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An Analogue for Szeg}o Polynomials of the Clenshaw AlgorithmGregory S. Ammar� William B. Graggy Lothar ReichelzxNovember 21, 1991AbstractLinear combinations of polynomials that are orthogonal with respect to an inner productde�ned on (part of) the real axis are commonly evaluated by the Clenshaw algorithm. Wepresent an analogous algorithm for the evaluation of a linear combination Pnj=0�j�j ofpolynomials �j that are orthogonal with respect to an inner product de�ned on (part of)the unit circle. The �j are known as Szeg}o polynomials, and �nd applications, e.g., insignal processing. We also discuss how to express Pnj=0 �j�j as a linear combination ofmonomials.Key Words: Clenshaw algorithm, Szeg}o polynomial1 IntroductionLet �(t) be a distribution function with in�nitely many points of increase in the interval[��; �], and de�ne for polynomials p and q the inner product on the unit circle(p; q) := 12� Z ��� p(z)q(z)d�(t); z = eit; (1:1)where the bar denotes complex conjugation and i := p�1. Introduce the norm kpk := (p; p)1=2.There is an in�nite sequence of polynomials �j , j = 0; 1; 2; . . . ; that are orthonormal withrespect to (1.1). The �j are uniquely determined by the requirements that �j have positiveleading coe�cient and be of degree j. The �j are known as Szeg}o polynomials , and theirproperties are discussed, e.g., in [3, 4, 6, 8].The orthonormal Szeg}o polynomials satisfy a recursion relation of the form�0(z) = ~�0(z) = 1=�0; (1.2)�j+1�j+1(z) = z�j(z) + 
j+1 ~�j(z); j = 0; 1; 2; . . . ; (1.3)�j+1 ~�j+1(z) = �
j+1z�j(z) + ~�j(z); j = 0; 1; 2; . . . ; (1.4)�Northern Illinois University, Department of Mathematical Sciences, DeKalb, IL 60115.yNaval Postgraduate School, Department of Mathematics, Monterey, CA 93943.zKent State University, Department of Mathematics and Computer Science, Kent, OH 44242.xResearch supported by a National Research Council fellowship and by NSF grant DMS-9002884.1



where the recursion coe�cients 
j+1 2 C and �j+1 > 0 are determined by�0 = �0 = (1; 1)1=2; (1.5)
j+1 = �(1; z�j)=�j ; (1.6)�j+1 = (1� j
j+1j2)1=2; (1.7)�j+1 = �j�j+1; (1.8)see, e.g., [3, 8]. It can be veri�ed by induction that ~�j(z) = zj ��j(1=z) for all j, i.e., if �j(z) =Pjk=0 �kzk then ~�j(z) = Pjk=0 ��j�kzk . We therefore refer to the ~�j as reversed polynomials .The 
j are in the literature sometimes referred to as Schur parameters or re
ection coe�cients .Our assumption that �(t) has in�nitely many points of increase implies that j
j j < 1 for j � 1,and equations (1.2){(1.8) hold for all j � 0. Szeg}o polynomials �nd applications in signalprocessing and in the approximation of functions by trigonometric polynomials [1, 3, 4, 7].The Clenshaw algorithm is a popular method for evaluating �nite linear combinationsPnj=0 �j j of polynomials  j that satisfy a 3-term recursion relation. The algorithm was intro-duced by Clenshaw [2] for the case when the  j are Chebyshev polynomials, and was extendedby Luke [5] to functions  j that satisfy a higher order di�erence equation. A recent discussionof the algorithm is given by Wimp [9].The present paper describes an algorithm for the evaluation of linear combinations of Szeg}opolynomials sn(z) := nXj=0�j�j(z) (1:9)from the recursion coe�cients f
jgnj=1 and f�jgnj=0. One method, which is presented in [7], isto use the Szeg}o recursions (1.3){(1.4) to compute the values of the �j at z, and to use thesevalues in the evaluation of (1.9). The algorithm presented here is analogous with the Clenshawalgorithm, and is obtained by repeatedly expressing the Szeg}o polynomial of highest degree interms of lower degree polynomials using the recursion relation for the �j . Advantages of the newalgorithm over the algorithm in [7] include (i) the polynomials �j do not have to be evaluatedexplicitly, and (ii) the coe�cients �j enter the computation in the order of decreasing j. If j�j jdecreases rapidly with j, then the algorithm may yield a very small propagated round-o� error;see [5, 9] for an analysis.Our algorithm for the evaluation of linear combinations of Szeg}o polynomials (1.9) is pre-sented in Section 2. In Section 3 we use this scheme to derive an algorithm for expressing (1.9)2



as a linear combination of monomials. Such a change of polynomial basis may be of advantageif (1.9) is to be evaluated at many points allocated equidistantly on a circle. This evaluation canbe arrived at rapidly with the fast Fourier transform (FFT) algorithm when (1.9) is expressedin terms of monomials. Section 4 contains computed examples.2 The algorithmLet z 2 C be �xed and de�ne the coe�cients �k = �k(z) and ~�k = ~�k(z) bysn(z) = k�1Xj=0 �j�j(z) + �k�k�k(z) + ~�k�k ~�k(z); 0 � k � n :Then k = n yields �n�n(z) = �n�n�n(z) + ~�n�n ~�n(z);i.e., �n = �n=�n and ~�n = 0. Moreover, letting k = 0, we obtain, in view of (1.2), thatsn(z) = �0�0�0(z) + ~�0�0 ~�0(z) = �0 + ~�0 :Our analogue of the Clenshaw algorithm is then obtained from the recursion relations for �kand ~�k , which are easily derived from recursion formulas (1.3){(1.4) for the �j and ~�j .Algorithm 2.1 (Evaluation of (1.9) { an analogue of the Clenshaw algorithm)Input: z, n, f
jgnj=1, f�jgnj=0, f�jgnj=0;Output: sn(z);�n := �n=�n; ~�n := 0;for k := n � 1; n� 2; . . . ; 0 do�k := ��1k (�k + z(�k+1 + �
k+1~�k+1));~�k := ��1k (
k+1�k+1 + ~�k+1);sn(z) := �0 + ~�0; 23 Change of basisIt can be desirable to express sn(z) de�ned by (1.9) as a linear combination of monomialssn(z) = nXj=0 �jzj ; (3:1)3



because this may allow the evaluation of sn(z) by the FFT algorithm. We show how Algo-rithm 2.1 can be modi�ed so as to allow the computation of the coe�cients �j from the �j inrepresentation (1.9).Introduce the vectors � k = [�k0; �k1; . . . ; �k;n�k]T and ~� k = [~�k0; ~�k1; . . . ; ~�k;n�k]T , 0 � k � n.We let �kj and ~�kj be coe�cients of zj , and obtain from the recursions of Algorithm 2.1 thefollowing scheme for determining the expansion (3.1) from (1.9).Algorithm 3.1 (Change of basis { Szeg}o polynomials to monomials)Input: n, f
jgnj=1, f�jgnj=0, f�jgnj=0;Output: f�jgnj=0;�n := �n=�n; ~�n := 0;for k := n� 1; n� 2; . . . ; 0 do� k := ��1k  " �k� k+1 #+ �
k+1 " 0~� k+1 #!;~� k := ��1k  
k+1 " ~� k+10 # + " ~� k+10 #!;for k := 0; 1; . . . ; n do�k := �0k + ~�0k; 24 Computed examplesWe now present some examples to illustrate the numerical behavior of our analogue of theClenshaw algorithm (Algorithm 2.1). We compare the accuracy of Algorithm 2.1 with that ofAlgorithm 4.2 in [7], which uses the Szeg}o recursions to explicitly compute the values of the �jin the evaluation of (1.9). Each experiment was carried out in FORTRAN 77 on a SparcStationSLC, on which there are approximately 7 and 16 signi�cant decimal digits in single-precisionand double-precision calculations, respectively.For each experiment, we input n := 100 Schur parameters 
j with j
jj < 1 and n coe�cients�j , 1 � j � n, and evaluate (1.9) at the 5n roots of unity using a single-precision implementationof Algorithm 2.1. We also perform the 5n evaluations using a single-precision implementationof Algorithm 4.2 in [7]. Then, using the results of the latter algorithm in double-precision4



arithmetic as exact answers, we compute the maximum relative error among the 5n valuescomputed by each single-precision algorithm.Table 1 shows the results when the Schur parameters are constant, 
j � �, and the coe�-cients �j are randomly generated uniformly distributed real numbers with j�j j < j�� . For aparticular choice of � and �, we perform the experiment 20 times, and calculate the average ofthe maximum relative error obtained using Algorithm 2.1 (denoted by C, for Clenshaw, in thetables), and for Algorithm 4.2 of [7] (denoted by S, for Szeg}o, in the tables). Also displayed inthe tables, under the heading \better," is the ratio of times that the maximum relative error forAlgorithm C was smaller than that of Algorithm S. This experiment was performed for variousvalues of � and �. Observe that Algorithm C usually achieved a smaller maximum relative errorthan Algorithm S, and that the averages for Algorithm C were consistently smaller that thoseof Algorithm S.Table 2 shows the results of the same set of experiments, except that the Schur parameterswere chosen to be 
j = �j . The results here are similar to those in Table 1, except that theaverage maximum relative error for Algorithm C was larger that that of Algorithm S in oneexample (� = 0:9, � = 2).Finally, Table 3 shows the results when the Schur parameters were randomly generatedcomplex numbers with j
jj < �, i.e., their magnitudes are uniformly distributed in [0; �) andtheir arguments are uniformly distributed in [0; 2�). In these examples, the average maximumrelative error for Algorithm C was smaller than that of Algorithm S in only six of the twelveruns.These experimental results indicate that Algorithm 2.1, which utilizes the same idea asClenshaw's algorithm, often provides a more accurate evaluation of (1.9) than Algorithm 4.2 of[7], which explicitly evaluates the Szeg}o polynomials, when the coe�cients �j tend to zero as jincreases.References[1] G.S. Ammar, W.B. Gragg and L. Reichel, Downdating of Szeg}o polynomials and appli-cations to data �tting, Report, Kent State University, Department of Mathematics andComputer Science, Kent, OH, 1991.[2] C.W. Clenshaw, A note on the summation of Chebyshev series, MTAC 9 (1955) 118{120.[3] U. Grenander and G. Szeg}o, Toeplitz Forms and Their Applications (Chelsea, New York,NY, 1984). 5
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Table 1: Average maximum relative errors over 20 runs
j � �; randomly generated �j 2 R with j�j j < j�� .� = 1 � = 2 � = 3� S C better S C better S C better0.40 5.12e{06 3.72e{06 17/20 3.11e{06 2.31e{06 16/20 2.84e{06 1.85e{06 19/200.80 2.34e{05 9.83e{06 19/20 1.05e{05 8.38e{06 16/20 1.03e{05 5.25e{06 20/200.90 1.24e{04 1.43e{05 20/20 1.33e{04 1.47e{05 20/20 2.97e{05 5.99e{06 20/200.99 1.66e{04 4.04e{05 20/20 1.60e{04 4.84e{05 20/20 1.63e{04 4.29e{05 20/20Table 2: Average maximum relative errors over 20 runs
j := �j ; randomly generated �j 2 R with j�j j < j�� .� = 1 � = 2 � = 3� S C better S C better S C better0.40 2.44e{06 1.83e{06 14/20 9.44e{07 2.95e{07 20/20 7.89e{07 1.24e{07 20/200.80 2.68e{06 2.17e{06 15/20 9.68e{07 6.70e{07 18/20 9.61e{07 2.49e{07 20/200.90 3.41e{06 2.78e{06 10/20 2.50e{06 2.83e{06 11/20 1.13e{06 1.01e{06 16/200.99 1.05e{05 9.59e{06 13/20 7.11e{06 6.83e{06 14/20 6.56e{06 5.97e{06 11/20
Table 3: Average maximum relative errors over 20 runsrandomly generated 
j 2 C with j
j j < �; randomly generated �j 2 R with j�j j < j�� .� = 1 � = 2 � = 3� S C better S C better S C better0.40 7.77e{06 9.22e{06 7/20 1.25e{06 5.62e{07 19/20 9.02e{07 1.45e{07 20/200.80 8.53e{04 5.26e{04 12/20 1.59e{04 1.65e{04 10/20 5.43e{05 4.41e{05 15/200.90 4.71e{04 3.77e{04 12/20 4.10e{04 4.10e{04 7/20 2.72e{04 2.78e{04 7/200.99 8.97e{04 6.70e{04 16/20 9.64e{04 1.16e{03 12/20 7.16e{04 7.25e{04 7/207


