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In order to determine the wind field in the lower atmosphere over

the entire globe one common technique is to solve the "linear balance

equation",

2 *""»
fv y + vy • vf = g ($) (l)

where V is the stress function whose gradient gives the wind field, f is

the Coriolis function

f - 2ft sin
<J> , (2)

g($) is a known function of the (known) geopotential $, ft is the earth's

angular velocity and <j> is the latitude (polar) angle measured from the

equator. Equation (1) is to be solved on the surface of a sphere of radius

a and so is written

2

. .) 1 a , , 6 *
N

1 6 y | , 2ft cos 4> d4> ,.. ,_,
Sln

*feiT *J
(cOS

* 6*
} +—F -T2

f
2 6*

=
8 ($)

'
(3)

(

Y cos 4> d A ) a

In practical applications (3) is solved numerically, by finite difference

methods, and the vanishing coefficient of the first term for small <(> causes

real numerical difficulties. (The question of whether (1) is an appropriate

equation to solve near the equator (for small <j>) is another argument to

which we return later.) One conventional scheme to avoid these problems

is to replace -s
—^ by a constant for small

<J>
and in this way continue

a

the solution of (3) for high latitudes to low latitudes by solving

2 ~*~ ~*

f V <F + Vy • Vf = g($) (4)

for small angles <j> . It is the purpose of this note to study the solutions

of homogeneous versions of (1) and (4) in hopes of saying something about

the solutions of the linear balance equation and methods for solving it.
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We are interested in the homogeneous equation

sin <*> I
-±— f- (cos * g ) + —V ^4 1+ cos * fl " ° (5)

|

C0S
*

5
*

6 * cos
2
* 6X

2
)

5 *

2
(where we have dropped the 2fi/a ) all the way around the globe, so

we may expect periodicity on \ . We thus let

y = e
iXn

V(4>) (6)

We also will change the independent variable <j) by the obvious choice

x = sin<J), (7)

and write V(<j>) = y(x). Then (5) becomes

«i^ [<>*
2
>£] " ^5 y\ + (i'-^S o (8)

Guided by a suggestion in [1], we make one further change of variables

, n/2
y(x) = (1-x-) u(x) (9)

to get
2

x(l-x
2

) ^-§ + [1 - (2n+3)x
2

] -^ " (n
2
+2n)xu = . (10)

, i ax
dx

Now (10) turns out to be an equation studied almost 100 years ago by

Heun (see [1]), and is known as Heun's equation, or occasionally as

Lame's equation. (For reference we list Babster's parameters [1] for

(10): a = -1, b = 0, a = n, = n+2, y = 1, 6 = n+1, e = n+1 ). It is

known that (10) has regular singular points at x = ± 1 and x = °° , and x =

Using the method of Frobenius [2] we can generate modified power series

about each of these points of the form

OB

(x-x) / , c (x - X )

About the origin x = (the equator) the indicial equation for r has
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double root of zero. About the points x = ± 1 (the North and South

poles) the indicial equation has roots r = 0, r = -n .

The first zero value for r at x = means that there is a solution

of (10) about x = which is an ordinary power series. This solution

turns out to be an even function of x and is given by

u = u,(x) = Y. c x
m

(11)1
m^O

m

= (m + n
/2)(m+ l+ n

/?)
m+1 /.in 2 m

(m + 1)

The ratio test applied to (12) shows that (11) converges for |x| < 1,

and the test fails for |x| =1. A more subtle analysis shows that u^ (x)

converges for |x| = 1. The second zero value for r at x = means

that there is a logrtthmic solution near x = 0, which can be found by

the method of reduction of order [2]. This solution is given by

x. .n+1

U
2
(X)=U

1
(X)

f
(

\ n+l
Z

,
'

< 13 >

J z(l-a) U^(Z)

An analysis of (13) shows that u_(x) does have a logarithmic singularity

at x = 0, and , since u
1
(x) is finite at x = ± 1, y 9

(x) is singular

there, behaving like (1 + x)

This is in agreement with the indicial equation for (10) at x = ± 1,

which says that there is one solution which behaves as a constant (the r = 0)

and one which is singular like (1 ± x) . Thus the general solution

to (8) can be written

y(x) = (1 - x
2

)

n/2
(c

1
u
1
(x) + c

2
u
2
(x)) (14)
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where u (x) is finite everywhere. Thus u (x) is singular at x =

and , at x = ± 1, is more singular than (1-x )
'*•

. Thus the physically

relevant version of (14) must have c» = 0, so that

00 inX n/2
f(<|»,X) = 22 e (cos <j>) c u (sin <j>) (15)

—00

where the c are the complex amplitudes of the longitudinal harmonics.

Equation (15) is the solution to the homogeneous equation (5) and

is not really useful, in itself, for solving the linear balance equation

(1). However, (14) tells us a great deat about solving (1) numerically.

If one started at the poles or the equator (x = ± 1 or x = 0) with a

known (finite) value of 4* then c is necessarily zero. Then taking

the exact solution, c_ remains zero. However, integrating numerically ,

one does not have the exact solution, and the roundoff errors effectively

introduce a small amount of u_ into the solution. This would remain

small if u were bounded. But integrating towards the equator (or the

poles) the unphysical solution u~ must eventually dominate. In other

words, no matter how careful an integration scheme is used, because of finite

precision in any computer, there is no way to integrate the balance equa-

tion (1) from the poles to the equator and have a realistic solution at

the equator .

This has been instinctively recognized, a common solution method for

the Northern Hemisphere models {3J has been to stop integrating (1) at about

20 degrees latitude and instead solve
2 -*" +

2fikV V + Vf • Vy = g($) (16)

o

where k is sin (20 ). What can one say about the homogeneous version

of (16)? Using the same substitutions as above we obtain, for the homo-

geneous equation,
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(l-x
2
)u

n - £ [x
2
+ 2k(n+l)x - 1] u' - ~(x + kn + n)u = (17)

Equation (17) is not a standard equation, but is amenable to a standard

power series expansion about the origin

u -J^x™ (18)

We then obtain the recursion relations

2a
2

= "
k

a
l
+ n(n+1 > a

6a
3

= " k
a
2
+ ("

2 + 3n + 2) a
l
+

k
a ° (19)

m(m-l)a = -
(m" 1)

a . + n
2
+ (2m-3)n + (m

2
-3m-2) a „m k m-1 L J m~2

(n+m-3)

k
a
m-3

'

These involved equations show two things. First, if k is small (con-

siderably less than 1), they tend to simplify, and this becomes a "singular

perturbation" difference equation. CThis is an almost unknown area which

the author intends to investigate later.) Secondly, we note that no solu-

tion of (17) is inherently odd or even, in contrast to both solutions of

(18) which are even (see (11) and (13) ). Thus, although any function can

always be written as the sum of an odd and an even function

f (X) E
-| jf (x) + f (-X)

J

+
J

jf (X) - f (-X)j ,

numerical integration of (16) will always introduce some odd elements of

the solution. Since the equation one is really trying to solve is inherently

even, these portions of the solution are unphysical. Since all solutions of

(17) are bounded at x =
> the unwanted portion of the solution does not

grow drasticly, so this is not as serious as trying to integrate (8). How-

ever, it is expected that a singular perturbation analysis of the difference
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equations (19) would show that the smaller the value of k , the more

closely the solution to (17) will display the purely even character

which (8) has.

The non-homogenous versions (1) and (16) could be solved in power

series in x = sin
<f>

and Fourier series in X. The resultant double series

show exactly the features above. With care, obviously an analytic solution

in terms of a double series is possible. However, it certainly would be

difficult to get reasonable answers from such an approach. The purpose of

this exercise was to demonstrate that the exact solutions have inherent

problems and thus any attempt to directly integrate the equations will give

difficulty.

The author would like to suggest an alternate approach to this problem

which ought to be more stable, and which, in other applications, is often

faster - the finite element method. This method has been applied to some

elementary meteorological problems [4]. The basic idea is as follows:

instead of taking an infinite series valid over the entire domain, one ex-

pands y as a collection of low order polynomials - a different polynomial

for each grid rectangle in some discretization of the globe. The coefficients

for such a ploynomial are determined by an integration of the trial solution,

times suitable functions, over the entire globe. The justification for the

computations is either an orthogonalization one (Galerkin) or a variational

calculus one (Rayleigh-Ritz) . The latter is more in keeping with the use

of NVA (numerical variational analysis) now used in meteorology, although it

will cause a slight problem later.
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For a given function $ (<f>,A) it is easy to see that (1) is the Euler

equation for

JJ\f(W)
2
+ 2g($)V

l

1(f)- / Ijf(VY) + 2g($)V a cos cf> d<|) dA . (20)
D

'

where D is the portion of the globe of interest. If we superimpose on D

a set of grid points and connect these to cover D with triangles (as opposed

to the rectangles normally used in finite difference solutions of (1)) we

have a set of domains D , In each of these domains we express f as a
i

simple function Y (a low order polynomial) whose coefficients are to be
i

determined. Some of the coefficients are determined by the need for con-

tinuity of Y and some of its derivatives across the boundaries of D.

.

The remaining coefficients are determined by minimizing (20) . The result

is a matrix equation for these coefficients which is similar, but not

identical, to the finite difference equations for (1). In particular, the

fact that one is integrating (20) over an area means that the vanishing of

f on a line (the equator) causes less problem than before.

Experiments run with problems in stress-strain mechanics indicate that

using linear functions for the Yi, or perhaps quadratics, will give excellent

accuracy. The author has not yet run such an experiment for (20).

A question with using (20) (referred to before) is that physically

(1) may not be the best equation, to use from the poles to the equator.

Equation (1) is actually

fV y + Vf • VY = V
2
$ (21)

This is really one equation on 2 dependent variables ¥ and $ . In the high

latitudes $ is assumed known and one solves for Y , as in (1). In the

equatorial latitudes however, it is believed [5] that Y is better known and
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one uses C21) to solve for $ . The. variational formulation of C21)

for $ is

I (*) = ff [(V$)
2
+ 2hCF)$-]a cos $d$dA C22)

D
2

where h^) is the left side of (21). Then one could take the domain for

(20) to be down to some reasonable latitude, say 20 degrees N, and then

o

use (22) through the equator to 20 S., then use (20) down to the South

pole. The difficulty is that V must be precisely specified on the boundary

(20°) for (20) and $ there likewise for (22). That is not very realistic.

Haltiner has proposed [5] an iterative method to avoid the effects of

inaccuracies in specifying the boundary conditions. It basicly involves

solving three problems in overlapping regions. It involves solving for ¥

o o

from, say, 40 N. to 40 S., using some reasonable approximation (say $/f)

for *F on the boundaries. This computation is done by using the observed

2
winds to find the vorticity £ and solving V ¥ = £ . The resultant values

o o
of ¥ at, say , 20 are used to solve (1) for ¥ from the poles to 20

o o
Using these values of ¥ from, say, 30 to 20 and the values of V from

O o o o

±20 to from step one, one can then solve for $ from 30 N. to 30 S.

using the linear (or non-linear) balance equation. Because of the inherent

character of the Laplacean as a smoothing operator, this overlapping pro-

cedure should give more reasonable answers.

Another approach which minimizes this dichotomy is to use a finite

element-Galerkin approach, a non-variational method. This requires that we

use (21), the differential equation, rather than (20) or (22). One then

subdivides the entire globe into D. and takes $ and ¥ to be low order
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polynomials in each D. . In those domains where $ is believed known,

the coefficients of V. are specified. Then the coefficient of the re-
1

maining functions are determined by insisting that, for all i ,

fV t\>. + Viji. • Vf - V $

If
D.
l

p. dA = (23)

where the p. are the low order basis polynomials. This is nearly

equivalent to the previous two integrals, but conceptially places both

functions ¥ and $ on the same basis. The result of (23) is again a

linear matrix system for the coefficients of the <J>. and ¥ . , the poly-

nomial functions which represent $ and V in each grid area.

A potential advantage to this approach is that there is no need what-

soever to make the grid spacing rectangular or uniform, because there is no

finite differences whatsoever. The $. and ¥ . are explicit functions,11
and are differentiated exactly by hand. By coverting to the x , X

coordinate system (x = sin <J>) , the coefficients in (23) are polynomials,

so that the computations and integrations are elementary and in fact are

exact. Thus the computational errors are only in the use of the $ and

¥. , and in the data itself,
l
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