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Foreword

This document records three working studies from an ongoing
investigation of models and methods for the prediction of the cumulative
effect of weapons salvos. These papers are reproduced here in their entirety

and in the chronological order in which they were produced.

The first paper in the sequence, A comparison of an empirical rule for

aggregating damage from a weapons salvo to a plausible model for the same

purpose, resulted from an examination of an extant formula for estimating

the expected proportion of damage to an area target from a weapons salvo. Its

conclusion is that the formula gives optimistic, and in some instances

impossible, results when compared to a "plausible" model for the effect of the

salvo.

The second paper, Damage aggregation for a weapons salvo by an

empirical rule related to the Poisson approximation to the binomial, describes

an alternative formula which is conservative when compared to the same
"plausible" model.

The third paper, A stochastic model for hit overlap in a weapons salvo

directed against an area target that leads to a proportional mechanism for

damage aggregation, describes a basic case of an emerging family of target

configuration and weapons impact scenarios which lead to the damage
aggregation mechanism of the "plausible" model. The "plausible" damage
aggregation mechanism is renamed the proportional effects mechanism in

this paper.

The general setting for these studies is described in the first two

paragraphs of the introduction to the first paper. The proportional effects

(plausible) damage aggregation mechanism is derived in Section 3 of that

paper. This information is recapitulated in the introduction to the

subsequent papers.
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A comparison of an empirical rule for aggregating damage
from a weapons salvo to a plausible model for the same
purpose

1. Introduction

The scenario considered here is that a salvo of n weapons is launched
against a target. The number of weapons that hit the target is a random
variable N with possible values 0, 1, ... , n. Possible damage to the target is

measured as a percentage (or proportion) of the whole ranging from 0% to

100%. The damage to a pristine target resulting from a single hit is a

deterministic proportion d of the whole. The aggregate proportion of

damage to the target from the salvo is a random variable D, the randomness
in D resulting from the randomness in the number of hits N.

The end objective is to predict the expected proportion of damage E(D)

to the target resulting from the salvo. This prediction can involve modeling

of the probability distribution of the number of hits N, and the way that

damage aggregates as additional hits beyond the first are scored. For the

immediate study, it is assumed that each weapon in the salvo hits

independently with the same probability p, so that the number of hits N has

a binomial probability distribution. This leaves the problem of how to

aggregate the deterministic proportion of damage resulting from multiple

hits on the target.

The empirical rule for predicting E(D) is

£(D) = l-(l-d)E{N)

where E(N) is the expected number of hits on the target. This rule ducks the

issue of aggregating deterministic damage from multiple hits and to some

extent ducks the issue of modeling the probability distribution for the random

number of hits on the target. We will first examine the workings of the

empirical rule in the case of a salvo of size one, and then proceed to a

comparison of the empirical rule to the output of a plausible model for

deterministic damage aggregation.

2. For a salvo of size one

For a salvo of size one, i.e. a single weapon, there is either a hit with

probability p, or a miss with probability \-p. The consequences of the salvo

are summarized in the following diagram.
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Hit, N = l, D = d

1-p

Miss, N = 0, D =

The expected number of hits is

E(N) = 1 • p + • (1-p) = p

and the expected proportion of damage is

£(D) = d p + • (1-p) = pd

The issue then becomes how in this case does the empirical rule

£(D) = 1 - (l-d) for predicting E(D) compare with the actual value

E(D) = pd. The following arguments show that E(D) overestimates £(D)

for all values of p and d.

We will hold p fixed and study the behavior of £(D) and E(D) as d

varies from to 1. First note that at d = Q both E(D) and £(D) are 0.

Then note that both E(D) and E(D) increase as d increases. This is evident

by inspection of the two expressions, or from considering that the derivative

of £(D) is

£(D) = -4r{l-{l-d)P} =
dd dd

{l_dfv

and the derivative of E(D) is

-fjHD) = -fcw - p

and that both derivatives are nonnegative. Also the derivative of E(D) is

larger than the derivative of E(D), so that E(D) increases faster than E(D).



Since both expressions start at for d = and E(D) increases faster, it

follows that E(D) is greater than £(D) for all values of d.

It is worth noting that at d = 0, E(D) and E(D) have the same slope,

i.e.

E(D)
dd

d=0
dd

E(D) = V
d=0

and that while the slope of E{D) continues at a constant p, the slope of E(D)

grows to infinity as d approaches 1. The common slope of E(D) and E(D)

at d = suggests that E(D) can be a good approximation to E(D) for small

values of d. This issue is studied numerically in the following four plots.
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The empirical rule E(D) becomes absurd as d approaches 1. At

d = 1 it says that expected damage to the target is total regardless of the prob-

ability that the single weapon scores a hit. The reality is that the expected

proportion of damage can never exceed the hit probability.

Wayne Hughes [1] makes the observation
—"A single missile attack is

most attractive tactically when the damage £(D) is thought to be high, that is

when p and d together are high. We do not need to make a judgement as

to what is "high" to conclude that the region of primary interest will be

toward the right end of the plots, which is the region of greatest divergence

between the empirical E(D) and the more plausible E(D) curves."

3. A plausible model for damage aggregation

The premise of the "plausible model" for damage aggregation is that if

the proportion of a pristine target that is damaged by a single hit is d, then

each additional hit damages the same proportion d of that part of the target

not previously damaged. Thus if D(k) is the aggregate proportion of damage
to a pristine target from exactly k hits, then

D(0) = = l-(l-d)

D(l) = d = l-(l-rf) 1

D(2) = D(l) + d{l - D(l)) = d + d(l-d) = I -d-d)2

D(n) = D(n-l) + d{l - D(n-l)} = 1 - (\-d)
nA + d(\-d)nA

= 1 - {\-d){\-d)nA = \-(\-d) n

where n is the number of weapons in the salvo.

It is worth noting that the incremental proportion of damage from the

/c
th hit is, for k = 1, ... , n,

D(*)-D(M) = [l - (l-d) k )
- {\ - (l-d)kA ) = d(\-d)kA



4. For a salvo of size n

For a salvo of size n in which each weapon hits independently with
the same probability p, the random number of hits N has a binomial
probability distribution, i.e.

P[N=k) = (£jp*(l-p)"-*, k = 0,...,n

and E(N) = np.

Then the expected proportion of damage is

n n

E(D) = ^D(k)P[N=k] = ^ (1 - (l-<i)
fc

} P[N=ic]

*=o *=o

n n

k=0 t=0

= 1 - {(1-% + (l-p)}« = \-{\-pd)n

and the empirical rule for predicting £(D) is

E(D) = l-(l-d)nP

As in the case of a salvo of size one, E(D) overestimates E(D) for all

values of p and d, since

E(D)> E(D) » l-(l-d)nP > l-(l-pd)n <=> (l-/?rf)" > (l-d)
nP

<=> (1-pd) > (l-rf)P <=> 1 - (l-rf)P > pd



The inequality between E(D) and E(D) for a salvo of size n reduces to the

inequality between E(D) and E(D) for a salvo of size one.

As before, we will hold p fixed and study the behavior of £(D) and

E(D) as d varies from to 1. First note that at d = both E(D) and E(D)

are 0. Then note that both E(D) and E(D) increase as d increases. This is

evident by inspection of the two expressions, or from considering that the

derivative of E(D) is

fj E(D) = jj[\-{\-d) nV] = np(l-d)n?

and the derivative of E(D) is

-1

fjUD) = -fj[l-(l-pd)
n

) = np{\-pd) n-\

and that both derivatives are nonnegative. At d = both derivatives reduce

to tip, so that E(D) and E(D) start with the same slope.

At d = l, E(D) becomes 1 while E(D) is 1 - {\-p)
n

, the probability of

scoring at least one hit. The probability of scoring at least one hit is a clear

upper bound on E(D), even when total destruction from a hit is assured.

Also,

while

E(D)
dd

d=l

if np> 1

1 if np= 1

»= if np < 1

dd
E(D)

d=\

= np(l-p) n-\

As the values of the derivative of E(D) at d = 1 suggest, there are

three basic shapes that an E(D) curve can assume. These shapes are

illustrated in the following plot.



E(D)

That E(D) is concave in d for np>\ and convex in d for np < 1 can be

confirmed analytically by examining the second derivative of E(D) with

respect to d.

dd'
E(D)

f<0 if np> 1

On the other hand, E(D) is seen always to be concave in d by

examination of its second derivative with respect to d.

dd'
E(D) = - np(n-l)(l-pd)n

-2 <0

It is reasonable to suspect that E(D) will approximate £(D) poorly for large

values of d when E(D) is convex and £(D) is concave, i.e when the curves

break oppositely from their initial common slope.



The relative behavior of £(D) and E(D) in selected cases is shown in

the following plots.
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Damage aggregation for a weapons salvo by an empirical
rule related to the Poisson approximation to the binomial

1. Introduction

This working paper follows a previous working paper "A comparison of

an empirical rule for aggregating damage from a weapons salvo to a plausible

model for the same purpose" [1]. The material in the next three paragraphs of

this introduction is summarized from the previous paper and is discussed in

greater detail there.

The scenario considered is that a salvo of n weapons is launched against a

target. The number of weapons that hit the target is a random variable N
with possible values 0, 1, ... , n. Possible damage to the target is measured as a

percentage (or proportion) of the whole ranging from 0% to 100%. The
damage to a pristine target resulting from a single hit is a deterministic

proportion d of the whole. The aggregate proportion of damage to the target

from the salvo is a random variable D, the randomness in D resulting from
the randomness in the number of hits N.

The premise of the model for damage aggregation is that if the proportion

of a pristine target that is damaged by a single hit is d, then each additional hit

damages the same proportion d of that part of the target not previously

damaged. Thus if D(k) is the aggregate proportion of damage to a pristine

target from exactly k hits, then

D(k) = \-(\-d)k
, k = 0, ,n

The objective is to predict the expected proportion of damage E(D) to the

target resulting from the salvo. This prediction can involve modeling of the

probability distribution of the number of hits N. If it is assumed that each

weapon in the salvo hits independently with the same probability p , so that

the number of hits N has a binomial probability distribution, then

E(D) = l-(l-pd)n

The purpose of this paper is to show that when N has a binomial
distribution so that the expected number of hits is E(N) = np, the empirical

rule

E(D) = i- e
-£ (N ><*

is a conservative approximation to E(D).
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Like the empirical rule considered in the previous paper, which is an
optimistic approximation to E(D), this rule depends only on E(N). Since the

exact formula for E(D) is simple in the binomial case, much of the interest in

the empirical rules will focus on their behavior when the distribution of hits

is not binomial.

2. Derivation of E(D)

The familiar Poisson approximation to the binomial distribution arises in

the case that the number of trials (salvo size) n approaches infinity, while

the probability of success (hitting the target) p on a single trial approaches

zero in such a way that the expected number of hits maintains the constant

value

E(N) = np = X

Then the binomial probability of exactly k hits approaches the Poisson

probability

P[N=Jc] = — e" A
,

fc = 0,l,...

If the number of hits N is assumed to have a Poisson distribution with

parameter £(N) = X, then the expected damage to the target turns out to be

A _ ^ ^ ,
, x

k

E(D) = £ D(k)?[N=k] = ^ {i - (i-d)*} ±_e
--A

li - \i-u/ i
- — c
K

'

k=0 k=0

«
!* ~ 0*

k=0 k=0

00
k

k\
k=0

= i _ e~dk = 1 - e'EiN)d

li



3. Properties of E{D)

A
That £(D) is a conservative approximation to E(D) when the true

distribution of N is binomial with E(N) = np = X follows from the fact that

(l-^df converges to e~dX from below, so that £(D) = 1 - (\-^d)n

converges to E (D) = 1 - e~d* from above, or from the sequence of

analytical comparisons

E(D) > E(D) <^> 1 - (1-pd)
n > 1 - e' n Pd

<^> e-npd > (i.pd)n ^ e -pd > l .pd

The final comparison is an application of a standard inequality about the first

two terms of the power series expansion of e~
x

.

As in the previous paper, we can hold n and p fixed and study the

A A
behavior of E(D) as d varies from to 1. At d = 0, E(D) = 0. The

A
derivative of E (D) is

— E(D) = np e' nrd

dd
v

A
This derivative reduces to np at d = 0, so that E(D), E(D)

f
and the empirical

rule considered in the previous paper, all begin at zero with the same slope.

A
It is clear by inspection that E (D) is increasing and concave.

A
The relative behavior of E(D) and E(D) in selected cases is shown in the

following plots.
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z.A stochastic model for hit overlap in a weapons salvo
directed against an area target that leads to a proportional
mechanism for damage aggregation

1. Introduction

This working paper follows two previous working papers "A comparison

of an empirical rule for aggregating damage from a weapons salvo to a

plausible model for the same purpose" [1] and "Damage aggregation for a

weapons salvo by an empirical rule related to the Poisson approximation to

the binomial" [2]. The material in the next three paragraphs of this

introduction is in part summarized from [1] and is discussed in greater detail

there.

The scenario that has been considered is that a salvo of n weapons is

launched against a target. The number of weapons that hit the target is a

random variable N with possible values 0, 1, ... , n. Possible damage to the

target is measured as a percentage (or proportion) of the whole ranging from

0% to 100%. The damage to a pristine target resulting from a single hit is a

deterministic proportion d of the whole. The aggregate proportion of

damage to the target from the salvo is a random variable D, the randomness
in D resulting from the randomness in the number of hits N.

"
fhe premise of the model for damage aggregation has been that if the

proportion of a pristine target that is damaged by a single hit is d, then each

additional hit damages the same proportion d of that part of the target not

previously damaged. Thus if D(k) is the aggregate proportion of damage to a

pristine target from exactly k hits, then

D(k) = l-(l-d)k , k = 0,...,n

This mechanism for aggregating the cumulative effect of hits has been

referred to as plausible in the previous papers. A more descriptive

terminology would be to call it a proportional effects mechanism.

The objective has been to predict the expected proportion of damage E(D)

to the target resulting from the salvo. Since

E(D) = £ D(k) P[N=k]

k=0

Working Paper on Damage Aggregation
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where P[N=k] is the probability of exactly k hits from the salvo, this

prediction involves modeling the probability distribution of the number of

hits N. So far it has been assumed that each weapon in the salvo hits

independently with the same probability p, so that the number of hits N has

a binomial probability distribution. The impact of this assumption on E(D) is

discussed in [1].

Effects mechanisms can be derived from assumptions about the

geometry of the target, the coverage of the weapon, and the probabilities of

hitting locations within the target area. Then the proportion of damage from

k hits becomes a random variable A(k), and with D(k) = E{A(k)}

n n

E(D) = £ E[A(k))P[N=k] = ]£ D(k)P[N=k]

k=0 k=D

Viewing the model at this deeper level of detail can provide a better picture of

its applicability.

The purpose of this working paper is to present one scenario for

weapons overlap on an area target which leads to a proportional effects

mechanism in the sense that

D(k) = E{A(k)} = l-(l-d)k
, k = 0,...,n

for a pertinent value of d and to examine the probability distributions for

A{k) that it implies. Probability distributions for A(k) can be combined with

probability distributions for N to obtain deeper rooted probability

distributions for D, the proportion of damage to the target. Given a

probability distribution for D, one can set a damage threshold sufficient to

meet a tactical goal and predict the probability that the salvo will damage the

target in the sense that D achieves the established threshold.

2. A cellular area target scenario

Suppose that an area target is divided into m disjoint cells. Each cell

represents a portion of the target which would be damaged by a single weapon
which impacts on that cell, so that m nonoverlapping hits (one on each cell)

would exactly suffice to totally damage the target.

16



A cellular area target with m = 22

However suppose that each hit from the salvo impacts a randomly
chosen cell within the area independently of the cells impacted by the other

hits. Then if k hits impact ; different cells, the proportion of the target

which is damaged is

Mk) = ±

If there are no hits (ic = 0), then A(0) = and D(0) = E{A(0)} = 0. If

there is only one hit (k = 1), then A(l) = l/m and D(l) = £{A(1)} = l/m. Thus

D(0) = 1 - (l-d)° =

D(l) = l-(l-d) 1 = d

for d = l/m. These formulas for D(0) and D(l) hold regardless of the

number of cells in the target.

3. The single cell target

Suppose that a target has only one cell (m = 1). Then the target is

totally damaged by the first hit, and each subsequent hit has no additional

effect. Thus Mk) = l/m = 1, and D(k) = E{A(k)} = 1 = 1 - (l-d)k

for d = Mm = I, k = 1, 2, ... . Thus a single cell model leads, in a trivial way, to

a proportional effects mechanism.

17



4. The two cell target

Suppose that a target has two cells (m = 2). Then the possible

proportions of the target that can be damaged after a sequence of hits are

Mm = 1/2 and 2/m = 1. The aggregation of damage from successive hits can be

represented by the simple transition diagram below

1 1

A(2) = 1 > A(3) = 1 > A(4) = 1

1 / V2 v / 1/2 v
>A(l) = l/2 * " > A(2) = l/2^- " > A(3) = l/2 ^ : > A(4) = l/2

1st hit 2nd hit 3rd hit 4th hit

where the possible proportions of damage after each hit are indicated by the

corresponding values of A(k), the arrows indicate the possible transitions

from each damage state to subsequent damage states, and the probabilities of

such transitions are shown by labels on the arrows.

The probability that the target is in damage state A(k) = 1 or A(k) = 1/2

after k hits can be computed by multiplying transition probabilities together

along each path leading to the state and then adding up the products. It

follows that

P[A(l) = l/2] = 1

so that

D(l) = E{A(1)} = (l/2)P[A(l) = l/2] = 1/2 = l-U-0/2)} 1

as previously observed. Continuing

P[A(2) = 1/2] = 1/2

P[A(2) = 1] = 1/2

so that

D(2) = E{A(2)} = (l/2)P[A(2) = l/2] + (1)P[A(2) = 1]

= (1/2) (1/2) + (1) (1/2) = 3/4 = l-{l-(l/2)} 2

IS



Similarly

so that

In general

so that

Thus

P[A(3) = l/2] = 1/4

P[A(3) = 1] = 3/4

DO) = E{A(3)} = (l/2)P[A(3) = l/2] + U)P[A(3) = 1]

= (1/2) (1/4) + (1) (3/4) = 7/8 = l-{l-(l/2)} 3

P[A(/c) = l/2] = d/2)^ 1

P[A(k) = l] = 1-0/2)*- 1

D(k) = E{A(k)} = (l/2)P[A(ic) = l/2] + (l)P[A(fc) = i;

= (1/2) d/2}^ 1 + (1) {l-(l/2)}^

= 1 - (l/2) fc = l-{l-(l/2)}*

OCA:) = l-(l-d)k
fc = 0,l,...

for d = 1/m = 1/2 showing that the two cell model leads to a proportional

effects mechanism.

In the two cell case the probability distribution for A(k) has been
particularly easy to compute. That distribution is tabulated below for the first

few values of k.

k 1 2 3 4 5 6 7 8

P[A0c) = l/2] 1 1/2 1/4 1/8 1/16 1/32 1/64 1/128

P[A(/c) = l] 1/2 3/4 7/8 15/16 31/32 63/64 127/128

1"



5. The m cell target

Now consider a target with an arbitrary number m of cells, for the

The transition diagram for the aggregation of damage from successive hits

begins as shown below. The probability of an upward transition from any

total damage state A(/c) = m/m = 1 is zero, so that all upward transitions

beyond total damage become impossible.

A(4) =4/m

(m-3)/m

(m-2)/m

(m-1)/

±-2? >A(4)=3/m

(m-2)/m

2/m / 2/m
A(2) = 2/m« >A(3) = 2/m *- >A(4) = 2/m-

(m-l)/m

1 v / 1/ffl 4 / Vm v >^ 1/m
> AH ) = 1 /m Z >A(2) = 1/m <<=- > A(3) = 1/m ^- >A(4) = 1/m

{m-\)/m

1st hit 2nd hit 3rd hit 4th hit

Again multiplying the transition probabilities along paths leading to a

damage state and adding the products, it follows that

P[A(l) = i] = 1

so that

D(l) = E{A(1) = ip[A(l) = i = J, = i_fl-J,

as previously observed.
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Continuing

so that

P[A(2) _ 1

m

PlM2) = i) = ^1

D(2) = E{A(2)

2m -1

}r P[A(2) = i] + ^P[A(2) = -|]m

l — (l—3_

m

±l±) + 2(m=l
m \m m m

Further

P[A(3) = ^J =

P[A(3) = -|] =

P[A(3) = Jr] = m

in-

m-l\(2\
,

/lVm-l\ .
3(777-1)

m A'"^ V
W A m

/
' m2

m-lVm-2
m

(m-l)(w-2)
w

so that

D(3) = E{A(3)} = Xp[A(3) = ^] + ^P[A(3) = -J] + 4HA(3) = -|]

m
l

v m2
+*

3(m-l)
m2

(m-l)(m-2)
nO-

_ 3m - 3m + l

= l- l- m

The preceding computations of D(l), D(2), and D(3) indicate that the

damage aggregation mechanism for the m cell target is proportional with

d = Mm. It remains to confirm the proportionality of D(k) for an arbitrary k.
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The general transition diagram, going from k hits to k+\ hits,

appears below

A(/c) = m/m

A(k) = (m-l)/m

m/m

A(*) = j/m

Mk+1) - m/m

A(fc+1) = (m-\)/m

A(fc+1) =j/m

A(*+l) = (/-l)/m

A(k) = 3/m __^~ 3/m

Mk) = 2/m

A(Jt) = 1 /m

(m-DIm^*
2/m

{m-\)/yn^.

Mm

A(Jt+l) =3/m

A(k+1) = 2/m

^ A(fc+l) = l/m

It follows that

P[A(* + l) = i] = ±P[A(k) = ±]mi m

and

P[A(fc + !) = !] = lp[A(fe) = ^]+
m
^
+ 1

P[A(fc) = ^] ; = 2,...,m
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Using the preceding k to fc+1 transition equations

m . m .

Dtt + 1) = E{A(*+1)} = ^^P[A(fc + l) = l] = ±P[A(k + l)==±] +^±p[A (k + 1) = ±]

;=2

m . . m

7=1 ;=2

m
. m-1 .

m . . m .

;=1 7=1

since the term indicated by an arrow is zero. Continuing

m . . m

D<* + 1) = ^^P[Aa)4] + ^.^P[A(fc)4
;=1 ;=1

m , .

- ZJ\m' m + m ' m rl&(k) - m ]

m
r 'i

i2L^l E{A(/:)} + 4-1 : ^D(« +
yjy
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The recursive relation

D(it + 1) = Z^D(k) + ±

which it turns out holds for k = 0, 1, ..., permits the verification of

proportionality, since if

D(fc) = l-(l-i)'

then

D(Jt + l) = ^
= (^-(i-ifJ.J.

=M l_JLf
+1

+ JL1 m) m

and we have already verified proportionality for k = 1,2, and 3. TTn's

completes the demonstration that the damage aggregation mechanism for the

m cell target is proportional with d = Mm.

6. Damage distributions for the m cell target

The k hits to k+l hits transition equations provide a means for the

calculation of probability distributions for A(k), k = 1,2, ... . For this purpose

these equations are perhaps more conveniently written as

P[A(k + l) = &] = ±P[A(k) = ±]

P[A(* + l) = -£] = ^P[A(Jk) = l] + ri-i^lW(Jk) = ^] ; = 2,3,...,ro

The numerical table which follows for A(/c) when m = 3 was obtained by

their recursive application.
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k 1 2 3 4 5 6 7 8 9 10

P[A(fc) = l/3] 1 1/3 1/9 1/27 1/81 1/243 1/729 1/2187 1/6561 1/19683

P[A(k) = 2/3] 2/3 6/9 14/27 30/81 62/243 126/729 254/2187 510/6561 1022/19683

P[A(k) = 1] 2/9 12/27 50/81 180/243 180/729 1932/2187 6050/6561 18660/19683

Distributions for A(l), A(2), and A(3) were obtained in algebraic form

in Section 5. They are repeated in the table which follows. The distribution

for A(4) was obtained from the k - 3 to k = 4 transition equations.

k 1 2 3 4

P[A(ic) = l/m] 1
i

m

l

m 2

i i i

"» m 2 m 3

P[A(k) = 2/m]
m- 1

m

3(m -1)

m 2

2 3(m- 1) ^ 1 A 1 7(m-l)

m m 2 V m y « 2 "i 3

P[A(k) = 3/m]
(m -l)(m-

m 2

-2) 3 (m-l)(m-2) ^ 2^ 3(m - 1) 6(m - l)(m - 2)

"i m 2 V m J m 2 m 3

P[A(k) = A/m]
4 / 3\(m-\)(m-2) (m - l)(m - 2)(m - 3)— 0+ 1-— =
m

V.
m J m 2 m3

P[A(k) = 5/m]

In the preceding tables it is understood that P[A(0) = 0] = 1 and

P[A(ic) = 0] = 0, k = 1, 2, ... .

Recursive application of the transition equations computes that

P[A(k) - j/m]= whenever j is greater than m. The formulas in the algebraic

table reduce to whenever / is greater than m.

A possible algorithm for automating the computation of distributions

for the A(k)'s is discussed in the appendix to this paper.
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Appendix - A posssible algorithm for computing damage probability

distributions.

The purpose of this appendix is to describe an approach to generating

probability distributions for the A(k)'s (the proportions of damage to an m

celled target resulting from k hits) which has some potential for efficiency

and the control of numerical error.

The following expressions for Pj-^1 = P[A(k) = ^] were derived from

the recursion equations at the beginning of Section 6, with the initial

conditions PJ^] = 1 and P^] = 0, j = 2, 3, ... , using the symbolic algebra

software Theorist [3].

Pi \£ = £ p2 [j.]
=^L_1

ftfr]=-

^

ftffl-3
M
V p3 [y =

[m - 21[r 11

m 2 m 2 m -

m 5 m 5

P,m = fi

(m -2][m-l] [m-3][m-2][m-l]

w ^ m

ftM-4 p5 [a = i5^i ft[a = 25
[w - 21 'w - 11

m 4 m 4 m 4

d r «i
,Jm-3][m-2][m-l] _ ... [m -4][m - 3][m -2][m - 1]

P5 L£J = 10 P5 ll-J
=

m 4 m 4

P6M-y<H-3i5LiI p< [g.90
|w -

2]l"- 11

m b m 5 m 5

pm ^ c [m-3][m- 2][m-13 1c [m -4][m -3][w -2][m - 1]
i6ld=ob P6 L^ = 15

w ~> m 5

[m - 5] [m -4][m- 3] [m - 2] [m - 1 ]p6m =

m s
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Each Pk [i] has the structure

ni r
(m-l)(m-2>-(m- ; + l) _

r
.,

PJd = Q[;] — 1 = Ck [j]

m l

ml

m k
(m-j)\

where Ck [j] is a coefficient depending only on k and j, a fact that can be

confirmed by inspecting the m celled transition diagram at the beginning of

Section 5.

It appears that the generation of the Pk [-k]'s can be approached by

seperately computing the terms — and the coefficients
m

Ck [j] using the modified version of the transition equations

Cjt+1 [l] = Ck [l]

Ck+1 [j] = jCk [j] + Ck[j-l]

with the initial conditions Q[l] = 1 and CJ/] = 0,;' = 2,3, ...

.

The following table of coefficients Ck [j] was derived from the

preceding coefficient transition equations.

k 2 3 4 5 6 7 8 9 10

c,[i] 1 1 1 1 1 1 1 1 1

CJ2] 1 3 7 15 31 63 127 255 511

Q-[3] 1 6 25 90 301 966 3025 9330

Q[4] 1 10 65 350 1701 7770 34105

Cjfc[5] 1 15 140 1050 6951 42525

Q-[6] 1 21 266 2646 22827

Ck [7]
1 28 462 5880

Ck [8]
1 36 750

Ck [9]
1 45

C
fc
[10] 1
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