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ABSTRACT

Several widely used uniform random number generators have been ex-

tensively subjected to three commonly used statistical tests of uniformity
and randomness. The object was i) to examine the power of these statis-
tical tests to discriminate between "good" and "bad" random number gener-
ators, ii) to correlate these results with recently proposed mathematical
characterizations of random number generators which might also be useful
in such a discrimination, and iii) to examine the effect of shuffling on

the random number generators

.

Briefly the results show that the commonly used runs test has virtu-
ally no power to discriminate between "good" and "bad" generators, while
serial tests perform better. Also shuffling does help, although much

more needs to be done in this area. And finally, there is some utility

to the mathematical characterizations, but many unanswered questions.
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Abstract

Several widely used uniform random number generators have been extensively subjected
to three commonly used statistical tests of uniformity and randomness. The object
was i) to examine the power of these statistical tests to discriminate between
"good" and "bad" random number generators, ii) to correlate these results with
recently proposed mathematical characterizations of random number generators which
might also be useful in such a discrimination, and iii) to examine the effect of
shuffling on the random number generators.

Briefly the results show that the commonly used runs test has virtually no power
to discriminate between "good" and "bad" generators, while serial tests perform
better. Also shuffling does help, although much more needs to be done in this
area. And finally, there is some utility to the mathematical characterizations,
but many unanswered questions.

1. INTRODUCTION

The generation of pseudo-random numbers has been
the subject of literally hundreds of papers in the
computing and simulation literature (see the bibli-
ography by Nance and Overstreet [13]). By far the

most popular method of pseudo-random number gener-
ation has been the Lehmer congruential method:

n+1
A«X + C

n
(mod P) (1)

The theory underlying the implementation and use

of the congruence (1) is well described, see e.g.

Knuth [5].

Recent attention has been given to alternatives to

the Lehmer congruential method. Most notable are

the feedback shift register generators [10, 15, 18

]

These generators are based on irreducible polyno-
mials over GF(2) and are capable of producing

extremely long sequences relative to the word size

of the computer.

The generation of pseudo-random numbers is itself

a simulation, that is, we are attempting to simu-

late a random sequence of numbers. As in any

simulation experiment, we apply some sort of test

procedure to verify how well our simulation
achieved the desired goal. Typically runs tests,

serial tests, and various chi-square tests for

independence are applied to relatively short sec-

tions of the pseudo-random sequence. Many of the

tests have been outlined by Gorenstexn [4] and

Knuth [5] . Recent results have indicated that th

power of these classical tests to detect "poor"

generators is suspect.

We now have mathematical characterizations of pse

random sequences which should help one to discrim

inate between generators. Chief amongst these

characterizations are the spectral structure de-

scribed by Coveyou and MacPherson [1] and the lat

tice structure test advanced by Marsaglia [11] an
Smith [17] for congruential generators. There ar

also presumably better statistical tests based on

the properties of the periodogram, as outlined in

Lewis, Goodman, and Miller [9]. All of these tes

are more sensitive to subtle departures from rand*

ness than some of the older tests, both mathemati

and statistical, particularly with respect to the

higher dimensional properties of the pseudo-randoi

sequences. However, their interrelationship is n
well understood. For example, Marsaglia [11] de-

rides the utility of the Coveyou-MacPherson work.

Moreover, in a real sense the proof of the puddin;

(here a pseudo-random number generator) is in the

using and it is not clear how well the mathematic.

tests predict the results of the statistical test;
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i.e. the ability of the sequences to simulate
independent uniform random numbers

.

In this paper we propose to examine the perform-
ance of six pseudo-random number generators on the
runs test and serial test for pairs and triples.
Among these six generators are two known to be
poor. Testing these serves to demonstrate the
lack of discriminatory power of some of the statis-
tical tests. In the case of one of them (RANDU)

the mathematical characterizations clearly predict
poor performance. The idea of shuffling the pseu-
do-random sequence will also be explored as a

means of improving the statistical performance of

a generator. This is a relatively new and untested
method.

2. THE GENERATORS

The six generators used in this report were all
designed for use on the 32-bit word IBM System/360.
Table 1 summarizes the pertinent information about
each of the six generators.

LLRANDOM is a version of the generator reported in

Lewis, Goodman and Miller [9] (see Learmonth and
Lewis [7] for details of LLRANDOM). Other versions
of the Lewis, Goodman and Miller generator are used
in the new IBM SL/MATH package and in the IBM ver-
sion of the APL language. RANDU is the uniform
random number generator provided with the IBM

Scientific Subroutine Package [16] which, despite
disclaimers of support from IBM, is still unfor-
tunately widely used. TAUS is a feedback shift
register generator proposed by Tausworthe. The
present implementation was patterned after Payne

[15].

GFSR is a FORTRAN implementation of a "generalized"

feedback shift register generator by Lewis and

Payne [10]. The algorithm employed in GFSR sim-

plifies the coding of the feedback shift register

and generalizes the implementation to virtually
any word-size machine.

The last two generators listed in Table 1 were
taken from the package "Super-Duper" by G. Marsaglj
The novelty of "Super-Duper" lies in the fact that
it consists of combining (exclusive OR'ing) the
results of both a Lehmer congruential generator ant
a feedback shift register generator. For one case
(Super-Duper) we use this combination method. For
the last generator we used only the congruential
part of the Super-Duper package.

2.1 SHUFFLING.

The sequences produced by pseudo-random number gen-
erators are deterministic. In order to disguise
this pattern, several techniques have been proposec
to reorder, or shuffle, the sequence emanating fror
a generator. Marsaglia and Bray [13] have proposec
maintaining a table of pseudo-random numbers withii
the generator. Two independent pseudo-random num-
bers are generated at each call. The first number,
appropriately scaled, is used as a random index
into the table. The tabled value is then returned
with the number from the second sequence replacing
it in the table.

Another procedure mentioned by Tukey [19] is to
generate blocks of, say 1024, pseudo-random numbers
and then shuffle them according to some random per-

mutation. After all or some of these numbers have
been used, generate another block and shuffle them
according to the same permutation.

Marsaglia's [11] method of exclusive OR'ing the oul

put of a Lehmer congruential generator and a feed-
back shift register generator is also aimed at
breaking-up the basic deterministic pattern of the
Lehmer generator. It produces a perfect (in the

sense of unit cell volume) lattice structure.

For the purposes of the testing described here, the

Marsaglia and Bray method was used with five of the

six generators, the exception being GFSR. A table
size of 128 was chosen and two sequences of the

same generator were used, each with a different

SUPER-DUPER

or

NAME TYPE MULTIPLIER MODULUS

LLRANDUM LEHMER CONGRUENTIAL 7
5

= 16807 2
31 -1

RANDU LEHMER CONGRUENTIAL 2
16

+ 3 = 65539 2
32

TAUS
FEEDBACK SHIFT
REGISTER

x
31

+ x
13

+ 1

GFSR GENERALIZED FEEDBACK
x
124

+ x
37

+ 1
SHIFT REGISTER

PERIOD

LEHMER CONGRUENTIAL
WITH FSR

SUPER-DUPER
(CONGRUENTIAL LEHMER CONGRUENTIAL

ONLY)

69069

x
17

+ x
15

+ 1

69069

.32

.32

!

31

.29

.31

.29

LANGUAGE

- 2 SYSTEM/ 360 ASSEMBLER

FORTRAN IV

- 1 FORTRAN IV

2
124

- 1 FORTRAN IV

2
46 - 2

29
SYSTEM/ 360 ASSEMBLER

SYSTEM/ 360 ASSEMBLER

TABLE 1. SUMMARY OF THE SIX GENERATORS TESTED



starting value. To be consistent, this shuffling
scheme was used in LLRANDOM even though LLRANDOM
has the capability of shuffling directly incorpor-
ated into the generator. The shuffling scheme in
LLRANDOM requires only one pseudo-random number
since seven bits of that number are used to index
the table of 128 (2 7=128) . These seven bits are
quite random due to our choice of modulus (see
Knuth [5] page 12). Results of the statistical
testing of the actual shuffled sequence produced
in the LLRANDOM package are given in Appendix A.

As will be seen, the results of shuffling are en-
couraging when measured by statistical tests, even
for poorly constructed generators. However, it

is not entirely clear how shuffling changes
the lattice structure of the sequence, and this

raises important questions.

A chi square statistic is computed for the sample
generated as

N
H

- E[NJ2
(5)X

2

7
=

E[N
d

]

This statistic is only approximately distributed as
a chi square variate with 7 degrees of freedom
since the expected values in each cell are not
equal, the last two cells both having expected
values less than 5. Additionally, there is a cer-
tain lack of independence since a long run is usu-
ally followed by a short run.

The test procedure was to perform this runs test for
samples of size N = 65,536. One hundred replica-
tions were then performed using different starting
values (seeds)

.

3. THE RUNS TEST 3.2 RESULTS OF THE TESTS

Pseudo-random number generators produce sequences
which are inherently periodic although when P is

prime and A is a positive primitive root of P,

as in LLRANDOM, the numbers do not repeat until P

have been generated and it is felt that this helps
reduce local cyclic effects. The runs-up-and-down
test is frequently applied to pseudo-random sequen-

ces to investigate the possibility of local (less

than full period) cycles or stationary dependence.

Under the null hypotheses that a sequence is ran-
dom the expected value and variance of the number

of runs of given lengths in a sequence of length
N are easily derived. Levene and Wolfowitz [8]

have shown that for the observed number of runs of

length d, N , the statistic

N
d

- E[N
d

]

{Var[N,]}
d

1/2
(2)

is asymptotically normally distributed with mean

and variance 1 as the sample size, n, tends

to infinity.

The literature on the power of the runs test is

rather sparse, even though it is widely recommended

as a test. The only significant result is due to

F. N. David [2] which shows that the runs test has,

asymptotically, the greatest power of any test of

randomness against the alternative of first-order

Markov dependence in a binary sequence.

3.1 TEST FORMULATION.

The runs-up-and-down test used here is patterned

after Kendall and Stuart and was used and described

fully by Lewis, Goodman and Miller [9]. Samples

of size N = 65,536 were generated and runs counted

for lengths d = 1,2,..., 7, with a last cell d = 8

collecting observed runs of length 8 or more.

The expected number of runs is given by

2(n-d-2)(d2+3d+l)
E[N

d
] (d+3)!

E[N
2n - 7

8+ J
" I

d = 1,2,. ..,7 (3)

(4)

d=l

Samples of one hundred chi square statistics (5)

were obtained from each of the six generators. An
additional sample of one hundred was taken for each
of the generators, except GFSR, with shuffling
implemented. Each set of one hundred was considered
to be a sample from the distribution of this runs

test statistic (5)

.

A preliminary analysis of the sample data showed
that for some starting values, all six of the gen-
erators would fail the runs test at a 5% level based

on a chi square distribution with 7 degrees of

freedom. Even when shuffled, each generator pro-

duced values of the test statistic which were either

too high or too low for acceptance. The question is

however, are the numbers of rejections consistent

with the chi-square distribution theory, and if not,

can we simulate the true (null) distribution with

our results. The answer to the first question is

that no generator produced results which were gross]

different from that predicted by the chi-square

distribution theory.

Thus, to further assess the ability of the runs test

to discriminate "bad" generators from "good" gener-

ators, it was decided to compare sample distribu-

tions of the runs test statistic (5) . A two-sample

Kolmogorov-Smirnov test was performed on all pairs

of samples (of size 100). The two-sample K-S test

is distribution-free and we avoided the problem of

having to specify an exact null distribution for

the statistic (5) . A two-sample K-S test subrou-

tine was programmed using the algorithm presented

by Kim and Jennrich [6].

Table 2 summarizes the results of these tests with

the generators not shuffled . The pair of values

given correspond to the sample K-S criterion,

c/(m«n), and the Pr{D(m,n) > c/(m-n)}, respectively

The results indicate that RANDU produces runs test

statistics which are not distributionally commen-

surate with the other five generators. This was to

be expected since RANDU is one of the two "poor"

generators among the six, but the indications are

not strong. The somewhat surprising result is that

TAUS appears, except for the case of RANDU, to be

similarly distributed with the remaining four



generators. TAUS is the other suspect generator
referred to above. This is because the results of
Toothill, Robinson and Adams [18] indicate that a
feedback shift register generator with the primi-
tive trinomial used in TAUS could not comply with
the moment and marginal results of Levene and Wolf-
owitz [8].

Table 3 presents results of a similar test using
the shuffled samples (with the exception of GFSR
which was not shuffled) . With the type 1 error at
5%, all generators appear to be distributionally
commensurate. This result is encouraging since it
was hoped that shuffling would improve the perform-
ance of relatively poor generators such as RANDU.

variate with seven degrees of freedom are y 2

,, „ o *7,0.9I
= 14.07 and X

7 0.99
= 18 -48 respectively,

Although the runs test has been used frequently ir
the testing of pseudo-random number generators, w«
feel now that the test is of very doubtful use.

~
The lack of distributional theory concerning the
runs test statistic (5) , combined with its empiri-
cal lack of ability to discriminate TAUS leads us
to conclude that the runs test should not be em-
ployed in testing pseudo-random number generators.
We hope we have laid it to rest forever. It is
interesting to note that as late as 1971 Smith [1/
in an excellent paper, recommended a generator on

RANDU TAUSWORTHE MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

LLRANDOM

RANDU

TAUSWORTHE

MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

23 .0062 ,13 .2820

,21 .0156

,17 .0783

19 .0364

.09 7021

,17 .0783

.18 .0539

.08 .8154

,12 .3682

GFSR

.09 .7021

24 .0038

,13 .2820

,16 .1112

15 .1549

TABLE 2. K0LM0G0R0V-SMIRN0V TWO SAMPLE TEST ON RUNS TEST STATISTICS,
SAMPLE SIZE = 100. NOT SHUFFLED.

LLRANDOM

RANDU

TAUSWORTHE

MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

RANDU TAUSWORTHE

,12 .3682 .07 .9084

.09 .7021

MARSAGLIA
(MIXED)

.09 .7021

.12 .3682

,08 .8154

MARSAGLIA
(CONGRUENTIAL)

.14 .2112

.18 .0539

.14 .2112

.13 .2820

GFSR

.13 .2820

.17 .0783

.16 .1112

.11 .4695

.11 .4695

TABLE 3. KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON RUNS TEST STATISTICS.
SAMPLE SIZE = 100. ALL GENERATORS EXCEPT GFSR ARE SHUFFLED.

As a last test, the samples of shuffled data from
five of the six generators (the exception, again,
was GFSR) were pooled to form a sample of 500 from
the distribution of the runs test statistic. A
K-S test was then performed matching the individ-
ual samples of 100 (not shuffled) against this com-
posite. The results showed only RANDU to be dis-
tributionally different, again demonstrating the
poor power of the runs test. Another result is

that we have a simulation of size 500 of the dis-
tribution of the statistic (5) under (hopefully)
the null independence hypothesis. For reference
the order statistic estimate of the 0.95 quantile
is 15.82; that for 0.99 is 22.05. For refer-
ence the corresponding quantiles for a chi-square

the basis of its lattice structure and then said
"To check it, we carried out what is generally
recognized as a sensitive test of uniformity and
independence of a sequence, namely the runs test."

4. THE SERIAL TEST

In testing pseudo-random sequences, it is useful t

test the uniformity of successive but not necessar
ly contiguous numbers taken as k-tuples for k =

2,3,... A standard test employed is the serial
test.

Taking the sequence {U.} of uniform (0.0,1.0)
deviates from a generator one divides the k



dimensional unit hypercube into r smaller equi-
sized hypercubes. For binary computers r is usu-
ally taken to be a power of 2 and determines the
number of (leading) bits from each number which
will be tested. The k-tuples themselves may be
taken as overlapping or nonoverlapping, e.g. the
sequence of 2-tuples {U^ },{U t U.},{U U,} or

the sequence of 2-tuples {U.U.} ,{U_U. } ,{U C ,u\}

,

1 Z J H JO
... In a sample of size n, the expected number
in each of the small hypercubes is n/r^ under the
null hypothesis of multidimensional uniformity.
The following chi-square test statistic may then
be computed

:

S
k

=
k r r

Jj-l j
k
-l V J 1 »J

2
......3

k /

(6)

where is the observed number of k-
l

1
,J

2
,-

tuples in each small hypercube. For the case of
nonoverlapping k-tuples, S is distributed asymp-
totically as chi square with r^ - 1 degrees of
freedom. For overlapping k-tuples, a correction,
due to Good [3], involving a chi square test for
uniformity must be included for S to be approx-
imately chi square.

The desirability for k-dimensional uniformity
stems from the fact that in many stochastic variate
generation algorithms, k-tuples of uniforms are
used together to form the desired variate. For
such an application, nonoverlapping k-tuples would
be tested. The case for using overlapping inter-
vals in a serial test is somewhat less clear.
Aside from the distributional problems with the
test statistic, it is hard to imagine a simulation
which would require overlapping k-tuples, implying
that some uniform deviate would be used more than
once. The serial test when applied to overlapping
intervals, however, can be considered as a test for

serial independence in a pseudo-random sequence.
Like the product form of the serial correlation
(autocorrelation) statistic, this form of the ser-
ial test should be sensitive to lagged serial
dependence in the pseudo-random sequence.

4.1 TEST FORMULATION

For samples of size N = 65,541, one hundred
samples of the test statistic (6) were computed for

each of the six generators. The tests were repeated
for five generators with shuffling implemented.
Two forms of the test were employed: the first set

involved examining pairs of successive overlapped
numbers and the second form involved overlapped
triples. In both cases the first four bits were
used

.

The successive deviates were also lagged for j
=

1,2,..., 6, so that, for example, for pairs we took

contiguous numbers, numbers one apart, ... , num-
bers five apart (lag 6)

.

4.2 TEST RESULTS

Since the use of overlapped intervals invalidates

comparing moments from the sample statistics (6)
with expectation 7 from a chi square distribution,
we went directl- to the two sample Kolmogorov-Smir-
nov test for distributions. Table 4 summarizes the
results for the serial test for pairs on the six
generators without shuffling. Only the first lag
is shown here for brevity.

The results appear inconclusive. LLRANDOM has been
rejected in spite of published results ([9] and [11
indicating good two-space properties for this gen-
erator. In [9] LLRANDOM was tested by comparing
the test results to the x

2 (40 degrees of freedom
distribution, since no true distribution was known.
It may be that what is showing up here is the rela-
tively poor 2-lattice structure of the LLRANDOM
generator, as ^hown in Table 8a, indicating corre-
lation between the predictions of the statistical
and mathematical tests.

Shuffling was then applied with little discernible
improvement. Pairs of generators are still rejecte
as shown in Table 5, but the shuffled LLRANDOM is

not singled out. We return to this later.

In triples, Table 6 summarizes the results for the

generators without shuffling. Only the first lag
is shown. For the triples this means taking three
successive and contiguous pseudo-random numbers,
i.e. {U

1
U
2
U
3
},{U

2
U
3
U
4
),{U

3
U
4
U
5
},... The only sig-

nificant result here is that RANDU fails completely

and the departures, as predicted by the lattice
structure and wave number tests, are gross. Al-
though the distribution of the test statistic (6)

is not chi square due to the overlapping intervals,

the expected value of (6) is still r* - 1 or

4095. while the test statistics for the other five

generators were within two standard deviations of

this expectation, RANDU 's sample average test sta-

tistic was 28,787! We expected RANDU to perform

badly here since RANDU is known to be poor in three

space.

With shuffling implemented, the results in Table 7

indicate that all of the generators, including

RANDU are distributionally commensurate. Thus thei

is a very substantial improvement in this property

of the sequences induced by shuffling.

5. CONCLUSIONS AND RECOMMENDATIONS

Many of today's statistical questions are beinj

answered through large-scale simulation. The gen-

eration of good pseudo-random deviates for simula-

tion and Monte Carlo experiments is of prime impor-

tance. Unfortunately many generators are being usi

whose statistical properties make them a hindrance

rather than an aid in such experiments. Through

personal communication, we have heard from several

researchers who have had their experiments stymied

due to poor pseudo-random number generators. The

typical computer center will offer several genera-

tors of either unknown progeny or ones whose test-

ing is rather weak. RANDU, which is one of the

most widely used generators, is typical of this

situation. It is supplied by IBM as part of the

Scientific Subroutine Package and is therefore



LLRANDOM

RANDU

TAUSWORTHE

MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

TABLE 4.

RANDU

34 .0001

TAUSWORTHE

.38

.11

.0000

.4695

MARSAGLIA
(MIXED)

.33

.08

.13

.0001

.8154

.2820

MARSAGLIA
(CONGRUENTIAL)

.30

.15

.16

.0002

,1549

.1112

.12 .3682

GFSR

.38

.13

.07

KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON SERIAL TEST STATISTICS FOR PAIRS,
SAMPLE SIZE = 100. NOT SHUFFLED.

.0000

.2820

.9084

.17 .0783

,21 .0156

RANDU TAUSWORTHE
MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

.20 .0241 .10 .5830 .08 .8154

.10 .5830 .11 .4695 .19 .0364

— .14 .2112 .25 .0023

— .14 .2112

GFSR

LLRANDOM

RANDU

TAUSWORTHE

MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

TABLE 5.

17 .0783 20 .0241

11 .4695

10 .5830

.13 .2820

,21 .0156

KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON SERIAL TEST STATISTICS FOR PAIRS
SAMPLE SIZE = 100. ALL GENERATORS EXCEPT GFSR ARE SHUFFLED.

RANDU TAUSWORTHE
MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

GFSR

LLRANDOM

RANDU

TAUSWORTHE

MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

TABLE 6.

1.0 .0000 .19

1.0

.0364

.0000

.15

1.0

.15

,1549

,0000

.1549

.12

1.0

.14

,3682

.0000

.2112

,12 .3682

.12

1.0

.13

KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON SERIAL TEST STATISTICS FOR TRIPLES,

SAMPLE SIZE = 100. NOT SHUFFLED.

,3682

,0000

.2820

.09 .7021

12 .3682

RANDU TAUSWORTHE
MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

GFSR

.16 .1112 .18 .0539 .18 .0539 .16 .1112

.07 .9084 .15 .1549 .13 .2820 .12 .3682

.11 .4695 .12 .3682 .12 .3682

LLRANDOM

RANDU

TAUSWORTHE

MARSAGLIA
(MIXED)

MARSAGLIA
(CONGRUENTIAL)

TABLE 7.

,12 .3682

,17 .0783 12 .3682

10

KOLMOGOROV-SMIRNOV TWO SAMPLE TEST ON SERIAL TEST STATISTICS FOR TRIPLES.

SAMPLE SIZE = 100. ALL GENERATORS EXCEPT GFSR ARE SHUFFLED.

5830



convenient to use. Several reports are around
which cite results of tests for uniformity, runs
tests, and serial tests all confirming RANDU's
adequacy. Users of other computers are in even
worse shape since their random number generators
are rarely documented and no one seems to know from
whence they came!

The random number generators which have appeared in
the literature rarely specify what tests, if any,
have been performed. In the IMSL Library, for
instance, not only are there no test results cited,
but the user is given the option to use his own
multiplier. Those algorithms which do acknowledge
testing usually cite the runs tests and serial
^zests investigated here (cf. Smith [17] cited above)
tt was our aim in this paper to show whether these
tests are sensitive to the type of departures from
randomness which would be crucial to serious simu-
lation efforts.

The most distinct conclusion one can draw from the
results given in this paper is that the runs test
las no utility as a test for randomness in pseudo-
random number generators.

?he serial test is somewhat more sensitive than the
runs test and interesting conclusions can be drawn
:rom the results obtained here, as follows:

Ising pairs (Tables 4 and 5) a subtle departure in
LRANDOM was evidenced, but nothing startling
showed up about RANDU . Shuffling did not clear up
:he situation completely. This will probably be
ised as the basis for further investigations to

liscriminate among shuffled generators. Using
:riples, gross departures in RANDU appear (of the
lundred samples, all were rejected at a 5% level
ising the x

2 approximation for the distribution
f the statistic) and after shuffling, all genera-
:ors (including RANDU) are statistically commen-
urate. The interesting point here is that it is

tot clear how much the shuffling we have used
hanges the lattice structure of RANDU , so that we
tay have a generator which passes the statistical
ests but has "poor " structural characteristics .

hus there is evidence that Marsaglia's work has

y no means provided the final answer on congru-
mtial and other generators. Also more needs to be
:nown about the effect of various shuffling schemes
n the mathematical characterizations.

. word about the inherent drawbacks of the serial
est is in order here:
(i) A problem with any serial test is the need

for a great deal of storage. In the tests
reported here we were limited to looking at

only the first four bits. (This takes 4096
memory cells; five bits takes 8 times as

many.) If one takes only the first four bits
one can hardly have a sensitive test for the
whole pseudo-random word. Also, the lattice
structure of the truncated sequence is dif-
ferent from that of the whole word, though
the structures probably mimic each other to

some degree.
ii) There is a great problem of deciding what

lags to take in serial tests. In the tests

described above RANDU failed miserably on
contiguous (1,1) triples, but not on other
triples. Thus, if one looked at six lags, as
we have done, it might be that departures
would show up at other lags.

Fortunately, theoretical results obtained by Pro-
fessor Murray Rosenblatt (personal communication)
indicate that it is primarily the tests for contig-
uous pairs which will show up departures in congru-
ential generators. His results also provide some
theoretical basis for shuffling. Another possibilii
is to go to tests for randomness based on the empir-
ical spectrum (Lewis, Goodman and Miller [9]). Thi!
test combines the serial tests of all lags.

For comparative purposes, Table 8a below shows the
relative lengths of sides of unit cells for the
three Lehmer congruential generators in this paper.
These numbers were computed by Marsaglia [11]. Noti
that the one dimension of the 2-lattice for LLRANDOI
is relatively large. Also, one dimension of the
three-lattice of RANDU is very large.

Generator 2-lattice 3-lattice 4-lattice

LLRANDOM 1,7.6
RANDU 1,1.

SUPER-DUPER 1,1.06
(CONGRUENTIAL ONLY)

1,1.6,3.9 1,1.09,1.69,2.07
1,1.1,1819 1,7.3,1856,1872
1,1.14,1.29 1,1.14,1.16,1.30

TABLE 8a.

Table 8b below lists the Coveyou-MacPherson wave
numbers for LLRANDOM and RANDU. These numbers were
computed and kindly supplied to us by Dr. L.

Richard Turner of the NASA Lewis Research Center.
As Smith [17] points out, there is a direct rela-
tionship between the 2-lattice and the 2 dimensional
wave number. Small wave numbers correspond to poor
n-space properties.

Dimension LLRANDOM RANDU

2 16807 23172

3 638.9 10.86
4 147.25 10.77

5 67.21 10.77

6 29.92
7 16.55

TABLE 8b.

Since congruential generators have inherent flaws

(see Marsaglia [12]), the idea of shuffling the

sequence as it leaves the generator seems to be a

reprieve for these popular generators. Shuffling

showed improvements in the tests performed here,

particularly for RANDU in the serial test on triple;

The effect of the various types of shuffling which

have been proposed will be investigated in exten-

sions of future work.

The case for feedback shift register generators is

encouraging, but still unclear. After an initial

flurry of activity in this field, the careful work

of Toothill, Robinson, and Adams [18] showed that

these types of pseudo-random number generators also

had their flaws. Without a careful choice of prim-

itive trimonial, a feedback shift register generatoi



could be shown analytically to have bad statistical
properties (generally runs properties, and these
may be irrelevant). The generator, GFSR, has been
constructed more carefully than TAUS but is rather
costly in both initialization time and computer
storage, making its utility doubtful. Until more
extensive investigation on feedback shift regis-
ters is forthcoming, we cannot conclude that they
are preferable to the shuffled congruential gener-
ators
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GENERATOR RUNS SERIAL (PAIRS) SERIAL (TRIPLES)

LLRANDOM
(MARSAGLIA--BRAY SCHEME)

.10 .5830 .16 .1112 .10 .5830

RANDU .11 .4695 .08 .8154 .07 .9084

TAUS .08 .8154 .11 .4695 .09 .7021

MARSAGLIA
(MIXED)

.09 .7021 .10 .5830 .10 .5830

MARSAGLIA
(CONGRUENTIAL)

.13 .2820 .19 .0364* .13 .2820

GFSR 15 .1549 .08 .8154 ,12. .3682

TABLE A. KOLMOGOROV-SMIRNOV TWO SAMPLE TEST COMPARING LLRANDOM (SELF-SHUFFLING)
WITH SIX OTHER SHUFFLED GENERATORS.
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