovering 

drags. CXITdneous terms (;ofTesponding to an unusual vehick configuration. and an 
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,u-range l~ l~[lt of multiple differential cqualior:s not easily adapted to rcal-time temporal 

In cegratlOll . Further detaih arc provided in Chapter VI. Of all dynamics models 

cX:;lnlr.ed . th is by far the ,>est. Work presented in this dissertation extends and 

ge nrralizcs that fu ndam~n t.d l contribution 

2. Fussen: Guidance and Control of Ocean Vehicle,l' 

'\J ll rnerou j texlS C., iSl on marine vehicle dynamics, most notably 

(Le wIS KS), i)ut thc ~ r foc us is almost exclusively on surfa!.:.: ships. ([<ossen 94) 

pro\'ide~" tliOIough trcatise on both surfa(;ed and submerged vehicle dynamics and 

LOnlmi. He dh o C\ dmi ne ' stabil ity . o~ean modding of wind and waves, and advanced 

L'ontwl leLll! lIllue ~, Theoretic dcriva!i ons :lnd explanations are prov ided throughout. 

O f Ie ie v<lrlle j, that (Fossen <;)4) i ncl ude~ a total of thr~e eXilmpl~ underwater vehicle 

hydrodynamic models: two simplified lineilri7.t~d modds (each by Healey) and the 

verbatim originll six-degree-of-freedom model of (Healey 93) 

~. ARPA/Navy UUV Hydrodynamics Simulation 

The Navy/ARPA UUV de,ign and development team has reponed using a 

flj ll ~ix-degree -of- fr!":edom hyctrodynamics modd for devdopment and (esting of 

,;ophistica(cd vehicle controilelS (Pappas 9 1) (Blancan 94). Funher details have not 

bCl'rl publIShed publicly 

4. Yuh: "Modeling and Cuntrol of Underwater Robotic Vehicles" 

(Yuh ':10) provided an important eontrihutiun to the underwater vehicle 

hydrodyrulTl !cs literature. Although presented as In remotely-operated vehicle (ROV) 

mode!. it is pertinent to ~Iny type of underwater vehicle. He deSClibes "added m ass" 

arld mo.,t ot her rdevanJ tenns. Nomenclatur~ ilnd algebraic differences make th is 

modd d ifferent but still d ose to the (UeJley 93) model descri bed earlier 

5. U.S. Navy SuiJmarine Hyt.lrot.l)"nalllk~ 

Th!": SlloJeCl of U.S. naval submarine dynamics is classified and was nO! 

l onsidercd during lhis work. Some open lileramre r. xists. (Jackson Sil) provides an 

overv ir.w of the ba~ ic submarine: design proc~ss, ~xam.ining general requircments and 
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how design tradeoffs must be weighed. (Gertler 67) and (Feldman 79) present the 

form of dynamics equations Qnd coeffic ient nom!:nc!Qture, close ly conforming 

to the ~t:mditrd mechanical engin!:tring referenc!: (Lewis 88). No claims or 

\ uppusi tiun\ repllding any d assified work are mad<'-, implied or conjecmred in thi,; 

d :s~en"lIon 

E. NET\VORKED CO!\1~HjNICATIONS FOR VIRTUAL WORLDS 

\ 'ct\vork ing considerations in the construction of virtual worlds have gained 

InGea~ing importilnce in recent years. As virtual worlds grow in complexity and 

lj u<lIlt ity of info rmation represented, the ahility to scale up and accommodate 

i.Hbi traril y large numbers of inform ation sources and interacting entit ies becomes a 

GuuJ I requ irement. CUJTently then: are many bottlenrcks preventin g unlimitrd and 

~eJmks_'i virtual world communications. Research in this area is very act ive 

(Zyd" '-15) Millticast network protocols are a fundluncnwl development in this rcgard 

dllli are e,\.Qrnined further in Chapt!:r VIl. This section examinrs rccent work in 

networkin g virtual world; with an emphasis all scalability considel'J tions 

SIMulation !',·ETworkinl.: (SIMNET) Architecture 

SIMNET \vas the first architecture that permitted large numbers of 

\Irn ll l~ted entit ies to interact together in real time, using heterogenous hos ts and 

distri buted communications over a network (Calvin 93). With over trn years of 

deve lorln~nt and operation, SIMNET is a proven sy~tem. Key design principles arc 

thnt objrcts interact in the virtual world by corrununicating events, all objects must 

relay valid data, network bandwidth is redm;rd by only transmitting state changes, and 

Mad reckoning algoritl)ms are used to predict intenm:diate postures. Enabling 

technologies for SThttNET were real-time computer graphics (image generators), 

di~tJibu ted dynarni<: and static virtual world databases, semi-automated torces (S!\F) 

wh id provide realistic entity or rlggrrgate faKe behaviors, high speed local ar~a 

n~tworks (LANs) co upled with an interaction protocol, and free <: hoice of 

human-computer imerfnces. S~lNET effectiveness in Army tactical team training for 
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tomoal h,IS been documrnted on many occasions, slIch as the BailIe of 73 Easting 

d Ur\ ll g tile lr ~q war {Calvin 1l1C biggest theoretical success of SIMNET has been 

i lllplcm~ ntJtion of the intcLtuion protoco ls, '-"hich became the founctar.ion for the DrS 

prolO<.:o l (IEEE ';J4il. '14 b). As might be rxprued with any first-grncration system 

rhcIC .;oml: problem . .; ""jlh the SIMNET architecture concerning scalability. many 

of whi l h arc addre_,sed by ongoing DIS protocol development efforts. SL\1NET 

PfLJ 10lOis do not use Tntcrnct Protocol services, but instead require root supcruser 

perlll l,,]ons fOI exeCUTion since thry access hardware interfaces at the data link layer 

d il edly . In practice SI:MNET capac ity is limited 10300 simu ltarll:OUS players 

2. Distributed Interacth'e Simulation (DIS) Protocol 

The DIS protOCOl is an approved IEEE standard fOl commtlniC~tions 

belween entities in small or large scale vlrtuHl environments (IEEE 93). From the 

lec;ellt proposed DIS :,tamlani Tevision 

define an infrastructure for 
locations to create realistic 
highly irl!eracli\'~ iIl.:tiv it ie~. brings 
,epM,l1~ tecilnologies from different eras, from variOllS 
ve:ldors. from various services and permits them to interoperate. 
DIS n~rcises are int~nded to support a mixtille of virtual entities 
,"",·co,,·,,·""·"'" simu lators) , live erHiti~s platforms and test and 

~nd constructive rntities and other automat.~d 
94a .94b) 

The princiRa l type of interaction in DIS is transmi~sion of entity state 

information via Protocol Data Units (PDUs) whicil include position , oricm~tion, time 

ailli (optional) velocity and a<.:<.:cle!ation values. f\ variety of sl~n(L\r(jjzed dead 

reckoning algori thms are available to maximize pOSitional information nansfer while 

iI1111illlizing b,mdwid!h consLlTTle(L ;"\' umerous other PDU types are included which 

relaTe to exercise rmmagemcnL collisions, sensor emissions, and entity interactions 
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'i Ul il ~ l S wea rOll, tire d n d logist ic suppon. Free ilnd (;OITUllCfcia l D IS software librarie s 

Jvailahie. The DIS protocol dcvelopment <.:Oll1ll1un ity is vcry active and DIS 

~;)Ilt inue s to ~vo l ve. C urrcn t dforts are focu~ed primarily on supporting larger 

number., of ,illlultancoLls cntitics. and dlso on extending D IS functionality lO suppOrt 

Jc\(ji tiol1u l wor ld intonna!lO Il sll\:h e [1vironmenlal effects and distributed t~rrain 

d~t""b~srs [ IEFE ()4 ~ , '14 b) 

\l P.s NET i, a nelworked vjJ'tuJI environment for b~ttletie ld sjmulJtion. 

Key stl-wgth ~ high perfO[Ill<lIlCC , (1 distr ibuted software archi[ectul'c, ability to 
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i1<1:-,d,e !dlg~ nllmbers (hulldn~ds) of inttracting human and alltonOm(lIIS tllt.it.its in 

:~ ~ I time impkmtn:J.tion ot multl~ast DIS lib~a.ries, public distriblltion, and 

Is~[: i on Df r .. mot .. lv-contT0ll~d synthetic human models in vutual environments 

i)lS1illJlional lIsers and has he~n a kry componrnr in 

Anny simulation exercises. NPSNET is likely the broadest and 

""'p"'"o",,",, virlil:\1 environment software: that currently exists. Silftware 

(.i~rributio;ls <lre free to fcgis:ering IIser&. Ollgoin' rrsrarch dforts include 

ori"llttri technique., fOf virtual envirOllrneJlI constnKiion, applilation level and 

et.w·Jrk Irve:llommunll'ation protocols, hdrowiUe illlO operatillg system optimization, 

smoke, dyna!nic terrain Hnd weather) 

4. Macedonia: "Exploiting RealitJ with Multicast Groups" 

Although DrS can til permit simulation ~xrrcises with steveral 

hunJrrd inlerac:ing entitie~, several bottknc~ks constrain ~UITent DIS network 

IInplemenldtions from going mllcli iliglwi. TIlis i~ a problem since distribmed 

jC\Ol11mlldaling tens 0f thousands of active entitirs are needed. One key 

bfficu;ty is that participating hosts must Ii~ten to every DIS report, it requirement t.hat 

eventually consumes all host proce&&ing cycles. (\,lacedonia 95a, 95J, 9SC) proposes 

fJmt;(cllinx the commllnications space into more manageahle tl\rough the 

use ()f mliiticasl channels. SilKe multicast packets call be colkLted or 

discarded Ilsing nrtwork int~rface hardware at the data link layeL hosts need only 

1)1.'1 traffic C()~esponrling 10 sllh,;.crihect militicast channels. Large-scale virtual 

world, thus be parlitioneo accordin,£ to geographic space sllbdiviiion,;, fllnctional 

(sllch as radio frequencies), and temporal clas~es (such as nonnally static 

huilding<, or highlr' dynamic jet aircraft). Development of area of intercst management 

proto~{)J;; llillS becomes for rctaining complete state conesponding to a given 

channel, providing a stale snapshot to ncwly joining entities, and handing off corlllol 
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to anoth~r manager if necessary. Protocol extension implementation, experimentatiun 

and analysis is in progress. The capability to use mult icast protocols I,vill be required 

tor futllIe DIS compliance ( IEEE 94a), underscoring the importance of these concepts 

are explaincd vdthin the larger contc:<t of state-of-the-art trends in virtual 

,,,ality networking <tnd communications in (Durlach 94) 

Figure 2.14. Reality with Multicast" 
scctors, functional classes 

classes (e.g. highly dynam.ic 

5. Gelcrnter: Mirror Wurlds and Linda 

(Gekrnter 92a, 92b) describes a powerful set of abstractions for networked 

virtu<l! world communications. He extends and simplifies the message-passing 

par:!digm used by conIDlunkating software objecL~ tlUOllgh creation of a "tuple spao::e" 

ruples are persistent messages wilhuul a specific addressee. Tupks are ordere.d lists 

that begin with some keyword and contain any number of additional elements. 

Processes have !luee operations to use with tuples: jettison, grab and read 

(a lternatively pubUsh. consume and nondestructive rcad). Processes can access tuples 

by pattern matching against any or a ll potential tuple elements, thus retrieving 
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inc1iv irl ua l ruples or g ro llp~ of tuples. Tuple space consists of th~~~ p~rsistcn t tuples 

b<> l!lg rcact Ult1 generated hy information machines (i .e. processes) , somewilat simiiaJ 

W d bl,jd board ul\;hitcl:urc . S ince t ~ p : e c lements rnigllt be further tupks. and 

(le C;J ll ~e tuples ran themselves bl;' programs, recursive hinan:hies and disrributed 

p:-oL'es, J[]g :ue natura l possibi lities without exp lic it specification by the original 

progr~mlller. T hIS communication methodo logy has also been shown to be identically 

Do rtub,e 10 mass ively parallel proccssors, permi tting progralruners to concenlTate on 

G<, ve loping pJr,dlel algor ithms for problem solving rather than tuning the 

of the underlying hardw(lre (Gdernter 92b). 

The, ... ~ oll~ep t5 define the charactt:ristics of coordination language." which 

n ler1d L"omputational program:ning languages in a general and orthogonal way 

(Gdern te r 92b) , Arguably coordina tion languages provide the abili ty to scale up the 

number of i nt~ ~ac tlJlg computational processes to a degree tha t can reflect real world 

func: tlonality; hence 'm.irro l- worlds" (Gelemter 92a). Initia l implementation of these 

is demonstrated by the Linda communication system (Carriero 9 1) 

(Gelermer '12,1. 92b), As vi rtua l worlds l'ontinue to grow and network bottleneek~ 

perm it muc h l arg~ r [lumbers of entities to interact, implementing the fun ctiona li ty of 

nor.h ierarchical nonimpera!ive distributed (.:ommunieation schemes as described in 

,\1irror Worlds will be esscntial 

6. Distrihuted Interactive Virtual Elwironmen/ (DIVE) 

Distributed In teractive Vinual Environment (DJVE) is a heterogene ous 

d l ~ rri buled worid representation that shares copies of a world database to penrut 

llIult iplc users and applications to simll itaneously interact in a single virtual 3D space 

tCarisson 93). The world datahas~ serves as a gloha l memory shan~d over the network 

u s it~g a re liable ordered multicast scheme. ~faintajning global database consistency is 

an important problem in large-scale virtual worlds. M ulticast protocol pac ket del ivery 

is orct ir:ari ly "beS! effort" and no! guaranteed. Includi ng sequential numbers to each 

mev,age can a.:ilieve rdidbili :y for Illulticast through retransmissio n. hut the cost of 

that ~ rror rerovery is ex pe nsive and sllch approaches (as e xemphiied by DIVE) 
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curre:ltly do [lOt scale past several dozen peers (Macedonia 95c) . Static and dynamic 

tliqributeri database., are another key bottleneck that mUSt bI: addressed for arbitrarily 

" irtu ,:l worlds 

Other Network Communication S),stems for Virtual Worlds 

Many 0lher a(;tiv~ research projects are working Oll el iminating the barriers 

which pr~ve Ilt J.rbitfarily ,caling up distributed virtual world cOlrununications. 

Re~Oll\rnenckd refere nc es are (Zyda (5) (Singh (4) (Bri<.:ken (4) (Shaw (3 ) 

(Morrison 95) (Codella 93) (Kazman (3). Overlapping and interdependent areas of 

investlgatioll include 

peer-to-peer versus client-server models 

network bandw idth reduction 

network processing reduction for panicipating hosts 

reli,tble versus best-effort delivery 

object-oriented functiona l partitioning 

paralle liz:Hion to improve performance 

decoupli ng user interfaces (input devices and output graphics) 

pel~iqent and coherent oistributed global database m,tnagemcnt 

open toolkit construction 

compatibility over heterog<;:nous platforms, peripheral hardware indepcndem;e 

oper~ting system modifi(;J tions for improved performance 

defining temporal relations, establi shing synchronization 

JpplieJ tion interaction protoco ls 

As ide from the (;Otnmon denominator of Internet Protocol (IP) usc and 

occasional compliance wi th the Distri buted Interactive Simulation (DIS) application 

protocol, th~rt:: is little direct compati bility among any of the aforementioned 

approa~'hes . Even if a "silver bullet" solution were to emerge from these many efforts, 

(;urr~nt virtual worlds are likely to remain isolated as closed, incommunicado islands 
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of funct ionality, Ge nera l requirements fo r open inkro~rability betwrrn vin ual worlds 

Spe..:ifi..:ati on ,md developmcnt of a spccific oprn 

nJ I ~ linLl n IL'4tion, Ir.ode l ~.'i an c,tensioll of \Vorld·\Vide \\'eh lV{\VW ) is a goal of the 

VirtllJ I Reality Modeling Language (VRMLl working group (Bell lJ4) (hscr lJ4), A 

cOllllTlonly ~c'(epted bdsdine interaction modd for virtual wor ld communications is 

needed. 

F. SO!\AR MOOE I.I N(; Ar\D VISUALIZATION 

SonM 1l1O(! di~,: d\temph qua:ltify and predict the highly variable txhav ior of 

'Olmd w"ves ufl(le rwater. A large number of sonar models have been in us~ sin..:e 

tirst widely c:mployed in the 19405, and devdopme rn of effective sonar 

models is lhr subject of ongoing research. Sonar visualization is the application of 

\cientit'ic visualization te..:hniques for rendering sonar information. in an attempt to 

ernrr undersr.and thc tempo ral. spatial and physkal brhavior of underwater acousti(;s. 

lt is a rdatlvely new area of study. This section ident ifies promi nent rdated "'ark in 

~O ll:lr mo(1eling ~nd sonar visuaiizJtion. 

Etter: Acoustic ,\-lodeling 

(Etter '11) presents a comprehensive trralment of underwatrr acoustic 

Illodding, defined ~s "the tran slation of our physical undel"5tanding of sound in the sea 

into mathem"tical fomlUlas solvable by compllters." He first treal, the physic's of 

underwater sou nd and acous ti(;a l ocranography, synopsizing another key refrn::n(;r on 

sonar behavior (Urick 83) . Sound spred in the ocean is identified as the s i n.~ l e most 

important :Kou:itic variable. Eller then identifies threr broad classes of sonar models 

and organizes the wide. variety of existing sonar models ililo a concrplual hierarchy , 

shown in Figurr 2.15. Each model type is rxaminrrl in depth. Thrre is no "perfect" 

-;OIlM model suilahte to alt situations. and users must carrfuUy choosr models (or 

lomb i ll:Jtion~ of models) based on problem req uirements. Typic'ally modds become 

le,>s general and morr spe(;ific to individual sonar systems <IS one proceeds up the 
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Figun~ 2.t5 Generalized relat ion shi ps among Environme ntal Models, Basic 
A..:oustic Models and Sonar Performam.:e Models (Etter 91, p. 3). 

The th ree types of models identified an: Environm..::ntal Models, Basic 

AL'oustic Models and Sonar Performance Models. Environmental Models examine 

o~eiln surface and bottom boundary conditions as well as volumetric effects. Basic 

Acoustic I>,'lodels represent the phys ics or empirical behavior of noise, reverberation 

.lnd propagation (transmission loss). Sonar Performance Models combine signal 

prou:ssing tlleory with- tlu: preel:d ing Environmenwl Models and Basic Acoustic 

,"lorids to enable end-to-end sol ution of typical sonar detection problems particular to 

spec :fic types of sonar eq uipment. 

The field of sonar madding is characterized by trl:ITIendOllS variety. Most 

models have Vl:ry nanow domains of applkability and may need to be used in 

combination with others for the solution of specific problems Management of this 
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inl'tH/olltpul r"ljuirernent~. lniti:il e);:itninJ.tion 

th .. fact that nuny <!Ie reported 

llS" in <J.n open, arhitrari1y sl:alable 

2. SteVtart: Stochastic Backprojcction and Sonar Yisualilal.ion 

(StC\"art pr~s~n:s a nov .. 1 approach to mo...1elinj! LJn,ier\\',u~r ohwns. 

are typically higll-uand\,,,idth high-noise information Stl .. MTlS thill iJlciudc 
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rerlumbnt returns from target of interest, as well JS a large proportion of ,~igna l 

currtsponding to fabe return5 or objects of little interest. Key characteristics of 

ull(ierw:llcl ~enslng applications include "real-time conso-aints: unstructured, 

thrce-dimelbiollal terril in: high-bandwidth sensors providing ovnlapping, redundant 

coverage; l~ck of prior knowledge about the environment: and inherent inaccura(;y in 

~clbing and interpretation." Sormr and other sensor returns are !Teated as probability 

disuibution, which are adaptively combined to create 3D maps of terrain and objeu 

,ulia~es using ,l nt:w statisti(;al technique. storhmric backprojeclion. Model 

representation ~l' l'urLicy Lind certainty improve as redundant data aculmulates 

1lllerillediilte reslilts arc avai lable and steadily improve in real time. permitting 

' ~mytime" w,t: by opnators or robots , Rt:dllction of bandwidth and eX!Taction of useful 

infoITn:.llion Lin: abo significant benefits. Sto(;hasti(; backproje(;uon is appropriate for 

use in batllymt:t ric mapping, ROY piloting (;0IlU'01, and world modeling for AUYs. 

Sonar visualization techniques were essential to the successful development 

of ,to(;hastic backproJection lIIethods, since qualitative visual in~pt:ction of results were 

used to evaluate model etfeetiveness_ In addition to the sonar visualization techniques 

pre~ented in (Stewart 88), an illustrated survey of ullderwater visualization in 

(S tt:wart 92) supplemented by (Stewart 89, 91) and (Rosenblum 93) presents a 

rholough statt:-of-the art summary of so nar visualization and underwater sensor visual 

reprcselllatiolls 

3. Ziomek: Recursive Ray Acoustics (RRA) Algorithm 

A, previously not~ct, a key difficulty in sonar modeling as applied to 

'.Hlderwater virtual world use is th~ very large numbers of modds that arc availabk for 

different ocean conditions and different sonars. The Recursive Ray Acoustics (RRA) 

J!gorilhm (Ziomek 93, 94) provides an approach which appears to be general alld 

well-suitnl tor real-time graphics rendcring. A ray tra(;ing algorithm, RRA dcrives the 

f.!''Ic\amenli\1 wave equations describing sound propagation from a differentia! equation 

form to a difference equation form. Three-dimellsional Illodels for sound speed profile 

(SSP) dnd terrain bathymctry arc retained as independent inputs The algorithm is fast 
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Figure 2.17 

each ,hort lay segmcnt in a long ray path is calculated rccunively based on the 

ray segment prcceding. RRA can be tlsed to calculate position, propagation angles, 

sound prc:;sure level (SPLj and travel time along a ray path. Most significantJy it 

appears to be applicable over a wide range of frequencie, since approximations and 

empirical .,>implifications an: avoided in the original RRA derivation. Comparison of 

KRA results with different morkls validated in a variety of problem domains has been 

excellent. RRA appears to he a general. precise and rapid algorithm suitable for 

rea l· time sonar modeling and visualization 

4. I'ulditional \'·'ork in Sonar Visuali1.atiun 

(Rosenblum 93) presents an overview of eunent work re lating to SOll4f 

vi sualization. Add itional images and explanation appear in (Rosenblum 92) 
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(Kaillgar-Parsi 92) . (Karahal ios (1) examim:s volumetric sonar visllalization concepts 

presen:s t'Xil rnple vi,ualiza,ions U~l!lg near-field sonar proeesslllg data. Additiona l 

ilnd;:(""s from her wor~ appear in (Keller 93. p. 122). A summary of underwatci 

mode ls "'Ideh includes example sonar visualizations is (Porter 93). 

\Vireh"llle son,lf visualizat ion is induded in simulated AUY use of mine avoidance 

uctiL) in (H yland \)3). O{.:c upan~y grid methods presented in (Elfes 86) a re further 

LOlh iciered ill (Auran ')5) i\ variety of 2D line drawings which incorporate 

unc enainty infonTIlltion appears ill (Leonard (2) . Scientif ic 'visualization techniqucs 

JPpiicd to the d i spl~y and interpretation of very large environmental datasets appear in 

(Rhyne \)3lJ) 

G. ONGOING AND f"lITURE PROJECTS 

Directions taken in this work have also considered currcnt and futw'e eHorts 

which might bene fit from an underwater vinual world approach. The following 

proJnts represellt many diverse amI fas(; inating n:search areas which might benefit 

from con nection to a distributed underwater virtual world architecture. 

JASOt'l' ROV and the Jason Project 

The JASON femotely operated vehicle (ROY) has been used to cond uct 

i<:ientifiL' exploration on a wide rangc of o,:eanographic and historic sites of interest 

(BJ:brrl 93), io,: luding lovestigation of benthic chemosyn thetic tubewonn communities 

and discovery of HMS TITANIC. Deep ocean investigations using JASON are 

supported fly a surface ship with a co ntrol van. as well as the intermediate tow sled 

MEDEA which provides lights and local decoupli ng from long trai ling tethers. In 

addition to power and >:ontrol signals. the use of fi ber optics permits transmission of 

high-bandwidth sensor and video data from vehicle to support ship. 

In 1989 the JAS ON Foundation for Education was formed to uti lize 

scientific exploration n,issions best exemplified by the JASO."·,r ROY as a catalyst and 

central focus for widely distr ibuted distance !earning (Brown 93). JASON Project 

missions are held annually. Students firs t learn about science objenives in detai l 

39 



Figure 2.18 Jason ROV mission profik and JASON Proj~CI communications 
links (Brown 

c:urillg regula] ,:lasses, and th~n obs~rv~ ~nd pa.rlicipat~ in th~ ~xp~dirion as it occur~ 

of about a dOlen S t.ud~nlS r~'~:l.rchn' on,iw \\hilc tens of lllOU>i\UU, of 

.;tlld(',[HS watch live vir:eo streams via satellite rlownlink. A small Il111UOC[ of 

hrse re illote sndcms dIe abk to 1~ 1 ~l)pnat~ th~ ROV the satellite link. 

Monh s pi-ior to !'O ach annual expectitioll. (eacher, are given it compr~h!':nsiw_ 

"",'''C''''''H''~) iliSlIuctiomtl guide which helps integrate subjects weh as 

physic~. arc h:j~ology. history, hiology ('[c. in tI) th~ r~;:;lJIM school 

cll rr icul a Students arc thus provided real world examples to motivate and 

their;;;mdies 

alsu relllotrly ;) il.llicipale in these miS.,ion,. Scientific objectives 

U~ r.ot ciiluted bJl rather e:-; tencku to iliCiutk stUtkllt, ill tlie I:()!lum;r of sigflifil:ant 

ac tua: rese,trch. Live n:~I·tiTlle IllllilicaSl cti.<;<;cmination of JASON· vehicle Leien1eLry 

",) 





,Ina imag~ry over the Internet wa~ onr of the first widespr~ad scientific collaborations 

rhd[ emp loyed the Iv1l)0ne. Remote users have been ahle to download visualization 

~oftwale to ob~elve the progress of each mission. Visual results are documented in 

(S te\"<lrt n) (P<l.pt 93) (Rosenblum 93), including rendeling of results us in g a walk-i n 

immersivc d isplay room called the CAVE AUlommic Virtual Environment (CAVE) 

(Feldman 94) (Cruz-Neira 93). Extension of these results us in g a comprehensive 

un(1e. water virtual wor ld iws the potenti~ J to furt her suPPOrt distance karning and 

scientific research objectives. The involvement of motivated and inquisitive students 

doubtless ino.:l<~ase the rea lism and effecliveness of an underwater virtual world 
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2. i\coustic Ocelll1ugralmic Sampling Network (AOSN) 

A conver8ence of deve lop ing technologies is enahling amhitious fl ew 

approache, to oceanography. AUt.O ll011l0US Oceanographic Sampl ing Net wurks 

(A OSN) ale an Ull lbi tiollS plan for large-scale long-duration synoptic data sampling 

Illultiple rletwoJ'ked uutonomOlh vehiclcs ann sen.,ors (Curtin 93j. Untethered 

rletwork conneclio ll$ for AIJV~ ,(nd underwater sensors are via acoustic modems to 

Ilelwork norle.' which relay data to shore over radio freque ncy (RFj links 

(Catipovic 93). NU I\1ercus competing rle~ign tradeoffs milS! be considered. AUV 





propulsi on endurance and communications efficien cy must meet energy expense per 

-; urvey alea criteri a. The limited bandwidtll and noi sy aco uso,,; channel of the water 

column must be effecti vely and rel iably exploited. The physics of underwater 

tran.;mlS'I()n are different than RF transmission, so packet network protocol design 

i, not ed., ily ddnpted. Cunently it is not clear llmt multiple vchic les and sensors will 

dfedlve ly inte[(;;)nn e~·t with the Internet. Numerous Cost-effrniveness issues must be 

addressed simultaneously. Nevertheless it j , dear tha t such an approach holds the 

pro:l"!ise ot revolutio nizing oceanographic snmplillg and ocean exp lorat ion. 

Intc:co nnC<:llllg large num bers of inform,nion entities and diverse data products in a 

comVehensible fa shion is an excellent application fo r implementation in an 

Internet-wide underwater virtual world 

J_ i\ lBARf- :'IlASA Ames-Postgraduate School-Stanford Aerospace 

Roboti cs Lab ll\iIAPS) Project 

ro ur research instituticlIls in the Monterey Bay region have begun a 

cooperative colb bonn.ion to design and build a next-generation AUV. Proposed 

rap:d-re"pon se ,cience missions for this AUV call for deep depth capability. s ingle 

work day opera:ing endurance between recharging, moderate cOSt and interchangeable 

mi." io[Hpeo.: ifio.: sensor suite5. Use of an underwater virtual world is likely to reduce 

i mpediment~ to regional res<o:areh collahoration, improve acce% to scientific data 

il1~ilSUrernents, maximize utilizat ion of shared resources and en hance a conUTIon 

llnder,tanding of vehicle ..:hallenges. 

4. Li ve Worldwide Distri bution of E vent~ 

Collaboration, distance learn ing, human interaction and corrununicat ion of 

ideas do not magica lly happen when a computer is o.:onneCled 10 the Internet. We have 

t'ound thai people issues and techn ie ~l issues are equally important when huilding large 

open ne~worked vir tual workspaces. To improve a m understanding of these issues and 

lnnea~e th~ accessibi li ty of those worlds, we have performed an ambitious series of 



rq;ional ilnd world- widl:: multicast sessions using the [I.-tBone (Brutzman 94a. 94b, 94c, 

')4.1_ ')40 (Mal~donia ')Sb) (Gambri no ';14). 

Regardless o/whether parricipant.1 are scientisrs. naval officers . schoo! 

.-hl/drell Of inter,'5ted bystanders, it is a/-A-'ays the same real world Ihar \t'e are trying 

ro {"('acute villually. Ongoing effons to further develop the underwater virtual world 

<..:ontinue to narrowcast computer graphics, video, audio, hypenned ia and 

DIS -l-ompiltibk AUYs with anyone interested in participating. Thesr events will 

l"Ont inue to extend and sm:ngthen the empirical basis underlying this work. 

5, IVlonterey Ba}, Regional Education and the Initiative for Information 

Infrastructure and Linkage Applications (l lLA) 

A regional network is being planned and built which will connect 

r~~~:uchcrs. educators and students throughout the tricounty Monterey Bay n:gion via 

interac:tive mu ltimedia, audio and video (Brutzman 94f), Named the initiative for 

information [nfrasrructure and Linkage Applications (I'LA), this group project is an 

c:x<..:iting broad-b,\scd collaboration which (eams educators , scienti sts, business and 

govern ment. We hope to fu ndamentall y chang!: local sc:hools by c:onnecting education 

with ilnive ocean-related resean.:h at (he individual classroom level. Our educational 

network design approach follows the Internet model (Gargano 94 ). I1LA will give 

individuals at 51 different schools and research institutions interactive access to any 

tY f-l<! of live or archived media using a variety of bandwidth rates. Stud!:nt ages range 

from kindergarten to postgraduate_ rJLA exemplars for education include daily science 

rnission~ usin g th~ Monterey Bay Aquarium Research Institute (\-tBARl) Venfllna 

ROY, Monterey Bay Aquarium CvtB A) exhibits, and San Jose T!:chnieal ,'vluseum for 

Inno~ation programs. A similar regional effort which uses underwater vehicle 

technology as a focus to enhan<..:e science e<:lucation is described in (Babb 92-93) 

He lping to build a regional information infrasnucture with strong ties to education ha~ 

he'lefiled de~ibn of the network architecture presented in this dissertation_ Current 

work on the underwater virUla l world includes adapting the software to be su itable as 
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3rl ~d ucation application, which will further encourage extension of distributed viltual 

IVor lrh ~j mechanisms for human interaction and information correlation. 

t1 . S UMM ,\RY AND CONCLUSIONS 

r hl ,,'~'::liun presented work related to th~ design and eonstrU(;tion of an 

unr:erWdler vlrtuai world for an AUY. Overview sununaries were provided for 

underwater robotics, robotics and simulation. underwater vehicle dynamks, networked 

l:o:nmuniCl tions for virmal worlds, sonar modeling and visualization, and ongoing and 

fUlUreplUjenS 

Virr uLl l reLl lity as exemplified by immersive human-computer interfac e devices is 

il mu.::h larger Ll lbeit related fie ld which is outside the scope of this work. Key surveys 

LI nd hibliographies of vi rtual reality concepts, systems and trends appear in 

(Durlach 94) (U,S. Congress 94) (Pantelidis 94) (Emerson 94). 

A number of scientific disciplines and new technological capabilities are 

be.::ommg mutually .::ompati b1e thanks to the mUltiplying effects of nrtwork 

connectivity. Presentation of these diverse fields under the unifying per~pective of 

designing AUVs and virtual worlds shows that many new possibilities aft: becoming 

fe:;" iblc . The review presented in this chapter shows that crealion of a comprehensive 

networked virtual world for an autonomous robot has not been prcv iously proposed or 

at tempted Following chapters will specifically show how numerous competing 

research ob1ectives can be reso lved and implemented to prod uce an underwater virtual 

world for an autonomous underwater vehicle. 
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III. PI{OBLE;\-l STATf \UNl' Al\lJ SOL UTIO:'II OVERVIEW 

.\. PRClHLI(\l STA'I'F:ME. ... (I 

n i\lI:onO!lloll~ Lllderwat~r Vdidt IAUV) design 

rhey operate in a remo te anrl ha7i1rdOll;; clwironlTlc nt where 

Tlloduiilics 

B. I'fW I'OSED SOL UTION 

An undtnva!el virtual world complehensiv ely !!lode I all ne~essary functional 

0:" the rcal worlrl in ['cal timc. 111is virtual world i~ (i~sigr~d fr()m the 

01 the robot (;ontr()ller, en;lbling realisti(; Al V evaluation ami tco sting in the 

lhrte-dimensiondl redl limt graphics are our window into the virtual 

world A netwnrked ari.:hitecture enables multiple workl components to Gr lilte 

in real ti:ne. and al'io permits world-wiele observation ann col1.1horilljon 

il1t~r~st~d in th~ rohot a l1d virtual world. 

C. ,\L V DEYELOP MEVr DlFFICULTlliS 

I'he primal) difficulty AUV dcvelopers is a ch:l.ll t llging phy, i~al 

Cl1 v iromnent: an operating AUV is inacccssiblc, rcmote, and unattellded. It is 

is physically $low~r and vtry rllUi.:h 

differcnt ::r()lll 

t:me-con>U!ning and eXpensive, Vehide physi~al dynami<.: <.:ontrol is very challenging. 

I'here are six spatial (kgr~~s of rr ~nl()m (lhr~~ dirm~llsi()llS ~ach for position and 

[lol aU physical a rc soh-'cd, and there may be an unprediclabJe 

ry currents. Propulsion is costly, slow and limited, A typical vrhicl~ 

II few hours cndllrdnCI' 
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There is clear t:mpirical ev idence of a severe bottleneck in underwater roboti c,~ 

ThC"rc Jre thousand, ot indoor and ol.lldoor land-based mobile robots, many hundreds 

01 airborne and ~pace - based autonomous robots, and many hundreds of underwater 

opermed veh iL"les (ROVs). In rontrast there are pl:rhaps a dOlcn working 

AlV , III cx),;te r1( C, ea~'h with limited functionality. A harsh working environment and 

:;u"eplibility to physical failure arc among the major reasons for this scarcity. AUV 

fJilu[~ in the ocean is unacceptable for several reasons: any failure may become 

~Jtdsrrophi<.: . recovery may be difficult or pointless, and replacement costs in time and 

money ~re pro hibitiw, We can conclude the following alXlU! AUV design: reliabili ty, 

,;tabi lity and autonomy an~ paramount, AUV constraints are often worst-case for any 

lype of robm due to challenges inherem in the underwater environment, and many 

thcmctlcai ano engineering problems remain oren. 

U. WHY AN UNUERWATER VIRTUAL WORLD? 

The broad requirl;~ments of underwater robot design provide a strong argument 

Clga inst pj e ~ emeHl design verification. Individual component simulations arc not 

adeljuale to develop effective intelligent systems or evaluate overall rohot 

pcrfornmm:e. A preci~e definition of a vinua] world follows to eliminate any possible 

ambiguity in this term 

An underwater virtual world for an autonomous unden,,:ater vehicle is intended 

LO provide complete functionality of a submerged environment in the laboratory. A 

virtual world can provide adequate simulation s<.:ope and interaction capability to 

oven.:ome the inherent design hand icaps imposed when building a remote robot to 

operate in a hazardous environment. Construction of a virtual world for robot 

developn~ent and evaluation is hereby proposed as a necessary prerequisite for 
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Sllcce,sfLl ! design of a complex robot which operates in a hazardous environment, suc h 

d~ "n AUV. 

A virtu:d wor ld lLsed to rO;:l:J'edte rv~,y aspeCt of the en vironment external to the 

lO bO! must al~o inc lude robot and analog devices (such as thf!l~ters and 

rudders) whil n impossib le to realis tically operate in a laboratory_ In teractions 

betwee n ,ofl" ... are vehicle Iwrdware and the real world must all lk 

lompreh~:l, ~ ve l y mor1elerj ;tnd mlltually co nsistent. Robot physical behavior aJld 

it:nsor i rHeraClio n~ m\l j[ t>e mcxleled and simulated exactly. Tht: robot eonh-oller itse lf 

i, diIlXliy plugged in to the vi rrwd world using normal sensor and actuator co rlflt::niotls 

either phy~iLally or logita ll y . The cifferencc between operatio n in a vi.ttual world or 

all :lC llu i environment mus t be trilllSparent to robot software in order to be effrc tive 

The (unent underwater robot development paradigm is inadequate and cost ly. 

Piec:emcal design verification and individual component simulations are not adequate 

!O develop and evaluatc sophisticated artificial intelligeno:;e (AI)-based robot systems. 

Virtual wodd systcms provide a capability fo r robots and people to see and interact 

\vlthlll -; yn rhetic environments. The research goal of this dissertation is to provide 

(ompletc fun<:tionJli ly· of lhe larg~t erlVlronment in the lab. providing adequa te 

,-; imuLHion scope and in te raction (apability to overcome the inherent design handicaps 

of cl?ssical simulation :J.pproaches. AUV undcffi'ater virtual worlds may break the 

AUV deve lopment bottleneck 

E. AUV UNDERWATER VIRTUAL \VORLD CHARACTERISTICS 

The underwater virtual world must recreate the complete environment ex.temal to 

t h~ robot. Robot physical dynamic:s behav ior Ill IlSt be conenly reproduced. since 

underwater vehicles arc prone to non linear dy namic instabilit ies and unprcdicted 

physical r~spon5e5 may n:slllt in vehicle loss. Robot st:nsors and analog devices m us t 

be also trtodeled accurately. To l11inimize sources of simulation error, an exact copy 

of robot hard wart: and software i~ pluggcd into the virtual wodd llsi ng physical or 

10glCil scnsor and actuator connections. T he difference between operat io n in a virtual 
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world 01 an actual environment must be trallspar~nt to the robot software. Finally, 

.'lH.:cesstui implementation of:t vinual world can be quantitativt:ly validated hy 

l(k [lllCai robot perionmHlce in each domain . 111is is a type of Turing il;':st from the 

robot 's prrspective: if robot perfomlance i~ idl:ntical in each domain, then the virtual 

",olld is functionally equivalent to the rcal world. 

NlJrne~OII~ (omponent modeb make up the virtual world. Principal among them 

are a six degree-of freedom hydrodynamics model and geometric sonar model. All 

models must interact with the robot in real time. Additionally. to be fully effective, 

the virttJal world needs to provide connectivity to viewers at any location for remote 

Ob~tTvat l on and participation. A carefully constructed Stt of network con n~ctions 

enabks all of thes~ goals to Ix met simultaneously. 

rhe o,;'elall SITucturt of tht AUV underw~ter virmal world software architecture 

is illustrated in Figure 3. 1. This architectural structure diagram is very broad and is 

intended to show how many cnmponent models can work togtther. Most virtual world 

components have been impiementtd in this dissertation. demonstrating the soundness. 

va lidi ty and scalability of the resulting virmal world. 

F. NETWORKlNG 

Dbtribution of underwater virtual world components enables sl:alability ami 

real -time response. A distributed approach also m.inimizcs d~pendcnce on unique (or 

hard -tn-replace ) hardware and software. A standard point-to-point socket connects the 

robot ilnd the virtual world a llowing rapid and dircct two-way interaction. The IEEE 

Distributed Interactive Simulation (D IS) protocol (NPS implementation version 2.0.3) 

is also Iised tor compatible interaction with other virtual worlds and users listening on 

the Internet (IEEE 93) (Zeswitz 93). 

This project is an excellent application to take advantage at a high-bandwidth 

Inte~ncL funher c:..tending the capabilities of I1lUltiple researchers. The network 

~ppl\)a.;h allows InJny individuals dynJrnic remotc access, which is dcmonsrratcd by 

Mu lticast Backbone (MBonc) transmission of video. graph ics, sound and DIS reports 
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Figure 3.1. NPS AUV lllultiwatt r virtual world s()ftware architecture . 
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fer l: ollaboratiofl with Olner participants outside the sile where the robot and virtual 

world 2..re opemtin g. Providing hypermedia access via publicly available 

\Vorld-W ide Web (WWW) network browsers suci, as Mosaic makes a complete 

varie ty of pertinent archived tnforlll3tlon available 10 anyone. Retrievahle information 

rb;lurcc,> include images, papers, oatasets. software, sound clips, (ext , speec h, source 

code, exc:ccltable programs, live or archived video, and any other computer-storabli: 

mdia. Together MBane and the World-Wide Web provide the infrastructure of the 

informMion .;;uperhighway, letting anyone listen in and watch your work. Addition of 

mu lticast networked DIS packets and public ly available software lets people observe 

an identical interadive virtual world from any location with minimum burden on the 

g lobil l Internet, Remote interaction by nU!llCrous players within the virtual world of 

robot and environment becomes feasible and even convenient. 

G, l :\WORTANCE OF' SENSORS 

Design of autonomous underwater robots is particularly difficult due to the 

pilysical and sensing cha\lenge5 of the underwater en~irOnme/lL Robot performance is 

often very tightly (oupled to sensor accuracy and interpretation, Emergent behavior 

from interaction between robot pn)\:ess<:s and the environment can only be detennined 

through experimentation. Having valid sonar and terrain models is very valuable for 

IObot design and testin g, since sensor interactions can be repeated indefinitely. i\'iany 

new research projects bewJl1e possible. Machine ieanling based on massive repetitive 

rrainmg is feasible. such as the design and implementation of trainabk genetic 

algo ritilms or neural networks. Potentially fatal scenarios can he attempted repeiltedly 

unti l success is reliably achieved, without risk to robot. human or e nvironment. 

H. SONAR VISUALIZATION 

Visualization of robot sensor imeractions within a virtual world permits 

sophi:iticaled ~nalyses of robot performance that are otherwise unavailable, Sonar 

vi~ualiz:a!ion pennits researchers to ac:curatcly "look" over the wbot's shoulder or even 

'see' through the robot", eyes to intuitively understand sensor~environmem 
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irllela~[iort~ , Simibr in-d l:' pth analysis is not possibl~ using traditiOllal test methods 

;lIc il ~\ indiv id ual software rnod il le rV:l illJtioTl, direct robot observation OJ' post-mission 

'l:C IlClflO rcco llsrruc:t ion. In pat ti<': l.l lar, the overwhelming s ize and information content 

oi oce,!(! -related ar.d robot-rc:lated datasets means that visualization is ~ss"'ntial to 

e ,\tr.:ll! Il1tJ:lint; from nUl1ltrOUS sim ll lta n~Ollg ljuJlllitative re lationship s. Visuali zation 

of the lo bot in irs SllITmmd ings gl eat ly impmv~s human unders tanding. 

An iniua l gt'omdric sonar model implementation demonstrates how larger-scale 

';O'l~ r and lelTGIin Irlodels can fit inw the underwater virtua l' world architectmc. More 

de tailed vbualizHlions of environmental datasels and a genera l sonar model have bern 

implt:menled oUline. They are included to show how additional sonar visualizatiOn 

c ~pab i Jitie., can extend cvcn furth er the fum; tionaLity of the implemented. underwater 

YlrtuJ I wor ld . Future work in sonar and tcrrain incl udes scal ing up these models for 

illtel,luion us ing world spaces of arb itr ary sizes. 

PARADIGM SHUTS: CONTENT, CONTEXT, AND WORLD I.!'" THE 

LOOP 

Withi n two lifetimes we h~lVe seen several paradigm ;;hifts in the ways that 

people record and exchar,gl: information. Handwriting gave way to typing, ami then 

typing to word proce~sing, It was only a shon whi le afterwards that preparing text 

with grap hic images was Gasi ly accessible, enabli ng individuals to perform desktop 

publ.ish\!l!;. Currently people call use 3D real- time interactive graphics simulations and 

dynamic ' (\ocumems" with multimedia hooks to record and conun unicate infOllnation 

Furthermore such dOl liments can be directly dis tributed on demand to anyone 

connected to the Internet. In this project we see a further paradigm shift becomi ng 

possible. The long-term potential of virtual worlds is to S(,I'>'I: as an archive and 

int~raetion medium, combining massive and dissimilar data sets and dat~ streams of 

every conceivable type. Virtual worlds will then enable comprebensive and consistent 

intefdction by humans. robots a nd software agents witllin those massivl: data sets. data 

,tre:lI1lS and models rhiH recu~ ~re r~a l ity . Virtual worlds can provide meaningfu l 
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c::antex ! to the mountains of eanlen! which currently exist in isolation without roads, 

li nk~ or order. 

A, ne tworked vi rtual worlds mature they wi!! become morc robust, efficient and 

po rtJbl~ _ Goi ng past IIIC logical conclusion of "hardware in the loop" usc of rooots 

within J. "mua] world, as is presented in th is disserta tion. eventuall y virtual world 

mode ls will tit: embeddable back into the robots. Having a "world in the loop" as an 

embeddable ~-omponent in this manner wi ll extend the capabilities of robots to sense, 

interpret and interact with the rea l world around them. The fideli ty and scope of 

vinual world models and representations will improve steadily as robols and humans 

operate inten:hangea bly in virtual worlds and the real world. 
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IV. "IPS AIJTONO.vtOIJS I'NDERvVATER VEIIICLE 

I"ITRODLCTIO(\ 

Del-'likJ k[lowl~Jg~ regarding rebot requi.rements is a necessary pn:rcguisit~ fer 

in J .. inuJI wo[·ld. This chapter 

Fdmiliarity with the Chapter II revirw of related 

i~ rt:lomnwndeo, An overview of generic AUV hardware :Ind 

\ottw'lre is followed by NPS /\L'V hardware s~cjJic:ltion~ and softwarr 

'\dditiona: overview descriptions of the NPS ,A,UV and related 

Icsean:h appear III I,BrmLman. Compton 91) dnd (Healey 92a). Due to the Jarge 

variety of critical an autonomous underwater robm must perform. a robust 

multikvei ~oftwali:: i\rchil.CClilre is essenr.ia.L The software architecture ~15Cd I.he 

NPS ALV i~ tllC Rational Reilavior l\lodel CRBM} The three kvds of RBi",j a.r~ 

with emphasis 011 the r~al-tirn~ characteriSLics or each level. lJetaib arc also 

pwvlded regan:ing v~hicie so[twarc developed ill this work. Specific contributions of 

thi~ Ji~se[Jation include extending the RBi"'l exelution level Jnd impwving 

im?lemcnteci RDM intcrpr~lless commU[lilatiu[l (lPC) 

B. l:"lDERWATER ROBOTICS 

Although there are far fewer robots designrJ to operate undenvmer than in othC"1 

~lIvironments. there is Illuch diversitv in the hardware al1d software of these robot, 

that l_nde!watel~robo( hardware is mo>tly com:emed with \'.,'mertight integrity. 

maneuvering and sensing, Lndenvat.er robot software is usually preoc;:upieci with 

real- lime hardware lontroL lmpkm~nted higher level funlLions are r<tIdy as 

sophi~tiC::llCd r,r capable a~ de~ired. Although manipulators dna intervention tools arc 

commun on l~mOlely-:)!-'CralC"ci I'ROVsi, they remain a rarity on autonomous 

r(,bots bCDllse funclal~1ental problems ot ship control. naviginion ane! classification of 
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dete";led objects are not wdl solved. Recent overviews of prominent AllYs and 

re l:;wci t:cllniclll prob lems are (Fri<::kc l}4) (Zorpene 94;" The best way to understand 

the ,:Jp;lbilities and weaknesses of these vehicles is to watch them in operation. Hjgh 

~u .. tl i!y vicicorape foo tage and written summaries of state-of·thc - ~rt underwater robots 

appt:;u in recem video conference procerdi ngs (I3rutzman 93a) (Brutzman 94a). 

Underwater Vehide Hardware 

Unfo rtunatdy the cost in time and money of assembling an AUV is high 

and l urrent ly beyond the r~ach of most academic institutio ns. Nevertheless most 

hJrdwarc components are commercia lly available. particularl y since the remote 

Opc[;Jtcd ve hicle (ROY) industry is well established and thousands of ROVs have been 

deployed _ lnstitutions considering budding an AllY an: advised to start by looking at 

exist.ing ROY~ and related components that can be adapted for autonomous operation. 

Pressun: hul ls for AllYs typically fall into tWO categories: streamlined and 

open frame_ Streamlined hulls are useful for operating at high speed, or minimizing 

drag so that propulsion endurance is maximized. Open frame hulls Iypically consist of 

a frJmework of piping open to the ocean, with all components bolted onto the frame 

wherever appropriate. At low operati ng speeds drag is not a significant handicap, and 

the open frame simplifies placement and adjustment of hardware dev ices 

Power supplies and propulsion endurance are a significant weak point in 

current AllYs. Most vehicles are powered by lead-acid or silver-zinc hatteries wi th 

usable capacity ranging from several hours to about a day. Hydrogen gas generation 

during battery charging or discharge is a serious personnel and equipment hazard 

Research and development work in improvi ng power density has focused for a numbt:r 

of years on alternative batte ry electroc hemi~trics, closed-cycle (self-oxidizing) engines 

and <lluminum hydroxide fuel cells, hut dramatic improvements in cost or capability 

<Ire not soon expected. Eventual ly the active research and developme nt of improved 

b,mery t~.chnotogy fo r e lectric cars and laptop computers may provide useful power 

supply al ternati ves. 
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Sensor, ,lIe o ne of several key technologies that distinguish UndCffi'Jler 

robDh from grO ll n L space- based lahats. Since lhe ou~ans are generally 

op'!l~ue 10 vi,-;lble llghl <It moderate-to-long range;;, vlsion-h:;sed video systems are 

ulll'eii"blc in !i.!rtJlO wa~er and ~lre ordinali ly of use on ly at shor t distances. Vision 

, Y\(l;:m, u,; ua!]y rcyuirc in:crhc ligelt soun:cs which further deplete precious energy 

fr, erVC"i In cor:lparison to underwater computer vision. sonar (acoustic detec tion) has 

long be~n J preferred .,erlsing method due to the very long propagation ranges of 

.~ ou nd waves underwater. However. sound waveS can be bent by variations in depth , 

1~lTl p cr<lture Jrtel ,a lin ity _ A variety of probkms incluoing ambient no iSt , muitipalh 

:miv J I. t'~:iiJlg. ,h~dow layers, masking and other effects can Ill~ke sonar use difficult. 

Si:iCe Jc!ive sonar !ypically provides gorxi ra nge valurs with approxUnate bearing 

value s. algorithms fo r sonar recognition are much different than vision algorithms. 

fl lue-grren lasers are re latively new underwater sensors that arc useful since they can 

pIO vide accurate range and accurate bearing data at short-to-mcxleratr ranges with low 

powrI consumption. Other hardwan: sensors of interest to AU Vs include pressure 

instrulllcnts, tlow detecwrs, inertial navigation acceleration and a ngular rate sensOIS, 

and fast Glo bal Positioning System (GPS) rcceivers. New and varied Sensors art: 

~ i ng developed for oceanographic smvey measurements and trace chcmical detection 

Com.-nunications with underwatcr vehicles arc notoriously difficult 

l'ethers cm provide high bandwidth and even a power supply. bu t remain subject to 

C" nt;j[lgk ment and breakage with the sub~equcl1l possibil ity of vehic le loss. Tethers 

typically require tether management systems which can be vcry costly in Lheir own 

right. Tethcrs also ind-ucc undesirable and varying drag forces on the underwater 

vehiclc. AcouS Lic modems arc a ust:ful innovation that can providr communications 

links, but are very susceptible 10 channd noise and channel loss proble ms. A serious 

limitation in current acoustic modems is incompatibility with the Internet Pro tOCOl 

(lP). ilnd further ne:work research cfforts are necessary to incorporate forward error 

correction (FEe) and n-anspon protocol functionality for reliabl e intrrnetworking of 
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underwater devi..:cs. Acoustic long-baseline and short-baseline navigation can be usee! 

to ckt~rrnine llnderwater vehidc location by measuring time of tlighl of pings between 

bcdLOW, at fixed locations and a transponder located on the vehicle , Beacon pings can 

be further encoded to pass positional information back to the vehicle. Lnfor!unately, 

the primary limitation of n;\vigation in all acoustic fidd is that beacons mUSt be 

deployed beforehand in known iO(;ations around the afea of interest. 

2. Ruo()t Software Architectures 

Designing an AL V is complex. Many (apabilities are required for an 

u[](i erwi.ltrr mobilr robot to a<:t capably and ind(',pendently. Stabk physical control, 

motion cOlllrol, sensing. motion planning. mission planning, rep lanning and failure 

reL:overy afe example software components that mu,~t be solved individually for 

tracm(Jilily. The diverSity and dissimilarity of these many component subprobkms 

predude<; usc of a single monolithic artificial inte lligence (AI) paradigm. 

Distributed Al usually addresses specificatiom and protocols between 

\imi lar autonomous agents working cooperatively on global problems. Hybrid 

reasoning often refers to novel combinations of two or three techniques to improve 

overall performance when solving a single problem type. Neither definition appears 

s'Jimule for general robot contro l. Multiple dissimilar Al processes must interact in an 

intell ige nt manner to achieve the robus t capabilit ies and multiple behaviors needed by 

a mobile robot (Elfes 86). A variety of robot architectures have been proposed and 

developed to provide the control framework unc1er which militiple Al processes can 

interact. A brief discussion of current robot architectures is therefore useful to clarify 

the scope of robot desi,gn issues 

Robot architectures can be c lassified over a spectrum that ranges from 

il ierare il ical to reactive (Byrnes 93). Hierarchical architectures can be characterized as 

being deliberative. symbolic, structured, "top down," goal-driven, and having explicit 

foc\l ~ of altelllioli. They are often impli:menterl using backward inferendng. 

Hier:ird~ il:al approal:hes typically contain world models and use planning and search 

tel:hniques to achieve strictly defined goals. Hicrarchical architectures tend to be 
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,0mewhJt cigic1. unrespoJl,ive in unpredicted situations and complltation-int~ns i ve. 

:\n l·rthck.'>s they remain capable of highly sophisti(;ated performance 

RtaClive architel"tur~s are subsLlmptive. "bottom LlP," sensor-driven. layered 

'lnd may I)rtt:n bt" ,:IlJ.ranerizec. by forward inferencing. Rea(;tive architC"ctures attempt 

[Q lombme robu~t ~ubsuming behaviors wllile avoid ing dynamic planning ar.d world 

modeh. Re<.lctivt" arl"hl t e~tures appellf to behav(". somewhat randomly and aC"hi~ve 

\ Ulle" withaut Illa,>sive COIl1;:lllldtions by using well-considered behaviors that tend [Q 

kJd to t.l,k completio n (Broob 1;6. 90). Sl"aling up to complex missions is rlifficult 

Stabi lity "n~j det~r l1linistic performance is (']usiv~ 

It is iml'resting to note that r.umerous robot archi tecture research~rs have 

re,ent ly proposed hybrid control architectures (Kwak 92) (Bonasso 92) 

(Bel! ingham 90) (Payton 9]) (Spector 91). A common theme in these proposals is 

il1tegrJting the long-tefm del iberation, planning Jnd state information found in 

h i ~ r:J.rc hl CJI approaches with the qu ick r~action and adaptability of subsumptive 

behaviors. Individual weaknesses of hierarchiC<l1 <lnd readive aflhitectures appear to 

be well- baIJnl'cd by th~ i r res~ctive strengths. 

Physical stabili ty and reliability deserve repeaterl mention in the lontext of 

lTlu ltip le i nterJ,~( ing pnx:~ss~s. Control system considerations are often overlooked 

lHlrier ~ he guise of s implifying assumptions that hirle important r~a l world restrictions 

and pitfa lls. Robo: survivability dictates that physical and logilal hchJvior must 

~'cnvcrge to a ,tabk yet adaptive set of states. Diverg~nc~, dead lolk, infinite 

loops dnd llnstab e dynami(; behavior mUSt be d~t~ctable and pr~ventab l ('. Hard 

real- t ime operaring constraints on sensing, processing, action and reanion must be 

similar ly resolved. Robotics research in other environments are expected LU be 

pert inent and useful: for example. physica l stability prerequisites DeCOI"I"k similarly 

:mponallt for ground robots they progress from Structured tu unrestricted 

er.vironll1em'i. Finally it is wOl1h reiterating that an underwater virtual world is 

proposed as the best way to enable repeJted testing of underwater vehiele controL 

stability and reliJbility . 



C. :"II'S AliV HARDWARE 

Th~ Nl'S AlJV has fOll! paired plane surfaces (eight fins to tal ) and bidirectional 

("in j:rope llers. The hull is made of pressed and welrled aiuminulli. The vehicle is 

balb sted to be neun-~Ily buoyant at 387 lb. Design depth is 20 ft (6.1 m). A pair of 

sealeo Ie.:td-acirl gd batteries supports vehicle endurance of YO-120 minutes at speeds 

up to :2 fUsee ((),61 In/sec). 

i\ frcc-Oeoded fiberglass sonar dome supports two fOlward -looking sonar 

transd ucer" a downward -looking sonar altimeter, a water speed flow 1[1I:u::r and a 

depth pressure ce ll. Five rota tional gyros mounted internally arc used to measure 

angles and [JleS for rolL pitc: h and yaw rcspenivcly. Cross-body tllfmter tunnds were 

designed and bllil! fo r the NPS AUV. An inlinc bidirectional propeller in each 

thruster can prov ide up 10 2 pounds of force (Cody 92) (Healey 94b). 

Det:llled specifications of all NPS AUV hardware components are presented in 

(Torsielln 94) . An external view nf the vehicle is shown in Figure 4.1 and primary 

internal cnmponent arrangementS are shown Figun: 4.2. A detailed schematic of 

ve hkle intern al components appears in Figure 4.3. A photograph Showing the 

NPS AUV in the test tank is p rovided in Figure 4.4. 
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1 N""epi...,.(Flooded) 
2 ST·lOOO 
J Dat.a.ooniCII 
• sr·725 
5 Fl""" Me\er 
6 Depl.hCeu 
7 C-tJooI Fins.. .... oM"""'" 
811orir.ontalTbruater 
9 ServoAmp 

10 PowerlRunPlue 
11 SeriaiPortConDeCtor 
12Vertical~ 

13 RlIteGym 
,. Vertieal.Gym 

15 12 VDC Batt<try 

15 AOON P ....... Supply 
17 Cal"",P.,...SuppIiee' 

CRYDQMa..layl 

18 GF"sPAC(E • ...,..tion~)QS.9 
19 GESPAC (TlICtical~) D08 
2iI Synchro'Di~t.lCotm!r\er 
21 Pn.ureHull(Alrcbarcedtol";) 
22Innrler (M..twlnhibiter) 
23 Pl'MDireetionalGyro 
Z4 400 HI Poorer Supply 
211 8temPropolIionMoton 

Figure <1 .3 NPS ,\UV U internal compo nents layout (Torsidlo 94) 

Figure 4.<1 l":PS AUV shown in test tank (Torsiello 94). 

62 



The NPS AllV is primarily dcsignect for research on autonomo us dynamic 

lomml. ~en,ing and AI. Software controJ of the vehicle is provided ~t a hi gh Jevtl 

(;orre-;pond ing to ,tcategic plo nning and tact ital coordination. as well as at a low level 

~orrespondiilg to hydroctynamics connol of plane surfaces and propellers. Sensors 3re 

aho (;ontro!iec1 via execution kvel llIicwprocessor · hardwan~ inttrfaces. a lthough some 

,ensor fU Jlctions (such as steering indiv idual sonar transd ucer bearing motors) may be 

oplIonJlIy commanded by the supen isi ng tac tical leveL TRlTECH sonar range 

re-;o lution varies with max imum range and selected range bin size. Sonar 

~pcc i f l C<J.tio n s appcar in Tah le 4. 1. derived from (Torsiello 94) 

Tabl e 4.1. NPS AU V Sonar Types and Specifications. 

Sonars and T Ti tech ST· 1000 Tritech ST-725 Datasonic~ 

parameters PSA-900 

Function Con ical scan Vertical sector scan Depth sensing 

Beam shape 10 pencil cone 24° vertical tOO cont 
by JO wide 

Frequency 1250 KHz 725 KHz 210 KHz 

.VlaxirnulTI range 4 .. 50 m 6 .. 100 m 27 m 

Range resol ill ion 1..80 cm 4 .. 80 em - I em 

Steering increment 0.9 0 horizontal 0.90 horizontal fixed downward 
mechanical drive mechanical drive not steerabJc 

I 

Operating modes Sector Profi le, Sector Scan Data avera~ing, 
Sector Scan (4 ping windo~) 

Ping cate IOIIz 10 Hz 10 Hz 

LOC<lt ion in bow port btlow port above starboard below 

['wo micr()proc~sso r s are avai lable for use aboard the ;"CPS AU V: 

,1 \\'10toro la 68030 and ,tn lntd 30386. Each is mounted on a 4" by 6" Eurobus card 

rnanufal'tured by Gespac Inc The operating system for the 68030 is the OS-9 
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red l ·[im~ opel<uing system by Minowilre Lnc. Support fo r the OS -9 operating system 

running on G~spac computers is prJbkmatic at best: a recummended reference for 

0 5-4 users is (Dayan 1)2\. Opnatinr system for the 30386 is Digi tal 

Re~~ ,lrLh (D R) DOS ("U , <..:ho,~en tor ,mall kernel size and the ability to manually 

)w llCh between task;; . Multitasking operating syStems sUl'h as W indows and OS/2 

<:drl ier Lons:d~r~d ano reJ~ued due to their insistence on graphical user interface 

overhead. To da t~ th~ 30386 has not been used for in-wilter missions, A variety of 

di ffe r~n t prOL6,OIs and ope,rating systems arc being considcred for future !\'PS AU V 

LonEgurJti ons. l lnfOJ1Uniltely the large volume of intricate Jt::gacy codC', dedicated to 

c:onlrollirlg numerous ana log-digital <..:ontroller cards and devices has so far precludert 

whole,-;ak replacement of the c un'enl microprocessor/operating system combinations. 

Vrhicle designers I-:lUSl nmc lhm sealed lead-acid gel batlrries arc still 

susceprible 10 hyciroge n gas genera tion and venting (Calder 94), which becomes an 

cxp lo\\ve hazard [[bove 5% by atmospheric volume. Reliance on ,\rpS AUV battery 

,rats together with e);'ct:ssive rec harging, mission repetit ion and insufficient venling 

re,;ulterl in a submerged hydrogen explosion in early 1994. Significant hull d~mage 

rc'ulld and most r !ecuical equipmenl was a compLete loss du~ to tlooding unde r 

power. No personnel were injurrd_ Rerairs took mOSt of the year, but the refurbished 

dnn renamed ~PS AUV "Phoenix " rrsumed submerged l~sting in October 1994 

IJ. NPS i\UV SOFTWARE 

Ongoing developmcnt of NPS AUV software has cominued for over right years. 

A !,rcal de:)l of novel softwarr res~arch has been conducted during [his periort. 

Underwater robot soflware archilectures arc a particular challeng~ becallsr they include 

<1 great rnany of lhe hardcst problems in robolics and AI over short, medium and long 

tinw scales. The prindpal fealllrrs and lessons learned to date relaling to NPS AUV 

softw~re 'Ire ,urnrmuized in the following seclions 



Rational Behavior Model (RBM) Software Architecture 

The Rational Behavior Model (REM) is a rrilevel multiparadigm so ftware 

~r<;hitl:ctu r e for th~ control of autonomous vehicles (Kwak \12) (Byrnes l)2. ()3, 95) 

Smclcgic. tactical and execution levels correspond roughly to high-level planning, 

intennelii:nc computational processing of symbolic goals. and direct interao.:tiun with 

"ehil:le h,ndw;He dnd the environ ment. The t.hree !l:vds of REM currespond to levels 

of ,oftwilre ilbstraction which best matc h the functionality of associated tasks 

Tempora l requiremrnrs rartge from soft real-time planni ng at the strategic !evel to hard 

rcal-time l-equirCIllcnt~ at the execution level. where precise control of vehicle sensors 

Jild propulsion is necessary to prevent mission failure and vehicle damage 

RBM provides an uverall structun: for the large variety of NPS AUV 

~oftware components. A panicular advantage of REM is that the three levels are 

analogous to lile w;Hchstanding organization of naval ships. The strategic levcl 

Inatches long-range planning by the conunanding officer. The tactical level 

lorresponds to officer of the deck, navigator and officer watchstanders. The execution 

level corresponds to helmsmen, planesmen and sonar operators. Such analogies are 

parllcularly useful for naval officerg working on this project who know how to drive 

ships . since it provides a well-understood partitioning of duties and a precisely defined 

Programming paradigms are explicitly defi ned at each level of REM in 

order to best match programming languages to objectives. Strategic level goals arc 

(ypicJlly defined and mel using backwards chaining. Tactical modules are 

ohj~ct oriented and use: message passing to communicate. The execution level is 

:mrerative. Typical languages for each level are Prolog, object-oriented Clan-ic Ada 

ilnd C. respedively. Variations on the strategic level have produced provably 

t"lj uivale nt variations using forw'Ird chaining and backward (;haining (S(;holz 931. 

(Byrnes <)3) implemented al\three RBM levels concurrently in simulation, running 

under networked Unix workstations but not on the NPS AUV proper. Initial 

implementation effurts fo r this dissertation included integrating and testing a tactical 
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level with an improved execution leveL where source code for both levels compiles 

Idt:!l tic<.tl ly <lnd runs ~o rnpddbly either Orl vehicle hardware or on networked 

The prim-lry comribution of this dissertation to R 13\,1 is eXlensive 

development and impicmentdtion of the execution level (Brutzman 94c) , as we ll as 

forl11J I specific<ltion and implementation of execution level conununications 

rq ll irel~l("-f1ts . A~ predil.:ted by (Bnm.man 92a, 92c), availability of hydrodynamics aud 

sonilf mod~ ls for integrated simulation during rob01 deve lopment have been inva luable 

:-or deve loprnem of robot contro l a lgorithms. Implementations of ~rralegic and tactical 

levds in prevIOus theses have only run in isolation and have never been tested 

unGerwater due to inadequate execution h:vel functionality (Brutzman 92a) (Byrnes 93) 

(COillpton 92) (Ong 90) (Scholz (3) (Thornton 93) (Willinson 92). Completion of a 

-obus( execution level in this disserta tion now permit.- meaningfu l integration of 

strategic and tactical RBM levels with a capable execution level 

2. l\'l ult il'lC O llcrating Systems and Mu ltiple Programming Languages 

G iven the relative uniqueness and slowness of the NPS AUV 

microprocessors. operating systems and tnterfaces. it is desirable to be ahle to compile, 

I'un and tes: AUV softw~re on a variety of platforms. The predominant computing 

,wailabk to the NilS AUV research group is Unix workstations, particularly 

Silicon Graphics Inc. (SG I) graphics workstations. Although Unix is not a real-time 

operating system. it (an be made to emulate t11l;: functionality of the real- time 

operating system OS-9 used fOf the execution level, and the more common DOS 

o~L1ting system used for the tacti(al level. To date the strategi( level has not !ken 

imp lemented in the vehicle due to lack of a workable mu ltitasking l":nvironment on the 

tacri<.:a l 80386 microprocessor. Several attempts to mUlti task sO'ategic ant11aetical 

levels us ing the .4.da and/or CLIPS languages were llllSU(Cessful (Scholz. 93) 

(ThOfnton 91) 

The area of greatest interest to robotics researchers is developing source 

(;Ode thm implements proposed algorithms, Standardized languages arc an eSSl": rl tial 



rcquin:ment for source code that is portable across multiple hardware platforms 

Lmguage.<; used in the NPS AllY project reflect tflis criteria : Prolog, CLIPS , Ada, 

C/uHiL' Ada. C and C++ have all been used. Tbcort:tically. compilers for different 

architectures will compile source code identically on each platfoml . In practice. 

compilation of a single version of source code by multiple compilers is a 

r<:rity . Modified compilation control makefiles and context-sensitive compiler 

directives Illay be able oven.:omc variant compiler limi tations (Brutzman 94el· Such 

'Hl J.pproach is esselltiai because the re then needs to be only one single versi.o n of 

robot codl:: tha t can compi le and run successfull y in any appropriate environment. 

:-..TS AUV project experience has repeatedly shown that failure to insist on 

(To,s-platform ,:ompatibility leads to '·vt:rsionitis" and config uration control problems 

whic h prevent research code from being successfully implemented and integrated with 

previous vehicle software efforts. Such failurt:s are unacct:ptabk. 

Given that soufl.:e code is written in a standardized language and compiles 

on all pertinent platforms, a further significant problem can occur. Although the 

hybrid language approach espoused by REM provides an exeellem match between 

_.;o ftwJre abstraction and intended functionality, gelling dissimilar languages to 

compilr. li nk and execute compatibly is extremdy difficult. 1n every possible 

lombimltion thJt we have examined and tested. implementation of hooks bt:tween 

[,mguages and linki ng multiple language o bject files were not standardized. 

Furthermore t::<;ternal language hooks typically do not pClfonn as advertised. Despilt: 

Herculean efforts, several REM·re lated research efforts have failed to get different 

leve ls of REM conununic:ning properly dut: to th is vulnt:rability 

Fortunately, we havt: t:ncountt:red one widdy available 1PC teChnique that 

j" likely 10 s upport any choice of programmi ng language, operating system or 

hMdware architecture: usc of standard Berkeley Standard Distribution (BSD) sockets 

compatible Wilh the lnternet Protocol (IP) (Stevens 90) . IP·l.:ompatible sOl.:ket 

I.:ommuniealions ale implementt:d on all computer platforms. and are ava il able as 

auxiliary fu nction libraries in most progranuning languages of interest. Use of sockets 
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hi!o :;~vera ! <..I dded bcndllS: proc'~sses can run independently, interchangeably and 

1t:ll1ure iy on ve hic le ,:lJou~s"or, or networked workqations. Curr~nt 0:" PS AUV 

Ilnpieme rll'::'lion effon~ La !! for repJac:ng (ile hard-wil~d and hard-coclect serial and 

p<Jr~ ! te l po rt lorlllTILlniC:iluons he tw,::en processors v.' ith a nctv.'ork interfa<.:c for each 

minoprOc'e,sor. Building a .mull network internal to the vehicle eliminates 

,pec:~lized h,udware and software l'ommLlnications, and does not impose a noticeablr 

p erfo~man( e penalty . ]( abo pcnnits connecting vehick pr()cessors and processes to 

J.[] Y re mote entity on the Internet. Even tethers between an unmanned u[]{Jerwater 

vehicle ( UU Y) and the surfacl: can be Ethenlt~t conn~ctions (Bellingham 94)_ 'l1lt 

' trcngth Jnd nLJm~lU U S l:enefits of this approach have led us 10 network al l possible 

l ompo n~nts ot AUV-!~Iated softwar~. both int~ma l and exkmal. 

3. K>.:ecution Len'l Software 

The txaurion program is a rww and ext~nd~d impleme ntation of the KBM 

e'{elu tion levd for the N"PS AUV (Brutzman 94e). Originally based on the work uf 

11\1<1[<:0 (5 ) <ind others. txt'cl.rioll now includes a command language and Tuns 

;dentically on the laboratory AUV hardware or on a nctworked SGI workstation 

RcaJ- r.ime performance for a 10 Hll'o nrro l cycle was lll.a intained in cach environment 

Code devciopment on workstations ~nables faswr compilation alld prov ides more 

robust debugging tools which are nontrivial benefits for such a large program 

Principal components of the executioll program incl ude invocation and stored mission 

,cript file commands, communications to the tactical I~vd, communications to the 

virtu:.!1 world. v~hicle hardwarc intcrfaces . mancllvering control algorithm~. 

st.itndardized telemetry data rel'ording, and supplemcntal mathematical functions to 

scrpport computational 'geometry talculations. These supplemental functions include 

normalize (angle) which normill izes an angk w the rangc [O .. lt). normalize2 (angle) 

" Ilich normalizes an <Ingle to the range (·1t/2 .. 1t/2 j, and awn2 Iy, XI which returns the 

angk to a point in thr. proper quadrant 

Vehicle concrol algorithms are impkmented usi ng either thruSters (hovering 

modes), pla:le.'Jrudoers/propellers (cruise modes) or all in combination. Conn-ol 
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alg()~ !!hms for the following behaviors are included : depth control, heading corltrol, 

op~, ~l - ll,)l,)p rotation, open -loop lateral motion. waypoim following and hovering 

Control algorithms are pcrmined to operate both thrusters and planes/rudders/propellers 

\llllultaneously when sllI..:h operation does not mutually interfere. All control code has 

ht:~ n devdoped ann tested ill conjunClion with the co nstruction of the hydrodynamics 

model presented in Chapter VI. Design, tuning and optimization of control algorithms 

:0 isolation and in concert is the subject of active research (Cris ti 89) (Yoerger 85> 90) 

(P.!poli lias x9. 9 li (Healey );9, 92b, 93) (Fossen 94) (Marco 95) and remains an 

Imponant area for future work. Control algorithm robus tness is a par ticularly 

irnponanllOpic since potentia ll y fatal nonlinear instabilities are possible and vehicle 

;"(:;l iabililY is panl.1lloum. Individual control a lgorithms created as pari of this 

(Ii~senation follow. 

Rudder >Ieering control eq uatious' 

(4.1 ) 

Plancs depth corurol equations: 

0pliv.csbuw = -Op"""" ... ", (4.2) 

" k~· (z-zroOllllONl.) + ke'8 T kq·q - k..,·w 

l\'ole thal planes and rudder are each constrained:;:; ± 400 to preve nt excessivl;.": 

ddkction and subseq uent reduction of conn'o] anove ± 45°. Planes and rudders arc 

l.croed at very low forward speeds in order 10 eliminate synchro hunting and 

chanering 
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Vertica l t iJruStCf dept h conn-o l eq uations 

rhrllsrer""",,,*"'''Ji '" rhruster''''"WlrtlCtlI (4.3) 

'" -k'hnmu. · (z -z~ - k,l!n..ru,w·w 

Lat~[a l thruster headi ng control equations: 

thrllSter "" .. l<>t<r<lI '" - thruster SUm I<>t<r<lI (4.4) 

'" +k'hn..nuf· normalize2 (1jr - ljrrom"'lJlld) 

- k'hnosr.,,·r 

Waypoim hovering mode control ~quation s' 

(4.5) 

waypoint angle '" normalize(atan2(yrom"'lJlld - y, x~- x» (4.6) 

track angle = normalizc(waypoint angle - Ijr) (4.7) 

along track. disulnce " cos (track angle) . (waypoint distmlce) (4.8) 

cross frack distance '" - sin (track angle)' (waypoint distance) (4.9) 
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port, stM propeller rpm " kp~Ik' '''''''''' (along track distance) (4.10) 

thrusterOO",/au,1ll = + k,hTllSU, • . normalize2 (Ij.r -lj.rc"..",..,J 

+ k"'TlUUrr' r 

- k,Iv"'~'!OOVO' . (cross track di~tance) 

thruster "'m kM,lll = - ktJ,nuu, ... . nonnalize2 (Ijr -Ijr,~ 

-k~, 'r 

- kw...n",,..,.,,., . (cross track distance) 

+ kIWa)'/oow,, ' v 

Assoc iated k coefficients are all positive and appear in Figure 4.5. 

(4.11) 

(4.12) 

4. Communications Among AUV Processes and the Virtual World 

Since REM is a multilevel architecture, communications between levels 

must be fomlally defined. Communications between robot and virtual world must also 

be dearly specified. Defining communications includes establishing a physical path 

for data transfer as well as defining the syntax and protocol of exchanged messages 

D\:sign ob',cctive5 include re! iahili ty and clari ty so that messages are easily created and 

easi ly understood. either by software processes or by people 
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.:J..rFJ executlO:1 level contco l a l gor i tr.m coeff i c i en ts 

l. . OC 0 . 00 15 . 00 2 .0 0 

lU . OC 80 . 0 0 

210 . 00 6 0 00.00 

10.0 0 

k_ q 

1. 00 

Figure 4.5, Control algOlithm coefficients from missiofl.OUtpuf.constanls fil~. 

Two kinds of messages are deflrlect for use by robot and vinual world 

The filst lS the tdemrtry vector, whi<.:h is a list of all vehicle stak variabks peninent 

to hydrodynamic and sensor conuol. Telemetry vectors an~ passrd as a string type 

The second kind of messages allowed arr frt~~ ·forrnat <.:ommands. Free-format 

command messages lIe al su string lypeS, starting with a predefined keyword and 

follow ed by entries whkh may optionally have signifkance depending on the initial 

keyword. Messages with unrecognil.ed keywords ar~ treated as conunents. TIlese twu 

ki ll cb of me~sagrs (td emetry and commands) can he llsed for any conununicalion 

necessary among robot-related emilies. Employment of string types facili tatrs transfer 
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bctv,eell difftrt"rJ( architeClmcs , transfc r via socket;; , and fik slOragl'. String types also 

e:l,ure that all 1OITIniuni(;arioll$ arc readabJt:: by both robot and human . a tlait that is 

p~!lti<,;ular l y usdu i during debugging. An open format for cornrnand messages permits 

lhCf or new app lication to comm~nica(e w ith litt le difficulty 

\V i:hlll [he AUV, the basic cOllununicarions flow bet\\'ccn execution kvel 

,U1(l tactical leve l is STraightforward . All td~m<:try vectors are sent from tilt: execution 

len" 1 to the tac:tilal li:v!"J, providing a steady stTeam of time-sensitive, rapid ly updated 

ill form<ltior) . The t'Ktica l !evd may send commands to the t"xecLJ(ion It:vel as desired, 

~nd t.h~ e xcl:ll tion level may return informational messages between telemetry vedors 

JS JPpropri~te . Nonadapt i v~ t.1ct ical kvd functiona lity can also b~ p rovideri hy 

prcscrip:eri mission command files . Telemetry v~ctor records and command m~ssages 

Jre logged in scparJte rn ission outp ut files fo r post-mission analysis and replay. Each 

Q: these Lormnunicalions message typ~s has been implemented and t.ested satisfactori ly 

I B , I!l 7; m~ll \14e). Communication protocols between tactical level and stTat~gic level 

are presented in (Byrnes 93) and arc not examined here. 
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SptCific ~lemems of thr tdrmetry rrcord appear in I'igure 4.5 bebw 

levd and virtual world) utilize 

("cmmand Il1css~gc conventions. Currently the data 

levds 01 paired simplex text streams OW~ l 

an Elhernet socket. In the 

p:lths :.et\veen the execution and tactical 

Elhernel sockelS. Figure 4.7 shows physical data palhs 

pr.i t.het.3. 

"10;;: 

tr.n.:s te:::s .. 3 ter:n_:'a~"'r:a 1 

Figure 4.6. Telemetry vector ~ielllent5 
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,,:,, ~ ~ 
L ~ 

(as yet unused) .,-::-c-~ 

VT220 in lab 

Distributed components of 
Underwater Virtual World 

{bO (lab only) 
{diJ (Labonl,) 

fi gure 4.7. NPS AUV h<l rdware configurat ion and internal interprocess communication (IPC). 
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The te lemdry vedor ,erves sevnal ~sscntial Plll1loses. In addition to 

p:-ov~ding a <;leady s[ream of information from the execution level to the tactical level, 

the telemetry vector also serves as the llara transfer mechanism between execution 

leve l ,Ino virtual wor ld. Etti<.:ient comm\llllcations betwern robot anrl virtual world are 

if rapid real-time [0 Hz robot response is to be maintained. The telemetry 

re~' ord is d ,-ollcise and ~cmpktt: way to sllppon all of these data communications 

requirements 

Robot execut:on software is designed to operate both in lile virtual work! 

;rnd in the rea l world. While srn~inr in the virtua l world. distri buted hydrodynamics 

,,-nd -,OIHII models fi Ji in ~rtinent telcmerry vector SIOIS. While sensing in the real 

world. ;,dtlal sensors and theiT corresponding interfaces fill in pertinent telem~try 

vedO! 510t5. In either case, the remainder of the robot execution program which deals 

with t"ctical (ornrnunications, command parsing, dynamic controC sensor interpretation 

etc i.,> unaffected. While oprr~ ting in the virtua l world, robot propulsion ~nd sensor 

ccmmands arc communicated via the sarne telemetry vector. While operating in the 

re"l world, robot propulsion and sensor command, are sent diJeetly to hardware 

interfaces for propellers, thru5lrrs, planes, rudders, sonar steering motors etc, Again 

almost <Ill parts 0;-' the robot execution program are completely unaffected by this 

differenc;c. 

The telemetry vector is therefore the key data transfer mechanism whereby 

vehicle operation rernaim transparent and idrntical either in the virtual world or in the 

real world, Telemetry vector updates also orfine the communication protocol between 

execution level ano virtual world . As might be expec ted, the execution level program 

follows the C0lTlJ110n robotics cyclic paradigm of sense-decide-aCI. Figure 4.8 show5 

in [ktail how the flow ot control proceeds and the tdemetry vector is mooified during 

cach sense·decirie -act cycle. Figure 4,9 provicie, an overv iew of the tekmetry vector 

update scquence as an alternate means of portrayi ng the validity of this approach. 
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J 

J 

Vehicle 
Ideme.try .Yeo.tor 

partiaJ vehicle 
tclemetry vector I 

with current tensor values and 
previous orders 

• world models determine 
expected hydrodynamics 
and sonar response 

• calculate conesponding 
inertial, electromechanical 
and sonar sensor values 

• updatc telemetry vector 

~ 

Real World 

• execution level queries 
various physical hardware 
sensor devices 

• actual values returned for 
inertial, electromechanical 
and sonar sensors 

• update telemetry vector 

~ 
all sensor values are now known, 

update the current telemetry vector in ell.ecution level 

Tactical and strategic levels receive telemetry VCl.:tor I 
with sensor updates from ell.ocution level I 

Tactical level or mission. script decide on actions and 
provide commands to execution level as appropriate 

* I an~:~= ~:;~~o!t~n:r v:~~ ~~~~~~o~ 
i 

Record complete telemetry vector 
for current timestcp in mission. output file 

• execution level sends 
partial telemetry vector 
to virtual world via a 
communications socket 

• execution level sends 
orders to various 
physical hardware 
propulsion controllers 

* Repeat next execution cycle 

Figure 4.8 Data flow via the tdernc try vector during each sense-decIde-act cyc\c 
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Figure 4.'1. Telemetry venor modificatiorls durirlg ea(;h sense·decide-aci cycle. 

E. SUM I\,IARY AND FUTURE WORK 

I'hl.) chapter discussed general underwater robotics hardware considerations and 

.<,oftw:lfe archi tectures. Hardwar~ specifics of the NPS AUV are outlined 

Desccriptions of NPS AUY software focus on tlie Rational Behavior .'Jadel (R BM) 

architecture. Multiple operating system and lIluhiple prograrruning language srrengths 

and drawbackS arc presented from the perspective of several years of implementation 

Signilic[, llt co!mibutiolls to NPS AUY exec.ution level functionality are described in 

detJi L in c luding a tactical command language and multiple dynamics control 

algorithms . Specifications are then prcscnted for communications between execution 



level. tJclio:al levd and vinual world . A combination of two record types is shown to 

be rs,enli~.tl and complete: lhe telemetry veClOr of vehicle Slate, and free fannat 

u)mmanci ;nessage~. Telemetry is particularly important as the key to real-time data 

lntnsfer and in te raction between the ror,ot execution level, the: underwater virtual world 

and c1i~tributed users Obsclving robot operation. 

Future work ~:1(ludes many projects. Completing vehide repairs and duplicating 

te~t rC.,uih from prior to the 1994 mishap are nearly complete. The execution level 

program created for this d issertati on neerls to be reintegrated with the repaired veh icle 

Int~gration of UPS, internal network connections between microprocessors. 

implementing '>trategic and mctical leve ls ill the wateT, and porting sonar c lassification 

algorithms are all planned or in progress. NPS AUY capabilities are near ly reacty to 

support A I research in robot archi tectures, sensing, classifICation and planning 

identic.lily in the water or ill the virtual world 
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v. THREE_DIMENSJON.'\L REAL-TalE CO\-JPllTER GRAPHICS 

A. I'>,iTROD!.iCTIOI\ 

needed for the creation of 

viewer, tor viYJdlizing a liui'e-s~ak vlHual world. OPl:ll 

i~ e,-amined i;-. d~lai.l 

emphasized over platform ,pedtic 

in ordn to suppor[ scaling IIp [0 very large nlJn1ixn cf 

information 'oure es. The Opl~n hl>'l'nlOr toolkit and SlYlle 

all of the functionality needed, Lind it is descrihr~ct hrietly 

e;.; tend graphil~s programs 

B. DESIRED CIiARACT£RJSTlCS OF GRAPHICS VIEWER PROGRAMS 

A good graphil:s wolki! for building a vUtual world vie.wer has many 

n:yull emenb to fill Rendered sc~n~s n~ed to ~ r~alistie. rapidly rendered, pennit 

capahle or running on borh low end and high enrl workstations 

GldfJilic, programmers must have a wjrlt range of tools to permit interactive 

e,\perimentation ~nd ,eitntifie visualization of real worlo dat.as~ ts (Nielsen 9(1) 

(Thalmann ':11)) The rriullipk data fonnats is also imponam when using 

Lind oceanographi~' datasets. Sl.:ientifil.: data format cOIT.patihility can be 

IT\lVicleli by a number of (bw function libraries which are open, portahle, r~asonably 

' .. 1:1 1 oLlI:dardized and usually independent of graphics tools (Fortner 9Xi (Khyne 

programs ne~rl_to h~ capahl e of t:>:amining high-hand width intonnation streams 

a[d huge ill"..;hiYed ,..;jelilific databaSe,. Thus the ability tl) preprou:ss mas~ive dmasr ts 

illl.o IlSttul. storable, rellie'>"able graphics objects will he particularly important as we 

attempt :0 'lp to rrwt' t th t sl)phisticatil)n ano detail I)f tht' Tral world. Adequate 

,mnii ardita[ion of computer graphics and ponability across other platfonns is al~o 

been historically elusive 
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C. Open In~'ellf() r 

Open fnvenlor is an ohjcct-oriented 3D graphics toolkit for graphics applicat ions 

(1e j lgn (Strau ss 92) (Wernecke 94a). Based on the Open GL graphics IibraJY, 

0P<'1i IlIvo!liI(lr prov ides high-kvel extensions to the C++ (or C) programming 

b n~'llai:'e and d. ~<;ene description language. It is designed 10 permit graphics 

rrogramm~rs to focus Oil what to draw rath~r that how to draw it, creating scen~ 

objects that lire collencd in a scene database for vil:wpoin t. ind~pe ll dent rendering. 

User-triggered events are an integral part of the graphics rendering rngine iJl order to 

permit r,\pid interactivity . A flexible des ign enables progranuners to employ a variety 

ot object representations ,md imeraction modes. Object-oriented fu nctionality allows 

US~h to (:ustomiz~ and extend toolkit functional ity through creation of new classes, 

sdx; j a~sing and inhaitance (Wernel:ke 94b). 

The grapr. il:s capabilities of Open Inventor are extensive, including most (if not 

a ll) of the funnionality described in canonical computer graphics reference 

(Foley, van Dam 90), as well as hooks to X-Windows and Motif-compliant window 

fU lll.:tions. Op.:/! Illl'enfor is we ll suited to build graphics v iewers fo r interJ.(;tive 

reill-time virtual worlds. It has been used to produce the graphics viewer for the 

NPS AUV underwater v irtual world (Brutwlan 94e). Pallicularly important and useful 

l:C\pabiJit i~s of Open Invenror are examined in the fo llowing paragraphs 

Scene Description L:mguagc 

The ability lO stor~ graphics objects as readabk, editable files is especially 

appealin g for the c rea tion of large-scale virtual worlds. Since the llerformance of 

computer graphics is h!ghly dependent on the computationa l complex ity of scenes 10 

be rendered, it is inevitable that truly large-scale world scene databases will eventually 

overload viewing graphics workstat ions. Such overload will occur regardless of the 

efficiency of viewpoint culling algorithms and graphics p ipeline optimi?ations, unless 

panitlnnable and n~tworked scen~ databases are used. FurthemlOre, since populating a 

virtual world is a task that n~eds to be open and accessibk to large numbt:rs of people , 

an open graphic, data standard is needed for virtual world construction. rhe abili ty \0 
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, eledively lo~d graphics ObjeCb and scenes from fil es is also an important distribution 

Ille~h .. nism which ,'an take advantage of Wor ld-Wide Web connectiv it y. Thus use of 

Open 111\"1;/1/01" ~lene desuiption files permits individual workstations to act as 

graphic, file >ervers. and also allows a large variety of viewers to examine individual 

grJphlL,objects 

Elements lfl a sce ne graph can also be represented by icons pertaining to 

node lype for e<.lsy reference. An abbreviated scene graph for the NPS AUV graphics 

obje,'l tile appears in Figure 5.1 

Figure 5. 1. OPf!1I I /lVl:JItol" scene graph for the NPS AUV graphics model (Qlwiv). 

Opf!/l { /lVf!fUOl" is release 2 of the Inventor lOollit and includes numerous 

performance improvements. A pert"ormance optimization guide and an offline scene 
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graph optimilJ.lion tool have also been inc luded. These are both usrfuJ for tuning 

Opc r, lnventor appliCltllOllS (0 achieve near-optimal graphics pipeline perfonnance 

2. Open Standards and Portability 

Silicon Graphics Inc. (SCI) is the preeminent company producing 3D 

COlllpL;(er l'!"lphi..:., work5tatiOfiS and ~oftware, including Open {nventor. SGI ha~ m~de 

d corporate commitment to maintain the Open fnH!ntor sce ne description language as 

their preferred open standard graphics file formal. Although Opell Invenlor syntax is 

no! in the publi<: domain like Open GL, SGT has further committed to maintaining 

ba..:kv..'a:-ds (ompalibili ty through future versions of Open fnvl!ntor. (Wernecke 94c) 

;J rovides a methodology for writing translators from other scene description languages 

10 Open Inventor. further encouraging nonproprietary portability among graphics 

moods_ Numerous third-pany vendors are porting the Open GL and Ope/I Inventol 

programming environments to other operating systems and architrctures (Mac:intosh. 

Windows, Sun, j-IPL:X etc.). further extending the expected ponability of 

Opel! illl'rnll!r models and viewers. l.·biquitous portability for analytic:. hypermedia. 

network. multicast and graphics tools is an extremely desirable: feature for virtual 

wor ld model builders. Su itability of Open Invemor for this ro le was recently 

uncicrsc:ored by an open working group exarrilnation and ballot which c:hosc 

Open {nl'enlOr over J d07.<~n competitors as the baselinc for the draft Virtual Rrality 

Modeling Language (VRtYlL) speCification (Pesce 94) (Bel! 94). 

Open Invenlor file forma ts can be specificd as ASCII (plain tcxt) or binary 

fanm.t files , Opell Invenior specifications require that the first line of any file (,\Sell 

or binary) contain a p lain- text declaration of Inventor version number for fOlWard 

(ompatibility with curr~ent and future file readcrs. Binary file formats are not openly 

published by SGI but binary tIle readers are openly available, a dcsign dec ision made 

to ensure efficient backward format compatibility in flllure versions. As might be 

pnxlic\e<..\ from an information-theoretic perspective. compressed ASCII Open Inventor 

files aJ~ about the same siz~ as binary files. '\llus compressed ASCII (i.e. human 

re:ld,~ble) Open Inventor files arc suitable for network distribution with minimal 
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bandwidtb load. Open In 'Ientor ,;ccnc description files in text format (or forthcoming 

YRtvlL fi le format extensions) are therefore cx<.:ellent candid ates for object ridlnitiun;; 

in j large-sc;i\k virt lla l world 

J. Behavior Animation thruugh Data Sensors, Timer Sensors and Engines 

Once 8:r.\p hi<.:s objects an~ s~ci fied, mUSt graphics programmers expend a 

g reat of effort cDnnccting devices, data Dr algorithms to animate the scene. These 

an in1dtion ted:niques are typ ica lly the heart uf any graphic s program and the specific 

rt'J~on (bat most graphics programs are nccckd , because the only way to explicit ly 

,-pcc;ify bdaviors is through the programming language irsdf. This abo means tha t 

.-no st graph ics .-; ccnc.s are nOI portab le as scene descrip tion fiks, only as programs, 

Open /men{{)r significantly ex tends tht: capabilitit:s of s(;ene description files by 

providing daw, sen,or:;. timer sensors and behav ioral "engines" which can be connected 

In automatically anil-:1ate elements of the scene graph. Sensor and engine functionality 

:lnd <.:o nnenions can still be written out to fik, preserving behavioral connections. 

Behav ioral ex t~. ns ion s to a scene descri pti on language are very useful. A 

~ i:n p lc ex~mplc of engille funniona liry from (Wernecke 94a) is used to an imate the 

swic JASO,'Ii ROV grJphics modd (which was Originally donated via electronic mail). 

A grJphics rendering of JASON ~ppears in Figurt: 5. 2. This tigure moves abou t [he 

base of an oil platform in the underwater virtual world. The corresponding animation 

scene graph is show n in Figure 5.3. Further work 0 11 extending behav ioral de t1nitions 

to incl ude detailed pby,-;i<.:a lly-based dynami(;s is desirable and has been demonstrated 

independently (Zyda nai. 
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Figure 5.2. Open Inventor rendering of JASON ROY graphi\:s model. 

D. NETWORK LINKS TO GRAPIIICS OHJEcrS 

As the use of the Drs standard becomes widespread, implementation of DIS 

li brary functionality will be more frequent and a good candidate for tool automation. 

Currently. vehicle graphics model connections to a DIS interface can be manually 

progr<lrnrned or spe(;ified through initialization files within virtual world viewers such 

as NPSNET (Pratt 93): Increa~ed user familiarity and availability of DIS libraries will 

increase the population of DLS"compatible graphics-based entities. Creation of 

DIS-compliant physical and graphical models is becoming progressively easier. 

A recommended area tor future implementation is the use of the DIS Message 

PDU to augment the announced arrival of new entities. TIle Message POU might 

,pccify Internet Universal Resource Locator (URL) addressl;.':S which contain the 
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Figure 5.3. Enginr animation scene graph for lA.SON ROV wandering behavior 

graphics mockl ~nd operational characteristics for entity types that were prcviollsiy 

unknown or l.IT1avllilable, Such an extension permits the introduction of new DIS 

entities automatically without requiring pre-exerdse coordination. Another interesting 

of DIS .vlessage PDlIs in this underwater virtual world application might be to 

reby the robot commands which are being spoken to all viewers. Possible formalS for 

this information inciu(!e the original 110.'1:1, or a UKL pOinting to the synthesized audio 

file to rmnimile duplicate sound server queries 

As the use of the World-Wide Web bel:omes ubiquitous, the pial:ement of 

g raphil:~ object:;, images and datasets at wdi-ddined network iOl:ations on public 

servers will become eorrunonpiace . Individual and institutional domain experts can 

mllintain llnd update ';opilisticated world databases for open retrieval on demand 
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\Videspn::ad appliultiofl of trxtun::~ is particularly suited to the automatic 

collecr.:oll of imag<: rlata hy rooots. Alitomatrd col1rctiofl and recording of video 

can he registered with terrain and storefi on puhlic fik s~rv!Ors to bnild 

textured maps for large-scale vinu(l] worlds. Extrn~ion and standardization of ~lIch 

approaches is also furthered by the combimllion of graphic~ and networking 

propw;erl in th~ rlraft VRML ,<;pecificatioll (Rdl 9,1) 
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E. SPEC IA L METHODS 

'vlucil more work is possible to ex tend and augmem the graphics viewer Uscr 

extens ions will x fo cuscd excl usivel y on X-Windows Motif. Tkrrcl 

iOqerholit 94) or hypertext markup language in order to maximize portability . Sound 

Jnd ~onifi~· ~tion can add an exrra dimension to the display of sdentific 

Information. ,Automatical ly embeddi ng hypermedia links in side scene graph s is 

expelled to x possible us ing VRML extensions to Open In velltor, hopefully through 

U.)t: of embn!ded L'omments oj' fumre compatibili ty betwee n the two scene graph 

F. S Ul\-li\'IA,RY AND FF n JRE WORK 

Tile charaetai,tics of all open graphics viewer for underwall:r virtual world 

rendering are presented. Principal req uirements include capablc flex ihil ity for 

s li enti fi'~ visualization and ponability across multiple hard waH: and software 

plJtfonns. Open Invelltor is demonstrated as an efkctiv e programming toolkit in thi s 

regard, The desirabili ty of scaling to very Large numbers of users and information 

-;our..::es lead~ to a t~rcat dCCl i of interesting futme work wh ich can extend graphics 

cJpabili tit's by embedding network capabiUtics. The use of multicast DIS message 

PDU~ for distriiJu ti on of \Vorld-Wide Web poi nters. extend in g scene description 

I:m)!uages to i.nclude dynamic behaviors and the proposed functionality of the Virtual 

I{ealily Modeling Lang uage (VR ,\1L) an: especially promising possibilities. 
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VI. l:NDER\\'ATER VEHICLE DYNAMICS MODEL 

A. lNTlWDUCTiON 

Underwater v~hide design and construction is almost {;ompletdy preoccupied 

· ... ith t" lwironrnental considerations. The ocean compleLely suno ulilis the vehiclt::. 

,"ffed~ the ' I ig h t~\ t nuance of vehicle Illation and poses a co nStant haurd to vehide 

\Ur-ViV;lbih ly. Many of t he effects of the surrounding environment on a robot vehicle 

Me uniLJuc to tht" Imder\.\'Jler domain . Vehicles move through the ocean by :1llempling 

to ,-,ontrol complex foru:s al1d n::act~ons in a predictable and rdiable manner. ThllS 

:l.nderst:\ndil1g these forces !S d key requireme nt III the development and control of 

both simple and sophi;;tj~aled vehicle ~haviors. Ullfortunatdy. the underwater 

vc;,icle development commu nity has been hampered by a lack of appropriate 

hydrodyn:llnics models. Currently no single general vehicle hydrodynamics model is 

:lv,li b ble wh:ch is compum(ionally suitable for predicting underwater robot dynamics 

behilvloI ill a real ·r.ime virtual world 

The ill/ended COl1lnburionJ oj Ihe hydrodynamic mode! in this dissertation are 

ilIw/Y!lca/ c()nectness, s"nerality , nom"ncialUre ,Ifandardization and suitability 

rea/ -lim!! siml/lalion in a vi rlllal world. Many interacting factors are involved in 

underwater vehicle dynamics behavior. These factors can result in osc illatory or 

unst <l.b l,e operation if control algorithms for heading. depth and speed control do not 

take into ac;.:ount the many complex possibilities of vehicle response. Laboratory 

rllOd eling of hydrodynamics respons.e to Ilrlderwater vehicle motion is essential due to 

the need (0 avoid control law cnOl's. sensing en-or<;, navigational eTTors, prematurely 

depleted proplllsion endurance. 10% of depth (ontrol, or even catastrophic failure due 

to implosion at crush depth. An analytically valid hydrodynamics model mUSt be 

ba'ied a ll fl hY5i~' al laws and suffiliently accurate for the study and devdopment of 

robu\t control lav..s tilat work \lnder a wide range of potential vehicle motions. The 
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rC:.d-timc hydrodynamics mode! is therefore an essential component of a robot-centered 

underwater virtual world. 

Dewilcd analysis of underwater vehicle hydrodynamics ~haviQr is beyond the 

~' lllrel1l \Llle of lhe <ITt Ll sing rcal-tinlc simulation techniques. [n many cases. detailed 

ChH:.t on underwater vehicle hyrlrodynamics response is unavai lab le even in rea l world 

tnt progra rns. Developmcm of a general physics- based real -time model fills a gap in 

the robotic> ,mel simulat ion literature lhat d~s not e xist for corrcspomling robot 

operating ~n\'ironments sllch as iJldoors, space or air. lndusion of an ;malytically 

CQrreet anri verifiable hydrodynamics model in an undefV>'<ltcr virtual world will permit 

Ille,mingfui d::d timely analysis of realistic robot-~nvironm~nt interactions 

It mmt be nOI~d that '\:orrectness" may not be rigorously possible for any 

hydrodynamics model. So many i n[~rre lat~ d factors are pr~sent that precis~ t~sting 

und verifica tion of all paJamel~rs is unlike ly or impossible. While a model of 

hydrodynamic s forces may never be perkct, it can ach i~ve sufficiency in that vehicle 

responses can be predicted by physical laws at a level of detail adequate to develop. 

test and evaluate vehicle performance under a variety of control laws. The 

lju<lntifiilble goal for correctness in this work is a generalizable model that predicts 

vehil'le physical response with suffici~nt ra pidity and accuracy to permit equiva l ~1lI 

robot behavior wh~ther in the laboratory or lInderwat~r. Such a model will also enable 

re,distil' and repeatable design <lnd evalua tion of vehicle control systems. again either 

in til<: laboratory or underwater 

The model presented herein was intcntionally developed with (;omplete 

lmkpendencc from classificd U.S. Navy rescarch on vehicle hydrodynamics. No 

<:Ia~sified documents \;e re consulted during the literature search fo r th is work. 

Research statements and conclusions are derived solely from the extensive open 

literature on hydrodynamics. in no way confirming, denyi ng or implying the existence 

of similar worK in the classified arena. A good unclassified tutor ial on the 

fundamentals of naval submarine design is (Jackson 92). Details on experimentally 

und unalytically developing submarine hydrodynamiCS models 3re in (Huang 88). 
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dc.<'('Tiptio[l~ of tht" use of a hydrodynamics modd in the dcsi).;n 

Vehide ':lJUV) art" ill 

School (NPS) pcrldining lO hydrodynamics 

l'lOticiing of t::~ 'IPS AUV, and eJch contrijut~d to the thcoretic:al and e:qx:rimrntal 

pr~s~nteli here IPapoulias :-;9) (Cristi X9) Ourewio::z IZylia l)O) 

(VvalJlt"r ')1) (Balukc ':i2) (Rrutzman 92a) {Brut7,man (Cooke 92b) (Cody (2) 

,Brown ':i}) (R I"' lwI1 IHaynes !)T) (Zehner (3) (Collie (Torsiello ()4) and 

chaple: with II compalison of dynamics considerations ror diffen:m 

:ll1d their r~srrctive environmems. A lie'icripti0n or workl anli body 

coordina'.e systel:1S is used to derive Fukr angle kinematics equations of motioll. A 

-l.g{)IOU" d~grl"'~-oH'rttdom hydrodyn"mie~ model is then derjved bast"d 

on the '>'ork of (Healey (l-'oSs.l'n (4) and others. V<'"rified <.:lJdfide nt valucs 

lor li:e NPS AUV II PhoNI,ix vehicle are incluct~ct ami eX]),",rime nt;l.l model coefficient 

for otl,er vehicles is cOn'iidered. Different repre'ientJtions for 

ca~cculi.lting vehicle motion ..-:ompared using Euler angle: or qllaternion methOtls 

Network pror<x,oi considerations art then rXilminrli for intt)Sriltion of the 

hy(:rodyn2:Illics modd into J wide-~i,;ale distributed virtual world using ihc Distributed 

bteradive SUTlula!iuJI (DIS) protocoL A general objed-oriellted networked 

underwater rigid class hierarchy is presenteri. SinllJlatioli of on board s.ensors is 

l:onsirirn:rl. and the relationship of ro~-'u~t (ontrol system design 10 hydroriynilillies 

mo,~eling is briefly e\imined. Filially, future wurk is dis(ussed o::ollccerning lelher 

uynC1nucs, o..-:eiln current mr)(ici:ng Jnd collision rlctection ;l,nd arldition 

liydrodynilnucs models !() on-ooarct rooot autopiiot~ 



B. COMPARISON OF DYNAMICS FOR GROUND VEIIlCLES, AIR 

VEHICLES, SPACE VEHICLES, SURF ACE SHlPS AND 

LNDERWATER VEHICLES 

DVfI<.I.mics modeb ar~ availabl~ for a wid~ variely of vehicles and articulated 

bodies IFLl (Greenwood l:\::l) (Wilhelms (1) (Green (1) (Barzel (2) (Witkin 93) In 

<ove ry ~ase it is desirable that the pllysical laws governing vehicle interaction with its 

env ironment he specified as exactly and correctly as possihle. Constraints on vehicle 

motions vary greatly during interaction with different envi.ronmems. A brief 

ex amination of each basic type of vehicle environment and the physics associated with 

tho;,e environments is useful in und~rstanding the nature of hydroriynamics modcling 

O~le we ll -~pecified objective of the hydrodynamk~ model is 10 repeatedly 

(I ctennine 'iystClll ,tate. defi ned as follows ' 

a set of n 
that the initial 

valUl~s 

An alternative definition of stale is the minimum set of variables from which the 

position. orientation and combined kinetic and potential energy of the vehicle can be 

detcnnined uniquely. Unique descriptions of vehide state also require inclusion of an 

accOlnp:.mying dynamics model, consisting of an equal number of simultaneous 

e(\uat iol's as there are nate variables expressed in list order fonn. One further 

ci:;rification of the quoted definition is that input forcing functions need not be 

detenninistic and can be stochaSlic . 

A key ch:uactcrization of any set of dynarnks laws is whether the system i~ 

holonomic or nonholonomic. These two terms are frequently misunderstood and merit 

dtfinition her~. Holonomic describes motion that includes no consrraints between any 
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of the independent ,tJ.tc variables of a rigid body; literally, the Illation is "whole." 

OrJ lrl:mly. for ,\ <;ing le rigid body. twe lve sute variables pcn:.lin to holCHlOmic motIOn . 

Lor re:-pondmg to physical degrees of freedom. Speeitleally these twelve state 

vJ !" iab!es incl ude six values for linear and rotational velocities. and va lues for 

poslt:on dnd orient:ltion posture). NOllholOllomic motion indicates that there are 

inw!"depe ndellt (o:htrdints 0 :1 rigId body motion, or that vaJiation in one or more of 

the.,e 'irJ tc vi:riables IS dependent upon or constrained by other state variables. 

NU ll holorlOmic conw~ ints prevent direc t integration of accelerations and velocities into 

po~turc Examples of nonholonomic motion constraint'i include a rolling ball that can 

no: -; lip lie. !o,e traction) rebtive to a Surfiil:t. or pMallel parkin?, an automobi le 

,",'he!"e no ,idtSli p is allowed. Another example is a fall ing cat as it movtS in midair, 

wh:ch must obey the conservation law fo r angular momentum. In each case. 

nonholonomic constraints limit the freedom of motion. Farther descriptions and 

recent rest 'J.r\:h in nonholonornic motion are examined in (Greenwood 88}. 

(LII OITlOC 'ilj ,mel (Li. Canny 93) 

Gruund Vehicles 

Ground vehicks arc conStrained by l:ont,K t with a surface that g~neratcs 

norm:; l and frictiona l forces between vehicle and terrain. On a surt'al:e that is 

predominantly planar, high frequency vertical components of motion are relatively 

small contributors to horizontal motion. particularly since they llIay Ix: intentionally 

da ITlped or compensated for by mechanical devices such as shock absorbers, tire 

wheels, ~uspcn\ion systems or flexible legs. Vertica l forces mtrely displace the 

vehicle a small and independent amount in the vertical direction with little effcct on 

r.orizontai velocity. Tr~a\iel up and down hills can add a vertical component to the 

direction of motion bill does not fundamcntally change the two-dimensional nature of 

w',hicie travd rd:;t ive to the surface. Often simple kinematic models suffice for 

whee led ro bots (Alexander 'XI), especially when surface vehicle motion is slow and 

con5.trained to follow roilds and tracks when outside or flat !loor surfaces when 



indoors_ Legged robot interactions with surfaces are complex and require dynamics 

mork l, (Frank 6')) tMcCih~t: 79) (Raibert 86) 

Ground vehicle mfJI ion is complicateci by operation at the interface between 

'wo ;T'cd i;r ~round <ind atmosphere. Aerodynamics loading is lIsually secondary, but 

mU~1 be lOllsirkrerl during high wind conditions or in conjunction with the re spon~e at 

hig h r~I,Hive ~peeds i::>t:rwccil robot and ground. Detailed analysis of the mechanisms 

govern ing vehic le interaction with variolls surface types is extremely complex, 

p a~li'-' lll arly during traversal of rough terra in by off-road vehicles (Hckker 51i) 

rBekker fj'J) Fortunately for most robot operations, however. the dynamics of 

ground-vehicle interaction ra rely has a dir~ct bearing on ve hicle stability, reliability, 

nav igation or higher-level control fu nctions_ Ground robots may further attempt to 

take advalltage of ground contact for navigational purposes by measltring wheel 

rOl<ltion, fridiona l contact or leg motion (MacPherson 93)_ In this ov~rall roboLics 

context- regardless of how motion is estimated, ground vehicle dynamic behavior is 

often well approximated by kinematic models, wi th dynamics considerations typically 

hav ing only ~econdary effects on robot conu-ollogic. Ground vehicles remain highly 

constra ined by the nonholonomic nature of contact between vehicle and environment 

') Air Vehicles 

Air vehicles differ from ground vehicles in that vertical components of 

motion are coupkd to interactions in the local horizontal plane. Interactions with the 

Jtmosphere due to aerodynamic for~es have a significant effect on vehic le motion. 

There ;~ no direct con~traint on air vehicle posture analogous to ground conlact, ami 

aircraft fl ight dynamics are holonomic _ Fixed wing air vehicle dynamics are typically 

domi nated by the high speed forward motion which is necessary to generate sufficient 

lift to carry ve hicle weigh t. TIle density of air is low, and thus vehicle accelerations 

do not produce significant acceleration-re lated aerodynamic forces. This means that 

th~ atmo'>phere does nut induce significant "added mass" effects (Yuh 90). 

Helicopters differ in many respects from fixed wing aircraft. Helicopter 

rOlors have high degrees of freedom due to multiple rotor blades, each of which have 
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Ir.dlviduai mccnanilu i .J.rtKll iutions for twist and lag. Additional de.grees of freedom 

rille to m,my f~nors. ind ud int' :1exibk rOL1tionai twist of individual blades . tail 

ro tors. optional Jet ClssisL and airstrc:'am Iflt~ral'tions during phe nomena slu.:h as 

tLJrb \J !cnce and ground I:ffccts . Despite this high degree of complexity, he jicopt~r 

dyn::lmic, be \\'ell ,;pc<.:ified (Sau nders 75), modeled in real time (Williams 85) 

IOffc nbc d ;: ~5 ) anrl vi~ LJ a lly verined during repeated testing 

In fixed -wing aircraft, wings support (he wc:igh! of the vehic le aIld also 

.wpport control sUlia~-es, Although ain.:raft wright and balancr variations can produce 

large effeus. thq are ordinarily mailllaineri within carefully specified ranges that the 

and control sllrtaces <:an accommodate. \Vi ng aerodynamics have been 

extensively studied under steady motion conditions and are easily generalizable. Thus 

the overaJi lift and drag behavior of most air vehielcs can be predicted with reasonable 

accuracy and in real time using simultaneous diffen::ntial equation solmions 

(Cooke 92a, 92b) (Rolfe go). Nevcrthelcss precisc localized modeli ng of 

high -performance aircraft dynamics tor design purposes docs not penni! general 

do,ed- form solutions. Feasibie solU lions for precision design include massive fin ite 

clement analysis, a large-sca le computational fluid dynamics (CFD) approa<:h, and 

wind tunnel testing. These approa<:hes do not suit real-timc application since 

large-~cale finitc clement analysis and CFD are l:onsidercd computational 

"grand l:h:llknges" (Draper 941. Scie ntific visualization and vinual rcali ty teChn iques 

have <) lso been applied with some SUl:l:ess in advanced aircraft design (Bryson 9 I). 

These l:omplex advanced techniques are special cases, however, compared to the 

general state ot" the art in aircraft design . Aircraft dynamics are typil:ally well defined, 

well understood, and rtin:ctly verifiable through visual examination during in-flight 

tests and wind tunnel experinlcnts. 

J. Space Vehicles 

Space vehicle dynamics arc principaUy determined by orbital mechanics. 

fr iction L~t\",et:n vehicle and environment is almost non-e.'l.istent, and lh\l~ the 

equations of motion includt: unly gravitational, inertial and thrUSt effects. TIlcre are 
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few (if ~ny) uncertain vchide parameters, ano vehicle POSllifCS can be mlCkcd both 

IO~'dlly ,mel remotely with great precision. Interestingly , ballistic miss iles can ~ 

<,;ol1s idered a ,>peeial class of orbital vehicle whose path intersects the Earth's 

'Ui L1U'~ (B,tte 71). M~ny summaries of spacecraft dynamics are avaihtblt:, induding 

(I .. ar,on n) (natr 71) (Allen 91). Translation and angular movemrnts for orhita l 

ve ilides may he counterintuitive from an everyday perspective hUI can be calculated 

exa<:t ly. Under some conditions this motion can be nonholonomk, since six: 

tkgree-of-freedum space veh icles controlled by internal motors must still conserve 

;mgll ia r r:10rnrntl11l1. if thrusters are used, spacecraft motion is holonomic 

Additionally some orbital vehicles (such as an astronaut in a space suit) have a 

vafidble mass distribution and ITlay not strictly behave as rigid bodies. Other motions 

ilt higher frequencies may exist if vehicle components are flexihle. in which case 

detai.kd paniJI differential equation solutions are required for twist, bending, shear and 

axia l deformation. Nevertheless, in many respeCts the mJthematical and empirical 

foundations of equ:ltions predicting spJcecraft motion ale the best defined, best 

undel stood ami most directly verifiable of any vehick type 

:I. Surface Ships 

Surbce ship dynamks arc unconstrained in six degrees of freedom and arc 

holonomic. The venical component of motion is primarily determined by very large 

i.."ountcrbalaIKing values of >,ve ight and displacement which keep the ship at the surface 

of Ihe OU~lln . Vertical posture changes due to pitch and roll variations normally 

average to zero over long time s.cales, due to the hydrostlltic righting moments 

produced by the cunent location of the center of buoyancy rela tive !O the center of 

gravi:y Equipment. ~rsonnel and overall ship trajectory are typically unaffected hy 

t.he umr rates of change of componcnts of motion. e ither by design or seafaring 

practice. Changes in vertical motion are strongly affected by the changing buoyancy 

0f the v~hidc which varies as water disp lacement changes. As a re sl.llt, a paramol.lnt 

n iter ion in ship design is that the vchicle be reliably stable and self-righting, under 

both nOIlllJ l and damaged conditions Interactions of greatest interest between vehicle 
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Jnd c rw ironmcrlt LJSll~j ly pen"in to the travel of the ship along the horizontal ocean 

t"ev~nheles', motion is great ly complicated by ve hick operation at lhl:: 

bet wren twO mcoi<l: o~<:: a n and atmosphere. Except for sailing v~ '>Sel~ ,Itld 

,h ip, wi th low heildw~y, aerodynamic forc t's tend to be weakrr than hydrodynamic 

forces. Reg~rdle% of surface ship type, both sets of forces can be signi fi cant and both 

mll :; t be ( onsidered ,jmuiraneously 

Hydrodynamics ~nd n~vigation ot sll rfHce vessels are complex subjects but 

have been ext~nsively studied, with a comprehensive compendium of knowledg~ in 

(LC\\'IS :-;~) ano more examples in (Foj~en 91) (Covington 9,1) (Maloney !l5) 

PrcdiLublc lCO llfses . rredidable speeds, sideslip (lateral llIotion due 10 momenmm 

ct ur il,g nlrns) and gradual smooth changes in vehicle vC'lo<.:ity are all typ ical of surfacr 

$.1ip behav ior. Behav ior of surface ve hicle dynamic response can be tested and 

verified vis lll lly_ Tow tank veri fica tion is ,lIso possi ble , but tow tank tes ting is 

e xprn sivc ,met is lim ited by twO competing requlrements. Test tank model designers 

,,[tempt to main\:lin inverSe propon:onality co nStraints between lhe sq uare root of 

model selie and max imum water speed (Froude number), along with the concurrent 

deS1Libll ity of \ imlliUlneously maintaining drag coefficient (Reynolds number) 

simiidrity . Tr,,(ieoffs between these competing requirements are necessary whcn 

buildi ng and testing sca le models. Wind and wave models can be repn:sented by 

comple x spectral functions that are computationally exprnsive and difficult to spec ify 

(Fossc n 94 ). Neverthe less enviroIlmental disturbanccs can be separate ly cOlllplilcd and 

indepe ndcntly added to hyd rodynamic fon.:es based 011 the prillciple of superpositiun 

(Le wis K8) (Fossen 94 ). Additionally . linear lTlodds are available for willd and wave 

be havior which permjnc~~on~ bly <lccur~tc rc~l-time ~imulatioIl (Fossen <)4) 

(Covington 94). _\1oJels of similar or l es~er complexity are abo available for 

hov ~ rcraft vehicles (Amyot R'J) . In summary. modeling of surface ship dy namics is 

reasonablv de fin ed. wel l ~ludied an:i directly verifiable during testing. 
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5. Underwater Vehicles 

Underwater vchicle dynamics may be: as comp lex and rlifficult to model as 

J.ny of these regimes, principally due to difficulties in obsl:rving and measuri ng actual 

underwJ.ter veh ide hydrodynamics response. Suhmerged vehicle motion is not 

<.:on~trained in thl: vertical direuion . For some unmanned vehicles. posture must be 

res tricted to on ly IeJ.ch moderatc pitch and roll angles. This consrraint is imposed 

"ince pointlrlg vertically or inverting can cause equipment damage or dangerous 

contro l re ~ponse . Very large angle~ of attack betwe<:n vehicle orientation and vehicle 

cHre<.:tion of motion ,1fe possible. The effeus of forces and moments can all be 

Lross-LO up!ed between vertical. lateral anrl horizontal directions. J\·lotion in world 

coord inates i.<. only calculable after all effects in the body coordinate system are 

comprehensively predicu:d. Actual vehicle motion can be waoched remotely only with 

very lo w precision or (more often) not at all. Tow tank testing imposes unrealistic 

ext~rnal for(;e (;onsrraints which arc otherwise not present. The cffe(;ts of the 

surrounding environment arc relatively large and significant, so much so that the 

adjacent wmer tends to he accekrated along with the vehide and can be thought of as 

<tn "~dded mass."' Together these challenges make underwater vehic le physical 

re<>pon,e. guidance and co nrrol an exrr<:mcly difficllit dynamics problem. 

There are over one hundrerl perti nent codficients and variabks relating to 

the linear and non-linear coupled effects of lift, drag, added mass and propulsion in 

the morlel of this dissertat io n. Although a number of these cocffi(; i<:nts are of 

se<.:ond-order effect or negligible importance, determination o f plimary coefficient 

values is very difficult and npcnsive. Thcse problems are frequently compounded 

when the subject vehicle has an open frame with irregular surfaces. or when a towed 

telher is attached 

Tt is conCl:ivable that an even more complex and fundamental model to 

co.i<;u\""te U[\(\erwatl:r v(',hicle dynamics might be derived than is presented here. 

Spt:ciflcally, the Nader-Stokes fl uid now differential equations might be applied in a 

eFD vehic le -fluid coupled in teraction model (Ren 93) Closed -f0l1ll solutions for this 



e.\ist. anti numerii.:al mdhods attempting to solve the Navin-Stokes 

domain tel1d to introdlll:e more Unklll)WTI 

T;lis IS a panil:ubr problem (or LTJVs whic:h otten 

among thost cUlr~T1l1y 

l'hu:; CFD methods !He 

simulation ot lIndcrwater vehicle liydwdynamic:s 

\ 'b.ny models exist tor ground vehides, air vehicles, space vthiclrs, and 

surt;Ke ships that appear suilable f()r :e"I-t1rne use in a virtual w()rld. ~o c:omplek 

vehicles was encountered during this A 

but all wen:~ found to suffer 

un~.Jiwt;k f()! real-time simulation. 1\-0 other models wcn: found I.vliio;;h o;;ombinect 

Hnd pr,~dornlilantly forward velocity) with 

hove ~iTlg rn()de hydrodynamics (lhrllste.rs. station-keeping, low forw4rd motion and 

/'110 gelleraimodei was prc>'ioilsiy (lvililable jrum a 

is rmnpuwtionally ,witahle for real-lime simulaliOIl of :;ubmer;ted 

6. Cump;lrbon SlImma ry 

E~amination of the salient characteristics of dynamics model, in these 

m~ny different robot environments reveals that the underwater is VI~ry ditfio;;ult to 

specify, mos! difficult to verify Hnd mos! critical fOf preventing catastrophic: 

railure to properly rredi~[ the dynamics of ground vthjcles. orbital space 

or surface ships at Illay resillt in a \'ehide ",hich stays in place and o;;an 

commanded_ - Failure d- au-naft. du~ to impropcr prcdiction of ac)odYllarni<..:s 

be mitigated through well-developed techniques. wind tUIlnrl testing and 

-emote human supervisory I:ontrol. I'ailure to properly predio;; t the dynamics of 

vehil:ks nm Irad to ovewll :;ystrm failure dur to any number of 

navigation or power consllmption. This 

vulner4blLty in uIl('erwater vehicle design is a conllibuti.ng to the rdative 
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r~uilY of working underwater robots. 11lUS the rigorous and nearl y complete 

(Healey ')3) ilydrodyn:unics modeL whIch is (;ompatibly described in (Fossen 94) , has 

lx:cn fully ext~n(lcd and implemented here_ This revised hydrodynamics model now 

a significant g3jJ in the robotic s ~ nd simulation literatlues. 

C. C OORDINATE SYSTEMS AND KINEMATIC EQUATIONS OF MOTION 

Proper definitions of coord inate systems all' essential to specifying thl: physical 

twhavior of vehide~ in a tluid med ium. There are twO cuordinate systems which must 

be unde rstood indepen(1i:':ntly ilnd in relation to tach other : world coordinates and 

body coordinates 

World c()unlinates In: defined with rcspen to the surface of the canh, and so are 

sometime, referred to as earrh coordinates or ineffiaf coordinates. A variety of 

sundard izr'd world coordinatr' systems are now in COllUTIOn use. The world coordina te 

system of this model is defined by three o rthogonal axes originating at an arbitrary 

local point at the ocean surface. North corresponds to x-axis, East corresponds to 

Y- 'I."( i ~ and increasing depth correspo nds to z-axis as shown in Figure 6 . L These axes 

follow right-hand ni le co nventions, and are identical to (or compatible ""'ith) standard 

wor lcl coordina te systems defll1ed in robotics, computer graphics, aircraft 

aerodynamics, naval arc hitecture, navigation and the Distributed Interactive 

Simulation (DI S) protocol (Fu 87) (Foley, van Dam 9{) (Cooke 92a, 92b) (Lewis !IS) 

(Fossen 94) (Maloney 85) (TEEE 93, 94a, 94b). Conversions from a topocentric local 

earth coordinate frame to geocentric or geodetic coorclinate systems are given in 

(Lin '-J3). Other coordinate syStems are possible but remain undesirable if they do not 

match these important ?andardized conventions. 

Body coordinates are defined wi th respect to the body of the vehicle of interest 

The Ihree axes of a vehicle are longitudinal pointing in the nominal forward direction 

of the veh icle, lalr'Tal pointing through the right hand side of the level vehicle, and 

downward through the nominal bottom of lhe vehicle. The origin of body coordinates 

for a submerged vehicle is at the half point along the synUTlctric longitud inal axis. 
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x-axis 
North 

locru~~on_'gm_' __________ ~y~~ 

z-axis 
Depth 

(into page) 

Figure 6.1 . World coordinate system 

Tp ica lly tlll~ point is at or near the center oj" buoyancy (CE ), which is the centroid of 

voluHlctri c displd~·~.ment of the submnged vehicle. A r elat~.d location is the 

of gra"iry (CGl. which is the first momeJlt centroid ot vehicle mass. Ordinarily 

the ~'enter of gravity of a rigid body is the poim at which net forces and moments are 

<\ ,>s lI med to be applielt The center of gravity of a ship or submarine is a lways 

ri.esigned to be be low the cente r of buoyancy to ensure static vehide stability. The 

torque due 10 any ver tical difference bet\veen the tv.'o centcrs CB and CG is caJ led the 

righn'ng moment. A [l()nzem righti.ng moment results when Ihe centers of buoyancy 

a~ld gravity are not aligned vert ically . tending lO bring Ihe submerged vehicle back to a 

l1t,:u:ra i i,typic:l.lIy levd) pitch and ro ll posture. Any submerged vchicle that instead 

has of p,ravi ty 'Ioove center of buoyancy is inherently IIIlSt;lble ,md wiU tend to 

!Ilvert. even under static conditions 

101 



Und erW,ller vehi<.:les often include fr~e-nood spaces which can equalize with 

11 C~,j ll pr~ssure tilrough ,mall openings, all while remaining essentially contained by 

tile hul l. The w'llcr enclosed in these tre~ - flood spaces directly contributes both \0 

volumetric displacement and w~hicle mass. Thus free-flood spaces affect buoy ancy. 

mass , ce nter of buoyancy, center of rTl:1SS and vchidc hydrodynamics respons~. While 

,u bmergcd thc~e eftc (ls ,lie ordinari ly static and not time-varying. 

InlCr<lClions betwc:en a vehicle and the ocean environment are defined h orn th~ 

per~p~ctive of the vehick. i.e. within the body coordinate system. This is because aU 

Jdlon, <l nd rC<luion.'; between vehicle and environment arc dependent on the 

onclllaliDIl . shape. velocity <lnd ilcce!eratioo of the vehicle body, with the sale 

excc-plions of gravity and ocean current. The direc tion of gravity can be sensed or 

~,timated and i ~ thus di rectly usable within the body coordinate frame of reference, 

Oe-ean (unent is reasonably assumed to act unifonnly over the entire vehicle body 

Therefo re all vehicle-erwironment interactions can flfst be cakulated from the 

pcr,peuive of the floating rigid hody located inside a larger homogeneously moving 

ocea:) current frame of reference. \Vind and surface wave ;u;tion are normally 

assumed to have zero effect on submerged vehicles (if they do have an effect, thcn a 

surface ship mode l is likely more appropriate). Conversion fro m body coordinates to 

world coordinates consists of angular ro tations to align body axes with world axes, 

correction fo r vehic le positional translation , and then addition of coordinate 

disp liKement due to ocean current motion 

Clear definit ion of coordinate system;; greatly contribute.~ to understanding the 

kinematics eq uations of motion, In ol(kr to red uce ambiguity, the usc of (x, y . z) axis 

references are in world" coordinates except when explic itly stated othe rwi~ _ Gody 

axes arc referred to as longitudi nal, lateral and vertical, corresponding to (x, y, z) body 

coordinal~S when an algebraic description is necessary. Strictly defined variables for 

g l ob~1 coord in<lte rr~mc translations and orientation rotatiuns appear in coordinate 

system diagram Figure 6.2. Body coordinate frame Linear and angular velocities 

(fl, v, W, p, q , r ) are shown in Figure 1i.3. 
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The global coordinate fmme Euler (lligle orientation ddinition$ of roll (0). 

IIltl'h. lO) aod (IV) implicitly requirt tha t these rowtions be performed in order 

Robotics cornentions usually ~f!ccify physical order of rotations, while graphics 

convention, usually _'pcc ify temporal occier of rotations. Results are identic~1 in each 

Lase: . \V hcn convening horn world to body (oordin<lles Ll sing physical order (as might 

be ,pec~fi ed if! a three-~xis gimbal system), the first rotation is for yaw (IV) about the 

then pitch (9) about the first intCJmediate y-axis, then fIlll (¢) about the second 

inttrmediate x-axi" Figure 6.4 illustrates thes~ i ntermedi~te axes of rotation 

pertaining to Euler ~f!gle (Otation (adapted from rEEE 94a). When convening from 

world to body coordif!ates using temporal order (as is common in computeT graphics). 

the first rotation is roll (4') about thc world reference x axis. followed by pitch (8) 

dbout the world reference y-axis. and finally yaw (IV) about the world reference ::;-axis 

Consistency of reSlllts using either method can be demonstrated by examining the 

rnathcmatil:al order of lhe resulting rotation matrices. which is identical in each case 

"-J~turil i l y [he orders of rotations are reversed if convening from body to world 

!'hese Euler angle dd initinns are consistent wilh naval architecture definitions 

(Lewis XX), Thi" is an important property since lwelve different and unique Euler 

.wg le coordinate sy,lem definitions are possible (fou 87), while ooly one Euler angle 

,:o f! vention conesponds to naval arc)litecture conventions. 
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Figure 6.2 

Fi).';ure 6.3. 

<lllg!!!ar Illll!lill!l 
(right-twJd rule rotations, in order) 

x-axis ~ North 
x coordinate 

'.' 
/::.:?~;< §I L"Mglo 

y-axis - East 
Y wordinatt: 

z-a.:ds - Depth 
z coordinate 

~, sway 
body 
verticalw' 
w, heave 

./>t/'r"'''·, fP"/ (,.. \hctafl 
~'-" pitch Euler angle 

psi Ijr 
yaw Euler angle 

translation and rotation conventions 
y-axi~ == East. z-axis = Depth. World-la-body 

angular Yclocilies 
(right-hand rule rolBtions) 

p,rollnl\tC 

r,yawrate 

linear and angular \,'dociry l'onventiolli. 
rate -t roll rate, 
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Fin;l rotate about z by l\I, then rotate about '/ bye, then rotate about l!." hy 4> 

Figure 6.4 Intcrmcdi,lte rotdtion axes for Euler 
I,l'orlci coof(iinat~ framr. to hod)' 
(IEEE 94<1) 

l"Otarions fram 
fram~. arlaptcd trom 

Normally Euler <lngles must be resrrictrd fwm representing a vertical ori~ntation 

or elsr malhe;l~iltical ~inglilarities may result. Several techniques for avoiding ElIkr 

angle singul:uitl"s in l.ht vicinity of e = ± r: /2 art di.<,cll.'i$t"cI in (Cook" 92il, 92b) 

Pennittetl of the Euler angles follow 

-lL < $ ,. 11 (6.1) 

-~ < e < ~ (6.2) 
2 2 

0,. III < 211: (6.3) 

:\drli tionally, most undcrwater vehicles must br prevented from invening horizontally 

0:- painting vellically, in order to prcvcnt internal Vdlick da!ll~gC" and unconrrojj~bk 

maneuvcring instabilities. These rrsrrieliong add a further conSlraint Of! roll angle for 
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nOrlnJ.I <cper,lti ~ g conditions, but that constraim wilinol be applied in (llis model in 

Ol(ia to be able to rr~did vellicle mOlion under all conditions. 

r he rrder of a pplying ro ll" pilC h and yaw mauiJ\. rotations is flxeo since these 

rotatie r. , are not commumtive . The Euler angle rotation marrices for convening from 

bedy te world coordinmes follow in Equation (6.4) (Fu 87) (Cooke 92b). Due to 

lypographil "rrors in a nllmbl:r of other rekrences, matri:>. multip lication results are 

a lso ililiuded in Eqllation (6.5). F inally it is essential lO 1I0te thaI. as witl be shown, 

body ,'oordinate frame ro tational velocities p, q and rare qllite different from the 

werle! .:oorOinalC frame Euler angle: rotation rates ~. e and *. 

(Rj '" (RI"v- lRjy.8 [R]%,t (6.4) 

[
=(<1» ~~n(<I» 0] [eo,(o) 

= ~iTl(I/I) cos(l/I) 0 0 

o 0 1 -sinCe) 

o Mo(O)] [0' 
cos(efI) 

cos(e) 0 sin(q,) 

~~(~)] 
cos(q,) 

[
COSEh;OSI/l sin¢nin6'cos tll - cosq,·sinl/l cos q,·sin6· cos 1/1 + smq,'Sintll] 

lR] = cose'sintll sinq, ' sin6'sinl/l + cosq,'COSIt' cosefl'sine'slllljf - sinq,'cosljf (6.5) 

-sine sin¢l'cos6 cosq,·cose 

Sine" th" body to world rotation matrix [RI is an orthogonal mao-ix , it follows that 

R inverse equals [R] transpose 

(6.6) 
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The three world coordinate frame translation ra tes can be obtai ned from lhr, body 

coordin:l te frame tr:mslation r::ttes by the following matrix equation: 

(6.7) 

lnver,dy_ body coord inate frame velocities can be determined from world cooniinate 

fr ~l'Tl~ velocit ies in :1 _.;irni lar fashion 

[:1" [Rl' [~l (6.8) 

The three world coordinate frame Euler angle rotation rates are obtained from 

body coordinate frame rotation rates by lhe fol lowing non-orthogonal linear 

[Lin.,formations (Cooke 92b) 

¢l '" P - q sin(¢l) ran(e) + rcos(ct» ran(e) (6.9) 

e = q cos(¢l) - r;.-in(¢l) (6.lO) 

Ijr '" qsin(¢l) t rcos(ct» (6.11 ) 
cos(B) 
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Th~,e thre~ conversions can be combined into matrix nota tion-

(6.l2) 

where 

[ 
I 'inC~) lanCe) 'o'C~) lance)] 

[T1 = 0 cos(41) -sil1(41) 

o sin(41) sec(a) cos(¢/) sec(a) 

(6.13) 

However note that [T ] is not orthogonal. so [ T]-I is not calculaled by transposition-

(6.14) 

Instead inverse equations for obtaining body angular velocities from Euler angle rates 

.ire i!~ follo ws: 

p '" cb - $sin(e) 16.15) 

q " a cos(41) + $ sin(41) cos(a) (6.16) 

r " - 6 sin(41) + $ cos(41) cos(a) (6.17) 

whi<.:h yield the followin g matrix equations: 
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~I 0 IT]' [il 
[

1 -,;nCB) i 
LTl -'" 00 cos(q,) sin(q,)cos(8) i 

- sine¢!) cos(41)cos(8). 

(6.18) 

(6.19) 

Th~ prnedmg eyuations provide iI complete ~et of component convers ions 

oc t\\,' etn the world coordinate frJme Jnd body coordinate frame linear and anguLir 

wlout ie~ All ,;Olllponcnt veloL ities call be f llntwr grouped together in matrix 

Combined v<:loci!v matrix definitions are as follows' 

[V )body " ; (6.20) 

(6.21) 
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\tlalrix <:onversion from body to worlo veloci ties is thus: 

I [RJ I a I 
[v1_,"' - - [VI_ 

a I [TJ 

(6.22) 

and inversely 

I [RJ' I a 1 
[v l&oay" ~ - . Wl .. ""/d 

a I [n' 
(6.23) 

These velocity relatiol1ships arc the kinematics equationI of motion 

(Gr~~nwood 88 ). Equations (6 .22) and (6.23) are equivalent ways of expressing Euler 

ang.e conStminlS between the inertial world coordinate frame and the rotating body 

coordinate frame. Each has six compom:nt equations linking twelve velocity 

COrllponent), \Vhcn combined with the dynamics equations of motion, the kinematics 

equations of motion provide constraints esst:ntial to .,olv ing world coordinate system 

values of the vehicle state vector. 

D. GENERAL REAL-TIME HYDRODYNAMICS MODEL FOR AN 

UNDER\VATER VEIIICLE 

Definitions ' 

A virtual world simulation I.:omponent fur hydrodynamics modeling of a 

submerged rigid body must accoun t for six spatial degrees of freedom in real time. 

The six sp:llial degrees of freedom include position (3 pusition coordinates x, y, z) and 

orientation (3 rotational Euler angles \I, O. \V). Together these six components 
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dr,~ ri lx vehlcle f)()Sf/,re (x. y. z e. ~I). Accelerations and vdocitics each have 

these ~ame six spatial degrees of freedom 

S lX valLle~ fo r velocity dnri values for posture comprise the vehick 

together they ~'Ml fully specify in vehick posture over time without 

,;tdtc vector is ill the world coordinate system. 'lne overall goal of 

tile hydrodyn:lm ; ~ mo~ld lS to calculate updated values of tf:e vehicle State vector at 

1Jr11estep 

\1uch morc information is needed to describe robot state. The 

hydrodyn<lInics niOck l needs a reasona hly complete snapshot of robot statr in order to 

properly predic t interactions between robot and environment. All hydrodynarnics state 

variahles rlllht be induded, as well as a variety of sensor values. pertinent robot logic 

;;nd v<lriables fOl accelerations (due !O forces and moments) as produced by 

.:ffedor vakes for prope llers. rudder~. planes and thrusters. The dynamics model is 

provilied thi" p<lni ;d snapshot of current robot state with each t}(change of the robot 

te lemetry record. After enmining paramelers contIolled by the rohot (~.g. robol 

ordn~ for propellers and fins), the hydrodynamics model then calculates an upddted 

,tdte veClOl . With the updated slate vector the hydrodynamics modd is then dble to 

calcu lale values expeded from variolls robot sensors whi(;h ordinarily quc:ry the 

environment. By updat ing ntissing sensor values in lhe robot telemetry record with 

new ly calculateli sensor values. the hydrodynami(;s model provides vinual sensor 

respO Il ,e in the labor<ltorv. Vehick op~ration in virtual world or real world remains 

Iran~PJ:ent to the robot Further details on this data cornmuni(;ation mechanism are 

included in Chapter IV 

2. Real Time -

"Real nme" in this conte;>;.t is defined by the requirement that a v~hiclc 

maneuvering within the virtual world descrihe essenti ally the same path and poslilles 

~~ (he vehide maneuverin.£; in th~ r~al world. This rrql.lires that the robot hardware 

,~nd software receives the same responsiveness from lhe vutudl world as from th~ rcal 
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worirL sinet: robot behavior is vt:ry closdy coupled to real-time inte rac tions and 

de.u-tlines (Payton ';II) (Badr 92) 

Rea l time ,ystt:ms can bt: further charactt:rizt:d by the criticali ty of their 

timing reljuirementS, whil:h arc classified as hard or SOfL Hard real-tillle system 

;;orre<,;tne,~ is strictly dependent on (he timeliness of results, SUfI real-lime systelm 

may expcriem:t: rcduct:d effectiveness but will not fail due to misst:d dcadlines. 

Alternative ly, h:ud real-time systems are those which incl ude the possihility of system 

l os~ or potential <.Catastrophe if deadlines are not met, and soft real-t ime systems are 

those where "sooner is better than later" but lateness will not cause system fa ilure. As 

a point of interest, firm real-time systems have been defined as those with hard 

de"dlines that Lan survive despite the presence of low probabili ties for missing a 

dearthne . (L"plante 93) (Halang 9 1) 

By these ctcfinitions it is clear that the system consisting of a robot 

interacting with a dynamics-based vlrtual world is a hard real-time system 

Fllrthermore the robot itself operating in a real world environment is also a hard 

real-time system, since a temporal fail ure in navigation or depth contro l might result in 

vt:h id~ destruct Lon , However. in isolation, the dynamics component of the virtual 

worl rt are able to provide accurate results regard less of the temporal sLaling of 

intera(;tion requt:sts. ~ercfore the dynamics model per se can be classified as a soft 

real- time system_ It only nt:eds to be fHst enough to suppon the hard real-time 

requirements of the networked robot processors. In gt:neral, hydrodynHmi<.:s model 

responsiveness will be a function of algorithmic Lomplexity, implementation 

effkienL}" microprocessor pelformance and conununications latency. 
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3. Forces, Muments and Accelerations 

ForLe\ J.nd a<.:ce lerations for the six sta te variabks of posture can bt 

grouped toge!h~r in tb: matrix form of NewlOn's Second Law. initia lly e.'pressed as 

[F] .."r/d = ~lM V !...,../d (6.24 ) 

For J. rigid body. trans lational forl'e~ are normally applied at the CG Momems are 

t ree vt':LlOr~ prudun ng rotations to be llpplied <loom the origin of the vehicle boo)" 

sirl<':c menial in to.::grah arc lalculated rela tive to Ihal origin. Usual pract ice is 10 def ine 

CG measurements as being offset from CR. Vehicle origin is not assumed coincident. 

T he key 10 properly estimating world ~oordinate frame velocities and position 

wil l be properly calcu lating lime rate of change of vel ocities in the body coordinate 

frame. represented as 

[vi ... , ; (6.2S) 

Time rale ot chang~ of body ve J o~'ities :vlOOdy can also be referred to as body.relative 

acce/era/ions [A JOOdy .. However it must be clearly unders tood that these body 

accelerations arc on ly with respect to the body coordinate frame, i.c. those which 

appear to a local observer moving with the body reference frame (Greenwood 88). 

Ab~olut,~ ac(.:eleration (.:omponents due to ro tatiOIl and velocity changes between the 

body refere nce frame ancl world reference frame are speci fi cally excl uded 

from A Jb<>1y 
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Since physicJ.1 interactions occur between the vehicle and the immediately 

su rrounding Willer volume, force ilnd moment calculations arc most directly evaluated 

In the body-fixe<1 coordinate frame. Moment of inertia terms in the mass ITlaLIix [MJ 

o..:~n on ly b<:: constant in a body coordinate frame, further mabng the body frame 

attract ive for dynamics calculatiOns. Mathematical rederivation of known acceleration 

rcl "I ! On ~hips in a world coordi nate reference frame is po~~ible using a Lagrangian 

repr<."sentation (Fossen ':14) . However sU(:h a form appears to be ntm;h less direct than 

th~ l\'ewton-Eull:r formulations. particu larly since the virtual world i~ centered around 

a robot vehick which operates and interacts relative to the IOClll body-ftxed coordinate 

trarTle. Therefore it is c1esirable that all linear and angu lar acceleration and veloci ty 

relationships b~ specified exactly and completely in the body coordinate frame. Doing 

so yie lds l1ynamics eq uations of motion re lating the twelve unknowns of the 

vehi .. k st:.tte vector derivatives: six unknowns are body velocities, lind six mlknowlls 

are body accelerations 

Although tht: vt:ctor sum of velocity component~ exprt:ssd in b<xly 

coordinates equals tlle vector sum of velocity components e.'i.pressed in world 

coordinates , an t:quivalent relationship doe~ nut hold for body and world acceleration 

veCtors lxcause the body coorrli natt: frame is rotating. Specifically, differentiating 

Equation ((' ,22 ) with respect to time yields 

o -did l ~ I ~ I IVI~ ·1 ~ ~ l VI'«l'1d ~7 
o I [T] • 0 

O l d (6.26) - I-dt IVI_ 
[T] 
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Sub.,tillJtlng aCl.:elcr<!tion IA.J for time ra te of change of [V1 (as always jn lile 

Clprropriate cOGrdinale frames) results in 

I IRI , 0 I I IRI [AI __ ~ ~ - - [VI..,,' -
o , IT] 0 

, 0 I - [A l lJt>,Jy (6.27) 

, IT I 

Inspcdion of EqlliillOn (6.27) makes it clear lint world coorrlin.11e frame 

Cllcclaatio:l'; IA 1..,,, ~nd rotated body coordinate frame accelerations [A.JI..!, arc not 

q'..liva lenr unlc;s the transformation matrix between coordinate frames is unchanging. 

or ail body velocities are Lno (Greenwood HX). It is possible to examine accelerations 

a~t ing upon the body from a perspective within the rotating body coordinate frame, but 

they cannot be dircdly integrated into world coordinate trame accelerations 

It is possib le to []1lI~r ic ally integrate the six dynamics equat ions with 

re,pe<:l to time alld determine new velocity values. This dynamics equation integration 

mu~t be perform eri u,ing body coordinatr frame variablrs. Once new values for body 

velocit ies are thereby obtained, lhe six Euler kinematic constraint rquations of motion 

16.221 are utilized to produce linear and angular world velocities. Finally posture is 

rietem,ined within the world coordinate systrm using world velocities. 

4. Time Dependt':ru.:ies 

Duri~lg operation of a vehicle in a vi.rtual world. forces acting on the robot 

br rstimated from the vehicle slate vector while velocities and body accelerat ions 

,Ire dnalyticaUy derived. During operation in the leal world , forces can be similar ly 

esrimated while accura te velocity and body acceleration information may (or Illay not) 

be av,tilitble from flow and inertial navigation s~nsors. In either world. good estimates 

oi chJnges in body frame velocitirs arr a primary robot requirement so that velocity 

and posture estimatcs can be cumu latively integrated over time. Accurately es ti mating 

body frame veloc ity changes at suiwbly short time intervals is the key to properl y 
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modeling vehic le hydrodynamics response, Thus the dynamics equations of mOlion 

mU,l be written to produce time rates of changc of veloc ities as the dependent 

v~rii\ble s . obtained throllgh calculations that solely involve vehicle variables (sUL:h as 

pO'lure. propellers , thrus ters and plane surfaces) which are continuously known 10 the 

robot 

The Newton-Euler fo rmuhlt ion of Newton's Second Law from 

Equalion (('>.24) can be expanried by lhe chain rule to produce 

IF ] 0 "riM I · IVI ) 0 <Qf]WI • 1M I "J.I'J (6.28) 
bod)' dJ.\ ~ ~ dJ. dt 

Within the body coordinate frame the mass matrix [M] is unchanging. 

Differentidtion of Ihe velocity matr ix [V] reveals effects that are due to the body 

coordinak frame ro tating with angu lar velocity (,) with respect to the world coordinate 

fr<tme (Fo~sen '}4): 

(6,29) 

Since matrix muLtiplication is associative but not Wllllllutative, both sides 

of maln.\ Equation (6.29) can be multiplied by a single matrix as long as order of 

mul tiplicatIOn is carefully preserved. [n this case both sides of Equation (6.29) arc 

multiplied by the mass matrix inverse [Mrl . Transposing the result yields 

Equation (6.30) 

(6.30) 

This form of the dynamics equation is very important from a 

time-intcgration pcrspeo:.:tivc , since all accelerations are grouped together on the 

left-hand wk. All lerms on the right-hand sides of the dynanlics equations are known 
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te determined during vehicle operation in the virtual world. "Ibus calculation 

of the Il t'ht -hdnd , ide can be llsed to determine updat~ct values of tht: left-hand side 

Ivlin imizing errors during the integration tilllC Stt':p is essel1lial for accurate 

rC<l I- time simu lation of hydrodyn~micj models. This is due to the sensitivity of the 

hydrodynami(;~ rnodd to ,mall perLlrbations, as well as the high degree of 

between for( es acting on the tinct: physical body axes of an submerged 

whicJe. If errors in detCfmining body accelerations are minimized. then integration of 

body ;KL'cle:-ations and subsequent coordinate frame transfumwtions to yic:ld veloci ties. 

POSilIOJlS orien[,llions will also minimize any accumulated <:rrors inhere nt in 

"c lollty ;md postllr~ ~stllna: i oll 

I'he local forces acting on an autonomous underwater vehicle an: due to 

onbo~rd effectors .,;uch as propellers, thrusters, planes and rudders, External ocean 

,'urrent forces a rc assumed to var)' ~lowly with respect to vehicle time and act on the 

entire vehicle uniformly, having no effect on the interactions betw~en the vehicle and 

th"" immediately udjucent water volu me. Oceun current effect~ can therefore be added 

a, it 5imple uniform rrunslation. This vector addition is performed ufter fully 

ca lnllating the effects of body accelerations and velocities. and afte r shifting back 

J body COOf(ji n~le system to the world coordimte system. 'Inus all forces can be 

wmplelely determined or estimated in real time during vehicle operation. For 

con~tant-b<lILtst vchicks, all elementS of the body frame rna~s matrix [MJ and 

corresponding invene [A--Il' can be determined empirically through prior testing (to a 

close fIr,;! <lpprOximatlOn) and are not time-varying 

5. Velocities and Postures 

Comhination of force and lTIass matrices as rlescriberl above gives a very 

il<.:curate estimation of time rates of change of body vdocities. The body velocity rate 

matrix is integmted first to provide linear and rotational velocities, then integrated 

!g~in to provide :JOsture. Initial integrution to yield body velocities occurs in the booy 

I:xed L'oolC!ill~le frame' 
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[Vlt..;.d) {tO.~,) = J:'&'lV]bod);(,jdt t [VJbody (tO) (6.31) 

Imcgr,I ' tOn of the ncw body ve!O(;ttics to det<:nnine posture is preceded by a 

tra n,formalion from the hody-fixul coordinate frame to the world coordinate frame. 

The fo llo wing substitution pertains 

f tO'~'[vl lit = JtO ' ~'([Vlbody(,)lbody~""'1d lit (6.32) 
to __ Id(t) rn c:oordinau,1IqI 

Thc tina l tntcgrat io n to determine posture is therefore 

[Posturel .. ",Id (tO_6,) = f;'&1 [Vl...,..Id(,) lit 

+ J;'~' [Ocean currenrsj,..".ld(Q tIt 
(6.33) 

[Posrure].."rld (tO) 

6. Dcriving Desircd Form of Dynamics Equatiuns of Motion 

A full set of hydrodynamic equations of motion for a subm<:rged vehicle 

not usually writtcn in the form suggested by Equations (6.30), (6.3 1) , (6 .. 12) and 

(0 .3 3). Other derivations have been presented in the open li terature (Gertler 76) 

(Smith 79) (feldman 79) (Papoulias S9) (Watkinson 89) (Yuh 90) (Humphreys (1) 

(Baiardi <)2) (Healey 'ol3) (Fos,~en <J4) and a variety of other sources, but are structured 

ill ,uch a way that similar time -dependent accekration -related te rms are pn::s<:nt on 

hath sides of the dynal)l.ics equations of motion. Because related body acceleration 

(erlllS are not grouped togtlher, di rect time integration of both sides of the equations 

of motion is not math<:malically valid in those repn::sentations. Funhennore these 

ilMny !·cfen::nces J.rc all handicapped by variations in nomenclature and even a 

surprising variety of typograph ical e rrors, mathematical etTors or omissions. None of 

these other models can be dire!,;tly applied as a valid real-time unden,valer virtual 
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',l,orld llJlTlpOncnt. Therejnre IiiI' primo,-y inrellded contributions of Ihe hydrodynomit 

durity, co/'rect((I'H, g<!neraiiry , standardized fW!lIcncialJlrp 

u!I(i ,Iu/lability for real-time Simulatiofl 

Given thi s broad out line showing how the dynamics equations of mOlion 

wil i b~ lll ilized, it j, time to derive lh~ des ir~d form s of t.he hydrodynami (;s el/uations. 

\Ve ~Cl n reorganize :Ill of the: original (Heaky 93) equations of motion to sokly have 

n:,Li,, -rei J.(ed. Inertia-related dnd [v l/ood)'- relatcd terms on the left-ha nd side. That 

red, rdllgC lr, ~n t leaves lift and drag. huoyancy, we ight, propulsion thrus t. and athel 

forces ;lnd moments on the righl -h~ nd side. At any give n instant tl!: 

M veiociry- related huoyancy, 

mass, inertia inertial and weight, 

and hydrodynamic propulsiofl (6.34) 

adde,J - mas~· (drag and lift) and other 

!L~ 
force /unctions forces 

([1'1_('01) ,~ 

Calc ulating the iuverse mass matr ix and multiplying it against both sidcs of 

ELju <l tion (".>-34) leaves OIlly body accelerations on the left-hand side. Further 

dass ific{ltjo n of ind ividual terms on the right-hand side as corresponding to Corio lis. 

centripetal and other forl;e~ I;an be found in (Greenwood 88) (Hea ley 92c). For the 

pUfpo~e of this derivation it is sufficient to group these accelerations together without 

fu rther discussion. Such an arrangement prepares the dynarnics equations of motion 

for trmporal integrat ion in the body-fixed coordinate frame as follows: 
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f (to! 

- dynamics 

M J equonons 

o/motion 

rigm- haJul 

""" 

(6,)5) 

(~ 

The body frame ve iocity matrix [Vl • ..tl can now be updated by numerical 

IJltegratlon Fo r example, Euler integration (Hanuning 86) (Green 91) (Press 92) 

yield.'> 

0,· (6.36) 

, (~ , (~ 

A slightly rnore precise estimat ion of the vdocity manix can be achieved 

by ;lVeraging body acceleration at the beginning and end of each time stcp prior to 

integrating with respect to time. This method called sccond·order Runge-K uua or 

Hewl imegration (Fossen 94), and is also the approach u~cd for velocity estimation in 

the source code impiememing this work (Brutzman 94e). 
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I :1 w 
(6.37) 

" 2 

~I., .. ", r ('o. M ; It,,) , (~ 

where [u v Ii> P q ; J ;" ~I) in Equat ion (6.37) is itself an estimate obtained by Euler 

in tegration of [lei v IV P q ; I [~ 

Conversion of these body velocitie5 to world velocities is performed using 

the transformation of Equation (6.22). Subsequent integration of world velocities into 

world posture is performed by Eu ler integration as follows' 

" . (6.38) 

Final <lddi tion o f ocean current effects completes the calculation of world coordinate 

'yslem posture, as prc;iously specified in Equation (6.33). 

Increasingly accurate tempora l resolution is possible using smaller time 

steps. chosen adaptive ly if necessary. Further numerical analysis co ns iderat ions and 

recommendations appear in (Press 92) (Green 91) and (Hanuning 86). [n practice, a 

fixed time step of 0 .1 seconds has worked well for model res.olu tion, rea l - liJ[l~ robot 

h.:lrdw.:lrc co ntrol rcsponse, network latency, remote interaction, computer graphics 
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rendering update rate. and human observation. Can: muSt be taken if higher-order 

inregDtion methods ;ue employed to ensure tllat hydrodynamics model responsiveness 

does not degrade Pllst the rell l-time f(',quirements of the robot operating in the virtual 

world 

To .';unull:trize: the dynamics equations of motion are not mathematically 

rewritten in wor !d ..:oordinates, but arc kept in body coordinates. Integrating the 

dyndllli..:s eq uation., of motion provides body velocity values at the next time step. 

These ne w body ..:oordinate frame velocities are combined with the kinemati(;s 

el1uations of lllotlOn to produce world coordinate frame velocities. \Vorld velocities 

Me then integr'-lted :md added to ocean current effects to produce updated world 

postures. Aigorithmi(; complexity is sufficiently low to permit mpid model response 

within the same time period that the robot normally uses to query vehide sensors 

7_ Nomenclature Tables for Variables and Coefficients 

The many details pertaining this approach still need to be tilled in (Ising a 

complete si ... -degree-of-freedmn set of dynamics equations of motion. First, however, 

it must be noted that small yet persistent nomenclature in(;onsistendes were 

encountered in all of the dozens of hydrodynamics references studied. This is a 

'~riou) problem fm newcomers to the hydrodynamics literature, since both names and 

definitions of key terms may vary . TIlis lack of standardization results in troubling 

In'lthemillic:al incompatibilities throughout an entire body of ,sdentifu; literature 

Clearly an important prerequisite for describing any general hydrodynamics modd is 

to use wdl-defin<:d (and hopefully standardiled) nomenc lature. Of all the 

hydrodynamics models studied in this work. (Healey 93) and (Fossrn 94) appear to be 

the most general and most applicable for reaHimc simulation of autonomous 

ullderwater vehicle responsr. The nomendature of (Healey 93) closely follows that of 

th~ stand,lrd reference work on ship control (Lewis 88). TIle sallie nomenclature is 

fallcwed here 

Since usage of a rigorollsly standardized nomenclature is only partially 

possible, this work will attempt to follow accepted conventions wherever possible 
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and coefficients. hoth mathematically and 

from ;;:evious models have been corrected whcn 

accompanying variahle factor" Such an approach 

ll1 ,.;ubjcct Mea thJt unfortunately i.ncludes wice, v:;riarion 

The to.lowin)< tabks ddlne and descril>e the state variables and 

llydl"odyn am;cs ~'oenicients used. Symbo l, name, description, units ann codficiem 

value the NPS AUV) art includtd_ Variable and 

Close ex,lminalion of the dYI1aJl-,jc~ equMions of Illotion reveals that nr arly 

,,'I o~ rhe hydrodynamics coe:licients are dimensionless, hav;ng ]x,~n normalized with 

to vehicle length L TIlis convention permits rough comparison of the relative 

e:"feo..:e; ()f individll~l coefficients Wilh orher vehicles or betweell different bodv 

Coefficients pr ~ senred here llave been testea for a lllige vlli-iety ()f 

are included for dyn~rn.ics cffects that oco..:ur in 

borh mode and hover mode_ For vehicles thar an~ capabk of n1uch highel 

weilicients are expected to be<.:ome variable a function of Reynolds 

.' lumbeL which quantifies the transitioll from lalninar to fully developer! turbulent fluid 

~llJw_ E'ilflliniltion of Reynolds numiJer effec ts on hyctrorlYJlarnjn coe:'ficients appears 

in (Humphr~ys (Ruth, Humphr~ys ()OJ {Humphreys Further te5ting and 

lefin e m~n t of hyc1rodynamics coefficiems for Vlli10US vehicks is an importallt subject 

for tuture work 

Allhough lengthy, proper ,1etlnition of lht numerous state variables and 

hydnxlynamic, cocffici~n t 5 is ~ss~nrial w h~ n producing and understanding a 

hydrodyn am;c moc1el capabie of providing precise response within an underwater 



vinual worlli. The cumplete tables are presented here as an integral and essential part 

the hydrodynamic, model, in order [ 0 provide context for the derivations of the 

e411 a[ ; On~ of motion which follow. A similar ly exhaustive SCI of definitions for 

,ubill ar ine ~irnu lation is induded in (Feldman 79 ). NPS ALlY II coeffici ent values arc 

from (W"rner \) ) ) (Huhrke 92) (Marco 95) lind laboratory testing. AU angu lar 

defi rlltions lonform (I) the nght-hand rule. Readers interested in comprehending rhe 

final :iix dynamics equations of motion are urged 10 closely e xam.ine the precise 

vClr ilble and coeffic ient definitions provided in these nomenclature tables. 
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Tahle 6.1. Hvdrodyuamil:s and Control System Variable~. 

I)e~cription 

Clock time ireal I)r simulated) seconris 

Sf Lnw qer LOOcl interval (robot cr dynami~:s mede!) seconds 

Position along !\onh,So\J!h world feet 

North pOSJ(I .... C 

Pos.itioll ~Iong E.1St W~st ~xis. world r~et 

F~st positiv I"" . 

D~rth. oownw'arri oirection is positive world feel 

roll Ellkr R.oll Elllt:r ringle rotatIon ahout worid radians 

a[lgl ~ Norlh-Sollth preceding pitch and 

I yaw ~otatiol1s Positi .... e sense clockwise 

as ~ ee ll Hom stem co LXlW of vehicle. 

;)it,:h Pitch Ellle~ angle rotation aoout world radians 

Euler East-l,veSl axis, following rotation for 

angle roll and preceding rotation for ya\ .... 

Positive sense is clockwise as seen from 

port ,ide of vehicle 

I-------c 

" 
Yaw Euler ~l1gle rmarion about vntkal world radians 

Euler Idepth) axis, fullowing rutations for roll 

angle ~nd pitch. Positivc scnsc is clockwise as 

seen from ~bov~ 
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II '.""',,' I n~~cl'iption s},s tem 

x dot L.inear ve loci ty a long North-South a)( is world ft/see 

y dor Linear velocity along East-West axis world fUsee 

l. d OL Linear vdocily a long Depth axis world ftisec 

phi dot Roll Euler angle rate component, about wor ld radians/sec 

North-South axis. liQ! equivalent to p 

theta dot Pitch Euler angle rate component, about world radians/sec 

East-West axis ~ equivalent to q 

psi dot Yaw Euier angle rale component, about world radians/sec 

vert ical «(lepth) axis . .t!Q! equivalell t to r . 

surge Linear vdocily along longitudinal axis body fl/sec 

sway Linear velocity along lateral axis body ft/see 

(sideslip) 

Linear velocity along vertical axis. body ft/see 

roll rate Angular velocity component about body radians/sec 

longitudinal axis 1::!2.! equivalent to 4> . 

pitch rate Angulilf veloci ty component about body radians/sec 

lateral a.>:.i s. ~ eq uiva lent to e 

yaw rate Angular veloci ty component about body radians/sec 

vertical axis. .t!ill equivale nt 10 ~ . 
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II I 
Sqni)()1 Descrip ti on 

u dot Time fale of change of surge velocity 

w dot 

p i p de< 

4 cot 

root 

&" I bew 
[-udders 

angle 

( ~ I ong longitudin,\I axis) 

Time r"te of change of sway velocity 

(dlong lat !'T<\1 axis) 

T ime rate of ,-hange of heave velocity 

(along veni,,:<; 1 axi~) 

Time rate of change of roll angular 

velociLY (about iongilUdinai ax is) 

Time rate of change of pitch angular 

vel ocity (about lateral axis) 

Time rate of change of yaw angular 

veloc ity (aoout ven i.:: a l axis) 

Bow rudder defknion angle. Usually 

bow and stem rudders orders go to 

exactly opposite positions. Positive 

s~nse is ciockwi,e as seen from above 

Positive bow lud(lers angle with positive 

surgr /I prodw.:cs positive change ill yaw 
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C()( ,rdinate 

_ C";" 

hody ft/sec ' 

body fl/St:c.! 

body ft/sec' 

body radians/s<:c· 

IxJdy rJdians/s<:c' 

body rad iansr;;<:c 1 

body radians 



S,m',,,' [)~scriplioll ~}'Mem 

, 
" 

Sr.cm rudder d etlection angle. UmaLly body raoian$ 

rudders bow ano stern rudders go to exaCtly 

Glngle opposite posit ions) Positive sense is 

cloc kwise as seen from above. Positive 

stem rudders angle with positive surge u 

produces negative change in yaw. 

'" 
bow Bow planes deflection angle. Usually hody radians 

planes bow and stem planes go to exactly 

angle opposite positions). Positive sense is 

clO(;kwise as seen from the port side of 

the vehicle. Positive bow planes angle 

with positive surge u produo.:cs positive 

(;hange in pitch 

, 
~ 

Stern planes deflection angle. Usually body rad ians 

planes bow and stern planeS go to exactly 

angle opposite posiriom). Posi tive sense is 

o:.:Jockw lsc as seen from the port side of 

thl: vehidc. Positive stern planes angle 

with pOSitive surge u produces negative 

change in pitch. 

nl"',r Port rpm Port propeller ordered turns body 'Pm 

n""" Stbd rpm Starboard propeller ordered turns body rpm 
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I "".",,,::rn, 'I """I,,,," 
> " . Volts , bow verti,""d cross-hody thfllstel 

1±24 V corresponds to ±LO Ib) 

Cuur din'll e 

hody volts 

--- -----~------------------+_----r_--~I 

V'"'' .'' ''i''' Volts, stem ve rtica l cross-body thruster 

(124 V cOlle~ponds (0 ±2.0 [b) 

body volts 

- -- -----+------------------~---+----~I 
Volts. bow tHera] cross-body tluustrr 

(±24 V corresponds to ±2.0 Ib) 

body volts 

---------r----------------_+----~----~I 
Volts, stern latc:ral cross-body thruster LJOdy vol ts 

(±2,1 V corn:~ponds to ±2,Q Ib) 
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B 

Table 6.2. Hydrodynamics Model Coefficients. 

llescription 

welgm Submerged weight of vehic le, including water 

in contained free,f1ooo spaces, neurral ballast 

buoyitnl.:Y Weig~lt of water displaced by vehicle. including 

water in contained free-flood sp<u:es. 

Can vary with deplh (due to hull compression) 

and with I.:hanges in water density p. 

Vatue r"r 
NPS AUV n 

4351b 

435 Jb 

len gth Vehic le length, also known as characteristic 7.302 ft 

'ho 

lengtll. Dynamics equations of motion are 

written 10 explici tly utilile L as a normalization 

coefficient. This approach makes most olher 

coefficients di mensionless and quantitatively 

independent of vehicle dimensions, permitting 

comparison of re lative: effecls berween different 

forces and dissimilar vehicles. 

Acceleration due 10 gravity 

Mass density of fresh water' 

Mass density of sea water (representative): 

yehiclc mass, including water contained in 

enclosed free-tlomj spaces, neutral ballasL 

Mass moment of inertia coefficient about body 

longitlldinal axis. Equation (6.55) 
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.12_174 fVsec' 

1.94 slugs/fe 

1_99 slugs/ft' 

Wlg-= 13.52 

llb'sec')/ft 



I " I 
=0 1" 

= ( , 

C(J 

I",,,,,,,,,, 

I 
\lass moment of merti:t coefficient Jbout body 

lateral a;{IS, Equation (6.56) 

!'iPS AUV II 

Ma~s moment of inertia codficicnt about body 45.0 tr·tb ·sec' 

vcni c~ l ECjllJtion (6.57) 

Cro~, product of inertia coefficie nt , due to 

<l.5yrnmclric mass distribU!ion about body 

longillld inai;1atcrai axes, Equation (6.58) 

Cross proouct of iner tia coefficient. due to 

asymmetric mass distribution about body 

longitud ioaJ/vt:r\icill axes, Equation (6.59) 

Cross product of inertia coefficirnt, due to 

asymmetric mass rl istrihution about body 

lateral/vertical axes, Equalion (6.60) 

Mass centroid of vchick. The CG is the 

gravity apparent point when~ forces and moments are 

applied 

Center of gravity location along hody 

longitudinal axis. measured in body coordinates 

from nominal vehic le centroid 

0.0 fl"lb' sec· 

0.0 ft·jb· sec' 

0. 12) in 

= 0.0 10 ft 

Center of gravity location along body lateral 0.0 ft 

axis, measured in body coordinates from 

nominal vehicle centroid 
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en 

I 

1)~srription 

Center of gravity location along body vertical 

I axis, measured in hody coordinates from 

nominal vdlicle cl:nrroid. Note 1-.:; is below 

Cl:nter of buoyancy lB by dcsign for passive 

roll/pitCh stabili ty 

c::enter of Volumetric centroid of the vehicle. 

buoy;mt:y 

x •• ~. " ," '"J 

Centl:r of buoya ncy location along body 

longitudinal axi;; 

Center of buoyancy location along body lateral 

Center of buoy ancy location along body vertical 

axis. Note Z8 is above centl:r of gravity z..; by 

design for passivc roll/pitch ;;tability 

Distance from nominal vehide centroid to 

centerline of bow vertical thruster TUnnel along 

body longitudinal axis. 

Distanct: from nominal vt:hicle ct:ntroid to 

centerline of stern vertical thruster tunnel along 

body longitudi nal axjs. Note negative. 
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1.07 in 

= 0.089 ft 

0. 125 in 

= 0.010 ft 

0.0 ft 

0.0 ft 

1.4 1 ft 

-1.4l ft 



II (x) 

b (x) 

j)e~c l'i pti()n 

Distance from nominal vehicle centroid to 

..:e nte rl ine of stern latera l thruster tunnel along 

body longitudinal i\,,;is. Note negati ve 

Port propeJlt:r shaft offset from 

longitudinal centerline of vehicle 

Starboard propeller shaft offset from 

longitudinal centerline of vehicle 

Width of vehicle Ht body c~nter ,li ong the 

y-axis. a! H given position x measured on the 

longitud inal body a,\is 

Ikight of veh icle at body center along the 

z axi s, Ht a given position x measured on the 

longitud inal body a,,;ls 

Total cross·t1ow velocity a..:ross body at a given 

hody position x along longitud inal a.'1.is 

1.13 

VaJ II~ for 

:-.IPS AU\, II 

• 1.92 ft 

- 3.75 in 

0.3 \3 ft 

3.75 in 

0.313 it 

vehicle 

geometry 

tabular data 

vchicle 

geomerry 

tabular datI 

Equation (6.47) 



ne~'Tir!ion 

Surge force coefficients 

Average forward velo!.:ity based On combinrd 

sleady-slate Ipeed propeller revolutions per minute (rpm), 

per maxmwm typi!.:ally measured al maximum steady-slate 

propeller rpm speed. Analogous to turns-per-knol (TPK) ralio 

for ships wilh fixed-pit(.:h propellers. 

Value for 

(2"'=) 
700 rpm 

for twin 

propellers, 

steady state 

No longer used. sin!.:e Xp,.p term is nOI a true Not used. 

coefficient. Xp,.p is now decomposed in Previous values 

Equation (6.43) to ex-plicitly show individual are no longer 

!.:ontribuling propul'iion-rdated variahles, whkh applicable. 

are then included in the revised surge 

j equation of motion (6.48). 
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C"efficient J)eScripti[)1l 

x, Coefficients ~escrib i ng ,urge forces from 

1---+-----1 r{"wlved lift. drag and flu id inertia (llong body 

1f-_x-""_ +-_ ---1 longi tlHii n'l l ~xis, The,e occur in respon~e to 

X. 1,-------"-+-----1 individual (or multiple) velocity. acceleration 

f------ and plan~ s lll:fac~ componentS, as indicated by 

1f-_x-"'_+-_---1 the corr~spo nd ing 'iubscripts 

1f-_x-'-'_ +-_---1 ~or example 

X" 
X" describes the drag contribution 

in the longirudinal X direction 

due to time rale of change of 

surge velocity ( r.i) 

1f-_x-""_+-_---1 Note thM :tny coefficient may be non-zero, 

I f---'X~""",. -+ __ --1 depending principally on the geometry of the 

If---'x~"",,,-, -+ _ _ --1 vehicle being modeled 
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Value for 

NI'S AU\, n 

-2.82 £ -3 

00 

0 0 

(J.(J 

0.0 

00 

0.0 

D.O 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0. 0 

0.0 

0.0 

00 



Value for 

Oestriptioll NI'SAl'V II 

Irxo~l o~I"~"'+ __ ---1 Drag force due 10 square of deflection angle of 

X bow planes ((\"') ' stem planes «\,) and rudders 

1,-",o""''''-''''''--!-'---1 (8,~. '\,j respcc:lively due to sqmm: of surge u 
X"i";~r6r 

- 1.0 1R £ -2 

-1.018 £-2 

-LOI8 £-2 

If--x"-"--i- - ----j Fluid inertia force due to paired interaction, as 0.0 

X., indicated by subscripted veloci lies, typically 0.0 

nonzero only as a result of asymmelries in the 0.0 

X,., 
vehicle hull fonn 0.0 

c~ Drag coefficient a long body longitudinal axis 0.00778 

Note for remain ing coefficients. orlly non -negligible l\1J'S AU V values are listed. 

Sway force coefficients 

Y, Coefficients describing sway forces from -3.43 £-2 

Y, resolved lift, drag and fluid inertia along body -1.78 E-I 

y-
lateral a:<:is Thest: occur in response to -1.07 E-l 

y. , 
individual (or mult ip le) velocity, acceleration 0.0 

Y .. I_16rb 
and pla nt: surt'ace components, as indkatcd by 

+1.1 8 E-2 

the couesponding subscript.'; 
+1.18 E-2 Y~I. l a" 

C~ Drag cot:fficient along body lateral axis 0.5 
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Ie,. "",,", I 
Heave jorce coefficient.~ 

Codli<..:ients ckscri bing heave forces from 

z, resolveu lift. drag and fluid inertia along bod y 

11---1------, veni<.:al These oc<..:ur in re,ponse to 

11-- ---'--- ----1 
ind iviriua l (or multiple) velocity, accelr~ation 

and plane surface componenl" a, indicated by 

11---,--------1 the corresponding subscripts. 

c" Drag coefficient along body vertical axis 

Roll mument cu(:/ficieflls 

Fluie! int-,rt ia rnom('.nt :\bout longitudinal body 

axis due 10 time rate of change of rull ratc (p ) 

Fluid inertia moment abo ut longitudinal body 

axis due to c:xisting roll p and magnitude of 

surge u 

Drag moment about lo ngitudi nal body axis due 

to signed sl/uare of existing roll p 

~orre~ponding to turbulent flow 
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Valu~ fo r 

-9.43 E-2 

-2 .53 E-3 

-7.X44 E-l 

-7.013 E-2 

-2.11 E-2 

-2. 11 E-2 

0.6 

-2.4 E4 

-5.4 E-3 

-2.02 E-2 

est imate 



D~scription 

Drag mornent about longitudi nal body axis riue 

to exist ing roll p correspondi ng to laminar flow. 

approximately equals KplP at IO/sec 

Pitch moment coefficients 

Fluid inert ia moment ahoul lateral body axis 

due to time rate of change of heave rate (IV) 

Fluid inertia momclll about lateral body axis 

due to time ratc of change of pitch nile (4) 

Fluid inertia moment about lateral body axis 

due to existing heave wand surge u 

fluid inertia moment about lateral body axis 

due to existing pitch q and surge u 

Drag moment force about lateral body axis duc 

to bow plane deflection 8,.. and signed square 

of surge u 

Drag moment about la tera.1 body axis due to 

stern plane deflection 8,.. and signed square of 

surge u 

Drag moment about lateral body axis due to 

signed <;quare of existing pitch q 

I cOlTesponding to tllfbuJenl flow 
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-2.53 E-3 

-6.25 E-3 

0.0 

-1 .53 E-2 

-0.283·L· 

-t-O.377 ·L· 

-7.0 E-3 

estimate 



Valu~ fo r 

Descripti()n NPS AUV II 

I 
Drag mome!] t about lakra l body axis due to () 

existing pitch q corresponding to laminar flow. Mqlq l 18~" 
JPproximlltd yequals Mqiql at I"/sec 

Yaw moment coefficients 

Fluid in ~ rtia moment about venical body a.'l.is -1.78 E-3 

due to time ra te of change of sway ( v ) 

Fluid inenin mOr.l~nt about vertical body axis -4.7 E-4 

due to time rate 0: l hJnge of yaw U) 

Fluid inertia moment about venical body axis 0.0 

ci ue to exist ing sway ~. and surge u 

Fluid in~nia moment about vertical body axis 

due to existing yaw r and surge It 

Drag moment about vertical body axis due to 

bow rudder deflection 8., and signed square of 

surg~ u 

Drag moment about vertical body axis due to 

stem rudder defl ection 15" and Signed square of 

surge u 

-3.90 E-3 

+0.283 ·L · 

+0.377·L · 

~ ----~--~---------------------+------~I 
."1'11 1 

Drag morrlt~nt about vertical hody axis due to 

si~ned square of exi,ting yaw r 

lorrespo nli ing to turbulent flow 

-5.48 E-3 

~ --------~----------------------~--------~ 
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II 

Coeff idpn! 

N, 

I 

OtoScriplion 

Drag moment about vemcal body axis due \0 

existing yd\\.' r correspo nding to laminar flow, 

approximJtdy equals lV'lr l at ]Ojscc 

Propdkr yaw moml:nt fOT NPS AUV U is 

normally zero due to twin propt:llers that are 

ide[lti~ally paired, offsetting and 

cou!ltcrrotating. Howe.ver Np"'l' yaw moments 

arc not zero if paired propeller lpm vallIe, 

differ. Actual mOllll:nts equal 

(Fw.P'Ir., ·y"",P<lt.) for each propeller. now 

included in yaw equation of motion (6.53) 
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8, Modificati()n~ to Previous D}'namics Equations of Motion 

Gi ven thl:se nomencl ature defin itions. the next task is to modify the 

dyn"m ic$ equations of motion to gro up only booy-acceleratioll rdated terms on the 

left hand and group vd ocity-related terms on the right-hand sides. The 

:<!ge braie; transformations arc similar for each of the six eq uat ions of motion 

Ho,,"cver the ,urge equation lequires a number of important mooifications and INilllJe 

derived in detail. The surge equation describes tht;: rdationships between alJ forces 

~ffec:tlng the linear body accelerat ion of the ve hicle along the body longilUdilml axis 

The origln~. surge mOlion equation of (Healey 93, appe ndix) includes aeeekrations on 

both sides and appears as fo llows 

Pn" 'ious Sllr~e Equation of l\1ol.ion 

m [ri - vr - wq - xG(q2~r2) + Yr;(pq-f) + zc(pr+q)] 

~l.4 [Xpppl~Xqqq l~Xrrr2'Xp,pr] 

+ ~LJ rX.u+X •. qwq+X'1''1'~X'TVI'" 

+!lq(Xq~Jl , +Xq&hJ2fll>p +X~!>(.!fl~ +X,o,urfl,)+Xr&,ur~, 1 

+ ~L2 [X""vl+X_wl .X~ruv~r +uw(X"'ft.~.~X~b(2t1~+X~b(.!fl~p) 

+ U2(X~J~JtI; -XOMb/2lJ~b +Xftr~rlJ;) 1 
+ (W-B) sine 

+ iL' Xq6""uqtl.E('l) .,. ~L2 lX~_",uwlJm ~X6.omu2t1J'€('Il) 

+ £L 2 u2X 
2 P' ''P 

(6.39) 

r he (Healey (3) equations of mOlion described and t;:xt~nd ed the carlier 

U. S. Navy Swimmer Delivery Vehicle hull lIumbt:r 9 (S OV-9) equations of motion 

(Smith 7::i, declassi fied), which were determined both empirically and theoretically 

Thr f. (ll l t~ITr. in Equati()/I (6.39) approximates a second,order svccd related SOV-9 
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rropulsion response as obscrvt:d in tow tank testing. To w tank tesling is atypical for 

1l1OS( undCrI.\'dter vehicles. Similarly. S~i' terms are related to an nonstandard conn'ol 

Jrr~ngemcnt In (he SDV-9 that included independent control of port and starboard bow 

A split bow planes control configW'ation is not unusual, but more often plane 

surt al:es me controlled in pairs. The effects of individual planes have been combined 

J, JJcilh in {hi, m()(kl for simpli...:ily. Therefore the £ (11) and {)." lerms are not 

In~ILJdt(i in the genenll rnod !'C \ derived hen::. 

Despite these reasonable simplifications it is worth noting that many 

exisllllg Ilnderwater vehicles have asymmetries and unique characteristic~ which may 

I\ot be fu lly captured by lh es~ general dynamics equation~ of motion. Additional 

rnodificatlOns to the equations of motion may be m:cess<lry in some applications for 

proper characterization of different veh icle designs (such as individually controlled 

bow planes). For e.,ample, individual control of plane surface pairs will be necessary 

it active control of vehicle roll during cruise mode is attempted 

X""p as defined in the original surge equation of motion of (Healey 93) 

composes a number of important variables including conunanded speed, actual speed 

and drag. The X",op fomlUlation is not intuitive trom the perspective of a general 

description of forces. Furthermore the composi tion of several variables as an apparent 

constiHlt I, very misleading. The following derivation algebraically reveals and 

I'earranges the component villiables making up the X""p term. This rcfonnulation 

permits distinguishing between propulsive force and drag force contributions occurring 

along the body longitudinal direnion. Again fro m (Heaky 93) 

(6.40) 

o (2ftl=l~ 
100rpm u 

(6.41 ) 
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where :~) Cln be referred tv <IS ,It/'udy·,Hate spl'ed per maximum propeller rpm 

ComCining (6.40) wi th (6 .4 1) and expanding the l<lst complete term 

contJind in the (Healey 93) surge equa ti on (6.39) 

~L2U 2Xprop = ~L 2ulu I C,.cJ (TJ III i -I) 

= £L 2ulu C,.cJ 12ft/sec .f! . 2ft/sec Inl 1 
2 700rpm u 700 rpm ~ - j 

- l'L'C~ [l' 2ftl= )' n1nl"Jul." - "1' 1] 
2 700 rpm u lui 

~ l'L'C~ [(.3/'1= )' nlnl - 'IU I[ 
2 700 rpm 

(6.42) 

The propu lsion contribution (due to propdkr rpm ,,) and opposing drag 

contnbution (due to fo rward surge velocity u) are now evident. When the vehicle has 

tWD pro pellers, a pair of fOf\vard fo rces contribute to the cxpected speed per rpm, and 

thc preceding X",..~ terrn shown in Equation (6.42) is expanded to become: 

Force from a single propeller OUI of a pair is as fo llows. Corresponding yaw moment 

contributions by each of the propeJlers have been added to the yaw Equation (6.53) . 

~ P " [(2ftl=)' 1 ( I I r~le_pr_Ik' = -L LdO -- - nit) 
(0 .... "' .. ".,..,) 2 700rpm 2 prop prop 

(6.44) 

Examination of Equations (6.41) and (6.44) reveals that, as forward velocity 

/I increase s, lhe effective forward thnlst due to propeller rpm n decreases according to 
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the expected signed square law, similar to a pump curve of shaft rpm versus pressure 

hedd . r\Ole that these equations also accurately describ<: drag forces against forward 

:notion whrn a moving vehicle's propellers afC turned off. Extensive test tank 

expninlcntal data is not nct:ded for measuring this predominant relationship betwren 

propel ler thrust and forv.ard speed. A straightforward mrasurement of steady-state 

speed for maximum propeller rpm pn:cisely quantifks Ihis n:laLionship. 

Cross-body thruster propulsion tenm have also been added to the dynamics 

equdtions of mOllon. Steady-state thruster foret: is closely proportiunal to the signed 

SljUdfC of ordered motor voltage for the cross-body thrusters drsigned ano consrrucled 

for the NPS Al:V II (Cody 92) (Healey 94b). This signrd square rela tionship between 

control voltage and effective thruster force is shown in Equation (6.45) . The sign 

~onvention for thruster voltages is that positive voltage results in a forcr which pushes 

the vehicle in the: po~itiv e: direction of the body lateral or depth axes. More precise 

modeling of thruster non linearities and sinusoidal-exponential time response is possible 

using generalized tunnel thruster dynamics models (Cody 92) (Healey 94b) 

(Brown 93) (Belton 93) (Fossen 94). Dynamics-based models of thruster response 

must be used instead if thruSler temporal response is significant. Similar results have 

been found for other thrusters that include thrust controller circuitry (Sagatun 91) 

(Mal·ks 92). A nontemporal signed square voltage model was found to be reasonably 

accurate for th e: overall effects of the NPS AlJV thrusters. Open loop test tank 

cxperiments can quantify installed thruster peITormance versus time with little 

difficulty. 

Since an accurate force equation is available to modd the four individual 

thrusters. force and mo-ment terms can be added directly to the sway, heave, pitch and 

yaw equations of motion. Physical offsets of thruster centerline away from the vehicle 

crntroid are multiplied against forces to obtain corresponding moments, as shown in 

Equation (6.46). Opposing moments due to forward and aft thrusters arc accounted 

for by positive ~nd negative thruster tube offset distances, respectively. This 

eliminates the need for the previous N"..p fOInlulation. 
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F IZ.01b)V V I 
thnme,"..o-24' I t"""-l.r rlon/.mr 

\ VO ts 

(6.45) 

(6.46) 

I'he a,1l1ition of thruster fon:es and moments is required to extend the 

(Jkaky model 10 rl'lnain vaiid at low fOf\.varrl speerls hmering mo{k) 

C:ont:sponding dampin::r moment~ must abo he included to model the resistance of 

agaiIl~1 rotational motion in these directions. Previously existing drag terms 

mCluoe surge u as a and each approaches zero al the low forwal'd spet'ds 

associated with hovering. l1l(:ordore new rotational damping drag terms must be 

induded to account for skin friction. particularly at low speeds. Kpp ' il.fq'l' and N" are 

coetfici~nts fm quadratic tl:rms COIII:SpOliding to turbukm boundary laYl:r skin friction 

K? M,,.. aTid /'.", are coefficients for linear i~rms corresponding to lamjnar boundary 

laye! k; suggested by (Sagatun 91) (Fossen 94), all six of these skin 

frinion damping terms have been added to rotational dynilm:K:s equations of mOlion 

(f).51) through (653) respectively. Kpr"p and M",..~ terms arc no longer needed, fO! 

reasons analogous to those presented fol' N!,,"o, previously 

One additional function nl:ooed for the dynamics equations of motion is 

li,,., a normil.li:>:ing quantity tor eross-hody tluid flo\',,' with respect to body distance x 

along the vehicle longituuinal axis. Prom {Healey 93): 

(6.47) 

Related functiolls h(x) and b(x) in Table 6.2 and the dynamics equations of motion arc 

provided for the NPS AUV by a table of cross-sectional measuremenlS (Marco ()5) 
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rh is is an example of srrip theory which divides tht: body of a submtrged vchick into 

mu ltiple parallel strips, estimates hydrodynamic coefficients for damping and addl:d 

mass over each strip, and then sums the conrrihution over each strip to produce overall 

coeffici ent estimates (Fossen 94). Alternative methods of calculating cross-body flow 

fon;e .' <lrll1 moments appear in (H umphreys (1) 

Some arlditional explanation is necessary for timc-vaIy ing forces. So-called 

Jddcd mass" forces are re lated to the resistance of the surrounding fluid to vehick 

body <lc<:clcralion . This physical behavior is predictable and' reasonably intuitive: 

accderiltion of the immediately adjacent water volume reqllires a corresponding force. 

anrt i\ thereby n:ft:rred to as an "added mas,:;" effect. These forces are only 

proportional to vdlide accelerations and not vehicle velocities. T his l:haracteristil: of 

a rigid body interacting with a flui d medium hdps to c;t(plain why the body frame 

mass malrh lMl (which conesponds to vehicle mass, moments of inertia and "added 

mass") is time invariant 

Replacement of the X,...p and simi lar tenns, removal of the C (Tj) and 0.11 

terms, including added mass terms, standardiling explicit nomenclature for 

hydrodynamics coefficients, and grouping body accelerations on the opposite sides 

from ve locities now produces the dcsin:d form of the surge equation. Transfonnation 

of the remair ling five equations of motion for sway, heave, roll , pitch and yaw is 

simibrly performed by direct algebraic manipulation from those versions presented in 

(Healey ':J3). Thruster forces , thruster moments, propeller yaw moments and damping 

drag moments have ocen added w here appropriate. 

'J. Dynamics Equations (If Motion 

r he critical -contribution of this chapter is the unambiguous definition of 

variables and coeffi cients, and a revised set of underwater vehicle dynamics equations 

of ['lotion. These equations and the accompanying hydrodynamics mode! are 

impkmented v~rbatim in th~ accompanying virtual world source code (Brutzman 94e). 

Final and complete forms for all si;t( dynamics equations of motion follow. 
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Sur"c Equation of Motion (6.48) 

rm - ~L lX~) u .- m::Gq - mYG; 

'" m[vr - wq .- XG(q2.- rZ) - YGPQ - ZGpr] 

'-1L 4[Xppp 2 .- XiMq 2 - X"r 2 .- Xprpr] 

.- 2.L11-Xwq wq - X,p vp .- X'T vr + uq(x"'I~bapb - x"'I~.ap.<)1 
2 _ .- ur (X~,~,a'b + x~,~ , a ",) 

,2.L l- X",v 2 
+ X_w2 + uvX""&.I'i,, .- uw (X«wMllpb ' X"W~ . llps) I 

2 '- + ulu l (X"I"I~b&bll~ , X"IK I ~~~ll!. .- XKIK I &~,ll~ .- X_ IKIMrll~) 
- (W-B) sin(B) 

.- 2.L2C4l [( 2ft/SIX )2 .! (nponlnp.onl.-nubdlnuMl ) _ u,uIll 
2 700rpm 2 

Swat' Equation of Motion (6.49) 

(m_~L J y},.- (-m::G - 1L4Ypk + (mxG - fL4Yt); 
= m [-ur .- ~ - xcPq .- y,)p2.- r2) - zGqr] 

__ ~L2[y""UV'- Y"",vw,- ulu l (YuIK I3r61'i." .- Y.I"13".1l .. )] 

- ff: [Cdyh(X) (v f xr)2 -- Cdl:b(x)(w - xq)2] (~; (~) dx 

- (W-B) oos(6) sin(cIl) 

.- [ 24~:ltJ [Voo.. _/aurot!Vbow_",-, 1 .- V .... m latcrol lV_rn-lal.roll] 
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Heave F.quation of Motion (6.50) 

(m - ~L3Z,.) w • myGP .. (-mXa - %L4Z4)4 

= m [1«1 - vP - .lGP' - Yaq' • ZG(PI. q I)] 

.. 1L4[Z.."p2 ~ Zp,pr • Zrrr2 1] 

• %L3[Zoquq. Z,."YP . Z..,.vr] 

.. 1L 2[Z .... uw • Z.~ yl ~ U 114 I {Z. I. 13b6,. .. Z. I" l e~o,..)l 

- ..e.r-[Cdyh(x) (v ~ .lr)2 • C.b(x)(w - xq)2] (w - xq) dx 
2 ,,1411 Uct(x) 

• (W- B) cos(6) cos{q,) 

- ( 24~:Its) [V ..... """IV ..... """ I • V_m.~IV_m. __ 11 

Roll Equation of Motion 

~m2r-~L4K.)V. mYcw . (/% - 1LSKjI)P - 1"14 " ( -In - %L 5Kf )r 

[-(It - qqr - I~r .. 1~(q2 - ,2) .. l,::,pq] 

- m[Y(kuq • vp) - zG {ur - "'P)] 

(6.51) 

_ • 1LS[Kpqpq • K'I'qr .. KpIP1P!P1 .. Kpp] 

.. 1L4[K1.p 1u!P . K",ur . K"'lvq .. K"'1'WP. K...,wr] 

.. %L3[K.oUY" K"",vw - u lul(K.loleb0pb • K.I. I ~~Op.r}1 

.. (y .... W - yBB) cos(6) cos(q,) - (Z .... W - ZBB) cos(6) sin(q,) 
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Pitch Eq uation of Motion 

mle" .. (- mx6 - ~L4M .. JW" -lr/J + (I, - ~L5M4}1 - ',/ 
(-(I, - ' , )pr .. l",qr - I" JXi - ,-,<(p2 - ( 2)] 

~ m [xc( - uq .. vp) - lc(-vr .. wq)] 

+ ~L S [MPI> p 2 .. M", pr .. M'I, l r r l .. Mq1q1q lq l ~ M9 q] 

.. ~L4[M"4uq + M."vp .. M .... vrJ 

" 1L J [M~ .. UW " Myyv 2 .. u lu l(M_1101 &bi!.pb + M.1•16,i!.p,o)] 

.. £.f"""" [Cdyh(x) (v .. xr)2 .. C.b(x)(w _ xq)2] (w - xq) xdx 
2 ,1DiI U~f(x) 

- (xc W - xsB) (;os(6) (;os(41) - (zo w - lsB) since) 
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Yaw Equation of Motion 

mycu + (mx" - ~L4NvJ V + (-I", - ~L5Np)P + -I,..q . (I. - ~L 5Nf)f 
[-(ly - I)pq ~ I"YIp! - q2) ~ Iy:.pr - {.,qr] 

- m [xd ur - wp) - Ye( -vr ... wq)] 

+1L'[Npqpq + N"qr + N.1,l r lrl + N,r] 

+ fLl[N""Uv t N"",vw t ulu l(N~ I. I "'bll'b - N.1al",..1l,s)] 

- ..e.r-- [Cdyh(x) (v + xrf + Cd:r:b(x)(w - xq?] (v + xr) xcIx 
2 soa/ U.,(x) 

t (xc W - J:gB) cos(S) sin(q,) ... (YG W - ygB) sinCe) 
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1.111" 

In. J\--tass and In ertia .\-latrix [M) 

Matrix equations can now be writll:n from the dynamics equations ()f 

motion (6.48) thwugh (6.53), gmuping sign ificant tcmlS together appropriately. The 

left-hand sides arc simply wrinen in matrix form as the product of the body c()ordinatc 

ir,!me mass mJtrix [Ml and the time rate of cha nge of velocities malri ., [V ]body. The 

force m.;trix [FJ is J (6 x l ) matrix comprised of the right-hand sides of the six 

dynamiLs equil.tions of motion 

rhe body coordinate frame mass matrix [,1.f] is determined from the 

cocfficient.s corresponding to linear and rotational components of [v jbody on the 

left h;md ~ide of the given equations of motion (6.48) through (6.53). When expressed 

properly, this mass matrix is time-invariant and does not include any veiocity-relali:Xl 

terms_ All possible added mass terms are included here for completeness, even though 

many of the terms are likely to equal zero (Fossen 94). 

(6.54) 

m - 2.L 3X 
2 " 

- £ L'X 
2 • -1L3X,.. - £ L4X 

2 ' 
mZa - 1L4Xq -m ya-1L'xj 

_2. L' Y 
2 " 

m_2.L l y 
2 • 

_2.Lly 
2 ' 

- mza-1L4yp -2.L' Y 
2 • 

mx _2.L4y 
G 2 • 

-£L'Z 
2 " 

_f L 3Z" m - 1 LJZ,.. mYa - fL4Zp -mxG -~L" Zq -1L4Z, 

- £L4K 
2 • - mZa - 1L4K" mYa-f L 3K", [-£LsK 

• 2 ' 
-[ - '£' LsK 
~ 2 • - txt -fL SK, 

I m, .- £L'M -£L4M -mxa-fL4Mw 
-[ _£L5M [ - E.LsM -[ -.£.L-~M 

G 2 r.i 2 • ~ 2 ' )' 2 q "2 ' 

- mYr; - fL 4N,; =G £L 4N - £L 4N. [ - '£'LsN - [ -'£'LsN [ - '£'LsN. 
2 • 2 • • 2 ' }~ 2 q '2 ' 
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The spatial distribution of mass within a body has sevt:ral important effects 

whi..:h are quantified as moments of inertia. Calculation of inertial moments are as 

shown in Equations (6.55) through (6.60) . In practice these calculations are performed 

as wcighted sums, measured fmm vehicle origi n to centers of mass for individual 

internal vehi..: le componen ts. Lf the vehicle has a variable ballast system, changes of 

mas~ Jnd inertial 1l1Omcnt musl be accounted for and then the body frame mass matrix 

[ .. \1] bel..:OllIes s lo wly time-varying. 

Ix '" J {yZ + Z2)dm (6.55) 

Iy" J(x 2 +Z 2) dm (6.56) 

It'" J (x 2 + y2)dm (6.57) 

ILY "Ip" Jxydm (6.58) 

IX4 '" fu " J xz dm (6.59) 

Iyt '" Irj " J yz dm (6.60) 

Mass matrix inversion can be accompli.~hcd via any of several algorithms 

(Press 92) (Hamming 86). Note that since the body frame mass matrix [M] is 

ordinari ly time-invariant, the inverse mass matrix [M].l does not have to be determined 

rcpeatedly r hus the computational effkiency of this large manix inversion 
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.:aku lation has no effect on the real -time responsiveness of the hydrodynamics model 

algor ith m If total vehide mass or inert ial moment changes due to variable b<tllast or 

"gtllf iL<l llt moving internal components. the matrix inversion ..:alculation will have to 

be o.:.:a;;ionally repeated and may impact fea l-t ime response. 
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II. Summary of Hydrodynamics Model Algorithm 

All of the components of the general underwater vehicle real-time 

hydrodynamil:s monti have been pres r. nted Figure 6.5 su mmarizes the hyd rodynamics 

mockl algorithm 

Estimate and invert mass matrix 1M] using equation (6.54) 

Initialize 
Jnd lime 

Loop until robot is done: 

model variables for posture [P}, velocities LV] 
of velocities using Table 6.1 

receive updated state vector from robot, ordered effector 
values for rudders. planes. propellers. thrusters dapsed time 

Calculate new values for time rme of change of body velocities, llsing 
the clllrent vehicle Slate vector and equation of motion righl·hand 
sides using Table 6.2, equal.ions (6.24), (6.30), (6.35), and 
(6.48) through (6.53) 

Update velocities rV] ~oJj using equal ion (6.31) 

Perfonn transformation to [V]~' .. lJ using c<luations (6.5), (6.9), (6.10), 
(6.11), and (6.22) 

Uprlate posture IP] using newly-calculated velocities [Vl~.'lJ' 
ocean current estimate and previous posture using equation (6,33) 

Return newly·calculated hydrodynamics values to robot via telemetry 
update of the robot state vector. Most calculated velocities and 
accelerations correspond to real"world values provided by inertia\. 
now and pressure sensors. 

Wait for nen updated state robot vector. Continue loop upon rcceipt. 
Shutdown when model is no longer required by robot. 

Figure 6.5. Undr. rwater vehicle real-lime hydrodynamics lllodelinE 1l1gorithm. 
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E. EULER ANGLE METHODS COMPARED TO QUATEKNION METHODS 

f'he hyc:rodynam:;:s moc:el presented here is based on Euler angle reprt::sentatiollS 

of veh icle orientation . Another possible representation method of interest is the unit 

4uacernion. The use of quaternions is most notable for a lack of singularity when 

pOlilting vertically. and also for well-developed mathematics that pernuts rapid and 

efficient orienta tion update ra tes (Cooke 92b) (Kolve (3) (Chou 92) (Funda 90) 

(Shoemake X5) . This section briefly describes quaternion mathematics as a possible 

alternalive to Eule:' angle orientation calculations in the underwater vehicle 

hydrodynamics model 

The underlying mathematical reason that an Euler angle rotalion matrix; is unable 

co satisfactorily represcnt a vehicle pointing vertirally (along the z-axis) is that 

e.~trilction of Euler angles provides a unique vallie for pitch (6 = ± 1t) bUl can only 

p~ov;de the sum (~ • ~,nose up) or difference (4l ljr. nose down) of roll and yaw, 

not unique values for ea<::h. Thus thr~e parameters are inadequate to UfliHnbiguollsly 

represcnt all possible orientations as desired. Sir William Rowan Hamilton deduced 

and j eveloped qllatemion algebra in 1843 after searching many years for a 

gener~li2:atioll of complex numbers. He determined that four parameters are necessary 

to represent al l possible orientations without potential mathematica l singularity 

(Cooke nb) 

Consider the unit spht::re as illustrated in FiglUe 6.6. Three parameters are 

ne<::essary to describe a unit vector directed from the center to any point on the sphere 

surface. A [olUth parameter <::an then be used to describe a value for rotation about 

this axis. This combiJlation of unit vtxtor and axial rotation uniquely defines all 

possible orientations, provided ro tation values are specified to have a range [O •. 2J() 

tEuler's Theorem). 
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Figure 6.6, Quatemion representation. 

There are several ways to represent quaternion values, described in detail in 

(Cooke na, 92b) (Kolve 93) (Chou 92) (Funda 90) (Maillot 90) and (Shoemake R5). 

Tbe simplest representation is to scale thn:e orthogonal unit vectors i , I, and k to 

tndicate a point in three space. and then comhine those three terms with another value 

for rotation about the described axis as follows: 

Q=w+ix"IY+kz (6.61) 

The Euler paramfter representation follows an Euler angle approach to state that 

three angles A. Band C can provide a rotation matrix that wiH align a rotation axis 

with the world coordinate frame. A fourth angle D describes rotation about this axis. 
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anrl D directly, :1 unit 4uaternion (l is representc:rl Iising the 

% = cos (f) 
qj = cos (A) sin(f) 
qz = cos (B) sin(f) 

q3 " COH(C) sin (~) 

(6.62) 

(6.63) 

The four cUlnpunen t values or quaternion Q are called Euler parameters Expressing 

qmlternions using L::ukr parameter fonll is desirable due to improved (;omputational 

dfi(;:ency umlJlg arit.hmetic operat.ions. Normalization lIlay be puiodically required 

llfl(;] nUllleri(;ai calculations to ensure that magniturle of each unit quaternioll vector 

rcmain, ~quaj to unity (Cooke 92h). 

One ~mpcrtant property of unit quatcrnicns as described above is especially 

lIserlil. Multiplication of two unit quaternions produces a new uni t quatcrnion which 

r~prcstnrs the results of tWO <;uccessive corresponding rotations 

(WWl - XX1 Y Y1 - ZZI) 

(XWj + WXl - ZYj + YZ1) 

(YWl - ZX l - WY j + XZ1) 

(ZWl YX j - XYj ~ WZ1) 
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Angular ve!ot:i ty of a rig id body can be convened from body coordinate frame 

~f1gll l ar ve locities to quaternion rales as follows: 

40 " - ~ (qjP .. q2q .. q3' ) 

41 " H qnP .. q2' - q3q } 

el2 " ~ ( qoq · q-;p - q l r ) 

q) " ~ ( qo r. qlq - q2P ) 

(6.65) 

G iven an init ial orientation represented by a qualernion Q, orientation updates 

me obtained by periodicall y integrating quaternion Q using quaternion rate Q and 

time step ((it) via any numerical integration method . 

Euler angles. if needed, are then I::<.tractl:d from the updated quaternion Q('o • ~I) 

as follows (Cooke 92b): 

(6.66) 

(6.67) 

(6.68 ) 

:-Jote that the venical restrict ions on the range of pitch angle a from 

Equation (6.2) remain unchanged in Equations (6.67) and (6.68) when converting from 

the ljuaternion representation back to Euler angles. Further mathematical 

manipulations of the quaternion wi ll not produce values for ¢ or 0/. However, unlike 



the <, ingularilY in Euler rates Jt e ~ ± TCf2. there is no corresponding singularity in the 

Lilute rnion rates of E(; IlJtion (665') 

Til? priTll:ipal drawback 11) using quatelJlions in an underwater virtual world 

hydrodynamics modd is greater computational comple)(ity when calculating Euler 

wh id are ne~ded for networked posture update reports. The principal 

JctvJntagr of lj uaternion arithmetic is that computational complexity is less than Euler 

ilngle melhod~ wh?n solcly nlklliating rOlational updates (Cooke 92b). In the CUlTent 

im pl ementation of the vi rtual world, Euler angles are required at every time step, in 

ordcr 10 produce sensor val ues in the vehidc state vector and in orcter to pwvidr DIS 

network updates. Thus Euler ang lr methods arc u~ed in the hydrodynamics modd 

illl plementation (llrmzman 9'k). These requirements might change if another vehicle 

without sucH sensors were modeled. If no virtual vehklc yaw, pitch or foil sensors 

are being modeled, or if DLS nrtwork updJtcs arr infrequent, thc periodic 

co:-r.putational drawback of ljllaternion -:onversions to Euler angles might become 

negligible. The mathcmatical mrthodology prcsented in this section riemonstratrd how 

to utilize quaternions for recording and updating oricntation rotations in the 

hydfIJ dynarnics modd, as an alternative to Ellkr angle mcthod,~. Detailed comparisons 

of compuwf:of'al efflciency including network considerations appear in 

(Cooke 92a, 92b) 

F, DISTRIBUTED INTERACTIVE SIMULATION (DIS) AND NETWORK 

CONSIDERATIONS 

Distributed interactive Simulation (DIS) is the IEEE standard protocol (IEEE 93) 

used for -:ommunicating between networked entities sharing the same virtual 

environlllt:nt. In order for a robot operating in a virtual world \0 be visible to other 

entities, DIS Protocol DatJ Uni ts (PDUs) afe sent out at regu lar intrrvals. The 

[J lIrpose and implcmrntation of the virtual world DIS interface are prcsrntrd srparatcly 

in thr nrtwork considerations chaptrr. This scction examines the specific fequirements 

of the Ilyctrodynamics model that pertain to DIS. 
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The purpose of the hydrodynamics modd is to provide valid real-time response 

to ~ networked robot operat in g in a virtual world. The hydrodynamics model is 

co l ~lplc)( and sophisticated. A wide variety o f subtle physical responses are possible 

One .,;urrent focus of research imen:st is examining the precise interactions that occur 

be twren robO! and hydrodynamics models. Fine-grained reproduction of every 

interaction is therefore desirable for scientific purposes, if supportable by the network 

and vifUlal world viewer programs. Reproduction uf AUV state at the same falc as 

inter::tctions between the rooot and the hydrodynamics model is correspondingly useful 

for visualiz<ltion of both robot vehicle performance and hydrodynamics model 

perf Of mann:. Currently this interaction rate is ten times per second (10 Hl) 

The DIS protocol requires that entities announce their position at intervals not to 

exceed 5 seconds so that other entities are aware: of their "live" presence (IEEE 93). 

In pradkc an interval of one to three seconds is typically used for eHtities such as 

,ground vehicles which usually move with constant linear velocity. Highly dynamiC 

vehicles such as jet aircraft may announce posture data many limes per second in 

ordcr to permit smooth refresh rates of rapidly varying postures (Towers 94). In order 

to n:ducc unnecessary network traffic. adaptive time steps between PDUs are 

recommended which only broadcast new values when predicted dead-reckoning error 

exceeds a reasonable threshold (or when the 5 second h:ep-alive deadline is reached). 

Choice of dead reckoning algorithm and other parameters can also reduce network 

loading (Lin 94). In general, minimil':ing PDU traffic is important to reduce network 

bandwidth, and also to reduce the processing load on eac h DIS receiver. These 

bandwidth considcrations grow in imponance when the number of actively 

participating entities becomes large. and also when using multicast DIS which can 

have world-wide Internet scope (Macedonia, Brutzman 94). 

Although linear and rotationaj velocities and accelerations of an underwater 

"ehi ... ~ le are ordels of magnitude lower than jet aircraft, underwater vehicle behavior is 

highly dynamic ntverthelcss. Exampk missions demonstrating highly complex 

interrelationships among vehicle state variables appear in the experimental results 

160 



ch,(pter and software distributi on (Hru tzman 94e)_ For some missions, frequent 

pO,>turC' ilp liates are necessary to closely evaluatl: vl:hidl: in te fJctioll with hilLardous 

<:".!lVirO[lIllCnlS in c lose ljllanCrS (such as a minefield), Precise posturt: informatio n is 

necessary to inrlicate interactions of propulsor flow and sonar sensors with the 

cnvirJllmenL CUllcntly thruM, o..:olltroi plant: and sonar values arc embedded as 

arl i~ ulated Piif?1l1cters" within individual DIS entity sta te PDlls for thr: NPS AUY, 

Future vrrs ion~ of the D IS standard are c l( pcC:lcd to provide new POU types 

'pccii'ically designed for announcing sonar transmissions, bur hydrodynamics flow 

vt:~tors (proportional to propulsor values) will conti nue to he inkrn:d from the vehick 

entity _,tdtc POU ~rtio,:ul~t~d parameter values 

Entity state POUs must contain postur~ values and can optionally include linear 

velocity. angular vdocity. and li ne[u at:celeration. Oelld reckoning algorithm vcio(;ities 

and llccelerarioll'; may be in world or body coordinates. Body accelerations are not 

expl:citly defined , but (Towers (4) presents two dead reckoning algorithms pertaining 

10 e,llh of two possib!e body acceleration ddinitiOllS. Of particular note are 

ex.penmental results which show that average processing time of world coordinate 

fran~e PDUs is only 80% n:lativ~ to body coordinate frame POUs (To","'ers 94). On 

the other hi\lld. a o,:omputational drawback in the use of world coordinate frame POUs 

here is the tact that the underwater vehicle hydrodynamics model does not direl:tly 

provide ao,:celerations in the world l:oordinate frame . The current DIS implementation 

III the underwater vinua l world utilizes world coordinate frame POUs because they are 

tno~e efficielll for receivers and Jess expensive to render. Future wOlk of interest 

includes implementing a selecta ble alternative encoding of entity state velocities and 

accelerations in body ffame wordinates. and then empiricaUy evaluating whether 

virt ual world efticiency is degraded by shifting PD Us to body coordinat~s, Dead 

reckoning algoriullTl dficiency and eva luation is further discussed in (Lin 94) 
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C;. OBJECT-ORIENTED NETWORKED RIGID BODY DYNAMICS CLASS 

HIERARCHY 

PI:ysically based modding include~ dynamics (modeling forces and 

acu, lerations) a, well as kinematics (modeling vdocity effects only). Dynam.ics 

considerations are a superset of kinematics. The implementation of the underwater 

vehick. hydrodynamics model wa~ designed to ino:;orporatc the principks of 

o:)Je'CI-orienred programming (encapsulation, inheritancc and polymorphism) and 

~tructurerl programming (top-rlown design. modularity anrl data abstraction) as 

appropriate (Booch 91) (Barr 9 1) (Stroustrup 9 1) (Frakes 9 1) (Barzel (2) (pohI93) 

(Bailey ':14). The many good design and software engine<:ring pri.nciples found in 

these rcf<:rences w<:re valuable in manilging the complexity of the hydrodynamics 

model. ~nd also in build ing a general dynamics model that can be easily adapted to 

other underwater vehicles (or even other vehicle types). Although no single software 

eng ineering methodology was rigidly adhered to, the resulting model implementation 

(written in C++) cnjoys most of the benefits which motivate these various refcrences. 

tI.-todel structure is briefly presented h<:re and furthcr dcscrihed in (Brutzman 94c). 

Structuring the model design problem was the key to comprehensible 

implementation. A straightforward hierarchy follows. Posturc is common to all 

vehicles and can be represented either by Euler angles, by Eulcr angles cmbedded in a 

homogenOlls transformation matrix (Fu 87) (Foley, van Dam 90), or by 

quatemions (Cooke 92b). A rigid body is subject to kinematics equations uf motion 

which combinc velocities with postures in strictly defined ways regardless of vehicle 

type or e nvironmcntal dimcnsionality. A networked rigid body which communicates 

with otller entities via DIS needs tu calculate postures, optionallincar and rotational 

vc\ocities. and (again optional) linear accelerations. Such a DIS-network.ed rigid body 

has identi<:al capahilities regardless of vehicle type. An entity dynamics component 

for a real-time networked virtual world combines the functiunality of rigid bodies and 

DIS networking with the dynamics equations of motion (forces and accelerations) 

unique to a spccific vehicle type. l"his structurcd hierarchy of relationships between 
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po,mrt rcpresrntat10ns, bodies, DIS networking and dynamics equations of 

Illotion led to thr grnera; model di"gram which app<'llS in Figure 6.7. 

I"he ill Figw'" 6_7 rklin"al" tJw fllnel.ionality of dass 

Th" compartment is cla,s name. The ~econd companment indicates 

fidds."-'hich are the data structures rncapsulated by the object_ The 

ti1::-d ,-OIllI,'intmenl indic,ltes object Il)ethods (functions) which ",[[eClively occur 

,""""',,o''''y. The [ollI'th compartment includes methods (functions) which are 

time consuming. cithcr trom the perspectivc of simulation dock elm-ation or actual 

(:eiav dllr r.o nrtwork latency. Adapted from the Object-Oriented Simulation Pictmes 

(OOSPICs) design and testing methodology (Bailey 94). this rliagraming approm:h is 

useful because it simplifirs presenlation of key object relationships and clarifies 

drslgn, Of particularly value is the explicit specification of temporal 

[Tlation~hips are critical to succc>s in a real-time syslem and are often 

OVl"rlookcf1 in complcx system design. An example ohjcct template which adapts the 

OOSPICs mdhodology from MODSIM programming language to C++ appcars as 

J-'"igure A for OOSPIC aTTU,\' cunventiui1S is induded in Figure 6.9 

(8aj~ey ~4). Software source code throughout the hydrodynami(;s das.' library 

impiemelitatiull (Brutzman 94c) follows the struclmallayoul presented in the OOSI-'I(, 

diagram of Figure 6_8 
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Hydrodynamics Model Class Hierarchy 

i.o.itlalizc and inspection 
cmmect and disconnect 
send PDU 

Figure 6.7. General real-time DIS -networked hydrodynamiCS model clas~ hierarchy. 
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Ic\n.ss Namc' 

mcmbH data tlekh 

instllllta]JCOu, metbods 

time-oonsuming methods 

Figure 6.S 

Figure 6.9. 

OOSPIC class diagram template for C++ class defi nitions. 
Separation of class name. data fiel ds. instantaneous methods and 
time-(;onsuming methods chuifies class funct ionality and design. 

+ t I 1 
tnhutUona: pemuo ...... t temporary membership 

OWIIUShip ownersh4> 

Object-Oriented Si mulation Pictures (OOSPICs) arrow conventions 
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The struCture of the general real-lime DIS-networked dynamics model presented 

here appears to be applicabk to vehicles of arbin-a ry type. [)ocuffienlrd source code 

matche~ the diagrams, equations and algorithms presented in this work 

( I3rull.lTIaIl 94e) , Future work of interest in model design includes determining new 

parameter values using this model to emulate the <:haractcristics of other unuerv.'ater 

vehi cles. adapting the model to accommodate di ssimilar vehicle entities, porting lhe 

model into robot software as an on-board hydrodynamics response predictor, and 

inv estig~ting extensions to the model to support visualization; validation and 

veri fio..:dti on of mudd relationships against archived or live d<lta records of actual 

veh 'Lie dymlmics performance 

H. S lMULATING ON-BOARD INERTIAL SENSORS 

Navigation and position keepi ng are fundamentally important capabili ties for an 

ACV. Unfortunately the selection, purchase, installation, calibration, testing and 

interpretation of se n~ors is time consuming and expensive . A va!uable benefit of a 

ndworked hydrodynamics mode! is that it can provide model values for 

virtual se nsors" wh ich mayor may not be physically installed. 

There are three types of navigational ~en sors in common use: sonar, 

electromechan ical and inertial. Navigational sonar sensors either detect the 

enviromnellt or use doppler difference ranging from beacons at known locations. and 

as such ale not appropriately modded using hydnxlynamics parameters. Mechanical 

or electrica! Sensors for water flow, depth pressure. plane position, propulsor rpm and 

battery amp-hour consumptio n rate are directly represented by model variables for 

surge u. IJepth z and vehic le state vector values respectively. Nomlally these sensors 

an: reasonably accurate with zero bias ami less than 5- 10% error over their operating 

range. Inertial alld gyroscopic detectors can also be modelerl but additional 

cOllsiderations pertain 

Inertial navigation sensors are often called "strap-down" systems since they are 

aligned with vehicle body coordinates and physically fixed to the vehicle frame. 
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If possi ble th ey Me kepr near the cemer of gravity to minimize off"et moment effects 

Complete packages using solie! state se nsors and integrated circuit processing are now 

dva ilJ blt at relatively low l'O~t. prov iding angular rate and acceleration values about 

:J lJ three body axes. Many other small inertial uni ts are also avai lable which can 

provide simi lar functionality for one cr two body axes. Vdocity outputs are integrated 

internally from accelerations, and posture values arc then found by integration of 

velocity. 

Accuracy of iner~ia l devi(cs depends on pitch and rcll angle estimation and 

"ensi tivity to ,t<.:celera~ion , Im:nial accelerometers are affected both by J(xelerations 

veh:cle ane! accelerations due to gravity. Since the acceleration due to gravity 

is about lI:n times the acceleration of propulsors llSed by slow speed vehicles, an 

accurate e~timate of vehic le pitch and roll is essential for isolating acceleration 

components unique to the vehicle. Because both position and wtation estimates are 

double integrdtiOrls of accelerations, any noise or error in acceleration estimation is 

great ly amplified over the passage of time. Proper conversion from local inertial 

reference frames to geostationary or geocentric inertial reference frames is also 

necessary (,"laloney llll). Additional errors and correction factors all can raise the 

complexity of the sensor and its modd 

Electromechankal and inertial sensors can be precisely modeled by perfect 

"virtual sensors" using the hydrodynilntics model. ThL~ is very useful for initial 

experimentation with navigation functions on the robot. For realistic modeling, 

however, accurate distributions for sensor bias, error and variance are needed. Such 

dislIibutions can only be meaningfully applied using specifications and test results for 

actua l hardware. Error models are feasible (Pappas 91) (Brancart 94) and can be 

modeled statisticall y (Law , Kelton 9 1). Simulating "v irtual sensors" us ing the 

hydrodynamics mood is of particu lar usefulness when I:val uating robust vehicle 

conlTol uncier variable operating conditions (especially simulated sensor failure) nle 

key to sliccess when producing such simulations will be incorporating statistically 

valid error models 
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SPECIAL EFFECTS AND FlJTURE WORK: ROBUST CONTROL, 

TETHER, OCEAN SURFACE, COLLISION DETECTION 

l'li e networked real-time avai labi lity of this model enables further work in 

severed important research areas. The analysis and design of robust controllers focuses 

on producing stable performance when eonrrolling muhivariable systems with 

, ignificlilt LlnL'enainty (Dorato ::;7). Ordinarily th is includes fixed contro l systems that 

meet perfo rmance measure criteria for specified uncertainty bounds. Example linear 

contro l algorithms llsed in the robot for posture control arc includrd in the robot 

:!n.:hitecture ch"pter of this work. More sophisticated controllrr analysis appears in 

(Yoerger 85, 90) (Papoul ias 89. 9 1) (Cristi 89) (Healry 89. 92b, 93 , 94a) (Fossen 94) 

and numerous other references. Adaptive conuol methods and application of machine 

learning techniques to co nuol are active areas of research (Goheen 87). This work is 

of particula r intr rrs t given the paramount importance of vehicle stability despi te any 

potentially chaotic (nonlinear in stability) behavior which may emerge due to 

unforesee n interactions between multiple aetive controllers. The abi lity to repeatedly 

leSl lOntro llers for yaw, depth, pitch, tracking and hovering while they arc operating 

si multaneously on vehicle hardware in real time in the laboratory is a tremendous 

r~search tool provided by this model and the networked virtual world. 

Although a tether is not ordinarily used on the \'1'S AUV. employment of a 

tether for power supply, task- lrvel mission control or tekmetry feedback can be very 

useful during vehicle testing. Tethers can also be a good way to prepare fo r using 

acoustic links. or to reliably test a vehide in the open ocean prior to autonomous 

controL It is importan~ to note that the operational characteristics of remotely operated 

vehicles are often dominated by tether dynamics. Incorporation of a tether injects 

significant forc es and moments into the equations of motion, but tether forces can hi: 

realistically modeled (Abel 72) (Brancart 94) (Hover 94). Addition of a general tether 

model into this underwater vehicle hydnxlynamics model is a valuable SUbject for 

future work 
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MoJd ing ocean waves and surface interactions are also interesting areas for 

fUlure wo, k. Mode l ...:omplexi ly ru nges fro m simple sinusoids to sophisticated 

ni lme, i..;ai models obtainrd from superl'omputer programs analy~ing years of empirical 

o<.:eanographic data (Covington (4) (Fossen 94) (Muskcr 88) (Blum berg (4). Usually 

the prim:ip le of )uperposilion permits \\'avc and current effects to be injectrd into the 

hydrodynamics model solution at the lasl algorithmic step, implyi ng that highly 

('or: lpie,\ ocean wave and circulation models can be solved off-line or in parallel. 

illLOJpOnltion of hlgh-:-esoilllion ocean current models ovrr computer nrtworks is yet 

Jllothn worthy area for future research . 

The : lydrodynam.ic~ modd prese ntt:d her~ do~~ not include collision effecl~. 

Abrupt changes ill body accelera tion and velocity may requin: e]( ten~ions to the 

temporal integration algori thm. Detecting collisions and points o f contact in a highly 

pop ul:ned virtual world is a separate active research problem with an extreme ly high 

degn:e of computational complexity. Properly adapting the hydrodynaIll ics algorithm 

to include realistic collision effects ca ll be done meaningfully if performed in 

conjunction wi th the more general virtual world coll isio n detection problem. This is 

another important arca for future research 

J. SUM MARY 

The requirements fo r a general networked underwater vehicle six 

degree-ai-freedom hydrodynamks model arc outlined for a robot con nected to a 

virtual world. An overall comparison of vehicle dynamics in other environments 

,hows that the underwater vehicle case i~ among the most difficult and crucial. 

No rigorous general m?£iel was previously avai lable from a single source which is 

comp utationally suitable for rea l-time simulation of submerged vehicle hydrodynamics. 

rhe primary intended contributions of the hydrodynamic model developed here are 

cl arity. correctness. generality, standard ized nomenclature and suitability for real" timc 

5ifTllllation. 
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Coordinate systems, v(u iable definitions and coefficient nomenclature are 

exp licit ly defined. Kinematics equations of motion reveal constraints herv.'ccn 

rerresc lll.1tions in the body coordinate frame and world coordinate frame. Restrictions 

on Eu ler <Ingles when pointing vertically illC examined, Defi ni ng the underwater 

vehicle dynarnic s problem as a function of vehicle state vector and hydrodynamics 

state vector prov ides precise specifications of algorithm inputs and outputs. Dynamics 

eqUJtiolh of motio ll are derived in a for m sui table for temporal integration in 

rea l time . Dimensionless coefficient values arc presented for the NPS AUV and 

methods afC di scussed for determining coeffi6ents of other vchides. After extending 

previous work. a fu ll set of component dynamics equations of motion are presented, 

includin g mass and inertia matrix determination. The dynamics cl/uations of motion 

arc in a form suitahle for most exi sting underwater vehicles. Techniques are 

demonstrated fo r modifying these general equations to acconunodate different vehicle 

physical configuration~. Since thc equations arc written to run in real time. it may bc 

computationally feasible to embed them in the robot execution logic as an unboard 

hydrod ynamics response predictor for improved physical control. 

Quatemion methods afe examined as a possible alternative to Euler angle 

representations. The use of Distributed Interactive Simulation (DIS ) network protocol~ 

for communication between virtual worlds imposes special considerations on the 

hy(h odynamic model. An object-oriented nctworked rigid blXiy dynamics class 

hierarchy i ll uminate~ the design and implementation of the hydrodynamics model. 

Thi ~ <:lass hierarchy may also be suitable for other types of networked vehicle models. 

Simulation of virtual sensors, robust control, te ther considerations, ocean surface 

morleling and colli~ion-detcction are all examined as possible components of the 

hydrorlynamics model. Numerous consideration.~ in these many areas arc pointed out 

as useful candidates for fu ture rese<ln:h. with the cxpectation that each can be 

implemented 'loS comp.1tible networked real-time extension~ to the general underwater 

vehicle dynamics model. 
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Vl!. GLOIJALLY NETWORKED JD GRAPHICS AND VIRTUAL WOKLDS 

A. INTRODUCTION 

Three-dimensional interactive graphics arc ordinari ly cono:.:rrnrd with 

Loo~rlinllting J handful of input drvices while placing realistic renderings at fast frame 

faIrs Oll J ~ingje screen. Networking permits connecting virmal worlds with 

ctisu-ibulect models and completely diverse inputs/outputs ona truly global scale 

Graphics alld virtnal world designers interested in large-scale interal:tions can now 

c:on.';idn the world-wide Internet ilS a direct extension of their computer. A variety of 

networking techn iqm~s can ~ combined wilh traditional interactive 3D graphics to 

collc<.:tivdy provide aimost unlimited connectivity. In particular. foU! o:.:omponent 

service~ are proposed as being necessary and sufficient for virtual world ndworking : 

rel iable point-to-point sockr-_t communications, multicast communications protocols, 

interaction protocols such as the IEEE standard Distributed Interactive Simulation 

(Dl5) protocol, and World-Wide Web connectivity. 

The key specifications for virtual world networking are the application of 

appropriatc network protocols and careful consideration of bandwidth. Distribution of 

virtual world components using point-to-poin t sockets enables upward scalabilily and 

real-time response. Multicast protocols permil moderately large bandwidths to be 

efficiently shared by an unconstrained number of hosts. Applications developed for 

the Multicast Back bone (MBone) pcrmits open distribution of graphics, video, audio. 

DIS and other srreams worldwide: in rcal timc. The DIS protocol enabks efficient live 

interaction between multiple entities in multiple virtual worlds. The coordinated use 

of hypermedia servers and em bedded World-Wide Web browsers allows virtual worlds 

global input/output access to pertinent archivt"Al images, papers. datasets. software. 

~ou[](i clips. text or any other co mputer-storable media. With these foW" nctwork tools 

integrated in virtual worlds, 3D computer graphics can be simultaneous ly available 

anywhere 
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B. i\'ETWORKlNG BENEFITS 

The benefits of networking a virtual world arc many and worth enumerating . 

. Any vi~tuaj world which attempts to model parts of the rea l world with nontrivial 

complexity \vill soon outstrip the computational capabilities ami real-time capacity of 

any single L"Ofnpuler. Heterogeneous processes need to be able to run on heterogenous 

procc~sor\ . \b.ssive archived datascts, sensor telemetry, component models. human 

user, arid autonomous entities can connect to th.e viJtual world from wherever where 

they exis t in the real world. This approach permits problem scalability, rcal-time 

fC'SpOnsC and inreropcrability. [t also enables economics of scale since the .~tructure of 

the virtual. world can utili7-<: an installed ba~t: of computers already connected to the 

Internet which numbers over twenty million. Since knowledge resource archiving and 

human access to the intemet is growing phenomenally at a sustained exponential rate 

of approximately 20% per month, virtual world design must address network 

connectivity and "access efficiency in scalable ways. 

C. BANDWIDTH SPECIFICATIO;'\l"S FOR VIRTUAL WORLD 

NEHVORKlNG 

r hree-dirnensional computer graphics and net\vork communications arc both 

concerned with tl~c delivery of information streams. In each case an all-encompassing 

criteria is bandwidth. In computer graphics, bandwidth concerns are manifested by 

frame rale, image size, level of detail, polygon culling and rendering complexity due 

to lighting morlels, texturing etc. The intended net result is delivery of effective visual 

information to a viewer. In networks, bandwidth is primarily measured by the 

infonnation capacity o~ a channel in kilobits per second (Khps) and is also affected by 

packet size, delivery latency, network loading, transport rel iabi lity and processor 

capacity. The net result is delivery of a infonnation stream to one or multiple 

reCIpients 

II is userul to )(.now the bandwidths of typical information streams since they can 

vary widely. llncompressed video bandwidth transmined on a network can consume 
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ib much as 60 Mbps. A 320 ;>; 240 pi.'l.d 8 bit color video or graphics window 

rcprodw.:ed by network video tool requires 128 Kbps for 1·3 frames per second. or 

256 Kbps for 3-5 frames per second. where effective frame rate v:J.Iies inversely with 

the Ilumbn of pixels which vary fiom frame to frame. A telephone-quality audio 

c: h;:nne l (300-TlOO Hl] requires 50-75 Kbps capacity depending Ilpon thc encoding 

algorithm employed. A musical instrument digital interfacc (r-HDI) stream requires 

32 Kbps. A repr~,rntativr entity DIS fJostUle SLn:am requ ires about I Kbps. 

One-ti:m: retrieval of data objects over the Internet has highly variable bandwidth 

whi;.; h i~ princijJ~]jy dependent on the capacity of respective host connections and 

l urr~nt intermediate network loadi ng. 

It is similarly important to know the capacity of various network conneetion~. 

Most local area networks use Ethemr! which has a ma.'l.imllm bandwidth of H) Mbps 

Fi ber Distributed Data Interface (FDDI) is 100 Mbps. Microwave wireless bridges 

used to connrct LA:\'s lyp:cally have a bandwidth capacity of I Mbps. Modems on 

standard telephone lines can only support 2-20 Kbps. Typical fixed sitc connections to 

thr in ternet are Tl at 1.5 Mbps. or T3 at 45-155 Mbps (depending on whether 

electrica l or optical Signaling is used). Integrated srrvices digital network (ISDN) 

lines are becoming available to business and home users. with line capacities meaSllred 

in 64 or 128 Kbps increments up to a total of 1.5 Mbps. Frame Relay is a 

comlTlercially available switch ing technique that supports best-effort delivery and 

variable-!t:ngth clata frames at bandwidths up to 2 Mops. Broadband [SON (BlSDN) 

refers to Asynchronous Transfer ~'lode (ATM) (also kno wn as Cell Relay) which uses 

fixed length data cells for switching bandwidths up to gigabits per second. Depending 

on contention-handling-techniques usrd by thr corresponding protocols, the effective 

bandwidth of each link type listed above may only be 80-90% of the theoretical 

maximum before collisions and collision recovery becomes prohibitive. 

Ln every case, these various network connections are only of practical use to 

globally networked 3D graphics when they arc compatiblr with the Internet Protocol 

(IP) suite Given current implementations and eventual standardization of IP over 
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ATM (Armitage l)4), [P compatibility exists for all of the lis ted connrction types. 

Relatively high fmlne rate graphics can be generated over Ihe Tntemet by low-end 

grJf}hics worksta tions. Simultaneous duplication of graphics-related streams at both 

high ,~nd lov,' bandwidths is feas ible and desirable to accommodate these various 

b'lndwidth capa..:i!i!::s. Duplicate imagery strellms permits a variety of users to 

flJrlicip:lt.e imerJctivdy v ia lll;::<lrly any of lhe network (;onnectiuns i istl:d <lbove. 

O. TERMlNOLOGY A!\D !\ETWORK LA YERS 

The integration of nl: twOrks with computer graphics and virtual worlds OCCurS by 

invoking underlying network functions fro m within applications. Figure 7.1 shows 

OS! IP 

Presentation I 

Applio.tion I 
Process I 

Applicaton 

Figure 7.1 

Session 

Trnnsport } Trnru.'JlOrl 

Network } Internet 

Data link-

} 
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174 

objects passed 
between hosts 

messages or streams 

transport protocol 
packets 

1P datagrams 

network-specific 
frnmes 

layer models, and 
on separate hos ts. 



hen" the seven layelS of the w~ll-known Open Syst~ms Interconnection (OSO standard 

o Process/Application Layer Applications invoke TCP/lV sending 
dnd re(;eiving messages or stJ('ams with other hosts. Dclivery can 
Intnmlll.Cnt or c:ontlnllOllS 

Provide hOSl-hoSl packetized communication bo::lween 
reliable: connection-oriented TCP or 

llnreliable delivery ~onneellOnkss LOP em/·end with 
atlier hosts 

o lnternet/\"etwork La}'er 
contidn.~ rOHting information, 
a.ppropriare from other hosts 
error and ,'ontml messages. 

network 

o Data Link LH)'er. Includes signaling and lowest level hardware functions. 
network-specific da ta frames with other device~. Includes 
to xreen multicast packets by port nl.lmbel at the jlardware level. 

Figure 7.2. SllJlUnary of TCP/IP Internet layers functionality 

These ciagrams and definitions are merely an oyerview but help illustrate the 

logiul relationship and relative expense of diffe.rent network interac::tions. in general, 

network operations (;onsumt proportiOIlJtdy more proceSSor cydes at the higher 

layers. \1inimizing Lhis computational bW'den is imporTanL for minimizing latency and 

)n8iTlt8iJling virtual world responsiveness. 

Melhud~ chosen tor transfer of informatiOIl mu~t lise either reliable 

conn ection-oriented Transport ContlOl Protocol (TCP) or nongllarantecd delivery 

(onneetion1css User Datagram Protocol (UDP). Each of these protocol~ is pan of the 

rran~pUrllaycr. One of the tWO protocols is used as appropriate tor the criticality and 
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timeliness of the particular sueam being distributed . Understanding the precise 

~'haJaderistics of Tep. UDP and other protocols helps the virtual world designer 

understand the strengths and weaknesses of each network tool employed. A great deal 

morc can be ~aid aboLl! these and relaled topics. Since intemetworking considrrations 

irnpact all components in a large scalc virtual world , addi tional study of network 

protocoh and applicat ions is highly recommendrd for virtual world designers 

Suggested refcrcnct:s include (Internet 94) (Stallings 94) (Comer 91 ) and (Stevens 'XI). 

E. USE: OF SOCKETS FOR VIRTUAL WORLU COMMUNICATION 

The most common usc of interproccss communications (irC) among graphics 

and virtual world component processes is the socket. A socket is not a protocol but 

ra ther an application program inrcrfa<.:e (API) for communication between processes on 

difkren t hosts (or a single host) via the network layer of the IP suite. Sockets provide 

a mechanism for pass ing data that is either reliable connection-oriented stream 

delivery, or nonguaranteed "best effort" conne<.:tionless datagram delivery. Interface 

de:ails may vary between operating systems but socket syntax remains compatible and 

reasonably consistent on a varie ty of platfonns. 

Sockets originated wi th the Unix operating system as a way to make network 

communicati ons syntact ically similar to input/output, file and other stream operations. 

Implementing a connection-oriented socket usually requires three stages: open, 

read/write and close. Such socket use is not synunetric since sockets follow a 

client/server paradigm. where the server first opens a port and then waits for a client 

process 10 con nect so Ihat reliable two-way <.:ommuni<.:ation can begin. Normally 

sockets arc used point ~o point between paired processes, such as tightly-coupled 

distributed virtual world components, 

Con nection less sockets differ in that the ultimate destination address of the client 

need nO! be known by the server, with a corresponding lack of error lletenion and 

e rror recovery pro<.:OOures to ensure reliable delivery. A connectionless approach is 
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prrferred when the dam sueam is contin uous or in real time, since suhsequent packets 

wilt durol11<tl ically supersede and replace previous lost packets 

Bro:td<:JSl protocols fo r socket communication are sometimes used for 

mul tip le-enti ty inten:(:tion . However such use is usually un,Kccptable due to 

indiscriminate consumption of bandwidth and unnecessary demand on processor 

The limitations of broadcast are the prinCipal reasons for the current 

bonien e..:k !II ,imultaneous communications among many entities. By way of analogy. 

<':ol ' \irler the po.>sibility that you werr able to hear (and had to simultanrously listen to) 

l~ very person spea.king in the building wilere YOI] work. It would b<: impossible to 

c~rry on JOy typ~ of conversation si nce your ability to discriminate betwt:en speakers 

"nd words wOllld be eomplrtely overwhelmed. A simi lar seen<lfio occurs when large 

nU:l1bcrs of processes communicate indiscriminately via broadcast protocols: every 

process must receivc and interpret every conununicat ion at the highest layers of the lP 

sta<:k, and vol uminous entity rraffie proollces a computational load that can eventually 

cverwhdm processor capacity. Occasionally broadcast can be useful on a dedicated 

local area network among specific virtual world components, or among a limited 

number (dole ns or perhaps a few hundreds) of entitics. For large entity popUlations, it 

is nn:essilry to avoid broadcast protocols and instead utilize multicast protocols. in 

,)f(ler to logically partition the communication space anrl eliminate unnecessary 

interactions ( Macedonia 94b) 

F. MULTICAST PROTOCOLS AND THE MULTICAST BACKBONE 

(MBune) 

IP multicasting i~ the transmi ssion uf IP datagrams to an unlimited number of 

multicast-capable hosts which an: connected by multicast-capable routers. Multicast 

groups are specified by unique IP Class D addresses, which are identified by 11102 in 

the high-order bits and (onespond to Intemet arldresses 224.0,0.0 thro ugh 

239.255.255. 255 . Hosts choose to join or leave multicast groups and subsequently 

inform routers of their membership status. Of great significance i~ the fact that 
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inrliviriuai hosts control which multicast groups they monitor by recollfiguring their 

Ilc,work imerfacc hardw<ue at tht: data link layer. Since datagrams from unsubscribed 

group,.; Clre ignored at the hardware interfac~. host computers can sokly monitor and 

prc<.:e~j PiH.:kclS from groups of interest, remain ing unburde ned by other network traffic 

rComer 91) (Deering R9) 

MultilJsting has existed for several years on local area networks such as 

Ethernet and Fiber Distributed Data Imerface (FDDl). However, with Internet 

Prococol ill ulticast addressing at the network layer. group cOITUliI.lnication can be 

~st:\b lished a<.:ro~s thr. internet. Since multicast srreams are typically connectionlcss 

UDP daragrams. there is 110 guaranteed delivery and lost packets stay lost. This 

best-effort unreliable delivery behavior is actually desirable when streams are high 

bandwidth and frequently rrcllrring, in order to prevcnt network congestion and packet 

col lisions_ Examp le multicast strrams indudr vidro, graphics, audio and DIS 

The ability of a single multicast packrt to connrct with rvrry host on a local 

arra network is good since it minimizes the overall bandwidth needed for large-scale 

communication. Note however that the samr multicast packrt is ordinarily prevented 

from crossing nrtwork boundaries such as routers. If a multicast stream that can touch 

every workstation were able to jump from network to network without restriction, 

topologiC:11 loops might cause the entire Tntemet to become saturated by suc h Slream~. 

ROllting controls are necessary to prevent such a disaster, and are provided by the 

recommended multicast standard (Deering 89) and other experimental standards. 

Collectively the resulting interne twork of communicating multicast networks is called 

the Multicast Backbone (MBone). 

The MBone is a Virtual network since it shares the same physical media as the 

Internct. A specially configured set of multicast-capable routers (mrouters) enables 

mullicast packets to reach networks that have arranged for multicast connectivity 

These mrouters can be upgraded commercial routers, or dedicated workstations 

running with modified kernels in parallel with standard TOuters. They are augmented 

by "tunneling," J scheme to encapsulatr and forward multicast packets among the 
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IsI:lnds of Milone subnets through Internet TP routers that do not yet support TP 

IllJlltlcasL The net effe ct of each lOuting scheme is identical for end users and 

applications they can send and receive contin uous multicast data streams throughout 

l h·~ \iBane. :lnd thus most of the Internet 

rh~ MBone controls multicast packet distribution across the Internet in two 

mu lticast packel hops through rou ters can he limited at the source using an 

attetched time-ta-live parameter. and ~ophisticated experimcntal mroUier pruni ng 

:llgorithrn'i Jdaptively restrict multicast transmission. Network administrators can 

also logically constrai n the threshold capacity of multicast rOUies to avoid overloading 

physical hr.k ;;apacity. Multicast packet mtncation is performed by decrementing the 

time-Io-live (ttl) field each time the packet passes though an mrouter. A ttl val ue of 

I f, might logically limit a multicast stream to a campus> as opposed to values of 127 

or 255 which might send a multicast stream to every suhnet on the MBo ne (currently 

etbat:t cO l!l1 tries). A ttl field is sometimes decremented by large values under a 

global th resholding scheme provided to limit multicasts to sites and regions if desired. 

Lmproved real-time delivery ,~chemes are also being evaluated using the 

Real-time Transport Protocol (RTP) which is eventually expected to work 

independently of TCP and UDP (Schub:rinne 93). Other real-time protocols are also 

under development. The end result available tooay i~ that even will} a time-critical 

applicJtion such as an audio tool. participants normally perceive conversations as if 

they are ir. ordinary real time. This behJvior is possihle because there is acrually a 

~mall tJuffering delety to synchronize and reseq uence the aniving voice packets. 

Research effons on real-time protocols ,md numerous rela ted issue~ are ongoing, since 

every bottleneck conquered results in a new bottlenr.ck revealed . 

The MBonc community must manage the M Bone topology and the scheduling of 

mu lticast ses~ions to minimize congestion. Currently over 1500 subnets are conneCted 

worldwide. Topology changes for new nodes are added by consensus: a new site 

,mnounceS itself to the MBone mai l list. and the neare,~t potential providers decide who 

o..:an establish the most logical connection path to minimize regional Internet loading. 
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S,-,hectu ling M130ne events is handkd similarly . Sprcial programs are announced in 

Jclv~n;.;e on an elcctwnic mail list . Advance ,mIl cm Ilcemcnts usually prevent 

overloadrd schrduJing of lnternrt-widr r vents and a len potential participants. 

Cooperation is key. Newcomrrs are oftrn surprised to k arn that no single person or 

l!l t honty is "in ~harge" of either topology changes or event scheduli ng. Figure 7.3 

sh ows a typi~al ~e ssion directory (sd) list of programs available on the ~'1Bone 

Fi gure 7.3 Session directory (sd) programs available on the MBone. 
Note DIS packcts for NPS AlJV Underwater Virtual World are sent 
over the whitrboard address (orientation: dis-auv-uvw). 

Note session specifications in the <ldvertisement window are used to automatically 

launch and connect v ideo, audio. whiteboard. and DIS-compatible graphics viewer 

applications 

The MBllm: commun ity is active and open. \Vork on tools, protocols, standards, 

applications , and events is very much a cooperative and international effort. Such 

cooperation is essent ial due to the limi ted bandwidth of maIlY networks, panicularly 
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trJrl.,;oce:Hlic links. So far. no hit:rarchical scheme has been nect:ssary for resolving 

potclltiJlly ~ontentious issues such as topology changes or event scheduling 

Int:':lcsli ngly. distributed problem solving and decision making has worked on a human 

level j ust as successfully as on the network protocol level. Hopefully this 

deu:rltraliz:ed approach will cont inue to be slKcessful, even with the rapid addition of 

new u~ers (Macedonia, Brutzman 94). 

t; . DISTRIBUTED INTERACTIVE SIMULA nON (DIS) PROTOCOL 

USA(;E 

The Distri buted IntenKtive Simulation (DLS) protocol is an IEEE standard for 

cornrnunication among ent ities in distributed simulations (IEE E 93, 94a, 94b) 

Although init ial development was driven by the neoos of military users, the protocol 

funnal ly specifies the communication of physical intrradions by any type of physical 

entity and is well-suited for general use. Information is exchanged using protocol data 

units (POlis) which are defined for a large number of interaction types. 

Multicast and broadcast DIS implementations are freely available and have been 

sllccessfully utilized in real-time virtual battlefield exercises containing hundreds of 

ac t ive human and autonomous entities (Zeswitz 93) (Pratt 93. 94a) (Zyda 93b). 

Exploiting the features of multicast to logically partition DTS interactions in a manner 

, irni laJ to real world interactions is expected to permit scaling up virtual worlds to 

include H].OOO or more players (Macedonia 95a, 95h, 95c) 

The principal rou type is the Entity State POU. This POU encapsulates the 

pos ition and posture of a given entity at a given time, along with linear and angular 

velocities and aC!.:elera~ions, Special components of an enti ty slich as the orienta6on 

of moving parts can also be included in the PDU as articulated parameters. A full set 

of identifying characteristics "an uniquely and completely specify the originating 

entity. A variety of dead reckoning algorithms permits computationally efficient 

projection of entity posture hy listeni ng hosts. Several dozen additional POU types are 
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also defined for simulation management, sensor or weapon interaction, signals, radio 

cOITIIrlUniL ations. collision detection and logistic~ support. 

Of particular interest to vi rtual world designers is an optionally-addressable open 

format me-;sagc PDl! type. Message PDlls ailow user-specified extensions to the DIS 

stand;u-d. Such f1exibility coupled with the eificicn(;y of Intt:mct-wide multicast 

ddivery permits extension of the object-oriented message-passing paradigm to a 

di.,rribllted systl;::m of essentially unlimited scale. Of relat("-<i interest is ongoing 

rc\tarc h by the Lincia project into the use of "tuples " as the conmlunications unit for 

lugiull e:ltity interaction (Gelernter 92a. 92b) (Caniero 90), ft is reasonable to expect 

that free-format DIS message PDU~ might also provide remote distributed co nnectivity 

resembling that of tuples to any infonnation sitl;.': on the Intl;.':met, further extended by 

using mechanisms which already exist for the World-Wide Wl;.':b. This is a promising 

dle3 for future work. 

H. INTERNET-WIDE DISTRIBUTED HYPERMEDIA VIA THE 

WORLD-WIDE WEB (WWW) 

rhe World-Wide Web (WWW) project has been defined as a "wide-area 

hypr.rmedia information retrieval initiative aiming to give universal access to a large 

universl;.': of documents" (Hughes 94). fundamt:ntally the WWW combine~ a name 

,pace consisting of any information store available on the Internet with a broad set of 

retrieval ..:lil;.':nts and selver~, all of which can be connected by easily-defined hypertext 

markup language (.frtml) multimedia links. This globally-accessible combination of 

media, client programs, servers and hyperlinks can ~ conveniently utilized by humans 

or autonomous entities~ The Web has fundamentally shifted the nature of information 

storage, access and retrieval (Bemers-Lee 94a, 94b) (Hughes 94) (Vetter Y4). 

liniversill Resource Locators (URLs) are a key WWW innovation (Figure 7.4) 

A block of information might contain text, document. imilge, sound clip, video clip, 

executable program, archived dataset or arbitrary stream. If that bloc.k of information 

ex ist~ on the Internet. it can be uniquely identified by host machine LP address, 
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ftp://taurus.cs.nps.navy.miljpub/auv/auv.html 

Internet host name or number fIlen~e with l' J 'T' extensIOn fOT 
MIME media 

type 

remote server connection type publicly 
(e.g. http, gopher, ftp, telnet etc.) acce..~sible 

subdirectory 

Figure 7.4 Example Universal Resourcc Locator (URL) components. 

flllblicly visible local rtirtctory, local file name. and type of client needed for fl'lT.i.cvai 

anonymous flp. hypertext bro"'iser or gopher). Ordinarily the local file: name 

d.bo include, un extension which identifies the media tYIk (slich as.{lS for PostSl.Tipt 

fi~e or 19b foJ' an image). File type extensions arc ordinarily specified by 

'.-lultipurposc Internet Mail Extensions (MIME) (Borenstein (3). Thus the URI 

completely specifies everythillg needed to retrieve any lype of eiel:IToni(; information 

reSOL,rCt:. E\arnple I:RLs appcar in the list of references, e.g. (Hughes 94). 

If on~ consid~rs the evolving nature of the global infOffi1ation infJ'astfuctlllt, it is 

clear that there i, no shortage of basic information. Quite the opposite is rrue. :\1erely 

by reading the ,"ie''',-" York Times daily, any individual (;all have more infonn:ninn alxlUt 

the world than was available to any world JeadtT throughout most ot human history! 

\'lultiply that single information stream by the millions of other intormation sources 

becoming op~nly availahle on the Internet, and it is clear that we do not lack conlent. 

1\,1ountaim of content have become a(:cessible. What is needed nov .... is ~ some 
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way (0 locate and retrieve related pieces of information or knowledge that a user needs 

in a timely lashion. 

rhe World· Wide Web provides an open and easy way for any individual to 

provirie context for the mass of content available on the Internet. For virtual world 

riesigners this is a particularly inviti ng capahility. Virtual worlds are intended 10 

model or extend the real world (Zyda 93aj. Access to any media available world ·wide 

Cdil now be ernberlcted in virtual worlds. enabling much greater realism and timeliness 

for virtu:.!1 world inputs. 

What about scaling up? fort unatdy there already exists a model for th is 

growing mountain of information content: the real world. Virtual worlds can address 

the context issue by providing information Links similar to those that cxist in our 

understandi ng of the real world. Funhermore, thc structure and scope of a vir tual 

world reLllionships can be dynamidy extended by passing WWW references over 

multicast network channels (e.g. as a DIS message PDU). This dficient disrribution 

of information lets any remote user or componcnt in a virtual world participatc and 

interact in increasingly meaningful ways. 

Extensions to the World-Wide Web to suppon globally distributed virtual reality 

:md virtual world functi onality are the subjeu of active investigation (Pesce (4). A 

Virtual Reality Modeling Language (VRML) specification and impleme ntation is being 

developed by a large and informal working group (Bell 94). This group hopes to 

prodUl.:e public browsers for thc exploration of casily and consistently defined virtual 

worlds. The key components of VRML are likely to be a scene description language 

(e.g. modified Open Inventor file format), existing World-Wide Web functionality 

(e.g . . html), and entity behavior descriptions (e.g. Open Inventor engines), augmented 

by multicast conununications (e.g. M13one) and active entity interaction protocols 

(e.g. DTS) 
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'JETWORK APPLIC<\TION l\'lPLEl\IEr\TATION EXAMPLES 

Examples (11- lh'~ networked c:cmrnunication 1l1cl.hocts discllssed hefe have t~en 

IIndCIW::l.lCr virruui .. vmld, (icsigncd [0 ~uppon :l ~ingk 

r)d",crk~d aUlOnomous underwate r robot ,vhik permitting any number cf human 

Remote p~rti"ipan ts use 3[) real- tirrw illtt:ractiv~ computer graphics 

WlIlci('w :nto the ::nckTwat~r virtu~l werld. \{,obot to virtual world communications an~ 

USl!lg a ldiablc stream socket. TIle vir tual world provides real-time 

ceY' '"''Y'''''''' modeling ot six degree-of-freedom vehide hydrodynamics Jnd SOnar 

Vt hic[~ posi tion dnd posture are output using multica~t DIS 2.0.3 entity ,tate PDlTs 

k e:n,te viewers ~' a rl receive PDes from any location on the MEane to fend r r 

robot [)lolion dnd world interaction, again in real l.in~, seen froIll whateveI 

vie"'poilll each inrliviliual user migkt ekoose, Graphics winliows ami audio can also 

be Il1lli tieast using standard \lI'Iune videu and voice application;;, A diagram of v,irtual 

wo;ld communication fl ows appean in Figure 7.5. 

On the t1y te;.a-to-speeeh oata sooification i~ provioed using a \VWW client 

which relays mission script commands to a sound server in the Netherlands 

(Belinhll1te 941. Thal remote sound s.crver parses arlJiuary te)<.t string~ into phonemes 

ariel then generates a O::OITesponding audio fik. whic:h is returned m the virtual world 

for local play. Text to·spt:lXh sound queries aJl;~ playrd and saved locally ming It 

fil ename matching: th~ original text, ~nsuring that network bandwidth (;onsumption is 

minimizec during repetitive queries 

A \VV{\V home page provides free access to source cooe , hinary executable 

programs, installation and help guides. reference papers and pertinent imagr s to 

anyone with Internd a¢cess (BrutLTlIan 94a. 'Hb, 94e).Mudifications to the stanrlilrd 

MBone session dirrctory configuration fik are aho provided whkh enable remme 

MEonc uscrs to participate l1~ing th~ graphiCS viewer, DIS eorrummiclllions, ddault 

vi.ct t": o ,tream, virtual worid audio output and Mamie oisplay of the virtual world home 

page. All o[ these applications can be launched in concert with the click of a singk 

button on tht": M Hone session directory As participation in remote virtua l worlds 
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Distributed Process Communications 
NPS AUV Underwater Virtual World 

AUV microprocessor softww:c 
and hardware are equivalent 
in vehicle and lab simulator 

Graphi."S dlspla)'ll 
nrucdforoplimal 

real-timcptrformatlce 

Numerous AI procesiICS may 
communk"te and inreract, 

including~taloo~ 

l'===== complete lClemctry 

.'li'ml.dMlJdri~ p&rtial 

"'"""'" 

II :~::= 1_,-
Sonar CDv\tomncn1 n><>del lClemcuy 

OJmmulllCatiOllJprotocow 

'-======'-\\' ~~ 

Multipje dioplaYJ 
ar6 poss:ible 

mullicastDlS/audio/vidcctolntemct 

Figure 7.5. Disrributerl comm unications in NPS AUV Und t: rwater Virtual World . 
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app~oaches the ease of usc of a telephone, o.:ollaboration and participation in computer 

graphics-enh;w(:cd virTual worlds ,lfe cxpeTted to grow dramatically 

(B rUl/_man 94(;, 94dJ (Rhyne (4) 

Ir lS perhaps )tartling (0 hear someone say, "Here is an interactive multimedia 

television ,(alion that you can use'. to send out compUTer graphics and virtual world 

ill1CI."t<olO' bttwee!l yOUI (iesklOp and the world." These are powerful concepts and 

powerfu l tool ~ tha t ex lend our ab ility to communicate and collaborate tremendously . 

. 1. SUMMARY A'",D FIJT URF. \VORK 

Four network componentS are proposed as being sufficient for global-distributed 

virtual world network ing: sockets, multicast conununications protocols, the 

DiSlribu;cd Intcractivr Simulation (DI S) protocol and World-Wide Web conne(;!ivity. 

So(;kets arc best used for direct communication among tightly-coupled virtual world 

componems and not for participants. Multicast protowls ilnd the MBonc provide 

efficient internet-wide distr ibution of graphics. video, audio and DIS entity Statc 

info~marion in a way that permits s(;aling up to very large numbers of active 

participants. DIS providcs well defined and standardized ways for phy~ical interal,;tion 

l'uffiffiunicalions among multiple distributed entities in reill time. The World-Wide 

Web enilbks vinual worlds to utilize as much of the real world as can be wnnected to 

the Internet, both as inputs and outputs. 

A myriad of upportunities previously considered impossible are now becoming 

a~ce5sible . MBone, DIS and the World-Wide Web are changing the fundamental 

nalUrc of the Internet. A distributed approa(;h works both on a human level and a 

techni(;al level. Seient!fie collaboration, s hared experiences, simulation, training, 

edu(;ation, vumal environments, high-bandwidth networked graphics, remote preSCll(;e 

and te lerobot ics are all affected by these capabil ities. Implementation of these 

concepts in an underwater virlUill world has demollstuted their feasibility and value. 

Opell access to any type of live or archived information [esoarce is available fo r 

by indiv iduals. prugrams, co llaborative groups and even robots. Virtual worlds are 

i87 



a natural way 10 provide order and context to these massive amounts of information 

World-wide collaboration work s, both for people and machines. Finally, the network 

is more than E. computer. and even morc than YQ!!!. computer. The network becomes 

lli!l computer as we learn how to share resources, collaborate and interact on a global 
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VIII. SONAR MODELING AND VISlJALIZATION 

A. INTROD l!CTION 

I'hi~ chapter describes the role of sonar modeling and sonar visualization in an 

ur.(krwater virtual ""orld. The potentially significant effects of sou nd speed profile 

(SSP) on ;ound ray paths in the ocean are briefly examined, and example SSP plots 

are presented showing component meaSUfements and possible fay path variations. 

Differenc:es in srnsor modalities and difficulties in forming mental models provide 

Irlotivation for utiliz ing scientific visualization tech niques to graphically rendrr sonar. 

The [lrces5ity for a real-timr sonar f!l(xkl makes the RRA algorithm (Ziomek 93, 94) 

~pprar to be a desirable choice based on amine results. Since shott-Hinge models are 

the most time-critical sonar application, an example geometric sonar lnodel is 

presrn lrd for the l\'PS AUV test tank. A discussion ot sonar parameter and graphics 

rendrring considerations for sonar visualization is presented along with prdiminary 

rendering examples. A great deal of important futurr work is possible in this area 

B. SOUND SPEED PROFILE (SSP) 

j"he behavior of sound wavrs in thr ocean i~ highly variable. Sound waves 

"bend" as Ihey travel. away from the direction of higher sound sp~~d and toward the 

direction of lower sound sped. This i~ an example of Snell's Law within a 

l"ontinuous ly varying medium. Since this bending may cause significant sound wave 

path chang~s, and since it docs not occur ul\iformJy over a wave front. the travel of 

sound through the oce~n is high ly nonlinear. 

r he primary factor infl uencing sound path is the sound speed profik (SS P) 

\Valer depth and bottom type can also have significant effects. Descriptions of SSP. 

water depth and bottom type dfects on sound propagation Me described in detail in 

(Etwr 91) (Urick X3). Sound Inay be bent towards the bottom or surface, reflect off 
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botwm or surface. bt: masked at certain depths by "shadow zones," LIavel for long 

rUllgcs via convergence ZOlles, or remain trapped in a de,ep sound channel 

['he man y ways that sound can travel in the ocean is highly variable. I\ ssuming 

kno"lcdgc of lela i bathymen-y. the primary information needed for sonar prediction is 

the SSP. Three factors control local sound spet:d: salini ty, temperature and pressun:: . 

The)e parameters can be determined by measuring conductivity. temperature and 

dertsity (each versus depth) directly in the water column. Empirical Iormulas have 

been cte lerminerl whic h utili ze conductivi ty, temperature and density to calculate sound 

speed . Typical SS P data sets are noisy aod highly redundant, aod large SSPs may be 

sub_wrnplcd. ~moothed or represented by polynomial approximations for computat ional 

tractability , Figure S, ! shows a typ ical SSP plot taken from deep water in Monterey 

Bay in September 1990 along with component conductivity. temperature and lh:nsity 

contributions (Rosenfeld 94). Figure Figure 8.2 shows the large possible varia tions in 

effects of an example SS P on ray paths. (;alculated by the RRA algorithm for a sct of 

rays in itially separated by only 0.4°. 

190 



Figure s'l sound speed profile (SS P) plol. Includes 
kmperature and density (CfD) data 
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Figure 8.2 

CIIS[,'1JITIIIlTlUHIl'NlOMlRm 
TO'%.on [1 .'15 . 2.0" 
t(l:TM' ifJ . SOCIl I'I<'O.90.0ocg 

Example Recursive Ray Acoustit:s (RRA) algurithm plot shuwi ng 
sound ray bending due to sound speed profile (SSP) and 
Initial venica] orientation difference between rays is only 
(Ziomek 93). 

C. I\-IENTAL MODELS ANt) SCIENTIFIC VISVALIZATION 

CONSIDERATIONS 

The modal ities of sonar sensing are much different from that of vision. Fur 

active sonar. ranges are measured by the time difference between pulse transmission 

and return detection. Multiplication of this time difference by the speed uf sound in 

water provides a very accurate range estimate. f or passive sonar, ranges 10 an object 

producing sound arc nOI directly calculable but can sometimes be deduced by 

maneuvering and geometric analysis. For both active and passive sonars, beari ngs are 

typil:ally accuratt: only within a few degrees. In contrast, vision tcchniques typically 

provide very accurate bearings with approximate ranges. As a result, perception 

~lgorithms based on range data and approximate bearing dat. .. arc counterintuitive. 

Combined wijh tile complexity of sound travel. it is difficult fo r individuals to 
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visu<lliLe arid (.;ort(.;eptualize underwater SOrlar effectively. SOriar operators on 

;ubm:!rincs typically need a year of so:hooling arid experience to qualify befor~. thrir 

illc' Jl(;j 1 modeL" L>e~ otlle sufficiently familiar to permit un superv ised walchSlandin).l 

It h rea~onab ly C:Onjedll red that improved sonar visual ization can dramat ically 

Improvt an ll1divid ual', abil ity to unrkrstanu the intricacies of sonar behavior. It is 

with lIl Lurrcnt ~ omputational capabilit ies to ealcillate the physical path taken by sound 

ltlrough a high ly variable SQllar cnviro nment. Renderirtg the result.s llsing 3D 

<:omp iller graphlCs CJrl provide useful fee dback to human observers regarding sonar 

p~rfo rmance. Suc h feedback ~an enable the prod uction of effcctive analys is and 

clllSsificatio n a lgorithms suitable for real- time autonomous use by AU Vs 

(l3rutzman 92a, 92c) (Compton 92). 

D. REAL-TIM E SO"iAR MODEL RESPOi'<S E AND TilE 

RE CURSIVE RA Y ACOUSTICS (RRA) ALGORlTHl\'1 

As pr~viousty described in (Ette r <)1, 92) a great var ielY of sonar models exist. 

!JUI unfortu nately most are H,·.stric~d to highly specific environ me ntal domai ns 

Additionally mO$1 sonar models are L'ompllllltionally c.'l.pcnsive and are thus urtsuitable 

for rcal-lirne performance. Implementation of art A UV ~onar model within an 

underwater v i rt ll ~ l \'.!Or ld requires reat-lime response. Mulliple model simultaneous 

real · time response in the v irtual "orld can be accomp lished through distribmion on 

I! lliltiple processors if necessary. In practice at a 10 Hz rate, multiple proccssor 

distribution has nOI been necessary for thc core models interac ting directly with the 

AU\' 

Intere stingly, the speed of sound in water is relat ively slow (typically 

1650 yards/sec) compared 10 the speed of light in air. For ac tive sonars, time of ping 

travel corresponds \0 twice the range 10 target plus any changes d ue 10 relative vehiele 

motion. Thi~ implies thaI approximately one second of processing time can be 

~va i l able for calculalirtg each 800 yards of ac tive sonar travel. G iven thaI effective 
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:-O lur ral1ges can be 10 miles or greater in distance, a great deal of computer time may 

be .!vailable for sonar \:akubit\OnS in tact ical situations. In offline experiments, 

implementations of the RRA algorithm have demonstrated adrquate computational 

performanl'e, It is expected that implementation and integration of the RRA. algorithm 

an on line model for activr or passive sonar will meet all underwater virtual world 

llmlng requIrements 

E. AN EXAMPLE GEOMETRIC SONAR MOI)EL 

At shon r<lnges, timing requi rements can be critical. Fortunately at shorter 

r~ nges the effects of SSP on sound wave bending are negligible, Rapid calculation of 

sonar response at short ranges is possible through application of computational 

geometry tcchnique, . An example geomctric sonar model for the 20 ft by 20 ft 

NPS AUV trSl tank has bren constructed which demonstrates adequate real-time 

response in this worst case scenario. The geometric model is capable of 10 Hz 

re,ponsr without parallelization. A diagram of tank geometry appears in Figure S.3. 

A graphics rendering of the NPS AUV ST-lOOO sonar in the test tank as calculated by 

tillS model follows in Figure 8.4 

The following fonnulae are used lO calculate thr coordinates of the sonar echo 

return (R" R,) based on sonar location (5",5) and sonar orientation 'V.oou' Tht: 

precede Boolean operator (-<) rcturns TRUE if the fust angle precedes the second 

angle by less than 180", expressed algebraically as follows: 

{ o: -< PI '" {nonnaJize2(j3 - 0:) > O} (8.1) 

As previously defined ~n Chaptcr IV, narmaiize2 (anf:!ej nonnalizes an angle to the 

ra ngt: (· iC/2 .. 1t/2J. 

For sonar-relative quadrant I (SA -< W,,,,,., -< SB): 

R~ = 10 
R~ =0 S, + :;in(Ijr..,""') (to - S.) 

(8.2) 
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A 
(-10, 10) 

I quadrant Ivl 

B 
(10.10) 

(-10~-!O) I..:::::::::=-_..::uadran::::::::t ::II::I!.J':::"":::!....._":::::::.I (10,~10) 

Figure 8.3 t\rrs ACY test tank geometry 

f'o r so nar-re la tive quadrant II (SB -< \jI,oou -< SO' 

Rx '" S, sin(ljr.."".". - 9(n (10 S,) 

Ry - 10 
(8.3) 

For sonar rdative quadrant m (SC --< '11 • ..,..- -< SD): 

R, = - 10 

~ '" Sy - sin( ljr_ -180°)(10 ... S) 
(8.4) 
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For LjuCldrant (SU -< 1.)1""",-< 

R, .,- Sx + sill (Ijr,,,,,,", ~900) (10 + Sy) 
R, ., -10 

Sonar offsr t ,:oordil1Jtrs ,:<111 be calculated from vehicle 

~()oJclinates vehicle orientatioll 1.)1 follows 

s, - V.' cos(t;) (AIn"";lI<dW./ <o",,, "i'fyd) 

s,. = Vy ' sin(ljr) C-ctloll/l"..JIJJ<d """" "ff""') 
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Sonar range is :ietermined USHIg the Pythagorean theorem 

(8.7) 

Developmenl of individual geomcrric modds for the large variety of objects 

~Orula[ing J virtual 'Norld can l.~ prohibitively laborious. For short and intermediate 

f)robkm is" vuiation of the virtual worlri collision detection problem 

i~ ~oh,~bl~ in re:ll time for teTI":lin and hundreds of objects (Pratt LJ1) 

Con~rutatio[]ally efficient collision detection is the subject of active research for larger 

worlrls ~sul:h architectural ship design models) consisting of hundreds of thousands 

of obje,:r:; (Zyrla 91J). In an unden .... atrr environment the riensity of aclive entilies is 

sparse, and SOllilI interadions are primarily I..:Ono:.:erned with terrain and a 

relatively small nurnbi:r of mobile entities. 111US geometric modd ~wito:.:hing 

corre,ponding to areas of interest in the underwater virtual world is a feasible 

~lpproach 

l:llcresti:Jgly, graphics toolkits such as Open Ilivelitor provide mechanism, for 

qucrying the ,cene datalJase to determine ray intersection points (Wemeo.:ke 94.1). 

Cono:.:eiVilb~\. the scene dat,1basc which is used to render the population of 

lJbJ ~dS in the virtual \vorld clln also be used for sonar "collision" detection, perhaps 

ind ~7nrlently of graphics rendering. This is a promising approach for automatic 

determination of Sl)n~r detrctions which is indeprndent of the geometry of indivirlual 

objects in the virtual world. Such an approach is also highly scalable tJu'ough 

reasonably dticient construCtion or optimization of scene rlat.abases 

F. SONAR RE~DERING FOR VISUALIZATION 

Sonar data has high djmensionality and ordjnarily js diffjcult to visualize 

visualization methods specialize in the selective application of various 

graphio.:al relldering techniques to extmct the maximum possible informalion out of 
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large dnd abstract datasets (Keller 93), Scientific visualization is therefore a nireet 

e,\ample ot a guiding precept in computer science: 

The purpose of computing is inSight, not numbers. (Hamming 116) 

A great many possihilities for sonar visualization present themselves A 

pre liminary consideration of sonar parameters and computer graphics attributes reveals 

a Luge number of relatively orthogonal characteris tic parameters and primitive 

rendering operations, They are listed in Figure 8.5. Key criteria when renoering sonar 

Sonar Paramettfs 

sound pressure level (S PL) 

slant range 
signal excess for detection 
phase 
pitCh angle 
target IIIterSeellon 
history of previous returns 
SSP variations in temperature, 

press ure 
by absorption, 

scaaering, spreading 
width 

eod 

interference 

Rendering Techniques 

color variation .~ 

mtenS1ly 
transparcncy 
illuminat ion 
directional lights 
individual rays 
wavc fronts versus ray groups 
density of ray bundles 
fog 
animatIOn 
volume visualization teChniques 
bl~ 

data smoothing 
data enhancement/interpolation 
data sanification 
loading and modifying 

previously rendered 

Figure K.5. Preliminary listing of orthogonal sonar parameters and 
computer graphics rendering techniques for scientific 

d:Ha musl include the abili ty to focus on individual parameters of tactical interest. 

matching orthogonal parameters to rendering techniques which are not mutually 

interfcring, rea l-lime response corresponding to short or long sonar ranges, animation 
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of 'IWtial ()I temporal change.,. and s~lcctable Ilser control of either v isLlaliLati{)n 

p~lmilives ur ,Ollar p.'l.:amdel.' of 

,l flidimclltMY CXHll1pk of sonar-rdaterl vi.<,ualization, a rendcling of SSP data 

appeil.rs 1Il Xl). Forll1Hl appl.icatioll of sci entific visu8Jizat ion techniques to 

renrkr:ng i, j promi~ing topio;; for futurr w{)r.\;:. It is likdy thHt best results will 

oowined by using sonar datil. s\Juctures which are equally suit"bk for online 

rnre.';entation in the vinui\l w{)r!d ()ftline rendering using visu~hzdtion toolkits 

G. S UMM ARY A\D FUTLRE WORK 

Son.v mm\eling and visualization are I:rUl:ial components in an unrlerwater 

vi:mal wo~lrl for an alltonOIl1OUs underwater vr hide, Alxmale real-time .;;onar 

mocteling is nrl:eSsalY 11) pIonllce realistic sen sor interactions with the vrhidr 

Vi~uilliLation is nec~s~ry for rooot rlesigners to create me ntal morlels of the oftell 

cOllll~e,-intlli l ive performance of sonar in highly variable ocean environments. Such 

m~[ltill models dre of prov~1l oc llcfit when designing ann evaluating robot sensing 

:ilgorithms. SSP effects dnct an examrle geometric sonar monel are also examined 

Promising aredS for futuro;: work an~ depelldo;:nt 011 5UCCeSSlui iIlC{)rpordti{)n of a 

gen~ ral sonar mooel (or models) into the underwater virtual world. The 

kRA dgorithm shows strong [J{)t~ntial for rapid and accurilt~ g~[I~r"liOIi of sonar rays 

1Il real time. Actriilional work includes the formal use of scientific visualization 

techniques to match up rypio:.:ally orthog{)nal pT0perties of sonar response to typically 

onhogonal rendeting me(hods. It is expected that llser conao] of paramecers and 

LOT"lbin~d offline/online al gorithm analysis will r.e necessary for hest r~sults 
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IX. EXPERIMENTAL RESULTS 

A. lNTRODUCTION 

Exp~rilllental testing is essent iailO producing r~alistic r~sponse in a vi.rtual 

world. Rea l wor lo:i behavior I:an b~ predi cted and analyzed in the laboratory by 

ru nning :e~IS which ~xercise all venic lt systems. and by reproducing mission scenarios 

which are Llsed in the feal world. Since no such thing as a cornpld d y benign AUV 

test environment exists in the real world, laboratory virtual ","'orld testing is essential 

and can overcome impediments associated wi th the use of tethers and acoust ic 

telemt:try_ Repeatability of results and statisti(;ai (;Untra l of sensor errOL~ enable tests 

and machine learning algorithms wh;(;h are not feasible in the real world. Duplication 

of at-sea les t results in the laboratory can serve as validation of virtual world 

fLmnionali ty, at least as is seen from a robot perspective. 

An exte ndnl lahoratory test mission is examined to illustrate how hydrodynamics 

response is highly complex and requires detailed analysis. Network response is also 

evaluated for sever ~ l experiments that utilized the Internet-wide Multicast Back bone 

Cv1Bonc) . N("",twork parameters of greatest interest are ternpor~llatency. bandwidth 

requirements, aod suitabi li ty for large-scale distributed simulation. 

B. PREDICTING AND ANALYZING RF:At-WORLD BEHAVIOR IN THE 

LABORATORY 

The key to producing rel iable robot software is re peated testing. There are many 

reasons why risk free "nd-tn-cnd testing of all systems aboard an AUV is rarely 

possible. Leaks can occur in shallow or deep water. Vehicle hydrodynamics response 

is ~nmplex and is a lso crucial [0 under51anding phy5kaJ behavior. The many effects 

involved in underwater motion make accurate posture response an essential 

prerequisite for Illcaningful testing of vehicle control algorithms and intelligent control 

:uch itectures. Underwater vehicles contain too Illaoy frag ile components to "nav igate 
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by co ll ision" as some indoor robots do. L'nderwatcr sonar range !>Cllsors do not 

cp~r,lte in air. Underwater vehicles are usually very heavy, and test stand mountings 

wit h mult ipk degrees of fre edom are impractical 

Rrpcated testing using a tether fo r remOle monitoring and emergency 

intervention is all effec tive lest technique when pre pari ng for open-ocean autonomous 

mi ssion~ (Branl.:art '-)4) (Pappas 9 1). LTnfortunately tethers ind uce significant drag 

dkcts. ;H1d tt:ther management either requires very t:xpensive tethn control systems or 

l(1rll imlOlls human SUI-'crvision. Acoustic telemt::try can free the vehicle fro m these 

impediments. but w..:oustic communications are always prey to intermittent los_~ duc to 

f~l·tnrs SIIC h as rnultipath arrival. masking, attenuation, and sound wave propagation 

C!W:ly fr om ~ource or receiver. Deployment and recovery of vehicles in the water is 

II ways costly a nd time-consuming , limiting the scope of test programs. In-water 

r\:sults af\: usually nonrepeatahlc due to changing conditions or lack of time. T his 

ina bility to reliably repeat tests on demand greatly complicates software engineering 

t,bks such as debugging, algorithm tuning, and logic verification. 

Laboratory testing us ing a virtual world can produce repeatable results that are 

ba~erl on realist ic hydrodynamics re sponse and realistic sonar predictions. Laboratory 

testj can attempt to replicate in-water results as a means of tuning models to more 

acc ura tely represent the real world. Since a virtual world inctudl;.': s everything normally 

detectable by the robot in the rea l world , a virtual world can be valida ted by identical 

robot openttion in identical scenarios in either world. In a sense this st:rves as a kind 

of Turing test for the vir tual world: if robot operation is identical in the real world 

:Hld the vi rtual world, then the vinual world is fu nctionally equivalent to the real 

world. In practice, snl"all differences are usual ly expected which alwa ys need to be fed 

back into tuning virtual world component models more exac tl y. Note thaI the 

sop~lis ti eatio n of tbis appr03(;h will likci y lead to more rigorous consideration of 

interaction;; among multiple models which is impossibLe using standalone simulation!'.. 

As virtual world component models become more reliabll: and robust, vehicle 

deviations from predictl:d behavior in tht: real world will be less freque nt. A robot can 

202 



be )Jrng~Jmmed to recognize and measure sm:h deviations, nentually automating many 

~rror detect:on and COlTe(;tioli. Embedding virtual world 

in wbot controi logic w:ll kad to robllSl failure diagnosis and 

,,;hr rr)("s, rrrhaps cou:,led witil machine learning techniqll~s for greater 

A ,ignifi"tJlt advantage of laboratory testillr- over real world testing is tile abililY 

control cnor deviations in Usually 

:icsign~ :·<; n e~d fir~t to test their prugmms under perfed conditions to 

(1c:l~on:-;nate (;'--'lTeclness, and lhen lest again under error-prone condiLi,--,ns t'--' 

cl e:ronstrale J,--,bustness. Scning distributions of sonars or inertial measuremcnt 

ckvil.cs permiTS ~T atistical analysis of arhitrary measures of effcctiwness (MOEs) fOJ 

ll11m~rs of replications. Such testing is useful for determining overall system 

ovr r a range of operating condition<;, and also enahj(,S machin(' learning 

tedHllques based on re~TiTive training 

V"Ldarion and verification of ul1(krwat.er virtual ,""orld modds for dynamics and 

-,onar r;~.ed~ ill l~ an ongoing part of any AEV research and development program. 

l'ile ~olllplcxity and subtl ety of thes~ large models means that lllultipk effecls may 

conlrihUl~ W a given response. and any (.:hange to a hydrodynamic coefficient Illay 

ripp'e til:·ough thc modd with unexpected side efte(.:t~. A set of standardized vehiclr 

and docuillented rcsponses needs to be duplicated and compared in the virtual 

whenevcr such model ch,mges occur. 'Ibis process also is a likely candidate for 

ituWIllJ(ioll as mudel reliability improves 

Vcrification Validation and Accreditation (VV & A) is a set of methodologies 

concemeo with showing that simulation models are correct representations of reality. 

Somc b~y tr rms follow' 

I/I!njicariol!: SuvSlallt.iation tllat the computer program .... , .•.....•. , .•.•... of a 
l:onceptu<ll model is correct and perf<'Hms as inlended 
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Validation: Substantiation that a comp uter model, within its domain of 
range of accuracy I:onsis tent with the 

93) 

All/-edirillion official determination that the model and program are valid 
enough 

Confidence assessments can be performed to assess the credibility of a 

simu lation Detai led methodologies have been developed for condu(;\ing such 

.1s,e'isments (KneppeI93) (Law, Kelton 9 11. All aspects of.a simulation are evaluated 

induding level of detail , s(;Ope of intended use, fidelity, granularity, data verifi(;ation, 

c:on~rrai n ing assumptions and model validi ty. Concerns specific to 

h" rdwilre- in-the· loop simulations include liming consa-a ints, information exchange and 

~y~tell1 integriltion. While operational tests are considered to be of greatest importance 

in validatIO n ami veri fi cation. overall confidence assessments remain a value 

Juclgernent determi ned by extensive evaluation of all aspects of a simu lation. As with 

many software engineering practices, form al approaches to verification and validation 

are of greatest value in ensuring correct design and implementation. Accred itation is 

expected to be a h lture issue for models and virtual worlds used by the 

L.S . Department of D~fense (0 00), but ClUTent accreditation polides are immature 

and not applicable to this project. Rec:ommended future work for th is and other vir tual 

world., is ]Jeriormance of a fomla! independent validation and verification confidence 

i\s~essment in accordance with (Kneppe! 93). Such an assessment might uncover 

in'ldvenently-missing virtual world components, and can also help establish a rigorous 

theor~!ica l definition of the formal requirements needed for globally networked 

large-scale virtua l wor\>.is. 

C. SIMULATION RUN ANALYSIS: mission.script.siggraph 

A great number of execution levelntission scripts have been developed to tes t 

(he rmmy [a<..:eIS of (he hydrodynamics mood. There is a rkh set of execution level 

snipt commands available. any of which can be provided via conunand file 

miSSion .script or by the user via keyboard. The execution level script conun and 
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I;ln gu"ge i ~ <'\Iso designed to serve as application communications protocol between the 

,-nl elmt cxc:<.:ution levd <tnd supervisi ng tactical level. Syntax of lhe scripL conunaml 

IJn:;uJge l p peJfS in (Iirutz.man ':J4e). In general these simple o.:ornmands an~ similar to 

Iho,c which mi~Jll be gi ven by d (jiving officer on a submarine, with t he acidition of 

"'~ypuilll fol lowing ~nd hoveri ng bl': haviors. 

COlllpn~hensivc <lrtalysis of IwmerOll~ de tailed hydrodynamics variable plots is 

di ffic u lt to perform hut remains essential when \ierifying q uantitative robot and model 

pedonn;Jnn~_ However, intuitive observation and qualitative evaluation of [russians is 

not pos<;lble witham a 3D reaHime graphics viewer. T he value of such a viewer 

cannO! be ovcrcmpha~iled, Subtle (and occasionally gross) vehicle events an: often 

nor noticea ble o n thc tckmrrry plots until the lIsr.r rr.cognition has brrn (ued by the 

grap hics v iewer, In most work on hydrodynamics, plots are the only way to formally 

eVo, luatc pcrformance, Plots st ill serve an essential fu nction in qualitative analysis, but 

ir,legratioll of a li ve 3D real- time viewer means that users are no longer required to 

mentally integratr. nOlens of temporal responsc curves while attempting to visualize 

(rue ve,hic l~ hehavior 

T he most comprr hensivr robot hydrodynamics test provided in th is work j, the 

'SleeRAHI" m ission file (mi~'sioft.SCf/pl _ siggraph), which was used repeatedly during 

the pr~,r ntat i on of the undcf\vatcr virtUC!] world at the SIGGRAPH 94 conferencr. 

I Rru,zma n 94b), The mission script apprars in Figure 9.1 _ A r.lme log of mission 

output ord~rs appears in Fi gure '1.2 . Twenty plots exam ining vehicle-environment 

hydrooynamic interaction follow (Figure 9.3 through Figurc 9.22). Thr.sr. plots afC 

illllomatically prod uced from robot mission telemetry and can be generated for any 

robot mission (Brutzman 94e), Essentially these plots show the temporal relationships 

among three dozer! key hydrodynamic variablr.s throughout a mission. A large number 

of additional test missions fo~usrd on s~cific robot-environme,nt interac tions are 

provided with the underwater virtual world distributi on (Srutzman 94r). T he 

SleCrRAPH mi ssion vrh ick behavior plots which follow have been manually verified 
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u~ing hydrodynamics coefficit:nls and similar lest results produced uy t:arlier 

NPS i\UV hydrodynamics the.-;es (Warner 91) (Bahrke 92) (Torsiello 94) 
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~ '" _ Hel l o 

r;osi ~ 10n 

" fJ "cpelle r s o ff 
:-pm C 

d e pth 

• at dep t h 
• cr.ange 

t latera l thruster 
cc::ttro l 

~ veh'. c le hydrJcr.lnami e s 

• :n i ssion c ompl ete 
quit 

Figure 9.1. Canonical execution level mission script: mission .script.siggraph 
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AUV fi le mi ssion ,ou q;lUt.crde r~: comm anded propulsion orders versu s time 

tirr,estep ' O. 10 ~econG~ 

No rth E~~ t Depth rp;n 'On st ern stern 
y ;>ort """ pl a n e r udder 

0.0 0.0 0.0 0.0 0. 0 
0.0 0.0 0.0 0 .0 0. 0 
0.0 0 . 0 0 .0 0.0 0 . 0 
0.0 0 .0 0.0 0 . 0 0. 0 
0.0 0.0 0.0 0 .0 0 .0 
0. 0 0. 0 0.0 0 . 0 0 . 0 
0.0 0 . 0 0.0 0 . 0 0.0 
0.0 0 . 0 0. 0 0.0 0 .0 
0 . 0 0.0 0. 0 0 .0 0 .0 
0 .0 0 . 0 0 . 0 0. 0 0.0 
0 .0 0. 0 0 . 0 0. 0 0 . 0 
0.0 0.0 0.0 0 . 0 0 . 0 
0. 0 0.0 0 . 0 u 0.0 
0. 0 0.0 0. 0 0.0 0 . 0 
0.0 0. 0 0.0 0.0 0. 0 
0.0 0.0 0 . 0 0. 0 0.0 
0 .0 0 .0 0.0 0.0 0. 0 
0.0 0.0 0.0 0 .0 0. 0 
0.0 0.0 0.0 0 .0 0.0 
0 .0 0.0 0.0 0 .0 0. 0 
0.0 0 . 0 0.0 0 .0 0.0 
0. 0 0 . 0 0.0 0 .0 0. 0 
0.0 0.0 0.0 0 . 0 0.0 
0 . 0 0.0 0 .0 0 .0 0. 0 
0 .0 0 . 0 0.0 0.0 0. 0 
0.0 0.0 0. 0 0 .0 0. 0 
0.0 0 . 0 0.0 0. 0 0.0 
0.0 0.0 0.:) 0.0 0 . 0 
0.0 0 .0 0 .0 0. 0 0 .0 

Figure 9_2. Resulting time log of robot mission output orders: mission.output.orders 

An event-by-event analysis of the SIGGRAPH mission follows in Table 9.1 to 

identify key relationships and results. This analyti(;al timeline was produced by 

examining the original mission script Figure 9.1, the condensed mission orders 

Figure 9.2 and individual hydrodynamics plots (Figure 9.3 through Figure 9.22). , 

Finally graphics images showing vehlcle thrusters, propellers and plane surfaces 

operating simultaneDusly appear in Figure 9.23 and Figure 9.24. In these figures, 

green wireframe cones are proportional to the thrust of sea water from the cross-body 

thrusters and the propellers. 
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Table 9.1. Timclinc Anal)'sis of Sl(;ratAPH Mission. 

Nore slight ctownward pilCh angle 8 due to with 
vt"rtical heave vdocit~, ratt w via coefficient 
Plots (i, 7, 15 

1:41 

1:50 

2,(11 
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time 

2:57 

3:<10 220.4 

3:58 238.4 

.\:08 24<'i.4 

4:18 258.4 

Analytic results, ordered robot changes and pertinent plots. 

Ncar ordered depth just lx:low the surface. 
['urn on resume closed-loop rudder control by 

Head back to origin above the puoL 
turn n::stabilizes with forward motion. 

10, I I, 12, 14, 16 , 17,20. 

Nearing origin, slow and stabilize. 
Reverst: propellers to -4()() rpm, reducing forward velocity u. 
Plots 1,2,3, 11.19 

Forward velocity II almost zero, ncar origin, 
Zero propellers, coast, slow due to drag and stabilize, 
Plots 1, 2,3, I I, 19 

Approximately at origin with small velocities remaining 
Change ordert:d course to OOou and shift to hover mode. 
New ordered for hovering is origin, depth 0 ft. 
Propellers now forward/aft position error, 
aiL plane slUb..:es zeroed, vertical thrusters control depth. and 
lateral thrusters track port/starboard position error. 
Plots 2, 3, 4. 5, 7, 8, 9, 10, I I, 12, 13, 15, 16 , 19.20 

5:50 350,0 Hovering has fully stabilized AUV at origin with zero posture, 
\1ission complete, 
Plots I ttuough 20 stablc, 
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Figun' 9.3 Geographic plot (world x and y coordinates) of AUY position track. 

Figu,"e 9.4 World position <.:oardinale x and derivative versus time t 
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Figure 9.5 World position coordinate y and derivative Vt:fSUS time t. 

Figure 9.6 World dtpth coordinatt z and derivat.ive versus tune t 
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Figure 9.7 World roll Euler angk 0 and derivative versus time I. 

Figure 9.S. World pitch Enler angle: e and dcrivntivc versus time t. 
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Figure 9.9. World theta Euler angle e and related variables versus time t. 

Figure 9.10 World yaw Euler angle \jI and derivative versus time t. 
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Figure 9.11 World yaw Euler angle V and lateral thrusters vnsus time t. 

Figure 9.12 World depth coordinate:; and related variables versus time t. 
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Figure 9.13. Body longitudinal surge velocity u venus lime t. 

Figure 9.14 Bndy lateral sway velocity v versus time J 
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Figure 9.IS Rody vertical heave: ve:locily It.' ve:rsus tinlC t. 

Figure 9.16 I3rxly iungitlldinai rillalion roll rale: p ve:r$1l5 lime: t 
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Figure 9.17. Body rotational pitc h ra te q versus time t 

Fi~ure 9.18. Body vertical rotation yaw rate r versu~ time r. 
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FigUrl> 9.19 l\UV bow rudders rotation (stern rudders opposed) verSllS time t. 

Figure 9 .211. A UV bow planes ro tation (stern p lanes opposed) versus time t 
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Figure 9.2l. AUV porI and starboard propeller ~peed versus time t 

Fi gure 9.22. AllY vertical and lateral thfll5ter control voltages versus time t. 
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D. r .... ETWORK TESTING AT The Edge 

Dj,tribution oi undcrwdtrr vinual world components enables scalability and 

I<:<.t! -[ime response, bo ll1 for robot world moods and for peopk. The disrr ibuted 

Imp!ementation of the underwater virtual world (Brutzman 94e) was le.~ted and 

demOnSITdted for oays as part of The Edge exhibition al the SIGGRAPH 94 

<:onferem:e, hrlo in Orlando Flolida (Brulllnan 94b, 94e). We estimate that 2.000 of 

32.000 SlGGRAPH attendees stopped at our un(krwatcJ virtual world exhibit to 

observr a ro bot mission and karn about the project. Robol intcractions in the vinual 

wor ld were also I~l ultica,t over the MBone with worldwide scope (ttl 127) us ing audio. 

video and DIS channels 

The forty revirwed exhibits in The Ed!?" werr representative of leadi ng computer 

gr~iphKs applications in the world . The Edge was intended to inc lude shared 

experiences, simul alion, trainiIlg, education, vi rtual envi.l'Onrnents , high-bandwidth 

netv,'orked graphics, telepresence and telerobotics. The underwater virtual world 

projed has components and rekvance in ea(;h of those areas. Our objective was lo 

inspire and sti mulate attendees to consider a myriad of opportunities previously 

considerrd infeasible. Feedback corlUnents from visitors, SIGGRA PH organizers and 

th~ press (Meyer 94) were uniformly enthusiastic. 

One teehnkal goal during this demonsrration was to evaluate netwoRk loadi ng. 

Bandwidth budget pl ans called for an averagt: bandwidth of 225 kilobits per second 

(KbpSi i .~ avai lable (i.e. 25% of a 1.5 \1bps Tl Internet connection). This bandwi dth 

bL.:dgct induded 128 KiJps for locally generated vidro/graphics, M Kbps for a shared 

audio channel and 15 ~bps for sending DIS POUs. 128 Kbps is the default bandwidth 

for world-wide multicast video programs and t:quales to 1-3 frames per second. 

Lower or higher bandwidths and a corresponding change in frame rak arc feasible 

DIS Entity State PDU size for Il le NPS AUV is larger than the nominal DIS 

rou default, since three articulateo parameters are attached to t:ach AUY POU for 

sonar , plane surface, propeller and lhruster values. DI S protoco l bandwidth for the 
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SIGGRAPlI demonstrations were based on these PDUs being multicast at full virtual 

world update frequency of JO Hz 

DIS bandwidth" (multicast PDU update rate) lPDU size] 

" (10Hz updoterate) [1152 bits + 3[' l~gbits] l (9.1) 

PDU ;:~~~~ j 
-= 15.36 Kbps 

T~II~ ful l update rdle of 10 Hz was u~ed to relay every possible nuance re lated 10 

phy~ical motion of the highly dynamic autonomous underwater vehicle. By way of 

W [llrast, a standard Entity Slate PDU with no articulated parameters being rdayed at 

the maximum slandarct interval uf 5 seconds produces only a 0.23 Kbps bandwidth 

load 

Another important way of making virtual worlds widely available is developing 

an information infrastructure where potential virtual world participants have the 

network capalnlities to participate. Toward this end we have utilized :vtBone in a 

Jlumocr of scholarly conferences. Ohjectives are usually twofold: learn how to use 

g lobal vicleoconferencing more effectively. and assist potential collaborators in 

!earning more and co nnect ing. We have achieved a steady series of successes at a 

varicty of ,;ites including 1993 US. Geological Survey Menlo Park scientific 

vlsua!i7.atW[1 workshop, the International Advanced Robotics Programmc (lARP) 

Mobile Robotics for Subsea Environments 94 (Brutzman 94a), IEE E Autonomous 

Underwate r Vehicles tJ4 (Rrutzman tJ4d), GLOSAS Global Let:ture Hall of July lj4 

(McLeod 94), and SIGGRAPH 94 (Srutzman 94b, 94::). Effectiveness of lh~se 

techniqucs has been formally evaluated (Gambrino (4) with typically positive and 

enthusiastic results (Macedonia, Brutzman 94). It is our belief that use of MBone in a 

variety of media will continue to grow at a slow but ex.ponential rate, and it is our 

experienc~ that familiarity and practice overcomes limitations associated with 

bandwidth restrictions. 

The combined lise of socket connectivity, MBone audio/video/graphi<.;s/PIJUs, 

the DIS prOlowl and World-Widc Web (WWW) functionali ty means that the 
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und(",fw'llCl virtual world is an excellent applic ation 10 take advamage of a 

1li:~h-bJ. ndwictth infonn~lion superhighway, further extending lhe capabilities of 

ill ultiple re searchers. T he network approach allows many indi viduals dynamic remOlC 

<ind d istributing components minimizes dependence on unique (or 

hard -la-replace) hard ware and software_ The DIS pro locol permits compatible 

Interaction with other virtual worlds over the InleHict. Providing hypermedia Jl.:cess 

VlJ pllblidy available 'W'Vo'W browsers such as Mosaic makes a complete variety of 

pe rt inent ar~hived informa tion availahle to anyone. Such information media include 

images , papers, daIJ.,els, software, sound dips, tex t and any other computer-storable 

medld_ This ~uppons another long term objel:tive of the projel:t, which is to continue 

extend ing the scope of virtual world en tities and sirnplifyi.ng virtual world interfaces in 

orrkr to become IbefuJ as an excmp lar application fo r ed ucation, Thus an 

Illfrastr llCture is evolving whereby virtual worlds can support remote scienr.ific 

l o!lahoration and education, both regionaJly and globally, 

Ie:. SUMMARY Al\O FUTURE WORK 

This ~hap t e r showed expe rimental results in hydrod ynamics, Internet-wide 

network loading and remote (ollaboration , Hydrodynamics behavior of an underwater 

vehic k is shown to be highly complex and dependent on a large number of interacting 

variables, Temporal plots permit prccise analysis of results. but real- time 3D graphics 

playback is required fo r overall evaluation and Lnsight. From a network perspective, 

the Inte rnet is cUlIently capahle of 5,u pporting the variety of high -bandwidth 

information streams nceded for full viflual world connectivity. Tested sn-eams include 

point-to-pOint telemetr~' sockets, audio, video, graphics. DIS PDU s and archived 

multimedia. Addition of arbimui ly large numbers of virtual world viewers is shown 

possible through usc of the rvlllone for time-sensitive information such as audio, video 

and DIS position updares 

Future work on experi men tal resulL" is extensive because use of the underwater 

virtual enables many new capabi lities. Top priori ty is to reintegrate execution level 

software in tne actual vehicle and reproduce virtual world resul ts in the real world. 
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Re.'!Jctlably. the long break in 1994 i\UV testing due to hydrogen explosion repairs 

h,,, precluded running any of these missions in the water. This lack of validating test 

ddtl dupiic:lting virtual world lllissi(Jns in the real world has precluded performing a 

"Turi ng Te.'!" of virtual world operations. A lOp priority for 1995 is to stabilize the 

equipment rebL:ild and upgraclc the execution level robot control program to usc new 

hardware interfaces. At that point virtual world tcst resu lts Jf!: expected to be 

cotnplet<:: ly valid ated against identical missions run in the tcst tank. 

Collaboration with other underwatt:r robotics and virtu<ti world researchers is 

hit'hly de"irable in order to scale up the scope of tht: underwat.er virtual world. A 

formal va lidation and verification eonfidencc assessment can improve project 

implementation and may help formally Clarify the fu ndamental requirements needed 

for global intcrnetworkcti large-scale virtual worlds. Exciting future possibilities 

include usc of thc underwater virtual world as an ooucational tool, as a testbed for new 

AUVs, and as a means for providing context amidst the gigantic mass of infonnation 

content which i5 being connected via the Tnternet. 
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X. CON CLUSlONS AND RECOMMEr-;DA TlO ~~S 

A. PIHNCIPAL DISS ERTATIUN COr-;CLlISlONS 

Carblrudlon of an \lndcrw~le r virtua l world is fea,ible Using 3D real"time 

C01:lpli tc r gr~lp h ics in an undcrwater virtual world enables effective AUV oevelopmcnt. 

Vl\u~ li za t ion of robot in ternctions in an underwater virtual world improve, OI IT 

perceptual ability to evaluate robot perfonnance. A nctworked robOl and virtual world 

enab le., rrsrardirrg to "scale up " to extremely high degrees of complexity, and makrs 

roboriL" re~earch and coUa boration acccssible worldwide. 

A comprehensive softwarc-hltrdwarc architccttu c for a general AUV underwater 

virtua l world demonstrates the feasibil ity of these concepts. Several components 

make up thi s virnwl world, A ~olllplele underwater vehicle dynamics model 

suitable for physir,;-basect real-time simli lation is developed. Real-time visualization 

of AUV 1nd sensors interacting with a realistic environm..::nt is arhieved by dccoupling 

robot-virtual world interactio ns from graphic s by the use of the Distributed Interact ive 

Simu lation (DIS, protocol. World-widc accessibili ty is provided using the 

\VorU -\Vide Web (WW W) for ~oftware archive retrieval and thr Multicast Backhone 

( t-1Bone) for live streams. Convenient and comprehensive network connectiv ity 

enables efkctive scientific collaboration among researchers and robots 

B. SP~C l F IC CO NC L USIO NS, RESULTS AND REC0J\.1\1ENDATIONS FOR 

fUTliRE WORK 

i\dditional drlai l ~d conclusions appear at the end of each chapte r. 

l Tnderwater RoiJotics 

A large gap between theory and practice has resulted in rclatively few 

underwater rohots. The difficultics of the underwater cnvironment are as severe as 

Jny other, making any AUV failurc potentially fatal. AUV software and hardware 

so lutions are available bl1l lIlany problems remain due to difficulty integrating 
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component solutions. Real-time control under complex dynamic and temporal 

,"on,traims is ~ssential. Stabi lity and reliability are paramount but testing is difficult 

Virtua l worlds may help break the AUY development bottleneck. 

A large number of open tasks await underwater robot designers. Insistence 

on in-water testing following laboratory simulation is needed to ensure that progrc% is 

Cllllll.l ldtive and grounded ill reality _ AUVs are beginning to perform important tasks 

IhJ.[ ~arH10t be (jane effectively by other p latforms. Both NPS and the AUV 

community is poised for significant real world accomplishments such as effective 

Illlnef ie ld ~eafch. 

2. Object-Oriented Real-Time Graphics 

Interactive 10 graphics are used as our window into virtual worlds. 

Graphics are completely rlecoupled from robot-virtual world interaction in order to 

permi t rea l-tim!;,: performance for robot and world models. Graphics viewers can be 

~ff~ctivt:ly n~lwurked to us!;': the global Internet as an input/output device, i.e. as a 

source or target for any information stream dt:sired. Object-oriented graphics models 

supported by scene description languages are !;':ssential fOf scaling up virtual worlds. 

Rcndering and network compatihility across multiple platforms is highly desirahle. 

Opcn Im.·en/or and the propused Virtual Reality Modeling Language (VRML) arc 

wel l suited for virtual world construction and rendt:ring. Future work includes 

increasing the number of objects populating the virtual world, adding hooks to objects 

on remole servers via URL rlefinitions, and porting to ollu:r architectur!;':s to encourage 

widespread use of the undef\\iater virtual world. Since the physical sizc and scope of 

~n underwater virtual world is very large, il is a good candidate for a large inuncrsive 

environment such as a-CAVE (Cruz· Neira 93). 

J. Underwater Vehicle Hydrodynamics Models 

No hydrodynamics model was previously available which was Sllitable for 

real-lime simulation performance in hover and cruise modes. A general standardized 

and paramett:rized hydrodynam.i<.:s model is pre~entcd based on numerous preceding 
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modds, rigorous physical ckrivillions and empirical testing. TIle model is 

computalionally db.:ienl. c{lpabk of running at short intervals (10 Hl) and networked 

the DIS protocol. Fumre work includes implementation of the hydroriynamics 

rnQ"~ 1 for O1her vr:hicl es. extension to include special effects such as tethers and wave 

Inotion. connection to a large-sca le world collision detection model, and possible 

porting imo vellicle software as a predictive '"w orld in the loop" for imd ligem control 

anri machine learni ng ;upervi~ion 

4. l\'etworking 

The key considerations in networking virtual worlds concern compatibility, 

b,lndwidth and scalability. The Internet Protoco l ( IP) suite is essential for global 

compatibility. Point-to-point sockets are capable of supporting tightly-coupled world 

models interacting with a robot. The fEEE DIS protocol pennits entities to compatibly 

~O Lllm lHllCd te and interact at the entity/application level. Multicast protocols allow 

bandwidth reduction for both transmission and reception, a necessary step for scaling 

be yond limi ted numbers (hundreds) of interacting ~ntiti~s. Scalability is also 

~uppone::l through the use of World-Wide Web compatibility which provides flexible 

and well-ddincd communications mechanisms for information retrieval. Future work 

im:: ICl des continuing to scak up using DIS, multicast and the Worlri-Wirie Web, and 

,\Iso budding a persistent unlierwatcT virmal world server for continuous avai lability to 

humans and robots using the jnternet 

5. Sonar l\."1odeling and Visualizalion 

Many sonar models are available but most are highly specialized and none 

nppear to be suited for.general use. Based on initial testing and validation, the 

Recursive Ray Acoustics (RRA) Algorithm sonar model (Ziomek 93) holds 

exceptional promb~ du~ to computational efficiency, frequency constraint 

independence, sound sp~~d profile (SSP) constraint ind~pendence and bathymetry 

constraint ind!" pendence. Sunar visualization is the application of scicmi tk 

visualization tel.:hniques to enable effective annlysis of high-dimensionality sonar data 
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SOllar vis ualizat ion also ho lds great promise as a means of effec tively interpret ing 

robot sensor interactions in a cOllntcrinruitivc environment. Future work starts with 

porting the RRA C-translatio ll offline model to become an online model, possibly by 

adding hooks to the original RRA FORTRAN source code. Visu alizati on tools will he 

u"cd to cxpc rimcm with effective matches between the high dimensionality of sonar 

parameter ,; dnd the high dimensionality of graphics rendering techniques. The most 

prom i ~ing vi,uali zation resul ts will be ust:d for real-time rendering of sonar 

lran sm i s~ions in the underwater virtual world 

C. NEXT STEP: BUfLDII\(; A LARGE-SCALE 

Ui\OERWATER VIRTUAL WORLD 

Results in th is dissertation havl;': stn:ssed the possibilities of scalabili ty to 

arb i'Tanly large levels. Having shown that comprehensive real-time robot operation is 

possible ill a virt ual world, it is now appears possible to scale up while including 

numerous independent ly acting human and robot entities. Scientific rigor can Ix: 

prov ided by examining inputs, outputS and constraints on various world models and 

defining ways for these models to interact in theoretically correct ways. The 

e~pone nlial and open growth of the World-Wide Web has been possible due to the 

op~n <:apabili ties of the Hypertext Markup Language, providing an excellent e~emplar 

for sustained exponential growth. It is likely that VRML or related effons will enable 

similar growth of vin ual worlds and virtual world componentS 

Virtual worlds have the potential to completely change the current paradigms of 

how people use information. This work points out promising directions for connecting 

information, robots an~ people in ways that provide context, meaning and substance. 

The real world is the be~t model for a virtual world. When our virtual constructs 

cumu latively approach realistic levels of depth and sophistication, our understanding of 

the real world will deepen correspondingly. 
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APPENDIX A. ACRONYMS 

3D IhrC"c dimC"nsional 

Al artificial intellige nce 

ALAN An)llstic loca l area network 

Al'- SI American Natlo nal Standards Institute 

AOSN AutonomO llS Oceanographic Sampling Network 

AP I app lication program int~rfaee 

ARPA Advan.:ed Research Projects Agency 

(formerly DARPA. originally ARPA) 

tWirl2 (y x) 

ATM 

AUV 

BSD 

CB 

CFD 

CG 

dB 

DES 

DIS 

DoD 

DOF 

dynamics 

arct.angent function . returns angle to a point in proper quadrant 

Asynchronous Transfer Mcxle 

allto nomous underwater vehic le 

Berkeley Software Distribution (a Unix variant) 

ce nter of buoyancy 

computational fluid dynamics 

center of gravity 

decibel (logari thmic unit of measure of sound intensi ty) 

Data Encryption Standard 

IEEE Distri buted Interactive Simulation Protoco l 

U,S. Department of Defense 

deg~es of freedom 

AUV Underwater Virtual World component· hydrodynamics. 

network connections and other real-time models (e.g. sonar) 

AUV Underwater Virtual World component: robot execution level 

FEe forward enor compression . en.:oding s.:heme that ind udes 

redundant information to reduce probabili ty of data loss 
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hI' File Transfer Protocol, refers hoth to host servers providing 

information ami clients connecting for information retrieval 

GPS Global Positioning Systelll 

hlml Hypenc>(t Markup Language 

http Hypertext Transfer Protocol . refers both to host servers providing 

information and clients connecting for information retrieval 

IE EE JnqitUic of Electrical and Electronics Engineers 

I-'LI\ Ini tiative for Information [nfrastrm;mre and Linkage Applications. 

a Monterey Bay regional K- 16 educational network collahoration 

IP hHernet Prolocol 

IPe mter-process commU!l!canons 

inx UIli:<. as implemented on SGJ workstations 

ISDN Integrated Services Digital Network 

[SO International Organization for Standardization 

Open Inventor scene de.~lTiption language filename extension 

Kbps Kilobits pcr second 

LAN lo<.:~l <lrea network 

WWW browser with line mode interface, usahle within application 

programs as a diem to retrieve files frolll WWW 

MAPS MBARl-NASA .6.mes-Naval fostgraduate School-2tanford 

Aerospace Robotics Lab dlort to build next-generation A ljV 

MBone 

Mbps 

MIDI 

MIME 

MOE 

Mosaic 

mrOiAferi 

NPS 

Multicast Backbone 

Megabits per second 

MuSical Instrument Digital Interface 

Multipurpose Internet Mail Extensions (RFC 1341) 

measure of effectiveness 

WWW browser with graphical user inH:rface 

multicast router daemon 

Naval Postgraduate School 
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OOSP1C 

OS-'1 

OS I 

PDU 

RBM 

KFC 

network video MBone application tool for video and graphics 

ObJeo.: t-Oriented Simulation PICtures 

Real-time operating system produced by Microware Inc 

Open Systems lnterconnection reference model 

protocol data unit 

Rational Behavior Model 

Request For Comments. draft Internet documents provided for 

lnform<ltion or standards development 

ROV remotely operated vehicle 

rpm revolutions per minute 

RRA Recursive Ray Acoustics sonar algorithm 

SAF semi-automated forces 

sJ 51'ssio ll direclOry MBone application tool for session advertisemem 

and selection 

SDV-'} Swimmer Delivery Vehicle. hull 9 

SGI Silicon Graphics Inc. 

SOund Navigation And Ranging 

SPL sound pressure level 

SSP sound speed profile (measured versus depth) 

SVP sound velocity profile (typically a misnomer for SSP) 

Tclffk Tool control languagerrool kit 

TCP Transmission Control Protocol. part of IP transport layer 

telnet virtual terminal prOiocol permitting remOle syslem login 

III time-lo-Iive packet hop counter 

UDP User Datagram Protocol. part of IP transport layer 

URL Universal Resource Locator 

USN U.S. Navy 

UU V unmanned underwater vehicle. may be controlled remotely 

visual audio 100/ MBone application tool for audio 
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vn n! 

VV & A 

AUV L:ndt:rwatcr Virtual World component: networked 3D 

rClIl -time graphics to remotely view robot operating in vir tual world 

Virtual Rea lity Mo<ieling Language 

val idation verification and accreditation 

whireboard MBone application tool for shared drawing and images 

WWW World-Wide Web 
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APPENDIX R. VIDEO DEMONSTRATION 

A. L~TROOUCTION 

This section briefly describes the contents and objectives of the video appendix. 

B. NPS AllV OPERA TING IN THE mUERWA TER VIRTUAL WORLD: 

THE SIGGRAPII M.ISSION 

This video segment shows a six minute mission in the underwater virtual world 

It first appeared in the Video Proceedings of the AUV 94 conference (Brutzman 94a). 

The original abstract follows: 

A critical bottleneck exists in Autonomous Underwater Vehicle (AUV) design 
and development. It is tremendously difficult to observe, communicate with and 
test underwater robots. because they operate in a remote and hazardous 
environment where physical dynamics and sensing modalities are 
counterintUItIve. 

An underwater virtual world can comprehensively model all salient functional 
characteristics of the real world in real time. This virtual world is designed 
from the perspective of the rohol. enabling realistic AUV evaluation and testing 
in the laboratory. Three-dimensional real-time graphics are our window into 
that virtual world . Visualintion of robot interactions within a virtual world 
permits sophisticated analyses of robot performance that are otherwise 
unavailable. Sonar visualization permits researchers to accurately "look over 
the robot's shoulder" or even "see through the robot's eyes" to intuitively 
understand sensor-environment interactions. 

Distribution of underwater virtual world components enables scalabil ity and 
real-time response. The IEEE Distributed Interactive Simulation (DIS) protocol 
is used for compatible live interaction with other virtual worlds. Network 
access allows individuals remote observation. Mosaic and the World-Wide Web 
provides open access to archived images, papers, datasets, software. sound 
clips. text and any other computer-storable media. This project presents the 
frontier of 3D real-time graphics for underwater robotics. ocean exploration, 
sonar visualintion and worldwide scientific collaboration. (BTUtzman 94a) 
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C. NPS AUTONOMOUS UNDERWATER VEHICLE 

rhis video segment shows the basic functionality of the NPS AUV . It first 

appeared in the Video Proceedings of the IEEE International Conference on Robotics 

and Automation 1992, and the Video Proceedings of the Eighth International 

Symposium on Unmanned Untethered Submersible Technology 

(Srutzman 92a, 92b, 93a). The original abstract follows: 

The Naval Postgraduate School (NPS) Autonomous Underwater Vehicle 
(AUV) is an eight foot long, 387-pound untethered robot submarine designed 
for research in adaptive oomrol , mission planning, navigation, mission 
execution, and post-mission data analysis, Neutral buoyancy, eight plane 
surfaces and twin propellers allow precise maneuverab ility. 

Simulation programs running on Iris three-d imensional graphics workstations 
are used to evaluate NPS AUV software and predict system performance prior 
to each mission. Graphics simulations can replay in real time actual data 
collected in the pool. The taped playback demonstrates reconstruction and 
visualization of vehicle track, control systems dynamic response, logic and state 
changes. plotted locations of indiv idual sonar returns, and expert system 
classification of detected objects. 

Ongoing NPS AUV research is investigating linear and nonlinear control 
techniques , advanced sonar classification . failure mode analysis using neural 
networks, dynamic path and search planning, u,~e of cross-body thrusters for 
hovering control, alternate AUV operating architectures, incorporation of Global 
Positioning System (GPS) receiver navigation. and construction of an 
underwater virtual world to permit complete and realistic resting of every aspect 
of AUV operation in the laboratory , (Rrutzman 92a, 92b, 93a) 

D. LIVE EXHIBIT Al'lD WORLDWIDE MULTICAST AT 

The Edge, SIGGRAPIi 94 

This segment shows the NPS AUV Underwater Virtual World exhibit at 

The Edge , SIGGRAPH 94 (BTUtzman 94b, 94c). Video photographer is 

Michael J. Zyda, 
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E. NPS At'V WORLD-WIDE WEB HOJ\.1E PAGE 

This video segment shows how to connect to the NPS AUV home page and 

retrieve the underwater virtual world dis tr ibution. Installation is also demonstrated 

F. EXTENDED NPS AL'V MISSION REPLA YS 

Additional NPS AUV missions are run from the underwater virtual world 

archive distribution, evaluating a variety of hydrodynamic and sonar responses. 

G. NPS AUV POSTURE CONTROL 

This video segment demonstrates in-water test tank results from early 1994. 

It first appeared in the Video Proceedings of the AUV 94 conference (Brutzman 94a) 

by authors A.1 . Healey, D.B. Marco, R.B. McGhee. D.P. Brutzman, R. Cristi and 

F.A. Papoulias. The original abstract follows: 

Recent work with the NPS AUV II demonstrates further development of the 
execution level software to incorporate hover control behavior in the NPS hover 
tank. Of particular interest is tbe use of the ST 100 and ST 725 high frequency 
sonars to provide data about the environment. Thus positioning can be 
accomplished without the use of beacons. 

Motion behaviors may he instituted that include diving and pitch control 
under thruster power, heading control at zero speed, lateral and longitudinal 
positioning, as well as the automatic ini tiation of filters as needed when a new 
target is found. A simple task level language is developed that will be used to 
direct tactical leve l output to a port which communicates with e:o::ccution level 
software. (Healey abstract, Srutzman 94a) 
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H, MBone: AUDIO/VIDEO INTERNET TOOlS FOR INTERNATIONAL 

COLLABORATION 

This video segment describes and demonstrates use of the MBone. It was 

recorded from a worldwide MBone broadcast of the May 1994 International Advanced 

Robotics Programme (IARP): Mobile Robots for Subsea Environments, hosted by the 

Monterey Bay Aquarium Research Institute (MBAR!). It originally appeared at in the 

Video Proceedings of the AUV 94 conference (Brutzman 94a). MBone media 

strengths and limitations videoconference are formally evaluated in (Gambrino 94) 

using this videoconference. The original abstract follows : 

Recently it ha~ become possible to broadcast live audio and video over the 
Internet using the Multicast Backbone (MBone). This development holds great 
promise as an enabling technology for collaborative work among underwater 
vehicle researchers separated by long distances . 

This talk describes \el:hnical considerations related to usc of the MBone. 
which is the virtual network used for these Internet sessions. Anyone with 
direct Internet connections, adequate bandwidth and a workstation can receive 
multicast. We hope to demonstrate that worldwide collaboration among 
underwater robotics researchers is not only feasible but even convenient. 

For more information on how to connect your Jab to MBone, refer to 
"MBone Provides Audio and Video Across the Internet" in the April 94 issue of 
IEt""t,· COMPUTER, pp. 30-36. This article is also available for electronic 
retrieval in PostScript, text, and hypertext versions: 

ftp ://taurus .cs.nps.navy.millpub/i3Ia/mbone.ps 
ftp://taurus.cs.nps.navy.mil/pub/i3Ia/mbone.txt 
ftp :/ltaurus.cs .nps.navy.millpub/i3Ia/mbone .html (BTutzman 94a) 
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