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ABSTRACT

This thesis treats the topic of multidimensional autoregressive (AR) spectral

estimation. An iterative algorithm for the solution of toeplitz block-toeplitz matrix equations

is presented. This leads to a fast solution of the 2-D normal equation compared with direct

inversion of the autocorrelation matrix.

The covariance method is used to estimate the autocorrelation function. Because the

resulting autocorrelation matrix is not toeplitz block-toeplitz, a modified iterative algorithm

is presented. Quarter-plane (QP) and nonsymmetric half-plane (NSHP) support are used, as

well as combined quadrant (CQ) averaging.

Results of computer simulation show that in some cases a single iteration is

sufficient to produce an acceptable spectral estimate. Because the AR parameters are

estimated from previous values, this suggests the possibility to estimate spectral densities

of slowly varying random processes.
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I. INTRODUCTION

Estimating the power spectrum associated with a 2-D random process is important

in a number of applications. In digital image processing, for example, Wiener filtering

may be used to solve image restoration problems in which a signal is degraded by

additive random noise [Ref. 1). The frequency response of a noncausal Wiener

filter requires knowledge of the spectral contents of the signal and background noise.

Another example is an array of sensors. The frequency wave number spectrum generated

from such an array contains information about the signal source and direction of arrival.

Various methods of spectral estimation are discussed in the literature [Refs.

1, 2, 3]. This thesis treats the topic of autoregressive (AR) spectral estimation.

Because this method is known to produce high resolution spectral estimates with a small

data set, it has attracted considerable interest [Refs. 4, 5, 6, 7].

Determining estimates of AR parameters requires the solution of a set of normal

equations. This in turn requires the inversion of an NxN autocorrelation matrix. Direct

inversion of the autocorrelation matrix requires O(N3 ) multiplications, which is

computationally intensive for large N. An iterative method is presented in this thesis

which reduces the number of multiplications significantly.

This thesis is organized into five chapters. The remainder of this chapter is devoted

to defining the power spectral density and the resulting forms of the normal equation

when quarter-plane (QP) and nonsymmetric half-plane (NSHP) support are used. Chapter



II develops an iterative solution to the normal equation for both QP and NSHP support

which assumes the autocorrelation matrix is toeplitz block-toeplitz. Chapter III discusses

the use of the covariance method to estimate the autocorrelation matrix. Because the

resulting autocorrelation matrix for the covariance method is not toeplitz block-toeplitz,

a modification of the iterative solution presented in Chapter II is developed.

Additionally, the technique of combined-quadrant (CQ) averaging is introduced in this

chapter. Results obtained from using QP and NSHP support, as well as CQ averaging, to

estimate spectral densities are presented in Chapter IV. Conclusions and

recommendations for future study are given in Chapter V.

A. POWER SPECTRAL DENSITY

A 2-D random process is a discrete function x(n1,n2) such that, for each coordinate

pair (n1 ,,n2), the value of x(n,n 2) is a random variable. The power spectral density

P'(oI 10 2) of a wide-sense stationary random process is the Fourier transform of the

autocorrelation function,

P,,(J° ) : y R,(i ,,2)e -j',,,e -jO,,(1 )

where

R,(11 ,12) Eix(n ,n2)x "(,1- ,il 2 - 2 )], (1-2)

and EI'] denotes the statistical expectation. Conventional methods of estimating the

spectral density include the correlogram. In this method, an estimate of the
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autocorrelation function 1 (1 ,12) is substituted into (1-1), where fi,(1,!2) is an estimate

such as

/i(/,,/,) I - x(n,,n 2)x(n,-1,,n2 12), (1-3)
NN1 2,--o N,.0

and N,N2 is the number of points in the random process. The modem methods of spectral

estimation include representing the random process with an autoregressive model. The

model parameters are then used to estimate the spectral density. This is the method

employed in this thesis.

B. AUTOREGRESSIVE SPECTRAL ESTIMATION

Autoregressive spectral estimation assumes the random process x(n,,n2 ) is the

response of an AR model excited by white noise w(n1 ,n2) with variance ( 2 , as shown in

Figure 1. To estimate the AR parameters a(n 1,n2), the system is expressed as a recursive

difference equation given by

x(n, ,n2 ) = - E a(ij)TX(n, - i,n2 -j) + w(n, ,n2) (1-4)
( i,j I rA

where A is the region of support over which a(ij) have non-zero values. The frequency-

response function of the AR model is expressed as

1
H(lo1' 2 ) (1-5)

1 + ae
(k,.k2 .A
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w(n,,n2) x(n,,2)

1 + a(k ,k 2 )e IklejW2k2

(k,k 2) rA

Figure 1. AR model excited by white noise

The AR power spectral estimate .(oo 2 ) is given by

P((o),,(o 2 H((o,,(o 2) 12P (1-6)

where P is the spectral density of the white noise input. The input has a constant

power spectnm of amplitude o2. Therefore (1-6) can be written as

l (o,(o ) =  ay2

j 1 _1- e (1-7 )

To estimate the AR parameters, multiply both sides of (1-4) by x'(nI -l,n 2 -1 2) and

take the statistical expectation [Ref. 21. This leads to the following nonal equation
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_ a(i~j)R,(1,-i,1,-j ) = R (I,,). 18

(a.j) eA

The structure of the normal equation depends upon the shape of A. Two regions of

support will be considered in the following, quarter-plane and nonsymmetric half-plane

support.

1. Quarter-Plane Support

The region A is said to have quarter-plane support when a(ij) has non-zero

values in one quadrant only, as shown in Figure 2, which illustrates quarter plane support

in the first quadrant. In this case the normal equation becomes

E E a(i'j)R,(1,-ii,-J) = R(lJ,)

i=() j)O
(i.j) * (o.o))

where /,=O,1,2,...,P-1, 12=0,,2,...,P2-1, and P, and P2 are the dimensions of A as shown

in Figure 2. If it is assumed that a(0,0) = 1, then (1.9) can be written in block-matrix

form as

RO  R_1  R-2 .R* ,.R au S(O)

R1 RO  R_1 ... R,2 a, 0- " (1-10)

R2  R1 Ro  ... R P,-3 a2  0

R ,-, R ,-2  R p',-3  ". Ro aP,- I 0

5



nl2

Figure 2. QP .support i first quadrant

where each block R, is given by

R(k,O) R(k, 1) ... R(k, -P 2 , 1)

R(k,l) R(k,O) R. R(k,_-P 2+2)  -!I

R(k,P2 - 1 ) R(k,P2 - 2)  R(k,O)

a,--[a(k,0) a(k,l) a(k,2) ... a(k,P 2-1)IT ,  (-2

and

* ,-o.0 ..o0.0,-3

*mO) 02 0 0 0

Fiur 2 P upot n irtqud6n



Note that the matrix R has a toeplitz block-toeplitz structure. That is, the blocks along

the diagonals are equal, and the elements along the diagonals within the blocks are also

equal.

2. Nonsymmetric Half-Plane Support

When a(ij) has non-zero values in a region of the form shown in Figure 3, the

region A is referred to as nonsymmetric half-plane (NSHP) support. In this case the

normal equation becomes

P,-1 P'-1

, a(O,j)R,(l,,12 -j) + E E a(ij)R(1-i,-12 j) = R,(11 '12) (1-14)
ji= i=I j=L'

(i.j) *t (0.0)

where

/1 -- 0,1,,2, ... , P -.1,

0,1,,2 ... ,L2+P2-1, for I 0,

L 2,L 2+1,L22 ... ,L 2+P2- 1, for I  0.

and P, and P2 are the dimensions of A, and L2 is a negative number as defined in Figure

3. Let a(0,0) = 1. Then (1-14) may be written in matrix form as
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n2

n,

L2o 0

Figure 3. NSIIP support

I RO  R _ R_.,.2 a, 0

R 2 RI R . RP,3 4 a2  0

LR, I Rp, 2 Rp, 3 .. R0 aP., 0

where the various blocks RR, and R, are given by

R(0,0) R(0,- 1) R(0,-L 2 -P 2 4 1(6

Rf , O R(0,1) R(0,0) ... RkO- L2 - P242) ( -6

R(0,L 2  2 - 1) R(O,L 2 +P2 -2) R(0,0)

. . .. u u ni n I I N I I I I in8



R(k,-L 2) R(k,-L 2-1) ... R(k,-L 2-P 2+1)

T R(k,-L 2+I) R(k,-L 2) R(k,-L 2-P 2+2) (1-17)
A k -k

R(k,-L 2 +P2 -1) R(k,-L 2 +P2-2) R(k,O)

R(k,O) R(k,- 1) ... R(k,-P 2+l)

T R(k,l) R(k,O) "' R(k,-P 2+2) (1-18)

R(kP 2 -1) R(kP 2-2) R(k,O)

the model parameters in vector form are

o  [a(O,0) a(0,1) a(0,2) ... a(0,L 2+P2 -1)I, (1-19)

ak = [a(kL 2) a(kL 2 + 1) a(k,L2 +2) ... a(kL 2 +P2 1)]T, (1-20)

and

10o, = [2 0 0 .. 0] (1-21)

The blocks of the autocorrelation matrix have three structures given by 0o, A, and Rk.

Except for the upper and left borders, the matrix is block-toeplitz with toeplitz blocks.

Quarter-plane support is a special case of NSHP support with L 2 = 0.
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II. SOLUTION OF NORMAL EQUATION USING ITERATION

The solution of the normal equation requires inversion of the autocorrelation

matrix. As previously stated, direct inversion becomes increasingly computationally

intensive for larger matrices. However, the toeplitz block-toeplitz structure of the

autocorrelation matrix enables the inversion of the matrix via an iterative method which

employs successive partitioning of the normal equation [Ref. 8].

A. QUARTER-PLANE SUPPORT

To develop the iterative algorithm we first divide both sides of (1-10) by 02. This

results in the modified normal equation

Ro  R_ R_2 ... RP,.[ a,, S((1

R1  R,, R_1 ... R_P,-2  a, 0

R2  R1  Ro  .. RP, 3  a 2 0 (2-1)

RP,_, RP,2 Rp,_3  ...Ro  a,, 0

where Sf' [1 0 0 ... 0]'. The normal equation is then partitioned as follows.

10



Ro  R, R_2  .. RP,l ao S( °)

R, Ro  R_ .. .R_P,2 a, 0

R 2  Rl Ro  R-P,.3  a2  0 (2-2)

... ..... ... ... ... ... °°.o

RP,_m Rr_2 RP,_3 --.. Ro  aP,_, 0

Equation (2-2) can be expressed as

[2; HI faT'; 1[ (2-3)
- ITRo - P,-!--

where

RO R_l R_2 .. R_, 2

Rl Ro R_l ... R_P, 3

G, R 2  R, R0  * P..R4  
(2-4)

RP, 2 RP,-3 RP,-4 ".. Ro

HI T [RP,l RP, 2 RP, 3 ... R, (2-5)

, - aoT aT a T ... apT_2IT, (2-6)

11



and

(= [1 0 0 ... 0] r . (2-7)

Both sides of (2-3) are then premultiplied by a matrix F, which results in

Y'y =G' [p, -H, a, (2-8)

ap, -- Ro' H,T,

where

F, = [G; :IjH (2-9)

These last equations suggest an iterative solution. In particular, (2-8) may be expressed

as

(k-I)

S=G- [ Pt -H, aP,-I1 (2-10)
a(k)_i- - 1Hi T k-1)

Equation (2-10) requires the inversion of the submatrix G,, which is not much smaller

than the autocorrelation matrix, and hence requires nearly as many multiplications to

invert. Therefore, G,, y,, and (p, may be further partitioned to yield

12



-H'R o  aP,-2-

where

R0  R_1  R_2 ... R_p,.3

RI Ro  R_1 ... RP,.4

G2  R2  RI Ro ... R_p,5 (2-12)

RP,-3 RP,-4 Rp .. R 2

Hf [RP, I R,,-2 Rp, 3  R21, (2-13)

T T T a.T ]T,  (2-14)
Y2 [a. a , a 2  a,_

and

P2 = [1 0 0 ... 0]T .  (2-15)

Premultiplication of both sides of (2-11) by the matrix F2 results in

Y2 =G2
I [ p2 -H 2 aP,-21 (2-16)

aP,2 = -RO'H2T 2

13



where

2 ]2 (2-17)

An iterative solution to (2-16) can then be formulated as

T2 =G 2 [p 2 -H 2  J (2-18)

(k) = )-'H .T .Y(k- 1)

ap,- 2 = 0 I 2 "2

Since (2-18) requires the inversion of submatrix G2, which may be large, the matrices G2,

Y2, and P2 are further partitioned. Repetitive partitioning of the normal equation finally

results in

where Hp,_, -- ,_ Ro , _ H(2=1S9)

LH;. R,, a, J 0o

T
where G- R ,I = R I, yp,_ = ao, and pp,-, = Premultiplication of

(2-19) by the matrix F,, yields an iterative solution

() O Ia ( II
0 0  (2-20)

a:*k = -RoI R,a -

14



where

F,, = [RoI RI 1 (2-21)

[RI R0 '

Combining all of the iterative solutions from the successive levels of partitioning results

in the final algorithm

P,-I

a,( = a6 - R_, a,.

P,-, (2-22)
' R !j t

i=o

i;j

where a, are P2xl vectors of AR parameters, ao = Ro t S'0 , a( = Ro R.ao , j =

I2 2

1,2....,P,-l, and k is the index of iteration. Solution of (2-22) requires O(P P2K)

multiplications where K is the number of iterations required for convergence to the true

parameters.

B. NONSYMMETRIC HALF-PLANE SUPPORT

As noted previously, the autocorrelation matrix which results from NSHP support

consists of three different types of blocks. The derivation of the iteration follows the

same procedure of succesive partitioning of the normal equation as that for the QP

15



support. However, the assymmetry of the autocorrelation matrix results in a slightly

different final recursion given by

P,-I

ao~4 - 0 L ak
i= I

P,-I (2-23)
(k) I -k1)i(k1

i*j

.( l- - (0) a(0) -- I- (0o)

where a, are P 2xl vectors of AR parameters, do = R-- - , a - I? Ra ,J= 1,2,...,

P-l, and k is the index of iteration. As with (2-22), the solution of (2-23) requires

O(PP2K) mutiplications to converge to the true values of the parameters.

16



11. COVARIANCE METHOD

The iterative solutions to the normal equations given in (2-22) and (2-23) assume

that the autocorrelation matrix is known and that it is toeplitz block-toeplitz. In general,

however, the autocorrelation matrix must be estimated from the available data. Assuming

a 2-D AR model, the covariance method provides a means to estimate the autocorrelatiom

matrix and may be formulated in terms of linear prediction.

In the 2-D linear prediction problem, the error between the true value of a random

process x(n1 ,n2) and the estimated value -f(n1,n 2) is given by

e(ii,J 2) = x(11 ,n2) -.'( 1 ,n 2) (3-1)

e(,' 2) = x( 1," 2) + E a(ij)x(",-in2 -Y) . (3-2)
(i.j} r A
(ij) * (0.0)

The objective of the covariance method is to minimize the sum of the actual squared

errors from a particular set of these terms [Ref. 1]. Let a(0,0) = 1. Then (3-2) can be

written as

e(nn) = a(i,j)x(n, -i,n 2-J ) . (3-3)
(i.) e A

This last equation can be represented in vector form as

e = Xa (3-4)

17



where the rows of the matrix X are the points of the random process within the region A

as the filter is moved over the data. In the covariance method the filter is positioned so

that it never falls even partially outside of the available data. The elements of the vector

e are the error between the observed and the predicted values of the random process for

each position of the filter. Premultiplication of both sides of (3-4) by XT and application

of the the orthogonality principle results in the following normal equation

Ra = S, (3-5)

where R = XTX, S = XTe = [S o)T 0 ... 01, and S "' = [a2 0 .- OT. The structure of

R depends upon the shape of the region A. Quarter-plane and NSHP support are

discussed below.

A. QUARTER-PLANE SUPPORT

If the region A is a quarter-plane in the first quadrant, the matrix X becomes

X

Xn +7, - ,,

X -- (3-6)

Xn,.,IJ.N 2-p2

1n,N,-Pn 2 .N,-P 2

18



where each row is given by

x(n14 p,n2 +q)

x(n 4P,112 +q-P 2 + 1)

x(1n +p - 1,1,n2  tq)

T (3-7)
x(n, p- I1 ,n2 +q-P 2 -+ 1)

x(n, I p-P, 1l,f 2 4q)

x(nQ p-P, I ln 2 ,q-P 2. 1)

and N, and N 2 are the number of columns and rows in the 2-D random process,

respectively, and P,, P2 are the dimensions of the region A as shown in Figure 4.

PI ----

N2

ni

Figure 4. QP support used to estimate
autocorrelation matrix

19



The sample autocorrelation matrix then becomes

R0,0  Ro, ... Ro,_

R=R R"I ... RI'P,-t (3-8)

, R 1.0 RPI Rp,_,,_

where Rm,. = R T .. The matrix R is syrmnetric; however, it is not toeplitz block-toeplitz.

Nevertheless, an iterative solution to estimate the AR parameters may still be obtained

as follows [Ref. 8].

The first step is to average the blocks along the main diagonal of the autocorrelation

matrix. Refer to this block as R,, From Rog a toeplitz approximation T of the diagonal

blocks is formed. One approximation is given in Ref. 9, where the diagonal

elements of T, t(i). are given by

1 P 2 - i - 1 

3 9t(i) - I- iR,i ~) (3-9)

where i = 0,1 ...P2-1. The normal equation is then successively partitioned as shown

previously.

The first partitioning of the normal equation, siniliar to that in (2-3), leads to

(k I k- I i
7 1 = G -' [ p , - H , a , , 1 (3 -10 )

(k) I T (k-Il
ap,_-- -R,- I.P,-I Y1

20



The block RP,_,.P,, may be expressed as

RP,-I,., I - T+DP,_l. i  (3-11)

where Dp,_, ,-, is the difference between the toeplitz approximation T and Rp,,.P,-.

Substituting (3-11) into (3-10) leads to

(k I)
='y l tG[WI-H, ap,-,] (3-12)

(k-I) T (k-I)ap-,_t -- T-v,_l.r,_,ap,_ -T T

Subsequent partitioning of the normal equation then results in

T~-~ G,,', -H1 3-13)
(k) I T -I)

a I = -Rl-.l'Hpl, p, I

where yp-, = a0 ,Gp,-, = R0, and Hp,, = Ro.I . The submatrix R,., can be expressed

as

R1.1 = T4DI.I , (3-14)

and Ro., can be expressed as

Ro0 o = T+Doo. (3-15)

Substituting (3-14) and (3-15) into (3-13) gives

21



I (3-16)

ak) , k-- ' 1  - T-'H Tv (k- 1)

Finally, combining all of the succesive iterations leads to

(k) 7 ) ,r- r _kl (k- 1)
=a. - Ro.

i= I

P,-I (3-17)

a" !k -T-'D. a(k- T-11 ' , ~-1
i-_o

i.i

where a'o T-'S"°1 , a 0)' T-'R a(,O, and j = 1,2,...,P,-1. Equation (3-17) is then

iterated to solve for the model parameters in (3-5).

B. NSHP SUPPORT

An iteration similiar to that used for QP support may be used for NSHP support.

Use of NSHP suppoi, to estimate the autocorrelation matrix results in a matrix with an

asymmetric structure similiar to that of (1-15). The sample autocorrelation matrix can be

expressed as

Ro.0 Ro., I - /o1),-,

R I,o R A "" R ,-I (3-18)

LRP,-_.O Rp,-,., RP,-IJ,,-I

22



The dimensions of the blocks along the top and left edges are reduced by a number of

rows and columns, respectively, equal to the number -L 2 associated with region A.

The development of the iteration begins by forming a toeplitz approximation T of

the average of the blocks along the main diagonal of R. The upper-left block is not

included in the average, however, because it is not of the same dimension as the 'other

blocks along the diagonal. A separate toeplitz approximation T is determined for this

block.

The normal equation is succesively partitioned as discussed previously in sections

]I.A and II.B At each stage of the partitioning, the blocks along the main diagonal are

expressed as tle sum of the toeplitz approximation and a difference matrix. The final

form of the algorithm is

a.(k ..ao -- ooo -TrER,. a,-
P'_1

P,-1 (3-19)
a -- D .a -a-(k - 'A .(k- 1) (k I

;=1
i*j

where di,' a((' T= T-( ()() and j= 1,2,...P1 -1.

C. COMBINED-QUADRANT METHOD

In deriving the iteration for the quarter-plane case, support in the first quadrant was

assumed. However, support in any of the quadrants may have been used without any
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loss in generality. Due to the hermitian symmetry and toeplitz block-toeplitz property of

the autocorrelation matrix, support in the third quadrant results in an identical spectral

estimate to that obtained from support in the first quadrant. In general, however, spectral

estimates derived from support in the first and second quadrants are different.

Spectral estimates obtained from quarter-plane support often result in contours of

constant power spectral density that are elliptical. This means that the frequency estimate

in one direction is more accurate than the estimate for the other direction. To mitigate

this problem, the following combined-quadrant (CQ) spectral estimate has been suggested

[Ref. 101

02

" I  + 1 ](3-20)

2p P.

where P, and Pi, are the spectral estimates obtained from QP support in the first and

second quadrants, respectively.

It can easily be shown that QP support in the second quadrant results in the

following nornal equation

R ., R . . RO.b, , bP,.1 0

RIP R1 l * I.. 1  bpz 0 (3-21)

Rl.,.o. Rp,_,., "' R ,_, _, . b,- S(O
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Twhere Rm, ' = Rr bk = [b(k,O) b(k,1) b(k,2) -. b(k,P 2-1) ] , b(0,0) = 1, and

S - [( 2 0 ...0]. The autocorrelation matrix is identical to that obtained using QP

support in the first quadrant. However, the AR parameters b are not the same in general.

The estimation of the AR parameters is obtained by an iteration similiar to (3-17).

The difference is the manner in which the normal equation is partitioned. Rather than

beginning the partitioning at the lower-right comer and continuing toward the opposite

corner, as previously shown with support in the first quadrant, the partitioning begins with

the upper-left comer and continues to the opposite comer. The toeplitz approximation T

is the same as that used for support in the first quadrant. The iteration is therefore

P-,

(3-22)
b - _T'D,. (k)T-'E , _bp"

I~j

where b)' - T'S 0 , b01 = T-R ,and j = 1, 2, ..., Pt-1. The CQ method requires

O(2P2P2K) multiplications to converge to the true parameter values.
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IV. RESULTS OF ITERATIVE SPECTRAL ESTIMATION

The performance of the iterative spectral etimation method was investigated by

testing its ability to detect multiple sinusoids in white noise. The data was given by

x(n ,,n2)-_ Bcos(0.125n, +0.1252) +B2cos(O.33n, +O.33n 2 ) +w(n,,n 2) (4-1)

where B, are the amplitudes of the sinusoids, and w(n1,n2) is a sample function of zero

mean white noise with unit variance. The signal-to-noise ratio (SNR) of the random

process is defined by [Ref. 1]

B2

SNR , B (4-2)

where ti is the number of sinusoids present.

Two sizes of data sets were used to evaluate the performance of the iterative

spectral estimation method: 16x16 and 8x8. For each size a SNR of 10 dB and 0 dB

were used. The SNR was altered by varying the values of B, while holding oY constant.

Comparisons were made between QP and NSHP support and the CQ method.

Spectral estimates of the 16x16 data set with a 10 dB SNR are shown in Figure 5.

Best results were obtained for QP support after 12 iterations for P, = P2 = 4. The

estimated frequencies do not match the true values, and there are many spurious peaks.

Other values of P, and P2 failed to produce more accurate results.
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Better results were obtained using NSHP support with P1 =P2=4, and L 2= -2 . After

one iteration an acceptable spectral estimate was obtained. The estimated frequencies are

closer to the true values, and the spectral peaks are sharp.

The CQ method produced even better results. An acceptable spectral estimate was

obtained after a single iteration with P, = P2 = 3. The spectral peaks are sharp, and the

estimated frequencies are closer to the true values than with NSHP support.

Results of spectral estimation applied to a 0 dB SNR data set of size 16x16 are

shown in Figure 6. Meaningful spectral estimates could not be obtained using QP support

for any values of P, and P2. Employment of NSHP support led to a useful spectral

estimate after three iterations for P1=P2-4, and L 2= -2. However, the spectral peaks are

broad.

The CQ method yielded a useful spectral estimate after one iteration for P, and P2

equal to three. The estimated frequencies are very close to the true values, but the

spectral peaks are very broad.

Spectral estimates of a 10 dB SNR data set of size 8x8 are seen in Figure 7. After

five iterations QP support produced a mediocre spectral estimate for both P, and P2 equal

to four. The estimated frequencies are very close to the true values. However, the

presence of spurious peaks makes the spectral estimate very difficult to interpret

accurately, in spite of the sharp spectral peaks.

A more nearly-accurate spectral estimate was obtained from NSHP support after a

single iteration for P1=P 2=4, and L 2= -2. The accuracy of the higher-frequency estimate
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is very good, whereas the resolution of the lower-frequency estimate is only fair.

The CQ method produced a very accurate spectral estimate after one iteration for

P, and P2 equal to three. As seen in the figure, the spectral peaks are very sharp, and the

estimated frequencies are very close to the true values.

Only the CQ method produced an acceptable spectral estimate of the 0 dB SNR data

set of size 8x8. A meaningful spectral estimate was obtained after a single iteration for

P, and P2 equal to three, as seen in Figure 8. The frequency estimates are close to the true

values, but the spectral peaks are broad.

Several other cases were tested for different sinusoidal frequencies in white noise.

Additionally, the values for the SNR were varied. In all of these cases, the results were

consistent with those presented above.
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8x8 data set: CQ Method

PI= 3 P2= 3 SNR= 0dB iteration= 1

0.4-

0.3

0.2-

0.1

0 0.1 0.2 0.3 0.4

Figure 8. Spectral estimate of Wx data set with 0 dB SNR
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V. CONCLUSIONS

The results presented in Chapter IV show that high-resolution spectral estimates can

be obtained using iterative methods. In several cases, a single iteration was sufficient to

produce meaningful results. The net gain is a reduction in the number of computations

required to estimate the spectra.

Comparisons of spectral estimates obtained from QP and NSHP support and the CQ

method show that the latter produced superior results. Although the CQ method requires

O(2PPP) multiplications to arrive at a solution as compared to O(P P ) for QP and

NSHP support, it requires a smaller region of support. Therefore, the CQ method not only

provides spectral estimates of superior resolution to QP and NSHP support, it also

accomplishes these results in fewer iterations.

It was observed that the resolution of the spectral estimates did not necessarily

improve with more iterations. In the case of the CQ method, the resolution did not

improve significantly after th, first iteration. Results for QP and NSHP support indicate

that the estimates of the AR parameters converge to the true values, and may then

diverge. This phenomenom is not understood and provides a basis for continued study.

Additional areas of research arise from the findings of this thesis. The fast solution

of the nonnal equation via iteration leads to the possibility of following spectral lines of

slowly time-varying signals. Because the values of the AR parameters are dependent upon
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previous values, the previous values could possibly be used to re-initialize the estimates

when the random process changes in time. Exploration of this idea would serve as good

follow-on study. Another follow-on study is the posible application of iterative methods

to the multichannel case, where the AR parameters are in matrix form.
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