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REGENERATIVE SIMULATION WITH INTERNAL CONTROLS

by

Donald L. Iglehart and Peter A. W. Lewis

1 . Introduction and Summary

Simulators are frequently faced with the task of esti-

mating a parameter associated with the limiting distribution of

a stable stochastic process which is being simulated. A

methodology based on regenerative processes for obtaining point

estimates and confidence intervals for such parameters from a

single realization of the process has recently been developed

in Crane and Iglehart (1974a, b), (1975a, b) and Iglehart (1975),

(1976a, b) , and (1977) . In this paper we shall introduce a new

technique, internal control variables, which can be used in con-

junction with the regenerative method for obtaining additional

variance reduction for the estimates

.

Suppose regenerative process {X :t > 0}, which is stable

in the sense that X. =» X as t > °° (here => denotes weak

convergence) , is being simulated by generating a single realization

of the process. For convenience think of this process as being

either a positive recurrent Markov chain or the waiting time

process for a single server queue with traffic intensity less

than one. Then simulators are frequently interested in estimating

r = E{f(X)}, for a given function f. The principal goal of the

regenerative method is to produce a confidence interval estimate

of r. The regenerative method begins by observing the pairs
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of random variable? { ( Yi,/T k ) :1 <_ k <_ n} , where x, is the

length of the kth regenerative cycle and Y, is the area under

the function f (X ) in the kth cycle. Two basic facts are crucial

for the regenerative method of simulating stable processes. First,

the pairs {(Y, ,x,) :1 <_ k <_ n} are independent and identically

distributed (i.i.d.), and second r = E{f(X)} = EfY^/E^}.

This last fact suggests that a natural, strongly consistent point
— — —In

estimate for r is f(n) = Y(n)/x(n), where Y(n) = n Ev-i Y
ir

and x (n) = n lC--\ Tv • To form a confidence interval for r

we can use the central limit theorem (c.l.t.)

(1.1) /n (r(n) - r)/(a/E{x
1
}) - N(0,1)

,

where N(0,1) denotes a mean zero, variance one normal random variable

2 2
and a = E{ [Y, - rx, ] }. Of course, the constant a/E{x,} will

have to be estimated in most simulations.

The idea behind internal control variables is to introduce

a third sequence of i.i.d. random variables {C,:l <_ k <_ n} which

has the property that C, is defined in terms of the kth cycle

and E ^ cv^ i s known (or can be calculated analytically) . Then

another strongly consistent estimate for r is

n_1 S-i [Y
k

+ 3(c
k - E < c

k
})]

(1.2) r
CT

(n) E ^ *

x (n)

The subscript CT is meant to denote "controlling the top" in the

ratio estimator; similar estimates will be defined for "bottom control."



A c.l.t. analogous to (1.1) also holds for r with a replaced

by a', say. Since we are still free to select 8, we choose to

do so in such a way as to minimize o' . Having done that we find

that

(a')
2

= a
2
[l - p

2
(C 1/ Y 1

- rT
x
)] .

To obtain significant variance reduction a control, C, , must be

found which is highly correlated with Y, - rx, , a task that is

not always easy.

Section 2 of the paper develops the method of internal control

variables in detail and contains specific examples associated with

the single server queue and Markov chain models. These ideas are

then illustrated with simulation results and numerical calcula-

tions in Section 3. Concluding remarks are made in Section 4.

In particular we discuss the possibility of combining internal

controls with external controls to obtain further variance reduction.

2 . Internal Controls

2.1. General Ideas

Let X = {X :t ^ } be the regenerative process being

simulated. Recall that a process is regenerative if a renewal
j

process T = {T :n >_ 0} is defined on the same probability space

as X and if the portions of the X process between consecutive

regeneration points, the T 's, are i.i.d. Typically the T 'sn n

denote the times the X process enters a fixed state and at
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these times the process starts over from scratch independent of

its past history. For a formal definition of regenerative process

and general background on the regenerative method of simulation

analysis consult Crane and Iglehart (1975a) .
Let T

Q
= for

simplicity and define t
r

= T
R

- T^, k > 1. The portion of X

in the interval [T
k_lf

Tk ) is referred to as the kth cycle and

is of length x,. Suppose now that E{t
1

> < °° and that the

distribution function of t
1

is aperiodic (e.g. its support

is not contained in a set of the form {0 ,h, 2h, . . . } ,
where

h > 0) . Then subject to mild regularity conditions X
fc

=> X

as t /* °°, where - means P{X
fc

<_ x> P{X <_ x} for all

continuity points (x) of the limit distribution. A similar result

holds when t, is periodic; see Crane and Iglehart (19 75a) .
The

random variable X is frequently thought of as the steady-state con-

figuration of the system being simulated. Suppose f is a

measurable function from the state space of X to the real line

and that we are interested in estimating r = E{f(X)}. Define

the sequence of random variables (r.v.'s) ^ yt,
: ^

2l ^ ky

T
k

(2.1) Y, = / f (X )ds , k > 1 .

K m S —
i k-l

If the time parameter of X is discrete (as in a discrete time

Markov chain), the integral in (2.1) should be replaced by a sum.

The regenerative stucture of X, the process being simulated, gives

us the two important properties stated in Section 1: the pairs



{(Y
k'

T
k
):1 - k - n} are i - i - d - and r = E{Y

1
}/E{t

1
), provided

E { |
f (X)

| } < =o, which we shall always assume. The c.l.t. for the

ratio estimator r(n) = Y(n)/T (n) indicated in (1.1) is proved

in Crane and Iglehart (1975a) and follows from the classical

c.l.t. for the i.i.d. mean zero, finite variance r.v.'s

2 ?
Z
k

= Y
k

- rx
k , k >_ 1 . We always assume < a = E{Z.~} < °°

2 ^
The variance of Z^, o , is also related to the variance of r(n)

through the asymptotic relation (as n + °°)

(2.2) a
2
{r(n)} - n * (a

2
{ Z-^/E

2^} ) .

For a derivation of this result see Cramer (1964, p. 354,

eq. (27.7.3)) . A number of point estimates and confidence intervals

have been proposed for ratios such as r (see Iglehart, 1975) , but

the simplest conceptually and computationally are the so-called

classical ones. The point estimate is r(n) and the confidence

interval is

(2.3) I(n) = [r(n) - z
± _ /2

s/~
'

r(n) + 2 1- /2
s/t] '

where z, ,^ = <J>~ (1 - y/2) , the inverse of the standard normal
l-y/2

distribution function, and s is the classical point estimate

of a which is constructed as follows. Let s,, [resp. ^
22 ]

be the sample variance of the Y, * s [resp. x, ' s] and s
12

the sample covariance of the Y, ' s and T
k

' s - Then s is defined

by

S = [s
11

- 2(Y/x)s
12

+ (Y/T)
2
s
22 ]

1/ ^
.
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Introduction of the internal control variables mentioned

in Section 1 is done with the hope of reducing the variance of

the point estimator of r. This in turn will either reduce the

number of cycles that need to be simulated for fixed precision

or reduce the length of the confidence interval, (2.3), for r.

The sequence of internal control variables {C, :k >_ 1} is defined

on the same probability space supporting the process X in such

a way that C, only depends on X (or underlying r.v.'s

defining X) in the kth cycle. This construction of the C, '

s

will insure that they are i.i.d. because of the basic i.i.d.

structure of the cycles of a regenerative process. The control

variables C. allowed, however, are further restricted to those
k

for which the mean, E{C,}, is either known or can be calculated

analytically. Thus one of the prices we must be prepared to

pay to obtain variance reduction for our simulation is the

analytical work of computing E{C, } . Having defined the C, '

s

we proceed to form new ratio estimators for r. Starting with

the ratio estimator r(n) = Y(n)/~(n) we can either

control the Y, 's, the x 's, or both if we introduce a second
K k

sequence of control variables. The estimator rp (n) , proposed

in (1.2), involves controlling the Y, ' s only. Here the sub-

script CT is meant to suggest "controlling the top." For

convenience let (for k > 1)

and

Y
k - Y

k
+ B(c

k - Etc
k
})

z • = y; - n. .

k k k



Observe that the Y' ' s are i.i.d. with E{Yj } = E{Y } and con-

sequently the z iV s are also i.i.d. with E{Z'} = 0. Hence the

standard c.l.t. yields (as n * °°)

Y z:/a{Z'}n1/2 = n
1/2 [(Y/T)-r]/(a{Z

1

, }/ :

?) -N(0,1)
k=l K L L

which, upon replacing t by E{t,} in the denominator (this

can be justified by a continuous mapping argument) , oecomes

1/2 r
*

i \ in [rCT (n) - r]

(c{Zj4/E{ Tl i) " N(0 ' 1) '

The variance of Z ' , which obviously depends on 3, is easily

seen to be

a
2 {Zp = a

2
{Z

1
}+26 covfZ-^C^} + ^a 2^}

2
Now select 3 so as to minimize a {Z'K This yields

cov{Z ,C,

}

(2.4) 6* = -

a
2
{C

1
)

and

(2.5) a
2
{Z|} = a

2
{Z

1
) [1 - p

2
{Z 1/ C 1

}] ,

where p{Z,,C, } is the correlation coefficient between Z,

and C . If we use the c.l.t. for the estimator ^CT ( n ) as a basis for



constructing confidence intervals for r, then we want a control

2variable C, which will minimize a {Z'}. From (2.5) we see

2that we need a large value of p {Z,,C..}. Since the length

1 /2of such a confidence interval is proportional to o{Z'}/n ' ,

to reduce the number of cycles required by a factor of four we

1 /2
need |p{Z 1/ C 1

>| > (0.75) 7 = 0.866. To obtain a control, C ,

which is highly correlated with either Y, or t, is relatively

easy to do. However, because Y, and t, are themselves highly

correlated, it is much more difficult to find a control C.

which is highly correlated with Z, . In general, we shall try

to find a control C, which mimics Z. but for which we can

still calculate its mean, e(c ) . As usual we try to do as much

analytically as possible, before having to resort to simulation.

We illustrate some possible candidates for controls in the context

of GI/G/1 queues and discrete time Markov chains.

2.2. Internal controls for GI/G/1 Queues

In the GI/G/1 queue we assume the zeroth customer arrives

at time t_ = 0, finds a free server, and experiences a service

time v_ . The nth customer arrives at time t and experiences
n c

a service time v . Let the interarrival times t - t . = u ,n n n-1 n

n > 1. Assume the two sequences (v :n > 0} and {u :n > 1}— n — n —

each consists of independent, identically distributed (i.i.d.)

random variables (r.v.'s) and are themselves independent. Let

E{v } = y , E{u } = A , and p = A/y, where < A,y < °°. Thus



\i has the interpretation of the mean service rate and A has

the interpretation of the mean interarrival rate. The parameter

p is called the traffic intensity and is the natural measure

of congestion for this system. We shall assume that p < 1, a

necessary and sufficient condition for the system to be stable.

While many characteristics of interest can be estimated

using the regenerative method, we shall restrict our attention

to the waiting time of the n— customer, W (time from arrival3 n

to commencement of service) . For further discussion of the

simulation of the GI/G/1 queue see Crane and Iglehart (1974b)

.

To obtain a representation for the process {W :n >^ 0} let

X = v , - u and set S~ = 0, S =X, +»*»+X,n>l.
n n-1 n n 1 n —

The following well-known recursive relationship exists for

the W ' s:
n

Wn = 0, W _,_,
= [W + X ,,]

+
, n >

n+1 n n+1 —

By induction, we also have

W = max{S -S.:k=0, 1, ...,n}, n>0.
n n k —

Using the strong Markov property of the process {S :n >_ 0}

it can be shown that there exists a sequence of integer-valued

r.v.'s { Tk
:k > °) sucn tnat T = °' T

k
< T

k+1'
and W

T
= °

with probability one. In other words, the customers numbered T,



are those lucky fellows who arrive to find a free server and

experience no waiting in the queue. The fact that there exists

an infinite number of such customers in the GI/G/1 queue is a

direct consequence of the assumption that p < 1 and the

strong law of large numbers. Thus {W :n >^ 0} is a regenerative

process. If we let t. = T - T, _, , k >_ 1 , then t represents

the number of customers served in the k— busy period (b.p.)

and they are numbered ^\r--\ f Tk-1
+ ^ ' ' " '

T
k
-1

^ ' Next define

the sequence ^ y t, : ^ £. ^ ky

V1

Y
k

=
I W

i
'

i=T J
3 i

k-l

the sum of the waiting times in the k— b.p. Since the queue

is stable for p < 1, we know that W =» W as n * °° and wish
n

to estimate E{W}

.

We are interested in constructing controls, C, , which are

highly correlated with Z,=Y,-rT,, but which are not so complex

that we can not calculate their means. The controls we consider

are of the form C. = D - i./\x, where the r.v. D, is an

attempt to mimic Y, . To compute the mean of C we need, of

course, to be able to compute E{t,}. For M/G/l queues we

know that E{x } = l/(l-p). For GI/M/1 queues E{t } = 1/(1-6),

where 6 is the root inside the unit circle of z-E{exp [-u (1-z)

u

1
]}=0,

where u, is an interarrival time. If the queue in question is

neither an M/G/l or GI/M/1 queue, then the term T../y in C,

will have to be approximated by another r.v. whose mean can

10



be computed. The factor 1/y multiplying t, helps to make

the variance reduction obtained independent of the scale parameter

y. Also it can be argued that the term T,/y is then in the

same units as D, , namely, the unit of time. Several alternatives

for D are listed below, indexed by a superscript. They are

(1 = x
x

= <

w = o ,

w
o

+ w
i

'

T
l

= x

T
i 1 2 ;

D
(2)

x
1

+ x
2

,

T
l - !

T
1

> 2;

= <

w - ,

w + W ,

. w
Q

+ w
x

+ x
2

,

T
l

- 1

T
l

2

ij > 3;

and

D
{

3)
= (X+ + X

2
)

+
= W

2
;

D
(4)

,

X* + (X^ + x
2

)

+
,

T
l = 1

T, >_ 2

W
Q

= ,

w
Q

+ w
x

+ w
2

,

T
l

1

T
l

2

T
l

> 3

11



In general, it is more difficult to calculate E{D. } as i

increases. On the other hand, as i increases D comes

closer to Y, and presumably results in more variance reduction

Let C
;[

l)
= D

;[

l)
- T-j/u, i = 1,2,3.

In our simulation runs for an M/M/l queue the controls

C, , C, , and C, were generally found to do much better than

C, . However, the more complicated controls, C, and C, ,

(2)
gave little improvement over C, . Thus with both variance

(2)reduction and ease of computation in mind, C. is our first

(2)choice. To compute C, for the M/M/l queue first note that

P{t
1

= 1} = P{v
Q

< u
x

> = / e
Ay

ye~yy dy = (1 + p)
1

(ttt7> f e
~ yY dy 1

and

E{xT> = E{X n
|X n

> 0}- P{X, > 0} =
1 - L -

1
i-

1 ^ -^ ^ y (1+p)

Hence

E{D
1

(2)
} = O + P E{x! + X+lxJ > 0} = J*-- [i + ,

P
. ] ,

1 1+p 1 2 1 1+p y y(l+p)

(2)since X, and X_ are independent. The expectation of C,

is then given by

12



E{C< 2) }= p-lf P + (_^)
2

. jjl
i L 1+ p i+p i-pj *

Further discussion on the computation of the mean of controls such

(2)
as C, for the GI/G/1 queue is contained in the Appendix. Com-

putational results from our simulation runs are contained in

Section 3.

2.3. Internal controls for Markov chains

The second example we consider is a discrete time Markov

chain. Assume now that we are simulating an irreducible, aperiodic,

positive recurrent Markov chain, X = {X :n ^ 0}, with the goal

of estimating r = E{f(X)}. The controls we consider here are

of the form

n
Q
A(T

1
-l)

(2.6) C =
I [f (X

?
) - r ] ,1

£ =
°

wtfiere r„ is a guess of r, n a fixed integer, and

n a (t -1) denotes the minimum of n
n

and (t -l) . Again our

motivation for C, is to mimic

Z =
I If(X

£
) - r] = Y

x

Of course, we still must be able to compute E{C, ) in order

to implement the method of internal control variables. Let £

be the state space of X, which we assume is finite, and P the

13



transition probability matrix. Furthermore, let g be the

column vector with components f (i) - r and .P be the matrix
J

with elements

,

Pkl
I „ » - i -

Then if we let X
Q

= j and form regenerative cycles based on

the times of return to state j, it can easily be shown, using the

method developed in Hordijk, Iglehart, and Schassberger (1976),

that

V
(2.7) E(C } =

( I P
n
g) ,

n=0 J 3

where j is the regenerative state and the subscript j means the

jth component of the indicated vector. For two simple Markov chains

the theoretical amount of variance reduction obtained using the

control C, has been calculated for different regenerative states j

and values n_ and is contained in the next section. From (2.6)

it is clear that the larger the integer n_ selected the closer

C-, comes to duplicating Z, . However, the larger n_ the more

difficult is the computation of E{C, } contained in (2.7).

14



3. Numerical Results

3.1 . The M/M/l queue

Even for the simple M/M/l queue it is in general impossible

to verify analytically what variance reduction will be obtained

via the several internal controls listed in the previous section,

or to get an idea of the magnitude of the effect. For something

as simple as C, it is difficult to compute analytically the

correlation between C, and Z, for the M/M/l queue, and this

is what is required in equation (2.5) to find the variance

reduction.

Thus, we resorted to simulations to verify the amount of

variance reduction obtained and the relative effectiveness of

the various controls. In the final simulations all runs were

performed on an IBM System 360/67 computer using the LLRANDOM

package (Learmonth and Lewis (1973)) which generates random numbers

according to the scheme given by Lewis, Goodman, and Miller (1969)

and exponentially distributed random numbers using the Marsaglia

"rectangle-wedge- tail" method. Tests of the random number

generator are given in Learmonth and Lewis (1974) .

Of the extensive simulation runs performed, we give here

only a summary of the conclusions and two detailed tabulations

in the case of the most suitable control

.

(1) The controls D, , D, and D£ do much better generally

than D '

, with little improvement over D, obtained by

use of D, and D . We say generally because results

vary unpredictably with X and p and their ratio p.

15



(2) Subtracting the number of customers served in a busy period

generally improves the variance reduction. By making it

(2)dimensionally stable as in C, we obtain a "variance

reduction" measured in terms of ratios of standard deviations,

of approximately 70%, uniformly over A and y. This is

roughly equivalent to halving the number of cycles (b.p.'s)

2
that one must simulate; (0.7) ~ .5. Much better reductions

can be obtained for smaller p (i.e. p = 0.25) by specially

(2)designed controls; the point is that C, works even out

at p = 0.99, where variance reduction is extremely important

Table 1 shows results obtained by simulating an M/M/l

(2) . .

queue out to n = 2000 cycles with control C, and replicating

the simulation either m = 250 or m = 100 times to estimate the

variance of the estimators r(n), r
CT

(n), and r
CB

(n)
/

where we

drop the n for convenience. Here, we have specifically that

l
n

n" I Y
k

r^(n) . k=lk
'CB ' > n

I
k=l

i
I [x

k
+ e(c.[

2)
- e{c{ 2)

})]

The estimated precision (standard deviations) of the estimates

of E (W) are given in brackets under the estimates.

The results in Table 1 are for p = 0.5 (and m = 250)

and two values of y and for p = 0.99 (and m = 100)

for two values of y commensurate with those given for

16



p = 0.5. The second, third and fourth columns in the Table give

estimates of the correlations between the control and Y,-i, etc. from

which the theoretical variance reduction can be computed. They

are very close to the values given in the next to last column,

the observed variance reduction, from which we deduce that

estimating 3m and 3 R affects the variance reduction only

slightly. Overall there is negligible effect of different values

of y on the variance reduction obtained for the cases p = 0.5

and p = 0.99. For the results p = 0.99 given in Table 1, the

variance reduction is 75%, which is about the same as for

p = 0.5. For the case where the control is on the bottom, i.e.

for t, the variance reduction is not quite as good for control

of Y. Note too that the estimated values of E{w} appear in

some cases to be at least three or four standard deviations from

the true mean. This is because the estimates r, r_,m and r
CI LB

can be seen from the 100 replications to be non-normal. In other

words, for high p(0.99), the simulation needs to be taken out

further than 2000 cycles. In summary, the variance reduction

obtained with the internal control is practically independent

of the scale factor y and the traffic intensity p.

3.2. Two simple Markov chains

We turn now to two simple Markov chains to give another

illustration of the method of internal controls. The first

chain is simply a recurrent random walk with state space

E = {0,1,2,3,4} and transition matrix

17



p =

1/2 1/2

1/4 1/2 1/4

1/4 1/2 1/4

1/4 1/2 1/4

1/2 1/2

Suppose we are simulating to estimate r = E{ X} , which can be

computed to have the value 2. Table 2 contains the theoretical

2 2
values of a {Z'}/a {Z,} and p(C,,Z,), where C, is given by

(2.6) for several choices of n. and r
n

. The entries in these

tables were calculated using the methods in Hordijk, Iglehart,

and Schassberger (1976) . Note that the variance reduction is

largest when E{x, } is smallest and n~ is largest. This also

yields the highest value of p(G,,Z,) in keeping with our idea

of having C mimic Z, . Not too much is lost in variance

reduction as the guess, r» , departs from the true value r = 2.

A variance reduction of more than 50% is attainable, but depends

on the state which is used as the regeneration point.

The second Markov chain represents an (s,S) inventory

model; see Crane and Iglehart (1974) for further details. The

state space £ = {6, 7,. ..,10} and the P matrix is given by

P =

3/8 5/8

1/4 3/8 3/8

3/16 1/4 3/8 3/16

1/8 3/16 1/4 3/8 1/16

1/16 1/8 3/16
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TABLE 2

2 2
Variance ratio a Z' /a {Z,} (top row)

and Correlation p(C, ,Z,) (bottom row)

for the random walk model

r
Q

= 1.5

1.0 0.91
-0.01 0.30

0.73 0.57
0.52 0.65

0.51 0.40
0.70 0.78

0.91 0.84
0.31 0.40

0.98 0.99
-0.16 -0.10

Return State i E{t.} n
n
=1 n =2 n

n
=5

8 0.97
-0.16

1 4 0.82
0.43

2 4 0.62
0.62

3 4 0.94
0.25

4 8 0.97
-0.16

r " 2

8 0.97 0.98 1.0
-0.16 -0.12 0.03

1 4 0.89 0.83 0.70
0.34 0.42 0.55

2 4 0.57 0.46 0.35
0.66 0.74 0.81

3 4 0.89 0.83 0.70
0.34 0.42 0.55

4 8 0.97 0.98 1.0
-0.16 -0.12 0.03
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TABLE 3

2 2Variance ratio a {Z'}/a { Z, } (top row)

and Correlation p(C, ,Z.) (bottom row)

for (s,S) Inventory Model

r
o = 8

Return State i E « n n
=1 n

n
=2 n

n
=4

8

9

10

5.55 0.75 0.65 .49
0.51 0.59 0.72

5.72 .82 0.67 .49
0.43 0.57 .72

6.27 0.89 0.76 .57
0.33 0.49 0.66

7.21 0.95 0.86 0.69
0.21 0.38 .56

2.88 0.95 .81 .42
0.22 0.44 0.77

r " 9

5.55 .75 0.75 .78
0.51 0.50 0.47

5.72 0.88 0.80 .73
0.34 0.45 0.52

6 .27 0.93 .83 0.71
0.27 0.41 0.54

7.21 0.95 0.86 0.72
0.23 0.37 0.53

2.88 0.79 0.57 0.24
0.46 0.66 0.87

10
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Again we wish to estimate E{X} 8.297. Table 3 contains the

results analogous to those for the random walk (Table 2) . The

same general observations about E{t,} and n_ made for

Table 2 seem to hold here as well. Note however that the

results are sensitive to the choice of r
Q

. Again a 50%

reduction in variance can be attained.

4 . Conclusions and Extensions

We have been able to obtain a 50% variance reduction using

internal control variables, for the regenerative estimate of the

limiting value of the mean waiting time in an M/M/l queue. This

reduction is obtained uniformly over all parameter values. It is

fairly certain that the technique will work well with any GI/G/1

queue.

Internal control variables can be easily used with

discrete time Markov chains. The examples used in this paper

showed that a variance reduction of 50% is attainable. This figure

is likely to vary widely with the particular Markov chain.

Continuous time Markov chains and semi-Markov processes can be

handled in the same way using the discrete time method of

Ilordijk, Iglehart and Schassberger (1976) .

Another method of internal stratified sampling was also

investigated. This method produced little overall variance

reduction despite considerable effort.

22



Finally we note that it is possible to apply the idea of

internal controls to the classical sample average estimate over

a realization of fixed length m. Thus in estimating E(W)

in the GI/G/1 queue we have

m-1
W(m) = - I W. ,

j-0
(4.1)

which may be written as

-, N(m)
W(m) = - { T Y, + Y'

, w ,} , (4.2)m L ,^, k n (m) +1 J

where N(m) is the number of completed busy periods in the queue

in [0,m], Y, as before is the sum of the waiting times in the

kth cycle, and Y
'

, > . is the sum of the waiting times in the
N (m) +1 J

last, incomplete cycle.

A central limit theorem for W(m) holds for which the variance

2
term is proportional to E{Z, }, and which is now estimated

from the random number M (m) of cycles. Control is applied

to the Y, ' s in (4.2) just as it is applied in the ratio

estimator r__,(n). Call this estimator W (m) . For the M/M/l

queue the variance reduction observed in the simulations was

the same for all controls C, with the ratio estimator and

with W (m)

.

The main reason for considering W (m) is that, while

it loses the advantage of being an estimator using a fixed number

of i.i.d. random variables, one can apply the classical external

controls to W (m) . Thus one could use the difference of the sum

of the m arrival times and the m service times to control

W (m) . We have not yet tried this idea.
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APPENDIX

To implement the internal control techniques for a

GI/G/1 queue, certain theoretical parameters are required. In

this appendix we shall indicate the values of these parameters

in so far as they can be calculated. These values are either

well-known or easily calculated. For a reference to the known

formulas see Cohen (1969).

We begin with E{x }, the expected number of customers

served in a busy period. For the general GI/G/1 queue recall

that we let X = v , - u and S = X, + • • • + X , for n > 1,n n-1 n n 1 n —

with S„ = . Then t, = inf{n > 0:S < 0}. The general
1 n — 3

expression for E{t,} is given by

E{t,} = exp{ V n
1
P[S > 0]}

1 u
-> nn=l

an impossible expression to evaluate in general. Another useful

expression for E{x,} is

(A.l) E{ Tl ) = 1/P{W = 0} ,

where W is the stationary waiting time. In the special case

of the M/G/l queue, however, we have

E{T
n

} = (1 - p )

1
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Now for the queue GI/M/1 we can use (A.l) and the stationary

distribution of the embedded Markov chain to conclude that

E{t
1

> = (1 - 6)
X

where 6 is the root inside the unit circle of

z - U{y (1-z) } =

-su
1with U(s) = E{e }, Re s >_ , and where v is an exponential (y)

r.v. It is easy to check that 6 = p for M/M/l queues. Daley

(1975) has recently proposed the approximation to 6 given by

6 = a,(l-p)
2

+ 2(l-b 1
)p + (2b

1
-l)p

2
/

2where a, = P{u =0}, E{u, } = 1, and b = E{u-,}. This approximation

gives good results in a number of examples calculated by Daley

(1975) and may be useful for the purposes of this paper.

Next we turn to the computation of P{t,=1) and P{x =2}

For the GI/G/1 case we have

p{ Tl =i} = P{S
1

<_ 0}

and

P{t
1
= 2} = P{S

1
> 0, S

2
<_ 0},
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both of which can be worked out with a little effort. For the

M/M/l queue

and

P{x
1
=l) = (1+p)' 1

P{x
1
=2> = p(l+p)" 3

.

For the M/G/l queue

P{t
1
=1} = V(A)

,

" Av
owhere V(A) = E(e ), while for the GI/M/I queue

P{t
1
=1) = 1 = U(y) ,

where U(s) is given above. For the M/E./l and E./M/l queues

the value P{t,=2} can be calculated with some effort. As these

expressions are cumbersome they shall be omitted.

Finally we give various partial expectations which are

(4)needed for computing the means of internal control C, . Namely,

E{S* + S*/ t
x

>_ 2} = EfS^ S
1

> 0} + EfS*, S, > 0}

and

E{t 1' t
1 - 2} = e{t

i
} ~ Ht.^1}.

Here the symbol E{X,A} = E{Xl } , where X is a r.v., A an

event, and 1 the indicator function of A. In the special

case of the M/M/l queue,
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E{S 1# S > 0} = p/{y (1+p) } ,

<• si>°» =[ 2 (r^)
2

+ T^p]^ -

and

E {x
l'

t
i 1 2} = 2 P/ { (1 "P) d + P>> •
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