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Abstract

Linear combinations of polynomials that are orthogonal with respect to an inner product
defined on (part of) the real axis are commonly evaluated by the Clenshaw algorithm. We
present an analogous algorithm for the evaluation of a linear combination Z?:o a;¢; of
polynomials ¢; that are orthogonal with respect to an inner product defined on (part of)
the unit circle. The ¢; are known as Szegdé polynomials, and find applications, e.g., in
signal processing. We also discuss how to express Z?:o a;¢; as a linear combination of
monomials.
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1 Introduction

Let pu(t) be a distribution function with infinitely many points of increase in the interval

[—7, 7], and define for polynomials p and ¢ the inner product on the unit circle

()= 5= [ PN, == e, (11)

=5 .
where the bar denotes complex conjugation and i := /—1. Introduce the norm [|p|| := (p, p)*/2
There is an infinite sequence of polynomials ¢;, 7 = 0,1,2,..., that are orthonormal with
respect to (1.1). The ¢; are uniquely determined by the requirements that ¢; have positive
leading coefficient and be of degree j. The ¢; are known as Szegdé polynomials, and their
properties are discussed, e.g., in [3, 4, 6, 8].

The orthonormal Szegé polynomials satisfy a recursion relation of the form

do(z) = do(z) = 1/ay, (1.2)
Uj—l—l¢j-|—1(2) = Z¢](Z)+7j+1$](2)7 ] = 071727"' P (13)
O-j—l—lggj-l—l(z) = 7J+IZ¢](Z)+§5J(Z)7 ] = 071727"' P (14)
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where the recursion coefficients v;41 € C and 641 > 0 are determined by

oo = b =(1,1)"2 (1.5)
Vit = —(1,20;)/6;, (1.6)
gir = (L= |yl (1.7)
bjr1 = 00541, (1.8)

see, e.g., [3, 8]. It can be verified by induction that qgj(z) = 21¢;(1/z) for all j, ie., if ¢;(2) =
i:o Brz" then qgj(z) = Zi:o ﬁj_kzk. We therefore refer to the qgj as reversed polynomials.
The «; are in the literature sometimes referred to as Schur parameters or reflection coefficients.
Our assumption that p(t) has infinitely many points of increase implies that |y;| < 1 for j > 1,
and equations (1.2)-(1.8) hold for all 7 > 0. Szegdé polynomials find applications in signal
processing and in the approximation of functions by trigonometric polynomials [1, 3, 4, 7].
The Clenshaw algorithm is a popular method for evaluating finite linear combinations
> =0 @;1; of polynomials ¢; that satisfy a 3-term recursion relation. The algorithm was intro-
duced by Clenshaw [2] for the case when the ¢; are Chebyshev polynomials, and was extended
by Luke [5] to functions t; that satisfy a higher order difference equation. A recent discussion
of the algorithm is given by Wimp [9].
The present paper describes an algorithm for the evaluation of linear combinations of Szeg6

polynomials

sp(2) = iajqu(z) (1.9)

from the recursion coefficients {7;}7_, and {0;}7_;. One method, which is presented in [7], is
to use the Szegd recursions (1.3)-(1.4) to compute the values of the ¢; at z, and to use these
values in the evaluation of (1.9). The algorithm presented here is analogous with the Clenshaw
algorithm, and is obtained by repeatedly expressing the Szegé polynomial of highest degree in
terms of lower degree polynomials using the recursion relation for the ¢;. Advantages of the new
algorithm over the algorithm in [7] include (i) the polynomials ¢; do not have to be evaluated
explicitly, and (ii) the coefficients «; enter the computation in the order of decreasing j. If |a;|
decreases rapidly with j, then the algorithm may yield a very small propagated round-off error;
see [5, 9] for an analysis.

Our algorithm for the evaluation of linear combinations of Szeg6 polynomials (1.9) is pre-

sented in Section 2. In Section 3 we use this scheme to derive an algorithm for expressing (1.9)



as a linear combination of monomials. Such a change of polynomial basis may be of advantage
if (1.9) is to be evaluated at many points allocated equidistantly on a circle. This evaluation can
be arrived at rapidly with the fast Fourier transform (FFT) algorithm when (1.9) is expressed

in terms of monomials. Section 4 contains computed examples.

2 The algorithm

Let z € C be fixed and define the coefficients 7, = 74(2) and 7, = 7(2) by
k-1 ~
sn(2) = > jdi(2) + ThoRdr(2) + Trorgr(z), 0<k<n.
7=0
Then £k = n yields

an(bn(z) = Tngn(bn(z) + 7~—ngn(gn(z)v

ie., 7, = a,/0, and 7, = 0. Moreover, letting k = 0, we obtain, in view of (1.2), that
5p(2) = ToooPo(2) + 7~'OUOCZBO(Z) =70+ 0.

Our analogue of the Clenshaw algorithm is then obtained from the recursion relations for 7y

and 7y, which are easily derived from recursion formulas (1.3)~(1.4) for the ¢; and ;.

Algorithm 2.1 (Evaluation of (1.9) — an analogue of the Clenshaw algorithm)
Input: z, n, {'Vj}?:l; {Uj}?:m {O‘j}?:o;

Output: s,(2);

Tp i= Qp /0, Tn = 05

for k:=n—-1,n-2,...,0 do

T 1= o'k_l (g + 2(Tht1 + Vr41Th41));

~ -1 ~
Tk = 0y, (Ve+1Thk4+1 + Tht1)s

sp(2) = To + To; a

3 Change of basis

It can be desirable to express s,,(z) defined by (1.9) as a linear combination of monomials

nl2) = 30570 5.1)



because this may allow the evaluation of s,(z) by the FFT algorithm. We show how Algo-
rithm 2.1 can be modified so as to allow the computation of the coefficients 3; from the «a; in
representation (1.9).

Introduce the vectors 75 = [Tro, Tk1, - - .,Tkm_k]T and T = [Tro, Tkl - - .,%km_k]T, 0<k<n.
We let 73,; and 7y; be coefficients of zj, and obtain from the recursions of Algorithm 2.1 the

following scheme for determining the expansion (3.1) from (1.9).

Algorithm 3.1 (Change of basis — Szeg6 polynomials to monomials)
IHPUt: n} {7]}?:1} {O-]}?:O} {a]}?zo}
Output: {3;}7_;

Ty = Qpfon; Tni=0;

for k:=n—-1,n-2,...,0do

_ «Q _ 0
Tk - Ukl([Tki1]+7k+1[%k+l ]);
. _ T T
Tk : Ukl (7k+1 l %H ] + l %H D;

for k:=0,1,...,n do

B = Tok + Tok; O

4 Computed examples

We now present some examples to illustrate the numerical behavior of our analogue of the
Clenshaw algorithm (Algorithm 2.1). We compare the accuracy of Algorithm 2.1 with that of
Algorithm 4.2 in [7], which uses the Szegé recursions to explicitly compute the values of the ¢;
in the evaluation of (1.9). Each experiment was carried out in FORTRAN 77 on a SparcStation
SLC, on which there are approximately 7 and 16 significant decimal digits in single-precision
and double-precision calculations, respectively.

For each experiment, we input n := 100 Schur parameters y; with |v;| < 1 and n coefficients
a;, 1 < j < n,and evaluate (1.9) at the 5n roots of unity using a single-precision implementation
of Algorithm 2.1. We also perform the hn evaluations using a single-precision implementation

of Algorithm 4.2 in [7]. Then, using the results of the latter algorithm in double-precision



arithmetic as exact answers, we compute the maximum relative error among the 5n values
computed by each single-precision algorithm.
Table 1 shows the results when the Schur parameters are constant, 7; = p, and the coeffi-

cients a; are randomly generated uniformly distributed real numbers with |o;| < j7%.

For a
particular choice of p and v, we perform the experiment 20 times, and calculate the average of
the maximum relative error obtained using Algorithm 2.1 (denoted by C, for Clenshaw, in the
tables), and for Algorithm 4.2 of [7] (denoted by S, for Szegd, in the tables). Also displayed in
the tables, under the heading “better,” is the ratio of times that the maximum relative error for
Algorithm C was smaller than that of Algorithm S. This experiment was performed for various
values of p and v. Observe that Algorithm C usually achieved a smaller maximum relative error
than Algorithm S, and that the averages for Algorithm C were consistently smaller that those
of Algorithm S.

Table 2 shows the results of the same set of experiments, except that the Schur parameters
were chosen to be v; = p’. The results here are similar to those in Table 1, except that the
average maximum relative error for Algorithm C was larger that that of Algorithm S in one
example (p = 0.9, v = 2).

Finally, Table 3 shows the results when the Schur parameters were randomly generated
complex numbers with |y;| < p, i.e., their magnitudes are uniformly distributed in [0, p) and
their arguments are uniformly distributed in [0,27). In these examples, the average maximum
relative error for Algorithm C was smaller than that of Algorithm S in only six of the twelve
runs.

These experimental results indicate that Algorithm 2.1, which utilizes the same idea as
Clenshaw’s algorithm, often provides a more accurate evaluation of (1.9) than Algorithm 4.2 of
[7], which explicitly evaluates the Szegé polynomials, when the coefficients «; tend to zero as j

increases.
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Table 1: Average maximum relative errors over 20 runs

v; = p;  randomly generated a; € R with |o;| < j77%.

v=1 v=2 v=3
p S C better S C better S C better
0.40 | 5.12e-06 3.72¢—06 17/20 | 3.11e-06 2.31e—06  16/20 | 2.84e—06 1.85e-06 19/20
0.80 | 2.34e—05 9.83¢—06  19/20 | 1.05e—05 8.38¢—06  16/20 | 1.03e—05 5.25e-06 20/20
0.90 | 1.24e-04 1.43¢-05 20/20 | 1.33e—04 1.47e-05 20/20 | 2.97e-05 5.99e-06 20/20
0.99 | 1.66e—04 4.04e—05 20/20 | 1.60e—04 4.84e—05 20/20 | 1.63e—04 4.29¢-05 20/20
Table 2: Average maximum relative errors over 20 runs
v; = p’;  randomly generated a; € R with |a;]| < j7".
v=1 v=2 v=3
p S C better S C better S C better
0.40 | 2.44e-06 1.83¢—06 14/20 | 9.44e-07 2.95e-07 20/20 | 7.89e-07 1.24e-07 20/20
0.80 | 2.68¢—06 2.17e-06 15/20 | 9.68¢—07 6.70e—07 18/20 | 9.61e—07 2.49¢-07 20/20
0.90 | 3.41e-06 2.78¢—06 10/20 | 2.50e—06 2.83e—06 11/20 | 1.13e-06 1.01e-06 16/20
0.99 | 1.05e-05 9.59¢—06 13/20 | 7.11e-06 6.83e—06  14/20 | 6.56e—06 5.97e-06 11/20

randomly generated v; € C with |y;| < p;

Table 3: Average maximum relative errors over 20 runs

randomly generated o; € R with |a;| < 777,

v=1 v=2 v=3
p S C better S C better S C better
0.40 | 7.77e-06  9.22e-06 7/20 | 1.25e-06 5.62e—07 19/20 | 9.02¢e-07 1.45e-07 20/20
0.80 | 8.53¢—04 5.26e—04 12/20 | 1.59e-04 1.65e—04 10/20 | 5.43e-05 4.41e-05 15/20
0.90 | 4.71e-04 3.77e-04 12/20 | 4.10e-04 4.10e-04 7/20 | 2.72e-04 2.78e—04 7/20
0.99 | 8.97e-04 6.70e—04 16/20 | 9.64e—04 1.16e—03 12/20 | 7.16e-04 7.25e-04 7/20




