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A STEADY STATE LONGITUDINAL MANPOWER PLANNING MODEL

WITH SEVERAL CLASSES BY MANPOWER

by

Richard C. Grinold

ABSTRACT

In the Navy's officer system there are several classes of

manpower (e.g. pilots and submariners) that perform specialized

jobs and also can perform several types of non-specialized jobs

(e.g. military training, personnel management, etc.). This report

is concerned with the general problem of allocating the different

types of jobs among the several classes of manpower.

The report describes a model that constructs a personnel

inventory by rank for each of several manpower classes (pilots,

etc.) and then allocates those people to the specialized and

common jobs that they are allowed to do.

The idea of the model is to allow a policy maker to quickly

reconcile billet requirements with the reality of available acces-

sions, job sharing targets between classes, and continuation rates

of the different manpower classes.

Different allocations can be produced either by assuming

the values of a few key variables, or they can be generated using

an optimization scheme that sets "allowable" percentage errors.

Four optimization variants based on this idea are described. The

report contains some typical data, the results of calculations,

and a description of computer programs used to solve the problem.





A STEADY STATE LONGITUDINAL MANPOWER PLANNING MODEL

WITH SEVERAL CLASSES OF MANPOWER

by

Richard C. Grinold

1 . Introduction

This paper outlines the construction of a manpower plan-

ning model for a system in which each of several classes of man-

power are assigned to several categories of jobs. The jobs are

either specialized in that only one type manpower can perform

the job or general in that more than one manpower type is quali-

fied to do the job.

Both jobs and manpower are broken down by experience

level. A job with a certain experience level must be filled with

a person that has the same experience level.

The model assumes a steady state. In each year the job

requirements are the same. In each year the same number of people

enter the system (bottom level entry only) , the same number leave

the system from each experience level, and the same number move

up from each one level so that the inventory of people at each

exerpience level and in each manpower class remains the same.

There are several items represented in the model:



(i) The requirements for jobs by experience levels,

(ii) The requirements for people by experience levels,

(iii) The job sharing targets for common jobs; the fraction

of common jobs we would like to see allocated to each

manpower class,

(iv) The people sharing targets for manpower classes; the

fraction of each manpower class that we would like to

see allocated to each type of job.

(v) The rate of accessions in each manpower class,

(vi) The retention of manpower in each class; i.e. the

relationship between accessions in each class and the

inventory of people by experience level in each class.

The model is designed to study the interaction of these

factors. It is easy to see from the list above that items (i)

through (iv) are interrelated and unless care is taken in specify-

ing these goals they will be inconsistent. Also items (ii) , (v)

and (vi) are strongly related in that (v) and (vi) determine the

inventory of people in each class at each experience level. Only

in the most fortunate circumstances will this be consistent with

the personnel requirements (ii)

.

Items (i)-(iv) are targets. They may be unrealistic and

inconsistent but they can be set by the manpower planner. Items

(v) and (vi) , however, depend to some extent on the behavior of

personnel in the system (vi) and on the system's ability to

attract qualified people to each class (v) . The reader



should keep in mind this caveat and be prepared for shifts in

personnel behavior in response to changes in other system parameters

or in external factors.

The model is a laboratory for testing the relationship

between these factors. We can try one set of policies and look

at the discrepancy between job requirements and actual require-

ments as well as the discrepancy between personnel requirement

and the actual inventory in each class.

The model may be used in several ways. The easiest is for

the planner to stipulate a policy and then examine its effects.

A more difficult procedure is for the planner to stipulate a

range of policies and then use some type of optimization scheme

to select a policy within the range. This paper contains four

examples of this type of optimization. Each is based on the notion

of a penalty function the measures the discrepancy between desired

job and personnel requirements and what is actually provided.

We take two types of penalty functions: piecewise linear and

quadratic, and we examine two broad sets of policies: allocating

people to jobs using the job sharing rules ( (iii) above) , or

allocating people to jobs using the people sharing rates ((iv)

above) . This gives us four combinations and thus four distinct

optimization models. The piecewise linear penalty functions lead

to linear programming models and the quadratic penalty functions

to the minimization of a quadratic form subject to linear equality

constraints

.



The model is motivated by a study of the U. S. Navy's

officer corps. We shall carry an example using that system

throughout the text in order to illustrate each idea.

The model is based on a longitudinal manpower flow model.

This type of system is described in depth in Grinold and Marshall

[1] , Chapter 3. The use of piecewise linear penalty functions

to measure the discrepancy between actual performance and stated

objectives is commonly called "goal programming." This idea

has been extensively developed by Charnes and Cooper; a good

review can be found in [3]. The use of quadratic penalty functions

is quite common in the optimal control literature; its use in

more behavioral settings was pioneered by Holt, Modigliani, Muth

and Simon in [2]

.

The paper consists of several short sections each dedicated

to a specific point and most illustrated by the example carried

thoughout the text. The model's structure is given in Sections 1-14

Section 15 is a review that gathers all the definitions presented

to that point. Sections 16 to 20 describe alternative ways to

choose an allocation, the idea behind our use of penalty functions,

and the specific construction of the piecewise linear and quad-

ratic penalty functions.

Appendix A describes the two linear programming models

that arise from the use of piecewise linear penalties and

Appendix B the two models that stem from the use of quadratic

penalties. Appendix C contains some sample solutions.



The organization reflects the relative importance of

the topics. The structure of the model is the most important

and it is stressed and reviewed in Sections 2-14. The use of

optimization to select an allocation is, in the main, merely a

device to circumvent the difficulty of having a wide range of

policy choice. Once the optimization rule is set the planner

has a direct route from policy to result. It is the variation

in results that comes from changes in policy that will be of

most interest to the planner. The optimization is a device to

help make that connection.

One final point should be made before describing the

model's structure. This is an aggregate planning model. It is

intended to test policies that will, in turn, provide a foundation

for the day-to-day operating of the system. This model certainly

will not show us how to operate the system. No model can answer

all questions simultaneously and ours is no exception.



2 . Manpower

There are K different classes of manpower indexed

by k = 1/2,... ,K. The classification scheme is, of course,

directly related to the objectives of the model builder. In

general, the classification should be fine enough to capture

the important substitution possibilities and economical in avoid-

ing the listing of all possibilities in a futile attempt to repli-

cate reality. In our example there are five manpower types.

Manpower
Type

Officer
Designator Description

1 HOx Women

2 lllx
(and 116x)

Surface warfare

3 112x
(and 117x)

Submarine warfare

4 131x
and
139x

Pilots

5 132x
and
137x

Naval flight officers

Table 2-1: The manpower classes.



3. Stages

Each officer's career is broken down into I-stages indexed

by i = 1,2,..., I. The stages can be defined in many ways. The

simplest is by period of service; if we track officers for 26

years then the index i would go from one to 26. In our example

the stages roughly coincide with the time period in which officers

hold a certain rank. In general for i = 1,2,..., I, stage i

will run from time of service s. , to s. . The maximum lengthl-l i ^

of service is s = S and s
n

= .

A person in manpower class k and in stage i of their

career will be called a type (i,k) person.

Stage LOS Description

1 0-2 Ensign

2 2-4 Lieutenant—J . G.

3 4-9 Lieutenant

4 9-14 Lieutenant Commander

5 14-19 Commander

6 19-26 Captain

Table 3-1. Stages or experience levels



4 . Manpower Flows

We assume a steady state model. In each year the same

number of people will enter each manpower class, and the inven-

tory of people in each year of service and in each manpower class

will remain constant.

For class k = 1,2,...,K let y, be the number of people

entering manpower class k, and let a(k,s) be the fraction of

these accessions that remain in the system for s years. The

index s runs from to S years and the function a(k,s) is

decreasing in s. The function a(k,s) is frequently called the

survivor curve.

Stage i of a person's career runs from length of service

s._, to s. (s
n

= 0). The number of people in stage k is

w • , y, where w., is defined byw
ik-rk lk

s .

l

w • ^ = / a (k, s) ds .

S
i-1

In our example, let's take a hypothetical survivor curve

for pilots (class 4). We follow these officers for 26 years.

Figure 4-1 shows the survivor curve. The shaded areas are

integrals under this curve for the duration of each stage.

The calculation of w., can be approximated using a

discrete form of the survivor curve.

The coefficients w., can be interpreted as the amount
lk c

of time a person in manpower class k is expected to spend in

stage i. A crude way to view this is to say that w., is the

8



product of the probability of reaching stage i, and the length

of stage i. The probability will be w., /(s. - s._,)

.

Prob . of
reaching

l w .

,

ik
s . - s . ,

i i-l
stage i

s 1 1.97 2 0.985

T 2 1.85 2 0.925

A 3 2.50 5 0.5

G 4 1.40 5 0.28

E 5 1.22 5 0.25

S 6 0.54 7 0.77

Table 4-1. The expected waiting time



5 . Jobs

There are J different types of jobs indexed by

j = 1,2,..., J. In our example we consider seven job types:

Job No.
Billet
Code Description

1 1000 General, nonwarfare billets

2 1050 General, warfare billets

3 1110
and
1160

Surface

4 1120
and
1170

Subsurface billets

5 1310
and
1390

Pilots

6 1320
and
1370

Naval Flying Officer

7 1300 General Aviation

Table 5-1. Definition of Jobs

10
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6 . Billet Requirements

The I by J matrix B contains the billet requirements

Since the career stage is a measure of experience (e.g. length of

service or rank), the requirements are broken down by stage.

b. . the number of stage i people need for jobs type j

The billet requirements matrix for our example is shown below.

The billets will be identified by the index pair (i,j)

Thus we shall speak of type (i,j) billets and type (i,k) people

JOBS

1 2 3 4 5 6 7

1 409 2095 688 961 521
s

2 1008 1883 734 1998 1212 1
T

3 1806 378 2080 84 4 3572 1399 6 36
A

4 1495 599 1464 810 1780 547 726
G

5 1031 470 926 501 678 55 902
E

6 592 490 321 149 387

Table 6. The billet requirements matrix B.

12



7. Billet Sharing Array

For each i the K by J matrix gives the share

(fraction) of the type (i,j) billets that should be performed

by manpower type k. The elements of F are denoted f, .

,

they are nonnegative, and the rows sum to one, £, f , . = 1.

If f,. > , we interpret the fraction as a goal; we would

like that fraction of the (i,j) billets filled from manpower

class k. However, we interpret f , .
= to mean that manpower

class k is not qualified to fill billet (i,j).

There is also possible confusion between the idea of job

sharing and a people sharing concept. A manpower class may per-

form two types of jobs: the jobs for which it is uniquely

qualified and other jobs that are shared among several manpower

classes. Another way to look at the allocation of the common

jobs is to stipulate a fraction of the inventory of (i,k)

people that should be assigned to job j. That idea will be

considered in Section 12.

To save space, we shall only give one of the matrices

F (for i = 3) used in our example.

JOBS

1 2 3 4 5 6 7

M C 1 0.7
A
N L 2 0.15 .5 1

P
A 3 0. 06 .2 1

W
E S 4 0.05 .18 1 .57
R

S 5 0.04 .12 1 .43

Table 7-1. The job sharing matrix F for i = 3

13



8 . Target Allocations

The number of (i,k) people desired in job (i,j) is

given by

t,
1

. = fi.b. . .

k: kj ±j

Recall that b. . is the (i/j) billet requirement and f. .

13 J ^ kj
is

the fraction of those billets to be filled by manpower class k

The target allocations used in our example (for i = 3)

are shown in Table 8-1.

JOBS

1 2 3 4 5 6

M C 1 1264.2

A
N L 2 270.9 189 2080

P
A 3 108.36 75.6 844

W
E S 4 90.3 68.04 3572 362.52

R
S 5 72.24 45.36 1399 273.48

Table 8-1. The target allocation t, .

14



9 . Actual Allocation

Let the variable a,
. give the actual number of (i,k)

people assigned to billet (i,j). If it was possible we would

like a, . = t, . . That would ensure that all targets are met.
kj kj J

That, however, is usually impossible. Indeed, reconciling

the a, . and t, . is the purpose of this model.

The variables a, do not mean that a, individuals

from class k are locked into type (i,j) billets when they

are in stage i. It does mean that at any time a, . people

from class k are filling type (i,j) billets. Any particular

(i,k) person, may spend stage i in several billets.

If f , .
= 0, then an (i,k) person is not qualified to

fill an (i,j) billet. So if f , . = 0, we shall require that

a.
1

. = .

15



10 . Conservation

Recall that w.,y, is the number of type (i,k) people

The allocation must satisfy the following conservation

relation

J
v i

J, a
kj

= W
ikyk

for a11 (i ' k)

This says that all manpower fills some job.

16



11. Excess and Deficit

One of our main objectives in constructing this model

is to compare the allocation and target. We could look at

all the discrepancies a., - t., . That would be very general,

but it may not be comprehensible. We have chosen to concen-

trate on more aggregate measures of excess and deficit: the

actual number of (i,k) people and the actual number of

(i,j) billets filled as compared with the targets. Our

notation for these measures is

K
. .

= £ a, . the number of poeple assigned
ID ki x

kj

to billet (i,j)

x. .
- b.

.

the discrepancy between billet

(i,j) assignment and requirements

J
z., = £ a, . the number of (i,k) people

J
p., = 1 t, . the total requirement for type

(i,k) people

z., - p., the discrepancy between the inventory

of (i,k) people and requirements.

17



12. People Sharing

Recall that we defined our targets from the viewpoint

of billet sharing. Given any allocation we can calculate the

people sharing fractions. Let g be the fraction of type

(i,k) people that are assigned to job j, thus billet (i,j).

The g?; . are given implicitly by the equation

a
kj

=
9kj

Z
ik

As mentioned above, an alternative model could be constructed

using the people sharing fractions g, . as input targets

and the billet sharing fractions f , . as outputs. In that

case we would start with people requirement ,Pik # and the

people sharing rules g£ . and define target allocations by

fc
kj

= gkj pik*

Then we can calculate b. . from

b . . = y g, . p . , .

ID t *krik

In any case, for consistency, the following relations should

hold

18



(i) g, .p ., = f , .b . .

(ii) I 9^ = 1 ==> P-iv
=

j=l
3kj ik 1 fi- b --

j=l
k

^ ^

K K

(iii) I fj. = 1 ==> b. . = V gp-.p.

k=l k=l
j^ik

To assure consistency we should either start with f

and b and then calculate g and p, or start with g and

p and calculate f and b. If we have a desire to start with

g and b, then one suggestion is to guess p, see if it works,

and then do some revision.

From the values of b and f (for all i) used in this

paper, we can compute the personnel requirements, shown below.

Manpower Class

1 2 3 4 5

s 1 286 2156 713 981 537

T 2 706 2034 794 2049 1253

A 3 1264 2540 1028 4093 1790

G 4 1046 1988 1019 2376 991

E 5 722 1316 657 1328 540

.

6 414 655 283 338 249

Table 12-1. The personnel inventories, pik

19



13. Stage Substitution

The astute reader will notice that we have not allowed

substitution between stages. Thus a type (i,k) person is not

allowed to fill a type (i+1, j) billet or a type (i-1, j)

billet.

Our formuation actually allows such assignments, however,

we are assuming that they net out to zero. That is for each

(i,k) person filling a stage i+1 billet, there is an (i+l,k)

person filling a stage i billet.

One way to study the possibility of stage substitution

is to vary the length of the intervals (s._-,, s.) that

define the stages. However, the billet requirement are pre-

sumably set with some experience level in mind. Therefore

major shifts in the definitions of stages would require adjust-

ments in the billet requirements.

20



14. Cost

The cost of any allocation can be calculated using

I I
C
ikw ikYk '

1 k

where c, is the annual cost of an (i,k) person and w.,y, = z
IK IK K IK

is the number of (i,k) people. The cost data c, should

include salary, benefits, retirement; training, promotion, and

recruitment costs. Notice we can define c, as £, c, . , ,

and then rewrite the cost as J\ ck^k " We interPret c
-u

as

the average career cost of each accession into manpower

class k.

21



15. Review

We have constructed our model. The remainder of the

paper is devoted to ways of calculating particular assign-

ments and contains a sample calculation.

We summarize here the notations and definitions pre-

sented to this point.

manpower class indexed by k = 1,2,...,K

stages of a career indexed by i = 1,2,...,

I

defined by length of service

IS-,/ ^ 9 ' ... t S-r'

jobs

people

indexed by j = 1,2,...,

J

indexed by stage and class (i,k)

accessions

stage inventory

y, , the number of people entering

class k per year

w- kyk is the number of (i,k)

people; y, is the accession rate

and w.-, is obtained from the
lk

survivor curve and the stage

definition. Note z., = w., y, .

billets requirements

billet sharing

indexed by stage and job (i,j);

b. . is the billet requirements

indexed by (i,j,k); f, . is the
K D

fraction of (i,j) billets that

should be filled from class k.

22



target allocation t, . . The number of (i,k) people

desired in billet (i,j)

actual allocation a, . the number of (i,k) people

in billet (i,j)

class sums x. . and b. . are respectively

the number assigned to billet (i,j

and the requirement for billet

(if j)

job sums z., and p., are respectively

the number of (i/k) people,

and the target for (i/k) people.

people sharing g, . , the fraction of (i,k) people
K D

assigned to billet (i/ j) ;

l

kj
= g z .

kj ik*

cost c, is the annual cost of an
ik
(i/k) person. The cost of a particular

allocation is £. ), c, z., .

1 K IK IK

23



16 . Choice of an Allocation

Up to this point we have set out a model structure.

The next task is to devise one or two more procedures for

selecting allocations. There are two general approaches to

this task.

On approach is to use an ad hoc rule. For example,

we could fix accessions at projected rates for each class.

That would fix the variables y, and thus z., = w.-, y, •

Next we could specify the people sharing rules g, . . That

would give us the allocation a, . = g, . z . , .

JC
~J

X "] XX

The second approach is to use some type of optimization

to select a policy. This optimization is either based on a

trade-off between the cost of any allocation and some measure

of its quality, or simply a measure of the quality of the

allocation.

24



17 . Quality of an Allocation

In order to choose an allocation using optimization

we need some measure of the quality of that allocation.

In our model we have already decided to focus on the

discrepancy between people inventory and targets (z., - p., )IK IK

and the discrepancy between billet assignments and requirements

(x. .
- b. .)

.

We have selected the simplest form of quality measure

that makes sense. It is a penalty function that is zero for

a perfect allocation and positive for others. Thus it measures

the lack of quality. The penalty function has three properties

(1) The penalty can be written as

y y h.. (z., ) + y y i. . u. .)
v f lk lk L

.

L
. in i]

i k i j
J J

where

(2) h., (z., ) and I. . (x. .) are nonnegative , convex and equal

to zero if z
±k

= pik
and x^. = b... respectively.

(3) Parameters 6. . and i> . . measure a unit upper and lower

percentage error in meeting billet requirements

if x. . = (1 + 9. .)b. . ,

ft..(x..) =1 1D 1: 1D

ID ID
or x.. = (1 - * i

j)b
i j

•

Similar parameters <j> .

k
and 6

ik
are used for discrepan-

cies between actual inventories of people and require-

ments .
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h
ik

(z
ik } - X

if z.
k

= (1 + cj).

k )pik
,

or z.
k

= (1 - 6.
k )p. k

.

Item (1) above says that the quality measure is

separable, item (2) that is nonnegative, convex, and zero if

the assignment is exactly on target. The third item requires

more discussion. Item (3) is designed to answer the question:

How do we compare a 4 percent shortfall in meeting a critical

target with a 10 percent short fall in meeting a less critical

target? Our answer to this question is to take a single

target as a benchmark and to say arbitrarily for that target

that a certain percent over and a< certain percent under the

target yields an error of one. Then for any other target

we can compare the seriousness of deviations with our benchmark.

We say a fraction 6 . . over target or ty . . under target is

as serious as the deviations we have established for our

benchmark.

For example, we could take stage 3 pilots as our bench-

mark (i = 3, j = 5) , and take the percentage under as 4%

(ip-,_ = 0.04) and percentage over as 10% (8^ = 0.10) as the

unit serious deviation for our benchmark. Now take any other

category, for example, stage 4 general warfare billets

(i = 4, j = 2) . Then we ask how much under target would the

assignment to these billets have to be in order to be as
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serious as a 4% shortage of stage 3 pilots. In this way we

can try to make the essential judgments about the trade-offs

between different categories.

We shall now give two examples of penalty functions

and then give some practical examples of how such a criterion

could be used.
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18 . Piecewise Convex Penalties

One of the simplest ways to construct the penalty measure

for deviations from target is to use a piecewise convex function.

To simplify notation we should consider the case of a discrepancy

between the inventory of people and desired inventories and

we shall drop the (i,k) subscripts.

We need a piecewise linear convex function h(z) that

satisfies

(i) h(z) =0 if x = p

(ii) h(z) =1 if x = (1 + <J>)p

(iii) h(z) =1 if x = (1 - 5 )p

Such a function is shown in Figure 2. This function

can be represented in several ways. One of the simplest is as

the maximum of two linear functions

h ( z ) = max
4>

(

p
] '6 [

r
'

_

This functional form is flexible and easy to manipulate.

We shall see below, that it can be used to obtain an allocation

using a linear program. Two examples of this are contained

in the appendix.
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h(z)

(l + c())p

Figure 18-1. Piecewise linear convex function
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19 . Quadratic Penalty Functions

Quadratic penalty functions are also quite easy to use

Unfortunately, we cannot get a quadratic function to satisfy

all of our conditions. For example let us write

Jfc(x) = a(x - b)
2

+ 3 (x - b) + y

We want to have

(i) i (x) = if x = b

(ii) £ (x) = 1 if x = (1 + 8)b

(iii) I (x) = 1 if x = (1 - i/0 b

(iv) I (x) _>

where item (iv) implies I (x) has its minimum at x = b.

These four conditions cannot be met by a quadratic

function unless 6 = i/>; that is unless there is a symmetry

between being under and over target. In the symmetric case

we can write I (x) as

:

( 6b /
Mx) = f

gb
"

I when 6 = \\>.

When the penalties are not symmetric, we must relax one of

our four conditions. If we relax condition (iv) then Mx)

becomes
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2

v, ( ^
1 ( x " b \ 1 (6 - ty) ,x-b.

h(x) =
e? \—b— )

"
2 —e^ (-b~' ) '

This function has its minimum midway between (1 + 6)b and

(1 - ip)b and it has a value of

_ (6 - ^)
2

20^

at the minimum.

This approximation is useful if 9 and \p are similar

However, the approximation becomes much worse when 9 and ifj

are much different.

Two quadratic penalty models are described in the

appendix.
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20. Cost Quality Trade-Off

We saw above that any particular allocation has an

annual cost and also a penalty associated with its deviation

from targets for billet requirements and personnel inventories.

By placing different weights on the cost and penalty we can

obtain a family of objectives that will lead to efficient

allocations.

The cost-penalty frontier is shown below. Notice

the minimum cost solution is zero, since we would not have

any accessions; i.e. y = 0, thus no cost.

We write our objective as

A
|

c
kyk

(1-X) (
I I h.

k
(z.

k
) +

l I
*
ij(

x..)} ,

As the parameter A increases from to 1 more emphasis is

placed on the cost and less on the penalty. At A = , we

minimize the penalty and ignore the cost; at A = 1 we

minimize cost and ignore the penalty. For intermediate values

of A we establish a trade-off between cost and penalty.

This curve should be used with some caution since the costs

are expressed in real units (dollars per year) , but the

penalty is expressed in ad-hoc units.
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penalty

minimum
penalty

cost
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APPENDIX A

LINEAR PROGRAMMING MODELS

This appendix describes two linear programming approaches

for selecting an allocation. The discussion is brief and is

intended for those familiar with linear programming. The first

model is called LPB for billet sharing and the second is called

LPP for people sharing.

In both models the idea is to choose the number of

people assigned to billet (i,j), and the number of accessions

in manpower class k; these are respectively denoted x. . and

y, . The allocation a, . is then fixed using an ad hoc rule.

We have selected two rules and thus get two different linear

programming models.

The first rule is for sharing billets

Rule B (billet share)

(A-l) a£. = fj.x. .

kj k: ij

Recall that f , . is the fraction of type (i,j) billets that

we desire to have satisfied from manpower class k. Rule B

allocates the error in meeting billet requirements among man-

power classes so that there is a constant percentage error in

each class's allocation. If there is a percentage error of

n • • in meeting the billet (i,j) requirement, i.e.
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x. .
- b. .

ID \ b..

then the billet sharing rule means that the percentage error

in the assignment of type k manpower to billet (i,j) will

also be n . . .

ID

The people sharing rule is

Rule P

(A-2) a, . = g, . z..
kj ^kj lk

where z., = ay is the number of type (i,k) people. The

type (i,k) people are allocated among different jobs using the

people sharing parameters g, . . If there is an error of n

.

in the inventory of type (i,k)

n

(z
ik pik }

ik p
ik

then the percentage error in the assignment of type (i,k)

people to job j will be n., (recall t, . = g,.p.,). The

billet sharing rule leads to a larger linear program than the

people sharing rule.

The constraints of the linear program for billet

sharing are given below. The objective is the same for both

programs; it will be discussed after we examine the constraints

35



ween
ople ween llet

nd

4-1 4-> CU TJ 4-> -H id

Q) ac CU X! W
c xi id 4J X) CO -U

o c —. C -- 4-> C
•H >i.* >i cu >i-n C CU

4-> •H U - 5-1 6 O - CU g
Id U £ -H O CU C -H g CU

c id cu (0 ^.p h Id — C r-l

id > H a e -h CU Cn-H
H n a CU CU CU 3 CU CU -H 3
a CU m ft> tr M Oj W G1

X 10 CU U >i c <u U >i CO CU

w c a CO -P -H lH CO 4-> Id U
o H •H
o 'O 73

2" 2 •r—1

^ •* V

•H -H •H
*-* — —
H rH rH
H rH H
id id id

O
u »H U

/V|
M-l 4-1 m

>1
4->

c »

•H X X
id O •H H
u Q. n CU

+j II •H
w II XI

«•

G M ^
O >i M II •H
u ^ •H T3

•H CU •r~i

1

1

-H

1

•i—

i

-H
cn •H

-H -a r~i V

X •H •(—1

•n + g •H
H ^ g
4H +

».

^H .* n •|—

i

h>C—J II •H -H Hn > X X

CU

rH M ^ •r-i

-H XI •H •rH •H
id id 3 > O1

3 -H
Q >-i

id

>

CO
I

CU
vl

U
O
«4H

CO

4J

C
•H
id

u
4-)

co

c
o
u

i

<
CU

rH

XI
id

Eh

36



The first set of constraints is simply the conservation

of people. There will be w.,y, type (i,k) people and under

the billet sharing rule f. .x. . of them will be assigned tok] i] y

billet (i, j)

.

The second set of constraints measures the difference

between actual inventories of type (i,k) people w., y, and
IK K

the requirement P-t,' Tne objective is selected so that the

solution to the linear program will have e., positive and

d., equal to zero if w-^y, exceed p., and e., equal to

zero and d., positive if w.-,y, is less than P-i.* The

e., and d., thus measure the excess and deficit in the
lk lk

type (i,k) people account.

The variables m. . and n. . play a similar excess

and deficit role in the type (i,j) billet account.

The first set of constraints for the LP-P program is

K
(A-3) x

ij
-

I g£jW
ikyk

= for all (i,j) .

This again is a conservation constraint. There are

w • k-Yv tyPe (i/k) people and g, . of them are assigned to

job j. Thus these constraints assure that the assignments

to billets, x. ., are consistent with actual manpower available.

The second and third sets of constraints in LP-P

are identical with the second and third sets of constraints

in LP-B. They define the excess and deficit in people and

billet accounts.
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The form of the conservation constraint in LP-P allow

for some simplifications. Notice that if all the y, are

nonnegative then (A-3) implies that all the x. . will be

nonneqative. Thus we can use (A-3) to eliminate x. . from
ID

the problem. With this simplification the constraints of

LP-P are shown in Table A-2

.

The objective for both linear programs will typically

be a compromise between minimizing costs and minimizing the

penalty that measures our departure from people and billet

targets. The cost objective is

K
(A-4) I

c y .

k=l
K K

The penalty measure is

<A~ 5)
ill ik Vij

+ MiA: +

Ji kl x
Y ik

e
ik

+
°ik

d
ik

where

(A-6)

(i) 7T. .
= (0. .b. .)

1

13 1: ID

(ii) y. .
= (\\>. .b. .)

_1

ID ID ID

(iii) y ik
= (^ikPik )

_1

(iv)
°ik = ^ikPik)"

1
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Recall that 6, ty , <J> , and 5 are the percentage errors that

lead to a unit loss.

A balance between these two objectives is obtained by

taking a weighted combination.

K
(A-7) A I c,yk + (i - A)

k=l
K K

I J IK
X { * J/i^ij + y ij

m
ij

+ X X Y ik
e
ik

+ a
ik

d
ik

}

i=l j=l J J J J i=l k=l

The problem LP-B has I * (J + 2K) constraints and

K + I x (2K + 3J) variables. For our example with 1=6,

J = 7 and K = 5 this means 102 constraints and 191 variables.

The problem LP-P has I x (J + K) constraints and K + I x (2K+2J)

variables . For our example this works out to 72 constraints

and 149 variables. LP-P is particularly easy to solve since

one can always get a reasonable first basic solution by guessing

the y, and then choosing the d., , e., , m. . , and n. . to

satisfy the constraints.

The duals of both LP-B and LP-P appear to be easier to

solve. The dual variables for each problem and each set of

constraints is shown in Tables (A-l) and (A-2) respectively.

The dual program for LP-B is
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IK J
(A-8) maximize £ £* E v

ikpik
+

^ £ 3ii
b
ii=l k=l 1K 1K

i=l i=l ^ 1

subject to I u
ik

f
kj

+
q-L j £ ° for a11 (i/j)

" E U
ik
w
ik

+
J. v

ik
w
ik i Xc

k
for a11 k

1=1 i=l

- (1- A)Y
ik £ v

ik £ (1 - A)a
ik

for all (i,k)

- (1- A)7T
ij <_ q <_ (1 - A)y for all (i,j)

Dual of LP-B

The dual of LP-B has K + I x j constraints, I x (2K + J)

variables, and I x (K + J) of these variables have upper and

lower bounds. In our example this works out to 4 7 constraints,

102 variables, and 72 variables subject to upper and lower bound

constraints.

The dual of LP-P is shown below.
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IK I J
(A-9) maximize J J v p + T Y q b

1=1 k=l i=l ]=1 J J

I J
;ubject to £ v

ikw ik
+ J J 5ij gkjw ik 1 Xc

k
for a11 k

- (1 - X)Yik £ v
ik <_ (1 - A)a

ik
for all (k,i)

- (1 - A)7T
ij <_ qij <_ (1 - X)y

i;
. for all (i,j)

Dual of LP-P

This problem has K constraints and I x (J + K) variables with

upper and lower bounds. In our example, this would be 5 con-

straints and 72 variables with upper and lower bounds. This

problem may be quite easy to solve.
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APPENDIX B

UNCONSTRAINED QUADRATIC MODELS

This appendix outlines two methods for selecting an allo-

cation using the quadratic penalty functions. The two models are

similar to the two linear programming models; they use the billet

sharing or people sharing rules to go from an aggregate problem

to a detailed allocation.

The models do not have any inequality contraints. This

is to insure that the solution can be obtained quickly. A full

model with inequality constraints might appear to be more appro-

priate, however, we must recall our ultimate objective is to cal-

culate allocations in a relatively simple way. The model is not

built on exact premises and it does not use precise data. It is there-

fore not terribly important to be exact in choosing an allocation.

We hope to have an easy and consistent way of choosing allocations

so we can compare the effects of changing assumptions on the

allocations.

Both models calculate the billet assignments x. . and

the accession rules y, . The actual allocation is determined by

the billet sharing rule in model UQ-B

Rule B .

(B-l) a,
1

. = fj.x. . .

k;j kj i:
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In model UQ-P, the people sharing rule is used

Rule P.

1 1
<b-2) a

kj
= gkjw ikyk

These rules are discussed in Appendix A.

The objective in these quadratic models is based on

symmetric penalties; i.e. 6.. = \\)
.'

. and <J*..
= <5-

k
« The

objective is a combination of two terms: the cost term and

a penalty term

K
(B-3) A

I c y + (1 - A)

k=l
K K

I J , I K
5

{ I I y
±i

(x - b )

z
+ I I Y ik (w ikyk

- Pik
)^>

i=l j=i 1 3 ID ID i=1 k=1 1K ik k iJc

where

(B-4) (i) y. .
= (6. .b. .)

2

(ii) Y ik
=

( *ikpik
)_2

In the UQ-B model we minimize (B-3) subject to the conservation

constants.

J
(B- 5 ) J f

kj
x
ij

" wikYk
=

° for each (i' k ) •
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The people sharing model, UQ-P, minimizes (B-3) subject

to the constraints

(B-6) x.. - J g^.w ikyk
=

K

I
k=l

In UQ-P we can substitute (B-6) directly into (B-3) and thus

solve a completely unconstrained problem. In UQ-B we minimize

(B-3) subject to (B-5).
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APPENDIX C

SAMPLE SOLUTION

This section contains some sample solutions using the

unconstrained minimization described in Appendix B.

The data, b. ., f , . , w.. , p., , are described in the paper.
ij kj ik r ik r r

The p., and g,, are calculated in the manner suggested in

Section 12.

The solutions are based on data that is largely subjective

and does not, in any way, pretend to capture the situation that

exists in the Navy. The intent of this section is to demonstrate

the feasibility of the scheme.

The target errors are expressed in percentage terms. The

10,000% target error indicates that we do not care very much about

meeting billit or personnel targets in the first two stages.

Job
Stag^ 1 2 3 4 5 6 7

ENS 10000 10000 10000 10000 10000 10000 10000
LTJG 10000 10000 10000 10000 10000 10000 10000
LT 10 8 6 4 4 5 6

LTCDR 8 6.4 4.8 3.2 3.2 4 4.8
CDR 7 5.6 4.2 2.8 2.8 3.5 4.2
CAPT 6 4.8 3.6 2.4 2.4 3 3.6

Table C-l . The inputs 6. . in %; for billet requirements

Job
Stage

ENS
LTJC
LT
LTCDR
CDR
CAPT

10000

10
8

7

6

10000
10000

7.5
6

5.25
4.5

10000
0(300

4 .5

3 .6

3 .15
2 .7

10000
10000

5

4

3.5
3

10000
10000

6

4.8
4.2
3.6

Table C-2/ The inputs $., in % ; for manpower inventories
IK
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The billet assignments and the actual percentage errors

using the people share rule are

STAGE/J03

ENS 1444 2231 1000 1791 972
LTJG 1498 1989 895 1669 908 1
LT 2164 383 2380 19 76 2021 992 399
LTCDR 1242 444 1246 586 977 395 452
CDR 1108 482 1000 489 578 63 884
CAPT 540 529 308 150 510

Table C-3. The billet assignment, x.
ij

STAGE/JOB

ENS

LTJG

LT

LTCDR

CDR

CAPT

1 2 3 4 5 6 7

"253 6 ~45 ~86 "87

47 6 "22 "16 25 20

20 1 "14 "27 43 29 37

17 26 18 28 45 28 38

7 3 8 2 15 "15 2

9 8 4 "32

Table C-4. The percentage error in meeting billet requirements

The accessions to the five classes are:

Class 12 3 4 5

645 1162 524 926 508

Table C-5. Annual rate of accessions, y.
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These accessions produce the actual personnel inventories

and the precentage error in meeting inventories are given below.

Class 1 2 3 4 5

ENS 1274 2296 1035 1829 1003
LTJG 1192 2149 969 1712 938
LT 1613 2906 1311 2316 1269
LTCDR 909 1637 738 1304 715
CDR 789 1421 641 1132 621
CAPT 349 629 284 501 275

Tabl e C-6. Personnel inventory by class and stage, z..

1 2 3 4 5

"345 6 "45 "86 "87

67 6 ~22 16 25

28 "14 "27 43 29

13 18 28 45 27

9 8 2 15 ~15

16 4 "48 "10

Class

ENS

LTJG

LT

LTCDR

CDR

CAPT

Table C-7. Percentage errors in meeting personnel inventory budgets

The solution using the billet sharing rule produced similar

results . The billet assignments and % error in billet assignments

were
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STAGE/JOB

ENS
LTJG
LT
LTCDR
CDR
CAPT

1801 2074 940 1388 1015
1685 1941 879 1298 949 1

2280 405 2423 1109 1399 1021 499
1284 370 1294 596 676 493 432
1115 496 1036 483 101 64 1173
493 554 291 147 492

Table C-:

STAGE/JOB

ENS

LTJG

LT

LTCDR

CDR

CAPT

1 2 3 4 5 6 7

"340 1 "37 "44 ~95

67 3 ~20 35 22

26 7 "17 "31 61 27 21

14 38 12 26 62 10 40

8 5 "12 4
85 "17 "30

17 "13 9 2 9 "27

Table C-9

The accessions using billet sharing were

Class

638 1187 530

Table C-10

748 550
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These accession rates give rise to the personnel

inventory and percentage error in personnel levels

Class

ENS
LTJG
LT
LTCDR
CDR
CAPT

1 2 3 4 5

1261 2345 1048 1478 1087
1180 2194 981 1383 1017
1596 2968 1326 1871 1376
899 1672 747 1054 775
780 1451 649 915 673
34 5 642 287 405 29 8

Class

ENS

LTJG

LT

LTCDR

CDR

Table C-ll

1 2 3 4 5

"340 9 47 51 ~102

67 8 23 33 19

26 "17 29 54 23

14 10 1 31 24

17 2 2 20 "20

Table C-12

The analysis of this output should be directed toward

constructive changes in the input data. Can we shift some

billet assignments from LT to LTJG and LTCDR? Should we

tighten up more on the pilot inventory? Should we change

the sharing rules? Is it possible to alter the survivor

fractions, and thereby improve the solution?
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We see that there are a number of potential questions

we can answer. The model is flexible and the calculations

are rapid. It should be an excellent tool for analyzing

manpower policy.
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APPENDIX D

ORGANIZATION OF PROGRAMS

This appendix shows how the programs and files

for the optimization problem are set up.
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FILE STRUCTURE

Component
Number Dimension Symbol Description

1 (K,I,J) G People sharing array. +/G is

an (I,K) element matrix of ones.

G is nonnegative : g. . is the
K D

fraction of type (i,k) people

assigned to job(i,j)

2 (I, J) B The billet requirements. b.

.

J-D

is the number of type(i,j) jobs

to be filled.

3 (I, J) e The range for a unit error in

overfilling billets. If

x. . = (1 + 0.01 . .)b. . there
ID ij ID

is a unit error. 0. . > 0.
ID

Expressed as %.

4 (I,K) $ The range for a unit error in

overfilling personnel inventories

z
ik

= (l|0.0|<|>
ik )p ik

a unit

error is counted. <b.. > 0.
IK

Expressed as %.

5 (K,I,J) F The job sharing array. F is

nonnegative and +/[1]F is

an (I, J) matrix of ones: f, .

K D

is the fraction of type(i,j)

jobs to be filled by type(i,k)

people

.

6 (I,K) P The desired manpower inventory:

p., is the number type(i,k)

people desired.

53



FILE STRUCTURE CONT

.

Component
Number Dimensional Symbol Description

7 (N,K) a The survivor fractions for

each of the K classes . N

is the maximum LOS

.

8 I S The last year in each stage.

Increasing positive numbers

with S = N.

9 (I,K) w The element w., is the number
lk

of years a class k input expects

to spend in stage i.

10 K y The calculated accessions rate;

y, is the number of accessions

in manpower class k.

11 (I,K) z The calculated inventory of

each type of person. There are

z-i, type (i,k) people.

12 (K,I,J) A The calculated allocation: a, .

is the number of type d,k)

people filling typed, j) jobs.

13 (I, J) X The calculated billets filled.

There are x. . people in jobd, j) .

14 (K,I,J) T The target allocation. We want

tv • typed,k) people in typed/j)

jobs. If things are consistent

+/T equals P and +/[1]T equals B.

15 (I, J) <P The range for a unit error in

under filling billets. If

x. . = (1-iii. .)b. . then an error of 1

is counted. \b. . > .
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FILE STRUCTRE CONT

.

Component
Number Dimensional Symbol Description

16 (I,K) 5 The range for a unit error in

underfilling personnel inven-

tories. If z.
k

= d-5 ik )p ik

then a unit error is counted.

6.
k
>0.

17 (K,I,J) C The element c, is the total

cost of having a type (i,k)

person in job(i,j) for one

year

.
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FUNCTIONS

Function Uses Computes Syntax and Description

BILQUAD B, e, <J>, F,

P, W

Y, X, Z, A BILQUAD 'FILENAMS'

Calculates "optimal" acces-

sions y, personnel inventory

(z), and allocation (A),

given the data, objective,

and the billet share rule (F)

.

BILSIM F,Y,X Z,A BILSIM'FILENAMS'

Given Y and X (which pre-

sumably satisfy the conser-

vation constraint) , calculates

allocation (A) and personnel

inventory (Z), using the

billet sharing rule.

PGREC P, G B, F, T PGREC 'FILENAMS'

reconciles the file elements

B, G, and T with P and G

BFREC B, F P, G, T BFREC ' FILENAMS

'

reconciles the file elements

P, G, and T with the file

elements B and F in the

same file

.

PEOQUAD g, b, e, <j>,

F, P, W

Y, X, Z f A PEOQUAD 'FILENAMS'

calculates optimal acces-

sions (y) , personnel in-

ventory (z), billet staffing

(x) , and allocation (A)

,

given the data, and use of

the people share rule

.
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FUNCTIONS CONT

FUNCTION
USES

COMPONENTS
CALCULATES
COMPONENT SYNTAX AND DESCRIPTION

PEOSIM G, Y, W Z, X, A PEOSIM 'FILENAMS

'

calculates inventory z,

staffing x and allocation

A, where accessions and

people share rule are given.

WAITS a, S W WAITS 'FILENAMS 1

Given the survivor frac-

tions (a) and stage defini-

tions (s), calculates w

the expected waiting time

in each state.

PEOPRONT P, z lOOx(D-z) rP PEOPRONT 'FILENAMS'

calculates the percentage

error in inventory. Compare

with 0.

BILPRONT B, X IOOx(B-x) tB BILPRONT 'FILENAMS'

calculates the percentage

error in meeting billet

requirements. Compare

with e.

ROUND ROUND XXX

takes any array and rounds

elements to integers.
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