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ABSTRACT

A total of 32 twenty-four-hour forecasts using a six-layer, 60-km mesh
model have been run over western Europe and the eastern United States. The

forecasts showed considerable skill in forecasting cyclogenesis over the

Mediterranean and the U.S. The average 24-hour S score for sea-level
pressure was 39.1 compared to an average of 45.9 for the FNWC operational
model and 73.4 for persistence.

Three forecasts were discussed in detail. The first was a case of cyclo-

genesis in the Gulf of Genoa which was forecast well by the model. The
second was a forecast of the intense Ohio blizzard of January 26, 1978,

which was also reasonably successful. The third forecast greatly overpre-
dicted the intensity of a cyclone along the southern coast of the U.S.

Latent heat and the parameterization of cumulus convection were dominant
factors in producing this fictitious intensification.

The major conclusion from this study is that significant improvements
in 24-hour sea-level pressure forecasts were obtained by a model with high
horizontal resolution, even though the vertical resolution was coarse and
the physics in the model was simple. It appears likely, therefore, that
further increases in forecast accuracy are possible by refining the vertical
resolution and improving the physics.
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1. Introduction

With a rapid increase in computer power, it has recently become possible

to make numerical forecasts on horizontal scales much finer than the opera-

tional models that have been in use for the past 10 years. At the National

Meteorological Center (NMC), for example, a substantial improvement in forecast

accuracy of the 500-mb and surface pressure gradients over the United States

(U.S.) occurred when the 6-level limited fine mesh (LFM) model was introduced

in 1975 (Miyakoda, 1975). This model has a horizontal resolution of about

174 km at 45°N compared to the old 6-level model's resolution of 349 km at

45°N. Recent tests with still finer meshes by Hovermale and Phillips at NMC

have demonstrated a potential for continued improvement as the horizontal

resolution is decreased (Phillips, 1978). Other researchers (Perkey, 1976;

Bleck, 1977; Miyakoda and Rosati, 1977) have reported encouraging results

with experimental models using grid sizes of less than 100 km. However, these

forecasts have been made in a research environment and the number of cases

tested has been small. Furthermore, quantitative verification of very fine

mesh models (grid size less than 100 km) is a problem which has received little

attention. Thus the question of how useful mesoscale models might be to

operational forecasting is only partially answered.

The development of mesoscale models is not simply a matter of decreasing

the horizontal grid size on well-tested large-scale models. As the horizontal

resolution increases by a factor of five or more from synoptic-scale models,

solutions corresponding to more energetic and transient circulations become

possible. Interactions of the flow with condensation heating and cooling,

terrain variations, and land-sea contrasts as well as nonlinear interactions

between longer waves produce energy in short wavelengths, even if little



energy exists in these small scales at the beginning of the forecast. Para-

meterization schemes designed and tested on large meshes may prove inadequate

on small meshes. The verification of these parameterizations on fine meshes

requires testing on a large number of cases, since the relative importance

of nonconservative physical processes such as latent heating, radiation, or

friction varies greatly from one synoptic situation to the next.

This paper describes the results of a fairly large number (32) of 24-h

forecasts made with a simplified version of the model described by Anthes and

Warner (1978) , hereafter referred to as AW. The study differs from the re-

sults mentioned above mainly in the large number of cases; however, a unique

aspect of this study is a simple quantitative comparison of forecast accuracy

with a well-tested large-scale operational model (the 5-layer primitive equa-

tion hemispheric model at the Fleet Numerical Weather Facility; Kesel and

Winninghof f, 1972)

The tests were carried out on (50 x 50) grids with horizontal resolutions

of about 60 km over two regions. Nineteen control forecasts were made over

a region centered at 45°N 5°E which contains portions of northern Africa, the

western Mediterranean and western Europe (Fig. 1). This region was chosen

because of the presumed importance of terrain in generating mesoscale pertur-

bations to synoptic scale flows. In particular, a number of scientists have

shown that the Alps and Pyrenees play important roles in generating cyclones

in the Gulf of Genoa (Radinovic, 1965 a,b; Egger, 1972; Bleck, 1977).

In addition to the Mediterranean forecasts, 13 control forecasts were

made over a domain centered at 40°N 90°W, which includes the eastern two-

thirds of the U.S. (Fig. 2). This region was chosen because of the high

A control forecast is one made with the basic model structure presented
in this paper. All verification statistics pertain to these forecasts.



Fig. 1. Horizontal domain and terrain elevations (m) for European

forecasts. Spacing between tick marks is approximately

60 km.
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frequency of winter storms and to study the role of latent heating in cyclo-

genesis along the Gulf Coast.

The 32 control cases are summarized and verified quantitatively by

computing S-, scores (Teweles and Wobus , 1954) of 12- and 24-h forecasts

of sea-level pressure. These scores are compared to persistence and to the

S.. scores computed for the same points by the FNWC model. In addition,

the intensities of the forecast cyclones are compared quantitatively with

the observed intensities.

To help understand the properties of the model, three forecasts are

examined in detail. These include a forecast of cyclogenesis in the Gulf

of Genoa during the period of 00 GMT January 12 to 00 GMT January 13, 1978

2
(78011200 to 78011300) and a forecast of a record-breaking intense winter

storm that affected the eastern U.S. during the period 78012512 to 78012612

Both of these forecasts were reasonably successful. The third forecast

examined, however, overdeveloped a low along the Gulf Coast during the

period 78030300 to 78030400. Subsequent forecasts during this period in

which the moisture cycle and cumulus parameterization were modified

establish the importance of condensation heating and cumulus transports

of heat and moisture in the model.

2
Dates and times are given by the last two digits of the year followed

by the month, day, and hour (GMT).

12



2. Cyclogenesis in the western Mediterranean

The complex terrain surrounding the Mediterranean modifies the low-level

flow and affects strongly the development and movement of cyclones in this re-

gion. Radinovic (1965a) identified no fewer than eight different cyclogenetic re-

gions in southern Europe. Many of the cyclones that form in these areas are

small in horizontal extent and short-lived compared to extratropical cyclones

in other parts of the world. In some instances, two lows may form and decay

over such short time-scales that they give the appearance of a single retro-

grading center.

Of all the cyclogenetic regions in southern Europe, the center of maximum

frequency is in the Gulf of Genoa. Over the period 1951 to 1960, 48 cyclone

centers formed in a 1° latitude by 1° longitude quadrangle in the Gulf of

Genoa north of Corsica. A little less than half of the Genoa cyclones have

lifetimes of less than 24 hours, and some persist less than 6 hours. Although

many of these cyclones are not intense, even the weak depressions produce im-

portant effects on the weather (Radinovic, 1965a).

The blocking effect of the high terrain associated with Alps to the north,

the Massif Central to the northwest, and the Pyrenees to the west of the Gulf

of Genoa are apparently responsible for a significant number of the cases of

Genoa cyclogenesis. The major effect appears to be the blocking of a low-level

cold air flow from the northwest as an upper-level trough moves over the re-

gion. This blocking induces a thermal wave in the lower troposphere of a

wavelength that is favorable for cyclogenesis by the "self-development"

mechanism (Sutcliffe, 1947; Palmen and Newton, 1969). Surface pressure falls

begin as a trough approaches and warm advection occurs over Italy. Without

the blocking effect of the Alps, the low-level cold advection would tend to

offset the pressure falls before a closed surface low could form.

13



The above sequence of events can also be interpreted in terms of the di-

vergence patterns associated with vorticity advection. While the high-level

divergence associated with positive vorticity advection in advance of the

trough passes with little impedance over the Alps, the lower-level flow, which

tends to be convergent, is partially blocked by the mountains. Thus surface

pressure falls to the lee of the mountains are enhanced.

The above ideas have been tested in a numerical model by Egger (1972) for

an idealized case. Using a coarse mesh (350 km) PE model, Egger found that

the surface pressure fall was associated with upper-level warming. In an ex-

periment in which the mountains were removed, low-level cold advection reduced

the surface pressure falls and a cyclone did not develop. A somewhat similar

study was made by Trevisan (1976) , who studied the behavior of a baroclinically

unstable flow parallel to a mountain range which contained a gap. Cold air

advection through the gap produced a disturbance to the flow and resulted in

cyclogenesis downwind of the gap. When the gap in the mountains was doubled

in width, this cyclogenesis did not occur.

Although most studies of cyclogenesis in the western Mediterranean have

concentrated on the role of the mountains, favorable large-scale circulation

patterns are necessary ingredients of cyclogenesis. Buzzi and Rizzi's (197 5)

study of two cases of cyclogenesis stressed the importance of large-scale

forcing in producing strong cyclonic circulations throughout the entire trop-

osphere. Their study suggested that although the Alps, Pyrenees, and Atlas

mountains modified the flow somewhat, the dynamics of these two cyclones was

similar to that of cyclones in regions without major mountains. In particu-

lar, cyclogenesis began in the middle troposphere as a strong jet and

baroclinic zone moved into the Mediterranean area. Buzzi and Rizzi speculate

that the Alps caused the jet approaching from the northwest across the British

14



Isles to split, with the southern branch passing to the west of the Alps and

producing the cyclogenesis in the Mediterranean.

Because Egger and Trevisan found large effects on model flow by relatively

simple terrain, it would be surprising if the actual terrain in Europe did not

produce important and more complicated perturbations in the real atmosphere.

The above observational and model results suggest strongly that very fine mesh

models are necessary to simulate the effect of orography on the atmosphere in

this region, at least in many cases of significant weather.

Bleck's (1977) six numerical forecasts during three synoptic periods of

cyclogenesis in the Gulf of Genoa continued the study of the role of topography

in this region. His forecasts were made with a nested grid; the fine mesh grid

length was about 85 km, which allowed for the best resolution of the European

terrain in a numerical model up to this time. The results were very encourag-

ing, in spite of the simple physics in the model, which was adiabatic, dry,

and contained a simple representation of the planetary boundary layer (PBL)

.

An important result of Bleck's paper is that cyclogenesis in the model was

sensitive to the configuration of the terrain. In particular, the original

smoothed terrain elevations had to be enhanced by nearly a factor of two to

produce cyclogenesis.

Although six forecasts is not a large enough sample to draw general conclu-

sions, Bleck suggested that the underprediction of the cyclone intensity in

five out of the six forecasts was due to one or more of three reasons: (1) the

neglect of latent heat (2) the inadequate prediction of the large-scale ridging

over the Atlantic by the coarse-mesh model and (3) the limited horizontal reso-

lution of the 85-km fine mesh. Because our model contains precipitation and

utilizes a 60-km mesh, we can hopefully shed some light on the first and third

possibilities

.

15



3. Numerical aspects of the model

The model described by AW was simplified for economic reasons for this

large number of tests. The major simplifications include a specification of

a constant weighting function for the distribution of latent heating asso-

ciated with cumulus convection and the use of a simple representation of the

PBL. This version of the model requires 3200s of central processing (CP)

time on a Control Data CYBER 175 to make a 24-h forecast.

The model used in the control experiments discussed in this paper consists

of 7 levels at which 6 is defined, given by a = 0.0, 0.25, 0.4, 0.55, 0.70,

0.85 and 1.0. All other variables are defined halfway between these levels,

so that the model contains 6 layers. The pressure p at the top of the model

is 200 mb . Further details of the vertical and horizontal grid structures are

given by AW.

3.1 Simplifications to the cumulus parameterization

In the model described by AW, the vertical partitioning of the cumulus

convective heat release was determined as a function of the model's thermo-

dynamic and moisture structures by utilizing a one-dimensional cloud model

(Anthes, 1977, hereafter designated I). To save time and memory requirements

for these tests, this scheme was greatly simplified by specifying a spatially

and temporally constant vertical distribution function N(a) (see Eq. 27

of I). The values of N for the control experiments as well as modified

values used in a sensitivity test are given in Table 1. The weights in the

control cases were determined by considering the vertical distribution of

latent heating in an entraining one-dimensional cumulus cloud which reaches

a pressure of about 300 mb.

In addition to specifying constant values of N , we also simplified the

calculation of the vertical eddy flux of moisture oo'q' due to cumulus clouds

16



by specifying constant values of the vertical velocity (u) ) in the cloud and
c

(q -q) , where q is specific humidity and the c subscript refers to the

cloud updraft (Table 1). The percent (a) of area covered by this representa-

tive updraft is the remaining variable needed to compute co'q' (see Eq. 18

of I) and is given by a simplified form of Eq. 51 in I.

a = (l-b)g M
t
/(4.3 x 10~ 3

cb s
_1

) (1)

where b is the fraction of water vapor convergence M which is not precipi-

-3
tated and the constant 4.3 x 10 is a representative value of the denominator

of Eq. 45 in I. Finally, the vertical eddy flux of heat oj'T' associated with

cumulus convection is neglected. The term is normally much smaller than the

condensation term in the thermodynamic equation. In these forecasts, convection

occurs whenever M exceeds 3.0 x 10 g HO m ' s

In retrospect, the simplification of the cumulus parameterization probably

did not have much effect on most of the forecasts, because of the relatively

dry air masses affecting the domains. However, in one or two of the U.S. fore-

casts, latent heating was a dominant factor and the above parameterization may

have been inadequate. The third case discussed in this paper is an example

of one of these cases.

3.2 Parameterization of the PBL

The surface stress is given by

l " p c
d lie' »6 <2)

_3
where p is density (1.1 kg m ) and V, is the wind in the lowest layer.

The drag coefficient C over land varies according to terrain elevation Z

(expressed in km) in a manner similar to that of Bleck (1977)

C = 5.0 x 10" 3
+ (6.45 x 10~ 3

)[Z /(1+Z_)] . (3)
D s o

17



-3
Over water, C equals 1.5 x 10 . Sensible and latent heat fluxes are

allowed only over water; here they are modeled according to conventional bulk

-3
aerodynamic formulas with the exchange coefficients equal to 1.5 x 10

Over the right half of the domain, C was inadvertently zero in all

of the control forecasts. Rerunning several of the forecasts with C given

by (3) everywhere produced significantly weaker cyclones over the right half

of the domain. An analysis of the PBL structure (presented later) indicates

-3
that a more realistic drag coefficient would be about 2 . x 10 . Thus the

low-level circulations on the left half of the domain are probably overdamped

while on the right half they are definitely underdamped.

3.3 Horizontal diffusion

In some preliminary experiments in which the horizontal diffusion of any

2
variable a was proportional to V a , the solutions were excessively smooth

P

after 12 hours of integration. In particular, wind maxima in jet streams

became weaker than those in nature and the moisture patterns did not show

realistic streaky patterns. Williamson (1978) found better results in a

general circulation model when the diffusion proportional to V'K^Va was

2 2
replaced by the more scale-selective V K V a diffusion, where K^ is a

2
horizontal eddy viscosity and K = As L . Therefore, in an effort to reduce

the damping of waves with wavelength greater than 6As , where As is the

grid size, while retaining the strong damping of shorter waves, a horizontal

A
diffusion proportional to V a was introduced.

P

The damping rate of various wavelengths can be calculated from the

finite difference analog to

3- = -K V a (4)
dt p

18



which is

n+1 n
-

—

A

~ a
= - t^it [a.. „ -4 (a.. , +a.. . + a. ,. +a. ..) + 12a..+a,, _ +

At As ij+2 ij+1 ij-1 i+lj i-lj xj xj-2

a
i+2j + a._

2j
] (5)

where n refers to the time level and i and j are the horizontal indices.

If the wavelength in the x-direction is mAs and the wavelength in the y

direction is nAs, the damping per time step is given by

n+1 ri KAt ,_ 4tt q/ 2tt 2tt . no . 4tt , n
i = [1 - ——r- (2 cos 8(cos — + cos — ) +12 + 2 cos — )] a

As 4 m m n n

From (6) we see that computational stability requires that

KAt 1

As^ - 32
(7)

The horizontal eddy viscosity K in these experiments is

K = A(4.0 x 10 + 0.08 As
2

|d| ) m
2

s
-1

(8)

where the deformation D is

h
r ,3u dv.2 ,dv 9u N 2, , nS

D = [(^ " 37
} + fe + ^} ]

'
(9)

The parameter A in (8) is an amplification factor that is used to increase

Kp near the boundaries and is given by

1 r < r

A(r) =
\l + 3(r-r )/As r>r° (10 >

I o — o

where r is the radial distance from the center of the grid and r = 20As.

/ 1

Finally, K^ is restricted to be less than 30 x 10 m s~ to insure conmutational
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A 9 — 1

stability. In a typical forecast, IC varies between 5 and 8 x 10 m s

over the interior of the grid, and up to the maximum value of 30 x 10* m
2

s
_1

near the boundaries. Table 2 lists the fraction of the original amplitude

of horizontal waves in one direction only of wavelength mAs remaining after

/ 9 — 1

24 hours. These calculations assume a value of K equal to 5 x 10 m s

and a At of 135s.

3.4 Temporal filter

In order to reduce the amount of energy in waves with high frequencies, all

variables are filtered according to

">n ft \ n V , n+1
,
^n-l N r-\-[\a = (l-v)a + — (a + a ) (11)

where a is the filtered variable (Asselin, 1972). The filter coefficient

v in these experiments is 0.1, which does not appreciably affect waves with

periods longer than 15 minutes over a 24-hour forecast.

The beneficial effect of the weak filter (11) is illustrated by the temporal

behavior of p*=(p -p ) at a particular grid point on the interior of the do-

main over the last 25 minutes of a 12-h forecast (Fig. 3b). The initial

conditions in this preliminary experiment consisted of an unbalanced 5 m s

wind over a domain which included a long mountain of maximum elevation 1 km.

As shown in Fig. 3b, the 2At oscillation in the experiment with v= (no

smoothing), is eliminated with v=0.1, whereas the variations associated with

the lower frequencies are nearly unaffected. A plot of the horizontal varia-

tion of vertical velocity, co, at level 6 in the same experiment at 12 hours

(Fig. 3a) shows that the weak temporal filter also reduces spatial noise, since

high temporal frequencies generally have short wavelengths. The disadvan-

tage of using the filter (11) is the necessity of reducing the time step by a

factor of 0.95 in order to maintain computational stability. These forecasts

used a At of 135s.
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Plot of vertical velocity u) at level six (a = 0.925) along
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temporal filtering.
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3.5 Truncation errors over steep terrain

The horizontal pressure gradient force in a-coordinates over sloping ter-

rain consists of two large terms of opposite sign (see Eq.4 of AW). Trun-

cation errors in these terms may lead to erroneous pressure gradients. Further-

more, the interpolation of temperature to constant pressure surfaces in the

computation of the horizontal diffusion of temperature may lead to erroneous

diabatic effects. To demonstrate the magnitude of the fictitious accelerations

resulting from these truncation errors, a 3-hour forecast was made over a do-

main which included the 500-m mountain shown in Fig. 4. The initial conditions

consisted of zero winds and horizontally homogeneous temperature and pressure

fields. The vertical stratification was equal to that in the standard atmosphere.

With zero terrain, the forecast fields remained unperturbed. With the moun-

tain shown in Fig. 4
}
however, horizontal velocities of maximum value 1.0 m s

were generated in the vicinity of the slopes. These winds produced vertical

velocities of order 0.2 x 10 mb s , with subsidence over the peak (Fig. 4).

The maximum temperature changes associated with these vertical motions were

0.2°C (Fig. 4). These erroneous perturbations did not grow with time; in fact,

by 3-h the amplitudes of the perturbations were less than they were at 1 h

(Fig. 4). Mutual adjustments between the mass and momentum fields occurred to

compensate for the truncation errors in the horizontal pressure gradient force

and diffusion terms.

Another preliminary experiment exactly like the one above except

that horizontal diffusion was eliminated, produced virtually identical results.

Thus errors associated with the horizontal diffusion calculation are negligible

compared to those associated with the pressure gradient force calculation.

3.6 Noise in a typical forecast

Bleck (1977) discusses several objective measures of noise in primitive

equation models. He presented the temporal behavior of the domain-averaged
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absolute value of the second derivative of surface pressure with respect to

time as an indication of the noise level in his isentropic model. This noise

Io I

1

-7 -2
3t

'

averaged around 4 x 10 mb s for the last 12 hours of a 24-hour forecast

over his 85 km mesh.
9 *

r) n
Fig. 5 shows the temporal variation of —— for a typical control

9t
2

model forecast in our set of experiments (US06) . During the 24-h forecast,

-7 -2
this measure of noise decreases from about 50 x 10 mb s to about 4.5 x

-7 -2
10 mb s at the end of the forecast. This behavior is very similar to what

Bleck observed. The slow decrease with time is a result of the model gradually

achieving a better dynamic balance during the forecast.

i 3p*i
Fig. 5 also shows the temporal variation of - . Bleck states that

at

I

3

2
P*ithis variable is probably not as good a measure of noise as —£-— because

ot
2

it is affected more by the synoptic situation. The more gradual decrease of

i8p*. i
3 p*i

~ over time compared to the decrease of indicates that the second
3t

9t
2

derivative of pressure is indeed a more sensitive indicator of noise.

Tables 3 and 4 identify the forecasts and provide a brief description

of each synoptic situation.
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4. Forecast results

Tables 3 and 4 list the control forecasts and the variations discussed

in this report. With the exception of the two U.S. forecasts starting at

78012212 and 78012300, the forecasts involve cyclones over a major portion of

the domain. Two of the most intense winter storms ever to affect the U.S.

(the Ohio blizzard of 26 Jan. 1978 and the Boston blizzard of 6-7 Feb. 1978)

are included in the sample. The European cyclones tend to be weaker and

behave more erratically, in agreement with climatology.

4.1 Statistical measures of forecast accuracy

Although it by no means provides a complete description of the "weather",

the sea-level pressure (SLP) chart is one of the most important parts of a

numerical forecast. An objective measure of the forecast skill of the SLP map

that is simple to compute and has been reported often for other models is the

S score developed by Teweles and Wobus (1954). The S score for SLP re-

lates horizontal differences in the forecast SLP to the observed differences;

it therefore measures the skill of the surface geostrophic wind forecast. In

these forecasts, the S.. score is computed from

17 17

S. = 100 E |A?r -AP I . / I G. (12)
1 . , f o' i . . 1

i= 1 i=

1

where AP is the difference in SLP between a pair of grid points, f and o

subscripts denote forecast and observed values of AP respectively, and G.

is the maximum of AP,. and AP for a particular pair of points. The differ-
f o

ences in SLP were calculated between all adjacent points in the set of 12 points

given in Table 5, which yields 17 pairs of points. The "observed" SLP differ-

ences were calculated from the analysis of SLP produced by the FNWC hemispheric

analysis and then interpolated to the (50 x 50) fine mesh.
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The above procedure was selected for its expediency. However, the use

of the FNWC SLP analysis for verification had the disadvantage that the

analysis contained no fine-scale information, owing to the interpolation of

the coarse mesh analysis to a fine mesh. The model forecasts, on the other

hand, did contain fine-scale features and therefore may have been penalized

by verifying against a smooth analysis. The forecasts were not smoothed in

the computation of the S scores. Figure 6a shows the unsmoothed 24-hour SLP

forecast from MED01 (VT 78011300) . The FNWC analysis for this time is shown

in Fig. 7a and the operational high-resolution analysis produced by the Navy

at Rota, Spain is shown in Fig. 7b. For comparison, the FNWC operational

model forecast is shown in Fig. 7c. The FNWC analysis and model are incapable

of showing the detail present in the fine mesh model forecast and the high

resolution analysis. In particular, the packing of the isobars over the

Alps is not resolved by the FNWC analysis.

In an effort to determine the sensitivity of the S score to the amount

of fine-scale information present, several 24-h forecast SLP maps were smoothed

in varying degrees using the smoother-desmoother discussed by Shuman (1957)

and Shapiro (1970). A variable A.. is modified by a number of passes of

the operator defined by

B.. = (1-V)A.. + ^ (A.. x1 + A. )

(13)
A.. = (1-V)B.. + - (B.^ . + B. .)
ij iJ 2 l+l, j i-l,

J

where i and j are horizontal indices. The degree of smoothing can be con-

trolled by repeated application of (13) with varying values of V on each pass.

Table 6 shows the effect of 5 types of smoothing on the S.. score for six

different forecasts. Smoothing type 1 consists of no smoothing; type 2 consists
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Fig. 7a. FNWC analysis of SLP at 78011300. Isobaric interval is

4 mb. Central pressure is 998 mb

.
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Fig. 7b. Simplified operational surface analysis for 78011300
produced by U.S. Navy at Rota, Spain.
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Fig. 7c. 24-h forecast of (SLP-1000 mb) VT 78011300 by FNWC
operational model. Central pressure is 990 mb.
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of 1 pass of (13) with v = 0.5; type 3 consists of a smoothing pass (v = 0.5)

followed by a desmoothing pass (v = -0.5) repeated for a total of 6 times;

type 4 consists of 6 smoothing passes (v = 0.5) while type 5 consists of 12

smoothing passes (V = 0.5). As shown in Table 6, smoothing almost always

reduces the S score. The amount of reduction varies considerably depending

on the amount of fine detail in the forecast; for this limited sample the

average reduction is 3.3.

Fig. 6b shows the effect of smoothing type 5 on the 24-h SLP forecast

verifying at 78011300. In comparison with Fig. 6a (no smoothing) and Fig. 7a

(FNWC analysis), we can see how smoothing improves the S score in this case.

On the other hand, a qualitative comparison of Fig. 6a and 7b indicates that

some of the fine-scale features in the unsmoothed forecast are probably real.

Tables 7 and 8 list the S.. scores for the control forecasts discussed in

this report. Also listed are the S scores associated with a forecast of

persistence and the S-. scores of the FNWC hemispheric model. Since a skill

score of 20 is considered perfect for practical purposes, while a score of

70 is nearly worthless, we see that both the fine mesh model and the FNWC

operational model show considerable skill for 12- and 24-h forecasts. For the

rapidly changing synoptic situations consituting this set of forecasts, the

skill of the persistence forecasts falls off rapidly with time. The skills

of the U.S. and European forecasts are quite similar. The average S scores

for all 32 cases at 12 and 24 hours for the fine mesh model are 33.8 and 39.1

respectively; for the FNWC model the corresponding scores are 37.2 and 45.9.

With proper smoothing, the fine-mesh scores would likely be lowered by about

3 points.

In judging the meaning of these comparative scores, it is important to

remember that the fine mesh model had the benefit of analyzed lateral boundary

conditions. On the other hand, the FNWC operational model did not have the
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numerical problems associated with incompatible boundary conditions. It also

had the benefit of eight years of tuning (it was implemented in Sept. 1970).

On balance, it seems fair to conclude that fine-mesh models can provide signi-

ficant improvements in SLP forecasts provided they are supplied with reason-

able lateral boundary conditions as part of a nested model or from an inde-

pendent large-scale model. For comparison purposes, we note that the S.. score

for the 30-h surface pressure forecasts at NMC have decreased gradually fi'om

approximately 65 in 1947 to the low 50s in 1975 (Miyakoda, 1975). Recent

tests of a limited-area model with 250 km horizontal resolution over Australia

showed S scores for 24-h forecasts of approximately 49 (McGregor et_ al_.
,

1978, Table 1).

The S score is affected both by amplitude and phase errors. In order

to detect possible biases in the model toward over- or underprediction of

the intensity of cyclones, the 24-h forecast minimum pressures of all lows

at least 5 grid points from the lateral boundary were plotted versus the

observed minimum pressure. The results, shown in Fig. 8, indicate that the

model predicts lows that are somewhat more intense than observed. This re-

sult is in contrast to Bleck's forecasts which underpredicted the intensity

of the cyclones, and is probably due mainly to the absence of surface fric-

tion over half the domain. For example, the central pressure of 928 mb

(Fig. 8) associated with forecast US09 , was 974 mb when friction was included

over the entire domain.

In a comparison of forecasts using a coarse-mesh isentropic primitive

equation (PE) model with the NMC 6-layer PE model, Bleck (1974) used the

median absolute pressure error for surface cyclones as a measure of forecast

accuracy. For the 50 cases he tested, the median pressure error at 24 hours

was about 5.5 mb for the isentropic PE and 5 . mb for the NMC PE. A similar

distribution for the cyclones summarized in Fig. 8 is given in Table 9.
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Fig. 8. 24-h forecast vs. observed minimum pressures of cyclones
over the interior of the domain (at least 5 grid points
or 300 m from the lateral boundary) for the 32 control
forecasts.
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4.2 A forecast of cyclogenesis in the Gulf of Genoa

The first case to be discussed in detail covers the genesis of a

low in the Gulf of Genoa. In many respects the evolution of this cyclone was

similar to the Feb. 3-4, 1969 case discussed by Buzzi and Rizzi (1975). At

the initial time (78011200) an intense cyclone (990 mb) was centered over

the Netherlands. To the west, a 1038 mb high was located about 1300 km

northwest of Spain at latitude 45°N 25°W. Surface winds in the strong pres-

sure gradient between these two systems averaged 20 m s " over the British

Isles and North Sea. A cold front extended from the Netherlands low south-

ward across France into a developing (997 mb) low on the southeast coast of

France. Cold air behind this front was already covering most of Spain, with

temperatures in northern Spain averaging several degrees below freezing.

Fig. 2 in Keyser (1978) shows the FNWC SLP analysis for this time.

At 500 mb, a high-amplitude short-wave trough extended from the North Sea

southward across the Pyrenees and into northern Africa (Fig. K3b) . A pool of

cold (< -35°C) air was being advected rapidly southward in the strong (30 m s )

northerly flow behind the trough over western France. At 300 mb , a 70 m s

jet streak was moving southward across the northwest coast of Spain (Fig. K4c)

.

The flow at 300 mb was strongly diffluent over the Balearic Sea. Therefore

the upper-level flow pattern was very favorable for cyclogenesis in the north-

western Mediterranean.

During the next 12 hours, cyclogenesis over the Ligurian Sea proceeded

rapidly, so that by 78011212 a 992 mb low was located off the west coast of

Corsica. The Netherlands low was rapidly decaying and the surface winds over

Hereafter figures in Keyser (1978)will be prefixed by K.
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the North Sea, British Isles and France were veering into the northeast as

a strong geostrophic easterly flow developed north of the Mediterranean low.

A cold front extended southward from the new cyclone, penetrating several

hundred kilometers into Africa. Behind the front and north of the low, light

snow was falling over northern Spain, the Pyrenees, southern France, and the

Alps. Along the front thunderstorms were scattered over northern Morocco

and Algeria. Ahead of the front, southerly winds of 15 m s " carried warm

(+ 15°C) air over Italy.

The upper-level trough cut off by 78011212 and was centered over southern

France. The strongest winds aloft were located west of the low over Spain;

at 500 mb the winds were 50 m s while at 300 mb winds exceeded 70 m s

During the following 12 hours, the closed low at 500 mb maintained its

intensity as it drifted southward to a position over the Balearic Sea. The

circulation aloft became more nearly symmetric by this time (78011300). Very

cold air filled the center of the circulation at 500 mb (Fig. 9a)

.

As the upper-level circulation became more symmetric and the cold air

was carried into the circulation, the surface cyclone remained stationary and

began to decay; by 78011300 the minimum pressure had risen to 998 mb. Light

snow and rain continued over the Pyrenees and Alps and over most of northern

Italy. Thunderstorms and showers were reported north of the cold front in

Northern Africa (Fig. 7b).

During the first 12 h, the model weakened the Netherlands low from 990

to 1006 mb as observed and developed a low of 994 mb (2 mb too high) over

the Ligurian Sea about 120 km east of the observed position. At 24 h

The balanced temperatures in Fig. 9a are about 5°C lower than the first

guess temperatures in the center of the cyclone, which is typical of the cold

bias in the balanced temperatures at middle levels of cyclonic systems

(Keyser, 1978).
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Fig. 9b. 24-h forecast D-values (m) and temperatures (°C) at 500
mb for 78011300. The contour interval for the D-values
(solid lines) is 60 m; the isotherm (dashed lines)
interval is 5°C.
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(78011300) the predicted central pressure was 991 (7 mb too low) and the

location was about 100 km south of the observed position (Fig. 6a). The strong

SLP gradient north and east of the cyclone is well forecast by the model, and

regions of strong winds in the PBL over the Ionian Sea and the Bay of Biscay

correspond well with reports of surface winds 20-25 m s in these areas.

The upper-level circulation and temperature patterns are also well pre-

dicted by the model. At 500 mb (Fig. 9b) the low has cut off in about the

right position (compare with Fig. 9a) and the forecast temperatures are close

to the first guess values (see footnote 5)

•

Fig. 10 shows the forecast 300 mb winds (m s ) and the relative vor-

ticity fields (10 s ). The jet streak with maximum speeds of over 65

m s over the Bay of Biscay agrees well with observations (not shown) in

this region. It is interesting to note that the jet has become smaller in

horizontal scale during the 24 h (compare Fig. K4c with Fig. 10), indicating

that the model dynamics and thermodynamics have produced a more realistic

mesoscale structure from a larger scale analysis. Relative vorticity values

on the cyclonic side of the jet exceed 18 x 10 ' s , compared to a maximum

of about 13 x 10 s
"" in the initial conditions. This magnitude is quite

-5 -1 -5 -1
comparable to the values of 25 x 10 s and 18 x 10 s diagnosed by

Shapiro (1976) from aircraft data across a strong frontal zone over the

Great Plains of the United States and to the maximum value of relative vor-

ticity of 2.4 f in Hoskins' (1971) theoretical model of fronts. However, it

is less than the extreme value of 60 x 10 s " found in an upper-level front

over Colorado by Shapiro (1974).

Figure 11 shows a vertical cross section extending along a northwest-

southeast line from a point northwest of Lands End (U.K.) to the Albanian

Coast (Fig. 10). The analyses of potential temperature and isotachs of the
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Fig. 10. 24-h forecast winds (m s ) and relative vorticity (solid
lines in 10" 5

s ) at 300 mb for 78011300. The maximum
value of the relative vorticity along the coast of France

The maximum wind speed associated with5o-lis 18 x 10"°s
the jet streak over the Bay of Biscay is 65 m s~l,
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wind component normal to the cross section were prepared manually. Fig. 11

shows the effect of the Alps in blocking the cold air to the northwest.

Winds from the northeast (negative components) exceed 20 m s on the north-

west side of the Alps. The effect of the Alps in producing upslope motion

on the southeast slopes is seen in the upward bulge of the isentropes in this

region.

The cold air pool associated with the upper-level cyclone is well illus-

trated by Fig. 11. The upper-level front, however, is severely smoothed by

the coarse vertical resolution of the 6-layer model. Keeping in mind that the

model is predicting temperature averages through deep layers (the thickness of

the upper layer is approximately 200 mb^ it is obvious that the concentrated

fronts found in nature cannot be resolved. However, even though the frontal

structure is smoothed, the wind forecast is fairly good because it is

possible to have the same thermal wind balance satisfied by weak horizontal

temperature gradients integrated through deep layers as well as by strong

horizontal temperature gradients integrated through shallow layers.

Keyser et al. (1978) present vertical cross sections through a frontal

system predicted by a 15-level model utilizing a horizontal resolution of

about 100 km. The thermal structure showed more detail than Fig. 11, and

yet was still considerably smoother than the actual structure. Williams (1974)

adopted a vertical resolution of 200 m in his frontal model while Orlanski and

Ross (1977) utilized a vertical resolution which varied from 150 m near the

surface to 400 m at 15 km in order to resolve lower tropospheric fronts. How-

ever, the forecasts of winds aloft and the evolution of the SLP field in this

case (as well as others in our sample) indicate that such detailed vertical

resolution of fronts is not necessary for reasonably accurate predictions of

these fields.
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Finally, the forecast 24-h precipitation forecast is presented in Fig.

12. Because much of the precipitation is over water, a quantitative verifi-

cation is not possible. However, the main band associated with the cold

front extending across the western Mediterranean is realistic, and the

maxima over the Pyrenees and Atlas mountains are consistent with surface

reports of precipitation in these regions during the 24 hour period.

4.3 Forecast of the Ohio blizzard of 26 January 1978

The second case selected for detailed study covers the development of

the "worst blizzard on record in the Ohio Valley" (Wagner, 1978). Between

78012512, the start of the forecast, and 78012612, a 998 mb low over

Mississippi deepened to 958 mb as it moved northeastward to Cleveland, Ohio.

Shortly thereafter the storm moved into southwestern Ontario where Sarnia

measured a pressure of 955.5 mb. Toronto, which began keeping records in

1840, broke its all time record for lowest pressure with a reading of 962 mb

(Ludlam, 1978).

Gusts of near hurricane force winds were reported at many locations (Cleve-

land, 82 mph; Erie, PA, 78 mph; Blue Hill Observatory, Boston, 72 mph)

.

Gusts of 90 mph were measured on the Chesapeake Bay Bridge. Snowfall amounts

to the west of the storm track exceeded 30 cm in several locations.

The cyclogenesis was a result of the phasing of two intense shortwave

troughs, one moving into the U.S. from Canada across North Dakota and the

other moving into the Lower Mississippi Valley from New Mexico. Strong low-level

southerly and southeasterly winds ahead of the southern trough (Fig. K5)

brought very warm, moist air inland across the Appalacians. This warm air

was drawn into the developing low, forming an unusual warm-core cyclone and

allowing for the extremely low pressure.

Fig. K7c shows the 300 mb winds at 78012512. Two strong jets associated

with the phasing troughs are moving into the domain. The northern jet has
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Fig. 12. Forecast precipitation (cm) for 24 hours ending 78011300.
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speeds greater than 65 m s ; the maximum wind in the southern jet exceeds

75 m s . At 500 mb the northern jet with a maximum speed of 50 m s was

stronger than the southern jet, which had a maximum speed of about 40 m s

The 850 mb map of D values and temperature (not shown) shows a broad

baroclinic zone oriented in a southwest-northeast direction from the Gulf

Coast to New England and a small pool of extremely cold air entering the

U. S. over North Dakota. Warm advection was occurring over the eastern

states with cold advection over Texas and Louisiana. This differential ad-

vection was favorable for deepening the southern trough while building the

ridge off the East Coast by Sutcliffe's self-development mechanism. Later,

the cold air over North Dakota moved into the rear of the combined trough,

producing further intensification.

In summary, the synoptic conditions were extremely favorable for cyclo-

genesis. A strong large-scale temperature gradient existed; there were two

jet streaks with maximum winds in excess of 60 m s moving into the same

region, and there was an abundant moisture supply available to the system

from the east and southeast.

In the next 12 hours the southern trough moved rapidly from Texas to

Alabama as it phased with the northern system. Winds at 500 mb over the

southeastern U.S. ahead of this southern system backed into a more south-

westerly direction and doubled in speed. At 850 mb the cold air which was

over North Dakota 12 hours earlier moved rapidly southeastward and was

entering the rear quadrant of the developing cyclone, which was located over

eastern Tennessee.
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In the 12 hours ending at 78012612, the surface low deepened to 958 mb

as it moved to a position over southwestern Ontario (Fig. 13a). At 850 mb

,

the center of the low contained very warm air (+ 5°C) for January; the low-

level cold air was far to the southwest (Fig. 14a). The trough at 500 mb

had formed a closed circulation, although cold advection was still occurring

in the southwest quadrant (Fig. 15a).

MODEL FORECAST

The development of the cyclone by the fine mesh model followed the

atmosphere fairly closely. Fig. 13b shows the predicted SLP pattern and the

winds at the lowest model level (a = 0.925). The central pressure of 955 mb

is 3 mb lower than the minimum observed pressure of 958 and the center is

located about 360 km to the southeast of the actual position. The low-level

-1 -1
wind field shows many 40 m s winds around the low and several 50 m s

winds in western Virginia and North Carolina. These winds are much larger

(by a factor of 4 or so) than the mean surface winds, due in part to the

neglect of surface friction. Also, they pertain to a level of about 600 m

above the ground and hence should be greater than the average surface winds

even if friction were included. They are comparable in magnitude to the

observed winds at 850 mb and to the maximum surface gusts mentioned earlier.

A more detailed interpretation of these winds follows in the next section.

The 24-h forecast of SLP by the FNWC model is given in Fig. 13c.

This case is one in which the advantage of high horizontal resolution is

fairly clear; the coarse mesh FNWC model could not resolve the small scale

structure of the cyclone. The smooth forecast was 27 mb too high and the

speed was too slow.

Fig. 14b shows the fine mesh model's forecast D-values and temperatures

at 850 mb. The warm core nature of the model cyclone is evident; in fact,

the model cyclone is warmer than observed by several °C at 850 mb. The
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Fig. 13c. 24-h forecast SLP-1000 mb VT 78012612 by FNWC model,

Central pressure is 985 mb.
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Fig. 15b. As in Fig. 9 for 78012612,
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warm pocket over southwestern New Jersey of over 15°C is unrealistic and

the air over western Kentucky is not cold enough.

At 500 mb the model forecast (Fig. 15b) is similar to the observed (Fig.

15a) with the exception that the air over the center of the model storm is

about 5°C too warm and the air over Minnesota is 5°C too cold. Another dis-

crepancy is the model's forecast of the main 500 mb low center over western

Illinois rather than northern Ohio. The excessive tilt of the cyclone is

consistent with the model's subsequent overdevelopment after 24 hours.

Fig. 16a shows the analyzed (balanced) winds at 500 mb for 78012612

while Fig. 16b shows the predicted 500-mb winds and relative vorticity. The jet

curving in an arc across Nebraska, Arkansas, northern Alabama and Georgia

and up the East Coast is fairly well forecast by the model. In addition

to the general region of cyclonic vorticity north of the jet, the model

has produced 2 shortwave features, with relative vorticity maxima of 25 x

10 s and 30 x 10 s
"" over western Illinois and Virginia respectively.

The rapid variation of the vorticity near the eastern boundary is noise

induced by the strong winds normal to the boundary.

Fig. 17 shows a north-south vertical cross section along 80°W longitude

which passes very near to the center of the surface low. The warm core

nature of the low is evident. In contrast to the cross section through the

Genoa low (Fig. 11) the winds normal to the cross section in the vicinity of

the low do not satisfy the thermal wind relationship very well. For example,

the vertical wind shear between 700 and 300 mb is weak over Pittsburg (PIT)

in spite of a large horizontal temperature gradient. The lack of geostrophic

balance apparently reflects accelerations associated with the strongly curved

flow in the vicinity of this rapidly deepening cyclone. Shapiro (1974) found

that the effects of trajectory curvature were important in determining the
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Fig. 16b. 24-h forecast winds (m s ) at 300 mb for 78012612. Solid
lines are relative vorticity with a contour interval of

4 x 10~5 s~l. Maxima over southwestern Illinois and central
Virginia are 25 and 30 x 10

-
-' s respectively.
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vertical wind shears in a strong cyclone. For gradient flow, the actual and

geostrophic (denoted by subscript g) shears are related by

' _9V _ f_!!g
,
V^ SR

9z OV
, , 9z

+
2 ~3i

UA)

R
+

*
R

where V is the component of the horizontal wind tangent to the isobars and

R is the radius of curvature (positive for cyclonic flow) . For cyclonic

flow in which the vertical variation of R is small, the actual wind shear

is less than the geostrophic wind shear as indicated in Fig. 17.

Fig. 18 shows a cross section oriented approximately west to east through

the cyclone. The cold air mass between the Rockies and the Appalachian shows

up clearly. The thermal wind relation is reasonably well satisfied west of

Columbus, Ohio (CMH) . However, as in the north-south section, the normal

wind components are not in geostrophic balance in the vicinity of the storm.

Fig. 19 shows the observed and forecast precipitation for the 24-h period

ending 78012612. There is some agreement, but considerable room for improve-

ment. The observed maximum over central Alabama and Georgia is forecast to

be a little too far south. The two observed maxima over southeastern Michigan

and eastern Kentucky are not resolved; instead the model forecasts one maximum

over Ohio. The model places the northern portion of the elongated maximum

too far east. Finally, the 20-cm maximum off the Virginia coast is too high

because of numerical errors at the lateral boundary.

The effect of surface friction on the development of this intense storm

is illustrated by the SLP and level-6 winds (Fig. 13b) in a rerun of forecast

US08 which included surface friction over the entire domain. With the large

drag coefficient given by (3), the model storm is weaker than observed with

a minimum pressure of 978 mb. The low-level winds are weaker by a factor of

about 2 and the cross-isobar flow angle has increased markedly compared to
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Fig. 19a. Precipitation (cm) for 24 hours ending 78012612.

Observed.
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Fig. 19b. Precipitation (cm) for 24 hours ending 78012612.

Forecast.
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the control forecast. This comparison probably exaggerates the importance

of the PBL on 24-h forecasts in general because of the extreme low-level

winds in this case and the large variation in drag coefficient between the

two forecasts. Nevertheless, the significant differences suggest that a

fine tuning of the PBL model could yield improvements in short-range fore-

casts of strong cyclones.

BOUNDARY LAYER WINDS

Some applications, including model verification, may require the esti-

mation of mean surface winds from the winds in the lowest layer of the model.

Because of the extreme wind speeds in the PBL in this forecast (Fig. 13b),

we have applied a one-dimensional high-resolution model of the PBL to two

points in the domain in order to relate the winds in the lowest layer of the

model (which are essentially inviscid) to winds that would be expected at

levels closer to the surface. In addition to providing wind profiles, this

procedure also reveals some important diagnostic information on how to

improve the treatment of the PBL in the model.

The PBL model is the Level 3 version of the Mellor-Yamada (1974) model

as modified by Burk (1977). This model consists of prognostic equations

for the 2 horizontal velocity components, liquid water potential temperature,

(6.), total water mixing ratio (Q ), turbulent kinetic energy, and the variances

of
O
and Q . Diagnostic equations determine the Reynolds stresses (u!u'.

)

*> w J- j

and the turbulent heat (u'.6') and water (wlO/) fluxes.

The model consists of 22 levels (z=l, 10, 25, 50, 90, 150, 250, 400,

600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800, 3000,

3200 m) . Initial wind, potential temperature and mixing ratio are provided

by the forecast- model. Above 600 m, the lowest level in the regional model,

the data are obtained by linear interpolation; below 600 m, the data are
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assumed to be vertically constant. A roughness length z of 30 cm is chosen

as a realistic value for wooded, hilly terrain (Table 3 in Keyser and Anthes,

1977). After 2.5 hours of integration time the PBL profiles reach a slowly

varying state, and the results presented here pertain to this time.

Fig. 20 shows the profiles of u and 0. (which is equal to potential

temperature in this case since no liquid water is present) for a point north

of the storm (47.6°N 80.0°W). The initial wind and the geostrophic wind speed

below 600 m was 24 m s . Above 600 m, the initial and geostrophic wind

decreased with height to a value of 10 m s
"" at 3000 m. The potential tem-

r)0 — 1

perature increased rapidly with height above 600 m (-r— sa 14°C km ). Because
oz

of the extreme stability, the depth of the PBL was restricted to about 600 m

in spite of the strong winds. The profiles above 600 m are virtually unchanged

from their initial values. Below 600 m, the wind speed falls off rapidly

with decreasing height, so that by 10 m, the speed is about 5ms , or about

5 times lower than the geostrophic wind.

Fig. 21 shows the wind and potential temperature profiles for a point

south of the storm (36.5°N, 80.0°W). Here the static stability is less

(-~— above the PBL m 4°C km) and the geostrophic wind is stronger (50 m s ),
dz

so the depth of the PBL increases to 1000 m. For this sounding the 10-m wind

is reduced to 9 m s , which is again about 5 times lower than the geostrophic wind

From the above 2 examples, the inviscid forecast winds at the lowest level of

the model should be divided by a factor of about 5 to obtain an estimate of

the standard level (10-m) mean wind that is reported on surface charts. This

reduction brings the winds in Fig. 13b into reasonable agreement with the

reported surface winds. The unreduced winds are typical of the maximum

gusts reported at many stations.
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Fig. 20. Vertical profiles of wind component (u) parallel to isobars and

liquid water potential temperature (Qa) for a point (47.6°N,
80.0°W) at 78012612 as computed by Burk's PBL model. The ordinate
is height in m above the surface. Initial and boundary conditions
were provided by the fine-mesh forecast as described in text.
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Fig. 21. As in Fig. 20 except for a point (36.5°N, 80.0°W) south of the

storm center. The initial and geostrophic u profile is given

u°.
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The PBL model provides estimates of the surface stress and depth of the

PBL which may be used to estimate drag coefficients appropriate for use with

the wind at any level in formulas such as (2) , where C appropriate to the

wind speed V at level z is

C
D
(z) = u//V 2

(15)

and u^ is the surface friction velocity. Another estimate of C appro-

priate for use with the mean PBL wind speed V may be obtained from Deardorff 'sr m

(19 72) method, which relates C to a bulk Richardson number and a nondimen-

sional height H/z

Table 10 lists the surface stress, depth of the PBL, mean frictional

acceleration, and drag coefficients appropriate to the 10-m and mean wind

in Burk's model and to the mean PBL wind using Deardorff s eq. (33). If we

identify the wind at the lowest level in the regional model with V predicted

by the PBL model, it is clear from Table 10 that the drag coefficients appro-

-3 -3
priate for the use of (2) should be between 1 x 10 and 3 x 10 rather than

-3 -3
between 5 x 10 and 11.45 x 10 " as given by (3). Therefore, circulations

over the portion of the domain which utilize (3) in our forecasts are probably

overdamped. This conclusion is consistent with the weak cyclone obtained

when the large values of C were used over the entire domain (Fig. 13d).

4.4 Role of condensation heating in a model cyclone

The last case to be discussed (US13) is an example of one of the worst

forecasts. Starting with initial conditions at 78030300, the control version

of the model forecast the development of an intense low over the Florida Pan-

handle. In reality, only weak intensification occurred. This forecast is

instructive because it illustrates that fine mesh models, with their capa-

bility of resolving intense small-scale circulations, may require better
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physical parameterizations of processes that are associated with sensible

or latent energy transfers, since erroneous representation of these processes

may produce unrealistic positive feedbacks with the flow. Coarse mesh models

tend to average sources and sinks of heat and moisture over large horizontal

areas and hence are probably not as sensitive to the parameterization of

subgrid-scale processes such as cumulus convection. Fig. 22 shows the SLP

and the 500-mb D values and temperatures for the initial time (78030300).

A broad area of low pressure existed over Texas and Louisiana with a weak

minimum (1003 mb) southwest of New Orleans. A low-amplitude, short-wave

trough over Texas disturbed the basically zonal flow across the southern

U.S. Heavy precipitation was occurring over the southern U.S. as moist (mix-

ing ratio 10-12 g kg ) air from the Gulf of Mexico was lifted over a

stationary front which extended along the northern Gulf Coast and across

northern Florida.

Twelve hours later (78030312) the surface low moved to the Florida

Panhandle while deepening only 1 mb (Fig. 23a). Vigorous thunderstorms (tops

over 12 km) occurred to the east of the low while more continuous precipita-

tion fell north of the center. The model, which developed strong convective

heating immediately after the start of the forecast, deepened the low by

17 mb to a pressure of 986 mb and produced the intense small-scale cyclone

shown in Fig. 23b. This cyclone resembled a large tropical cyclone in its

symmetric low-level wind structure, its warm core, and heavy precipitation

patterns. In the following 12 h, the low deepened to 971 mb and moved to

Wilmington, NC. whereas the actual low had deepened to 994 mb and moved off

It is interesting to note that the development, which superficially
resembles conditional instability of the second kind (Charney and Eliassen,

1964) proceeded without "Ekman pumping."
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Fig. 23d. 12-h forecast SLP-1000 mb VT 78030312 and winds (m s ) at

a = 0.925 for control forecast and forecast with revised

vertical partitioning of convective heating. The minimum

pressure is 983 mb

.
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the New Jersey coast. Neither NMC's limited area fine mesh model nor

FNWC's operational model overdeveloped the low. While the absence of sur-

face friction undoubtedly contributed to the overintensif ication by the

model, latent heating played a major role as shown below.

The extremely heavy precipitation associated with the model cyclone

(Fig. 24b), which was higher than observed by a factor of two or three

along the path of the low (compare with Fig. 24a), suggested that latent

heat was the major source of energy for the low. A rerun of the forecast

in which the latent heat of condensation was not added into the thermo-

dynamic equation confirmed this hypothesis, as the weak storm at 78030312

(Fig. 23c) shows. Even though the SLP forecast was more realistic without

latent heating, the precipitation forecast (Fig. 24c) was too low and

spread over too large an area.

With condensation heating established as the cause for the overintensi-

fication, the next step was to determine the effect of the cumulus parameteri-

zation on the cyclone. Exp. US13B was therefore run with the cumulus para-

meterization eliminated entirely. Moisture in excess of saturation was con-

densed locally and removed from the system. Although it was originally

thought that primitive equation models could not be integrated for long times

in the presence of condensation in a conditionally unstable environment,

Rosenthal (1978) has recently shown that vertical transports of heat and

moisture by resolvable scales of motion can stabilize the environment without

the necessity of cumulus parameterization. In agreement with his results,

Exp. US13B proved stable for the 24-h forecast. However, the cyclone at 12 h

was more intense than the control (compare Figs. 23d and 23b) and the preci-

pitation forecast was much too high (compare Figs. 24d, 24a and 24b).

Apparently the cumulus convective parameterization was acting in the right sense

of stabilizing the environment, although its effects were too weak.
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The next question was why the real atmosphere did not produce any sig-

nificant deepening in spite of the large amount of condensation, as shown

by the observed 24-h precipitation amounts (Fig. 24a). Since it is well

known that the vertical distribution of latent heating is a very important

parameter in determining the growth of model tropical cyclones (Yamasaki,

1968; Ooyama, 1969; Koss, 1976) the next hypothesis was that the specified

convective heating weights N were distributing too much heat to the lower

levels which excessively destabilized the atmosphere. This hypothesis is

consistent with a recent study by Staley and Gall (1977) who showed that

the wavelength of maximum growth in a baroclinically unstable environment

shifted toward short wavelengths (~2000 km) as the lower troposphere became

less stable. It is also consistent with Sutcliffe's (1947) theory of cyclo-

genesis, in which the greatest brake on a developing cyclone is the tempera-

ture changes associated with vertical motion. Also, Tracton (1973) used

the quasi-geos trophic omega equation and the vorticity equation to estimate

the deepening rate of extratropical cyclones due to the release of latent

heat. His results showed greater deepening rates when a higher proportion

of convective heat was released in the lower troposphere.

In Exp. US13C, the revised weights N shown in Table 1 were used to dis-

tribute the convective condensation heating. The shift of the heating maximum

to higher levels is not inconsistent with the observed tall convection; some

of the thunderstorm tops exceeded the top pressure of 200 mb in the model.

The effect on the cyclone of the fairly small change in N was dramatic,

as shown in Fig. 23e. With the modified weights, the low deepened only 5 mb

rather than 17 and the circulation was much closer to the observed. The

precipitation (Fig. 24e) , while not as high as in the control experiment (Fig.

24b), was nevertheless very heavy, suggesting that the vertical distribution
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of convective heating is as important as the total amount of heating in

determining whether a system develops. It is possible that systems which

produce heavy rains but do not intensify are stabilized by vertical heating

distributions which have high-level maxima.

Some insight into the effect of varying N on the static stability can

be seen by comparing soundings taken at the center of the cyclone at 12 and

24 hours into the forecast. Fig. 25 shows that the major effect of the

modified N profile given in Table 1 is to cool the lower troposphere so that

the static stability in the layer from 800 mb to 400 mb is greatly increased.

In the more stable sounding, upward vertical motion produces stronger cooling

which inhibits further development. Both soundings at 24-h in Fig. 25 show

temperatures that are approximately 5°C too high in the layer from 400 mb

to 700 mb . The observed temperature profile was estimated from the NMC

analysis over the storm at 78030400. This error is consistent with the

overly intense circulation and the excessive precipitation associated with

this storm.

The results of experiment US13 and its variations strongly suggest

that the treatment of latent heating and cumulus convection is very impor-

tant in some short-range forecasts of cyclogenesis using fine-mesh models.

A proper scheme must be able to discriminate between systems which produce

heavy precipitation and yet do not intensify from those in which total

heating appears to be responsible for intensification (Tracton, 1973).

When we consider the relatively large effect the small differences in N

produced, the design of such a scheme appears to be quite challenging.

84



Fig. 25. Temperature soundings in center of model cyclone, initial

conditions 78030300.
1: 12-h forecast using control model

2: 24-h forecast using control model
3: 12-h forecast using model with revised vertical parti-

tioning of convective heating.

4: 24-h forecast using model with revised vertical parti-

tioning of convective heating.

Observed sounding was constructed from NMC analyses at

78030400.
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5 . Summary

A total of 32 twenty-four-hour forecasts using a six-layer, 60-km mesh model

have been run over western Europe and the eastern United States. The forecasts

showed considerable skill in forecasting cyclogenesis in the Mediterranean and

over the U.S. The average 24-hour S score for sea-level pressure was 39.1

compared to an average of 45.9 for the FNWC operational model and 73.4 for per-

sistence.

The modifications to the Anthes-Warner (1978) mesoscale model used in these

tests were described. These include a simplification of the cumulus parameter

-

4 2
ization, the use of a V rather than V horizontal diffusion operator,

and the introduction of a weak temporal filter. The noise level of the

model was quantitatively assessed and compared to Bleck's (1977) results

using an isentropic model.

The unsmoothed model forecasts were verified quantitatively by comput-

ing 12- and 24-h S, scores for sea-level pressure and by comparing the fore-

cast with the observed minimum pressures associated with the cyclones. The

effect of small-scale features in the SLP forecasts on the S.. score was con-

sidered. Removing these features by horizontal smoothing improved the S

scores by several points. The model showed considerable skill in forecast-

ing the SLP, although there was a slight bias toward predicting cyclones

there were too intense.

Three forecasts were discussed in some detail. The first was a case of

cyclogenesis in the Gulf of Genoa which was forecast well by the model. The

second was a forecast of the intense Ohio blizzard of January 26, 1978. The

model also did reasonably well on this storm. Finally, a case in which the model

greatly overpredicted the intensity of a cyclone along the southern coast of

the U.S. was presented. Latent heat and the parameterization of cumulus con-

vection were dominant factors in producing the fictitious intensification, as
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was shown when the forecast was rerun with changes in the treatment of moisture.

The structure of the PBL in the forecast model was investigated briefly.

A high-resolution, higher order closure model of the PBL was supplied with

initial and boundary conditions from the forecast model and used to compute a

detailed PBL profile of wind and potential temperature. The PBL model indicated

that appropriate drag coefficients for use in the quadratic stress law using

_3
the mean PBL wind had a value of about 1.0 x 10 . This value was considerably

_3
lower than the value of 5.0 to 9.5 x 10 " used over the left half of the

domain. Over the right half, C was inadvertently zero. Therefore, circula-

tions over the left half of the domain were probably overdamped while those

over the right half were underdamped.

The major conclusion from this paper is that significant improvements in

24-hour SLP forecasts were obtained by a model with high horizontal resolution,

even though the vertical resolution was coarse and the physics in the model

was very simple. They suggest that research should be continued toward devel-

oping improved mesoscale models. Aspects of the model that deserve high

priority include

(1) effect of vertical resolution

C2) improved initialization of mass and moisture fields

(3) improved treatment of cumulus convection parameterization.

Finally, we note the importance of evaluating the model on a large number

of cases. The best forecast of this group would (erroneously) indicate that

few problems of forecasting on this horizontal scale remain. On the other

hand, the worst forecast might suggest that useful forecasts on this scale are

impossible. Only by running the model without changes on many cases can we be-

gin to see patterns emerging which suggest the strengths and weaknesses of the

model. In this respect, after evaluation of these forecasts to a greater de-

gree than presented here, we hope to make changes in the model and eventually

rerun forecasts using the same data.
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Table 1. Values of N(a) used to distribute convective heat
in vertical; cloud updraft velocity
excess in cloud, q -q .

c

U) and moisture

N control cases
N modified cases
co mb/s

q£ g/kg

0.125 0.325 0.475 0.625 0.775 0.925
1.065 1.308 1.356 1.162 0.872 0.194
1.155 1.715 1.540 1.330 0.157 0.0
0.920 1.160 1.160 0.910 0.520 0.0
0.2 1.7 3.5 5.0 4.0 0.0

Table 2. Fraction of initial amplitude
remaining after 640 time steps
(24h) for various wavelengths
mAs.

m

2 3.4 x 10

3 1.9 x 10

4 8.1 x 10

6 0.30

8 0.67

10 0.84

12 0.92

16 0.97

-9

-5

-3
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Table 3. Summary of 24-h
initial time of

Forecast ID IC

US03 78012212

US 04 78012300

US05 78012400

US06 78012412

US 07 78012500

US 08 78012512

US09 78012600

US10 78021300

US11 78021312

US12 77121812

US 13 78030300

US13A

US13B

US13C

US 14 78020600

US15 78020612

forecasts: U.S. domain. IC denotes the
the forecast.

Description

1034 mb high over Indiana drifts slowly eastward.

1033 mb high over Ohio drifts off Va. coast.

1004 mb low forms over Texas, moves to Louisiana,
heavy precip Ohio Valley.

low forms over Texas coast, deepens to 998 mb
over Alabama, Heavy precip over Appalachians.

Low deepens to 980 mb as it moves to eastern
Tennessee "Ohio blizzard".

Low deepens to 958 mb as it moves to southwestern
Ontario.

Low begins to fill slowly as it remains nearly
stationary over southern Ontario.

1002 mb low over Texas deepens to 992 mb over
southern Mo. at 12h, then fills to 999 mb
over eastern Ky. at 24h.

992 mb low over srn. Mo. fills to 1000 mb and

moves off Va. coast.

989 low forms off Va. coast, 1001 mb low forms
over Oklahoma.

1000 mb low off La. coast deepens to 994 mb
off Va. coast.

No latent heating.

No cumulus parameterization.

Modified vertical distribution of convective
heating.

1016 mb low off N.C. coast deepens to 984 mb
off N.J. coast. "Boston blizzard"

997 mb low off Va . coast deepens to 990 mb

off Mass. coast ."Boston blizzard"
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Table 4 Summary of 24-h
are approximate

Forecast ID IC

MED01. 78011200

MED03 78012300

MED04 78012212

MED 05 78012312

MED06 78012412

MED07 78012500

MED08 78020612

MED09 78021312

MED11 78011400

MED12 78011500

MED13 78011912

MED14 78012000

MED15 77121800

MED16 77121812

MED17 78030300

MED18 78030312

MED19 78040200

MED20 78040212

MED21 78040300

forecasts European domain. The minimum pressures

Description

998 mb low forms in Gulf of Genoa.

1009 mb low in Tyrrhenian Sea deepens to 1007 mb
and drifts southeastward.

997 mb low over Italy fills, then deepens while
remaining nearly strny.

1006 mb low north of Sicily, fills to 1011 mb
and moves eastward.

1011 mb low south of Greece decays, 1002 mb low
forms over Adriatic Sea

Weak low forms then decays over Adriatic Sea.

998 mb low SE of Greece splits, one low moving
NE, another reforming over srn. Italy.

999 low ern. Tunisia decays, 998 mb low forms
over srn. Italy, moves northeastward.

Trough over Ligurian Sea intensifies, 1007 mb
low drifts westward toward Spain.

1006 mb low off east coast of Spain weakens,
moves northwestward over Spain and France.

1001 mb low over srn. Italy decays and moves
eastward; 992 mb low forms in Gulf of Genoa.

1000 mb low over Gulf Genoa deepens to 992 mb
and remains stnry.

1008 mb low forms south of Sicily.

1008 mb low south of Sicily fills to 1011 mb
and drifts slowly eastward.

1001 mb low south of Greece remains stnry;
cyclone intensifies to 997 mb over Pyrenees.

1002 mb low south of Greece drifts eastward
and weakens; 998 mb low over Pyrenees drifts
southeastward to coast of Spain.

Rapid development of 993 mb low over Balearic
Sea.

993 mb low moves from Balearic Sea to Sicily,
maintaining its intensity.

993 mb low south of Sardinia moves to srn.

Italy, maintaining its intensity.
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Table 5. Indices of points used in computing S scores. I denotes
south-north direction; J denotes west-east direction.
Point (1,1) is lower left corner. North latitude is

given by
(f>

; west longitude is given by A.

Point I J 4> \s
TEUR

X
EUR

1 10 15 31.6 96.5 36.1 2-

2 20 15 37.0 97.0 41.6 3-

3 30 15 42.3 97.8 47.2 4.

4 40 15 48.0 98.6 52.7 5.

5 10 25 31.8 90.0 36.4 -5.

6 20 25 37.2 90.0 41.9 -5.

7 30 25 42.5 90.0 47.5 -5.

8 40 25 48.3 90.0 53.1 -5.

9 10 35 31.5 83.6 36.2 -11.

10 20 35 37.0 83.0 41.7 -12.

11 30 35 42.4 82.3 47.3 -13.

12 40 35 48.0 81.5 52.8 -14.
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Table 6. Effect of smoothing on S.. SLP scores. Smoothing operators
are defined by number N of passes and smoothing coeffi-
cient V.

Smoothing operator number:

Exp 12 3 4

MED07 12h

MED07 24h

US08 24h

MED01 12h

MED01 24h

US08 36h

Means: 33.4 32.6 33.1 31.0 30.1

25.4 23.9 24.7 23.0 22.6

46.1 45.3 45.9 42.5 40.0

30.5 30.3 30.4 30.2 30.8

28.0 27.7 28.1 26.5 25.9

20.5 19.7 20.4 16.9 16.1

49.6 48.8 49.3 46.8 45.0

1. No smoc thing (N=0)

2. N = 1 v = 0.5

3. N = 6 v. =
i

0.5 i odd, V.
i
=-0.5 i even

4. N - 6 v. =
1

0.5 all i

5. N = 12 v. = 0.5 all i
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Table 7: S scores for unsmoothed SLP forecasts over U.S.
from fine-mesh model compared to persistence (P)

and FNWC operational hemispheric model.

ID VT 12-h S 12-h P 24-h S 24-h P 12-h FNWC S 24-h FNWC S

US03 78012312 25 24 2 3 35 25 26

US04 78012400 30 27 27 59 19 31

US05 78012500 26 51 48 85 37 63

US06 78012512 37 59 68 92 29 47

US07 78012600 61 93 35 122 48 48

US08 78012612 34 85 30 96 48 68

US09 78012700 26 62 47 74 31 18

US10 78021400 32 77 46 98 41 63

US11 78021412 32 63 50 86 36 52

US12 77121912 43 63 40 84 56 53

US13 78020400 35 76 51 88 31 50

US14 78020700 28 33 29 40 26 39

US15 78020712 21 22 2 5 41 22 30

Means

:

33.1 56.5 39.9 76.9 34.5 45.2
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Table 8. S^ scores for unsmoothed SLP forecasts over Europe from
fine-mesh model compared to persistence P and FNWC
operational hemispheric model.

12-h 12-h 24-h 24-h 12-h FNWC 24-h FNWC
ID VT

-4l-

28

P ~il-

20

P S
l

24

S
l

25MED01 78011300 67 75

MED03 78012400 26 54 23 70 28 22

MED04 78012312 32 41 41 62 29 37

MED05 78012412 23 52 25 85 21 28

MED06 78012512 28 51 33 62 33 36

MED 07 78012600 25 35 46 51 29 37

MED 08 78020712 34 31 37 45 39 38

MED09 78021412 33 37 43 50 55 63

MED 11 78011500 44 40 52 64 52 58

MED12 78011600 38 46 47 86 40 55

MED13 78012012 45 60 41 73 46 50

MED14 78012100 32 53 25 70 28 20

MED15 77121900 29 41 45 49 35 50

MED16 77121912 40 40 51 53 41 58

MED17 78030400 45 65 61 102 49 75

MED18 78030412 35 63 46 89 56 61

MED 19 78040300 53 101 44 112 66 63

MED20 78040312 31 62 31 76 31 57

MED21 78040400 31 56 20 75 40 48

MEANS 34.3 52.4 38.5 71.0 39.0 46.4
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Table 9. Distribution of absolute pressure error (mb) for
surface cyclones at 24 hours.

Error interval (mb) Number of cases

0-1 4

2-3 9

4-5 5

6-7 6

8-9 4

10-11 2

12-13

14-15 1

over 16 1

Mean absolute error = 5.9 mb

Median absolute error = 2.5 mb

98



Table 10. Surface stress (x) , depth (H) of PBL, frictional
acceleration (x/pH) and drag coefficient (Cp) for
10-m and mean PBL winds as diagnosed from Burk's
PBL model. Also shown is G^ appropriate for mean
PBL wind obtained by Deardorff 's (1972) method.

<f>
= 36.5°N 4> = 47.6°N

A = 80.0°W A = 80.0°W

T (N m"
2

) 0.774 0.230

H (m) 1000. 600.

H/z 3.3 x 10
3

2.0 x 10
3

o

^— (m s~
2

) 7.74x 10" 4
3.8 x 10

_4

pH

V (m s"
1

) 31.8 13.8
m

VnA (m s"
1

) 8.8 4.8
10-m

D m

:

D
(V

10-m"W
C^(V_) (Burk) 0.8 x 10

3
1.2 x 10

3

C^(V, n ) (Burk) 10.0 x 10~ 3
10.0 x 10

_3

D 10-m

(L(V ) (Deardorff) 2.3 x 10~ 3
2.6 x 10" 3
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