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1 . Introduction

The problem of interpolating or approximating data from

scattered measurements arises in many areas of science and

engineering. The importance of the problem has resulted in a

large number of methods for solution of the problem, as has been

noted in surveys by Schumaker [55], Barnhill [4], and more re-

cently by Franke [19]. The problem can be described very easily.

Given data ( x
. ,

y
.

, f .) , i=l,...,N, construct a (smooth) function,

F(x,y) such that F(x.,y.) - f . , i=l,...,N. No assumption is made

regarding the spacing of the independent variable data. More

generally, especially when the data are subject to errors, one

may wish to relax the interpolation condition and approximate the

surface. The problem has an obvious generalization to more

independent variables. The existence of many methods for such a

surface is due to the many sources of data and the great number

of possible dispositions of data points. Some advice on how to

proceed for given data is contained in Sabin [50]. It is clear

that no one method is satisfactory for all cases.

In the last few years a number of advances have been made.

Because of space and time limitations, this paper will be con-

fined to a few of those which I feel to be particularly important

or interesting. The first area concerns the mathematical under-

pinnings of the multiquadric method of Hardy [22] . This method

has previously been noted to work well in a variety of cases (see

Franke [19] and Kansa [29], for example), but until recently

little was known in terms of a mathematical theory for the

method. These developments will be reviewed in section 2. The



construction of surfaces with tension parameters or satisfying

constraints seems to be desirable based on the importance of such

ideas in the univariate case, and recent results are discussed in

section 3. Finally, since the amount of data is sometimes far in

excess of what is required to define a sufficiently accurate

surface, the problem of surface approximation and selection of

subsets on which to base interpolating (or approximating) sur-

faces has become important, and this topic will be treated in

section 4

.

There have been other developments which are important, but

will not be treated here. These include convergence of Shepard's

method (see Farwig [17]), interpolation on the sphere (see Lawson

[32], Wahba [63], Renka [49], Ramaraj [48], and Nielson and

Ramaraj [46] ) , and some new implementations of "finite element"

methods and related things such as derivative estimation and new,

higher order elements (see Alfeld [2-3], LeMehaute [33], [34],

Sablonniere [51]). Certain methods based on statistical ideas

(especially Kriging in geology and Optimum Interpolation in

meteorology) continue to be the focus of much effort in those

particular disciplines. Relevant recent references include

Journel [28] and Thiebaux [59].

2.0 Multiquadrics and Related Methods

The multiquadric (MQ) method was proposed by Hardy [22] , and

he has investigated the fitting properties of the method when

applied to data from various sources in a series of papers that

have appeared since that time [23-25]. The scheme is quite

simple to implement and is reasonably efficient in terms of



computer resources provided the number of points is not large. A

2 2 1/2basis function (a quadric) B. = (d. + r )
' is associated with

V J
J. 1»

the j data point. Here d. is the distance from the point (x,y)

to the j data point (x.,y.) and r is a parameter in the method.

Note that each of the basis functions is a radial function with

respect to the data point, and that they are all translates of

each other, which overcomes the usual problem of running afoul of

the Haar theorem regarding interpolation in more than one

variable. Now, a linear combination of the functions

N

F(x,y) = y\.. B.(x,y)

3 = 1

is required to interpolate the given data. This yields the

system of equations,

N

E3
j
(x

i ,y i
)a

J
= f. , i=l,2....,H

The existence of the interpolant is dependent on the nonsingu-

larity of the matrix {B .(x .
, y . ) } . Other authors have also inves-

J -*- -L

tigated the scheme, generally from an empirical point of view

[19], [27], [57]. These authors have found that the method is

quite adept at yielding good approximations, in many situations

better than any other method. In addition to this method, the

use of the reciprocal of the above basis function leads to the

"reciprocal" MQ method.

The MQ method is one of a class that I have previously

called "global basis function methods", and which others have

called "kernel" methods. In general the approximation takes the

form



N M

F(x,y) = J\. B.(x,y) + £V p.(x,y) ,

j=l j = l

where {p.} is a set of monomials of degree <m. The equations for
*J

the coefficients in such methods may be written in the form

N M

I]B
j
(X

i'
7 i

)a
J

+ SP
i

(X
i' 7

i
)b

i
= f

i'
i=1

'
'*

•

j = l .3 = 1

N

SP
i
(X

j' y j
)a

j
=

°
'

t=1
'

•••
'

M
•

j = l

The first of the equations require interpolation to the data by a

linear combination of the basis functions B.(x.y) plus the M

polynomial terms, P«(x,y), while the last set requires the coef-

ficients to satisfy a certain constraint, which as we shall see,

may related to the conditional positive definiteness of

(B.(x.,y.)}, and serves to guarantee exactness for the set of

polynomials {p-(x,y)}. In matrix form, we may write

\E' 0/\b/ W .

2.1 The Multiquadric Method: Theory

The intriguing aspect of the method is that until recently,

very little was known in terms of a mathematical basis for the

efficacy of the method, even whether or not the coefficient

matrix was possibly singular. As recently as 1983 at The Inter-

national Symposium on Surface Approximation, in Gargnano , Italy,

I proposed as a conjecture the inequality

(-l) N " 1 det{B
j
(x

i>
y.)} > .

As it turned out, Charles Micchelli promptly heard of the conjec-

ture, and subsequently proved it, and along the way, theorems



which answered some other questions as well.

To discuss the results of Micchelli [41] it is necessary to

define some terms and give some background information. Because

of the generalization to s-dimensional space, for this discus-

sion, points in R will be denoted as (possibly superscripted)

boldface vectors rather than subscripted coordinates.

Definition: A continuous function F(t), defined on [0,oc) is said

to be conditionally (strictly) positive definite of order k on R

if for any distinct points x , x , . . . , x in R , and scalars c.
,

c , . . .
, c such that

Z n
n

^Tc.ptx 1
) =

i=l

for all polynomials p over R of degree <k, the quadratic form

n n

ZEc
i
c
J
F(,ixi - x j

||
2

)

i=l j=l

is (positive) nonnegative.

Let the class of functions which are conditionally positive

definite of order k over R be denoted by P^(R ) . and the class

of functions which are conditionally positive definite of order k

over Rs , for all s, by P, . Further, recall that a function F is

completely monotonic on (0,°o) if it is in C (0,°o) and

(-l)mF (m) (t) > for all t>0 and m=0,l,2,... .

Theorem 1: F is in Pi whenever F is continuous on [0,oo) and

k ( k)(-1) F v (t) is completely monotonic on (0,oo).

This theorem is due to Schoenberg [54] for order k=0 . Fur-

ther, if F is not a polynomial of degree <k, and if the points in



"the definition of completely monotonic are distinct, "then the

2 1 /2quadratic form is positive. Take F(t) = ( r +t ) , and note

that for m>l, F (m) (t)=C ( -1 )

m ~ 1
(

r

2 +t

)

( 1_2m )/2 where C is am m

positive constant. This special case leads to the coefficient

matrix for the MQ method, which is seen to be conditionally

positive definite of order k=l.

When the constant r is taken "to be zero, each basis function

is the upper half of a cone, hence the interpolant is not smooth

at the data points. This particular interpolant is almost the

"multiconic" method of Duchon [13]. The difference is that the

multiconic approximation is consistent with the concept of

conditional positive definiteness of order one. The overall

approximation takes the form of a linear combination of the basis

functions plus a constant, with the additional constraint that

the coefficients satisfy,

n

E a
o

= °

This constraint is easily seen to guarantee precision for con-

stant functions. This special case, along with Theorem 1, is

convincing evidence that a constant and the corresponding con-

straint should be included in the MQ approximation. In a practi-

cal vein, however, my own limited tests have indicated that the

accuracy of the method is not always helped, and may be hindered,

by including the constant.

The "reciprocal" MQ method uses 2F'(t) for the basis

function, and thus the theorem shows that the coefficient matrix

for that scheme is positive definite.

6



Theorem 2: Let l=[s/2]-k+2 be a positive integer. Then for any

function defined on (0,°o ) such that ( -1 ) % ^
J

' ( t ) is nonnega-

tive, nonincreasing, and convex for j=0, 1, . .
.

, 1-2 on (0,qo) (if

1=1, we require only that it be nonnegative and nonincreasing),

it follows that F(\/t) is in Pk (R
s

).

Theorem 3: Suppose F' is completely monotonia but not constant

on ( ,
oo

) , F is continuous on [0,^) and positive on (0,°°). Then

for any distinct vectors x,x, ...,x in R (s arbitrary)

(-l) n_1 det{F(
!
|x

i
-x j

|

|

2
)} > .

This last theorem proves the conjecture about the coeffi-

cient matrix in the MQ method. However, the theorem also yields

similar results for interpolation by other sets of radial basis

functions . Some of those methods are known by other results to

always lead to nonsingular systems of equations, such as the

"thin plate splines" of Duchon [12-13] (see also Harder and

Desmarais [21] and Meinguet [37-40]), which are known to be

nonsingular because of their semi-Hilbert space setting. Others,

such as the basis function log( 1+ M x-x J
I i ) suggested by Dyn [16]

are also seen to be positive definite of order k=l.

Another result of interest in specific applications has been

obtained by Hardy and Nelson [26]. This result shows that the MQ

method has a basis for approximation of geodetic and gravita-

tional anomalies. The connection comes through the representa-

tion of the disturbing potential at point i due to anomalous

disturbances as a three dimensional integral,

J\7

P dV ,

V



where d. is the distance from the point i, p is the Laplacian of

the disturbing potential, and V is the volume of interest. What

Hardy and Nelson showed is that the MQ method can be interpreted

as a quadrature approximation to the above integral, one that is

required to yield the correct result at certain (the data)

points. While this particular result may say little about the

scheme as a general interpolation scheme, it is interesting that

such an interpretation exists for one of the early the uses of

the method.

The role of the parameter r in the MQ method has long puz-

zled investigators. The original interpretation given by Hardy

was a three dimensional one: His applications were actually in

3-space, and this value simply represented the z coordinate of

the locations of the disturbing (point) potential. Given that

the method performs so well, it seems likely that the MQ approxi-

mation can be described as approximation in some Sobolev-like

space similar to that for the multiconic method. A recent devel-

opment by Madych and Nelson [35] gives this result. The MQ

method does minimize a certain pseudonorm involving a weighted

integral. Further, the result applies to other similar schemes,

and thus may also lead to ways of deriving other approximations

with desired properties through explicit minimization of weighted

pseudonorms . If practical for computational purposes, such re-

sults could have far reaching implications in applied scattered

data approximation.

2.2 Multiquadric Method: Practice

In addition to the developments on the mathematical aspects



of the MQ method, some progress has been made in attempting to

solve such systems of equations by iterative means. A series of

investigations by Dyn and coworkers [15-16] have studied the

problems of fitting scattered data with linear combinations of

radial basis functions. The basic idea comes from the fact that

thin plate splines have basis functions which are the fundamental

solution of the biharmonic equation. The MQ basis functions are

solutions of Laplace's equation (in three dimensions). Thus,

when certain finite difference approximations to the iterated

Laplacian are applied to the equations, the resulting equations

tend to have a large diagonal term, which then yields a system of

equations amenable to solution by iterative schemes. This pro-

cess may be thought of as applying a conditioning operator to the

system of equations.

The idea of the conditioning operator is to transform that

part of the system of equations involving A into an equivalent

one which is better conditioned, perhaps even diagonally

dominant. In addition to transforming A suitably, the operator

is constructed to annihilate E. This yields a singular system

CAa = Cf , which has a unique solution, subject to the constraint

E'a = 0.

Construction of the conditioning operator involves triangu-

lation of the convex hull of the data point locations. Finite

difference operators are then derived which approximate the nec-

essary derivatives on the basis of the function behavior at the

vertices of the triangles. Some care is necessary to ensure that

the operators annihilate E, which corresponds to annihilating all

polynomials of degree <m on the given set of data points.



The results of applying these ideas to only a limited number

of irregular, but "quasi-regular" grids are reported in [16].

Nonetheless, the results are very encouraging, with the condition

number of the matrix being decreased by factors of up to 200 or

more for the MQ method with up to 121 data points. In addition

to the MQ method, the ideas are applicable to approximation by

thin plate splines and other radial functions, and these are

reported on as well.

One further interesting aspect of iterative schemes based on

this conditioning is that for the MQ method, shifted logarithm

2 2(log(d + r ) ) basis functions, and shifted thin plate spline

2 2 2 2((d + r )log(d + r ) ) basis functions certain nice spectral

properties of the matrix CA seem to occur. In particular, it was

noted that computationally, the "rough" eigenvectors correspond

to the smaller eigenvalues. Certain iterative schemes will re-

move those components quickly, leaving the surface corresponding

to the approximate solution (before iteration to convergence) as

a smooth one. Thus, terminating the iterative scheme prematurely

corresponds to a smoothing scheme . Numerical evidence and exam-

ples are given by Dyn, Levin, and Rippa [16]. See [14] in this

Proceedings for more recent results.

3.0 Surfaces with Tension or Constraints

In the univariate case, development of curves with tension

parameters, constrained approximation, and monotone and convex

approximation is at a high level. In each situation, several

reasonable schemes for obtaining such approximations are readily

available. In two or more independent variables, for scattered

10



data, the situation is not nearly so well developed. Indeed, the

idea of exactly what characterizes monotone behavior of scattered

data has not yet been clearly given. Nonetheless, there have

been some noteworthy developments in the general area of surfaces

with tension and surfaces satisfying certain constraint relation-

ships, both from theoretical and computational points of view.

3.1 Tension

A generalization of splines under tension to the scattered

data case was given by Nielson and Franke [45]. The basic idea

is that of approximation of the the surface by a "finite element"

method, such as proposed by numerous authors, among them Dooley

[10], Akima [1], Lawson [31], Nielson [43], and LeMehaute [33].

The first step of this process consists of trianguiation of the

x-y data in some reasonable way (e.g. , using the max-min angle

criterion). A certain "finite element" function is assumed over

each triangle. Ordinarily one wants a smooth surface, so at

least C functions are usually used. Depending on the element

chosen, certain derivatives must be estimated from the data. It

is this stage of the process which is crucial to the effective-

ness of the method (see Nielson and Franke [44]).

The incorporation of tension into the approximation is

achieved in the following manner. Let the vertices (x-y data

pairs) of the trianguiation be denoted by the set {V. }, an index

set of triangle edges joining V. and V. by N , and the edges of
i J e

the trianguiation by the set {e . . :ij£N }. The ordering of the

edges relative to the ordering of the data points is unimportant,

but each edge must appear only once in the set. Let E be the

11



union of the set, of edges. Define the set, of functions C(E) as

those which are C over the convex hull of the {V.}, restricted

to E. Let the vector <a. .> be given, with nonnegative compo-

nents , each corresponding to a tension parameter for the ij

edge. Now define the pseudonorm

8-(») = Tl /"r(f-f)
2

a?.(fE )
2

] de. .

ij*N -'e-.
e ij

There is a unique minimizer of S^(F) over all curve networks in

C(E) which interpolate the data. That minimizer is the function

which is a piecewise Hermite exponential (a linear combination of

1, u, axp(Q. .u), exp(-a. .u) , where u represents Euclidean dist-

ance along the edge, that takes on prescribed value and deriva-

tive conditions at the endpoints ) , and satisfying a certain

system of (sparse) linear equations for the partial derivatives

at the vertices. Asymptotic properties are as anticipated. For

simplicity, take all tension parameters to have the same value,

and then as tension goes to zero, the curve network approaches

the curve network minimizing the corresponding functional, as

developed previously by Nielson [43]. As the tension becomes

large, the curve network approaches the piecewise linear network

over the edges

.

After obtaining the curve network over the edges of the

triangulation , the surface is then completed using a C blending

method on the individual triangles. It is desirable to propogate

the effects of tension into the interior of the triangles, so the

previously known cubic blending techniques are inadequate. The

method used was an extension of the side-vertex scheme (see

12



Nielson [42]) where the radial projectors were taken to be expo-

nential Hermite functions. The net effect of the tension becom-

ing large is that the surface tends toward the the surface which

is piecewise linear over the triangulation.

The limiting behavior of the above construction is not the

physical analog of the limiting behavior of a thin plate under

tension. In an effort to model the behavior of the thin plate

under tension in two independent variables, Franke [20] developed

a surface which is the analog of the spline under tension in the

same way that thin plate splines are the two dimensional analog

of cubic splines. The "engineering" approach of Harder and

Desmarais [21] is followed. The idea is to use superposition of

fundamental solutions for a plate with tension to model the

displacement under point loads. The fundamental solution (under

appropriate assumptions about the plate parameters; satisfies

4
2 W - a

2AW - 6 ,

where a is a tension parameter. The solution is

tt) M t M sK
Q
(as)

r r t

W
Q (r) = (2tt)

x
/ t"

1
/ sK

Q
(as) dsdt + C ,

•'O

where, Kq is the modified Bessel function. The solution to the

interpolation problem is obtained by using this basis function (C

is taken to be zero) in a global basis function method with m=l.

Some experimentation was performed including linear polynomial

terms, since this is more consistent with thin plate splines.

For tension a - , the equation for the thin plate spline is

attained, and as tension gets large, the equation becomes the

membrane equation, which has no finite solution under point

13



loads. Examples are given which demonstrate that as tension is

increased the surface tends to behave somewhat like a rubber

sheet under point loads: too thick to be a membrane, but sup-

porting little displacement away from the data points.

Construction of surfaces under tension has also been consid-

ered by Terzopoulous [58]. These surfaces are the analog of

surfaces constructed by Briggs ' method [6], although the paper

also addresses the solution of the system of equations by multi-

grid methods. That appears to be quite effective, but will not be

addressed here. In addition, as with Briggs' scheme, the best

situation is when the data points all lie on a subset of a

rectangular grid. The present development has only a C under-

lying surface, which simplifies the calculations for minimization

of the functional.

The idea is to minimize the sum of a penalty functional

measuring closeness of fit to the data and the functional

L
p(x,y){r(x,y)(F^

x+2F^y
+F^

y
) + ( l-r(x, y ) ) (F^+F^ ) }dA ,

D*

where D is the region of interest in the plane, p(x,y) is the

"rigidity" of the plate and 0<r(x,y)<l is the "surface tension".

A rectangular grid is placed over the region D. While not neces-

sary in practice, for simplicity it is assumed that the data

points coincide with grid points. A nonconforming piecewise

quadratic finite element is assumed, and the equivalent finite

difference equations for the above functional are derived. These

equations are solved by multi-grid techniques. Local tension can

be achieved by allowing the tension parameter to vary over the

grid points. Discontinuities in derivative and value are also

14



considered. As with Briggs' method, the final form of the ap-

proximation depends on the grid at which it is evaluated. Unlike

Briggs' scheme, which is based on finite difference approxima-

tions to the plate equation, the underlying surface (although C )

would allow evaluation at other than grid points.

3 . 2 Constraints

The construction of approximations satisfying inequality

constraints as well as interpolation conditions has been investi-

gated by Villalobos [62], and Dubrule and Kostov [11]- The

former considered a generalization of Laplacian smoothing splines

(see Section 4.1), while the latter considers only interpolating

functions. The results are similar, and the latter will be

described here. The discussion centers on approximation by thin

plate splines. The functional minimized is the usual thin plate

functional, but under the given constraints. As had been pre-

viously shown by others, the solution involves adding basis

functions at constraint points that are found to be active, and

is solved as a quadratic programming problem. This method ap-

pears to be easy and effective. The practical aspects of the

method are discussed in the companion paper [30], where the

process is applied using Kriging, which formally includes thin

plate splines as a special case. Journel [28] discusses the

incorporation of this and other "soft" information into the

approximation by Kriging.

A more general problem and its elegant solution is consid-

ered by Utreras [61]. Here the problem is that of minimizing the

thin plate functional

,

15



(F 2 +2F2 +F 2
) dAxx xy yy

'

subject to interpolation conditions, and positivity conditions on

a certain subset of the plane, say

F(x,y) > for (x,y) e K C R2 .

Here the region K is assumed compact and convex. The existence

and uniqueness of the solution is proven using elementary means.

The characterisation of the solution of the problem is in terms

of the points where the constraints are active. Distribution

theory and the relationship of the functional minimized to the

biharmonic equation are used to show that the solution involves

the usual terms of the thin plate spline approximation plus a

certain term which serves to enforce the positivity of the func-

tion over the compact region K.

We digress to introduce some notation. Suppose that scat-

tered data is given with f . > . Let F(x,y) be the solution of the

constrained problem which interpolates this data. Define the set

K* - {(x,y) e K:F(x,y) = 0}. K' is compact. Let B^x.y) =

d 2 log dk , where d| - ( x-x
k )

2 +(y-y
k )

2
, and d 2 - x2 +y2 . The

following theorem, where * denotes convolution, is then proved.

Theorem; There exist constants a. and a positive measure A with

support contained in K* such that

N

F(x,y) = ^ ak Bk (x,y)
+ m*B

Q
(x,y) + P

x
(x,y) ,

k-1

where p. is a polynomial of degree <1 , and

N

Z-/
a
k q(xk' yk }

+ m(q) = °

k=l

for any polynomial q of degree <1

.

16



Convergence is investigated, and an algorithm is given for

computing an approximation to the positive thin plate spline.

The algorithm involves finding an approximation of the set K* and

the measure m such that the constraint is satisfied to within

some tolerance. The approximation is by points with atomic

measure, and since convolution with atomic measures give point

evaluation, the solution is approximated by functions of the same

type as in the Dubrule/Kostov program. The crucial difference is

that here the constraint set K' must be completely discovered as

part of the process, rather than being part of a finite subset

specified in advance.

4.0 Smoothing, Least Squares, and Subset Selection

In many applications the data is obtained by measurement,

often not to enough accuracy to warrant interpolation. In other

applications, such as oceanography and remote sensing, the amount

of data available, even though subject to errors, is much greater

than is necessary to define the desired surface to the required

accuracy. In these cases is is necessary to apply some smoothing

process or to perform least squares approximation with some

function having far fewer parameters than the number of data

points. The theory of smoothing splines in several variables is

well developed. For purposes of contrasting that idea with those

of least squares and subset selection, a brief discussion of

smoothing splines will be given.

4.1 Laplacian Smoothing Splines

Laplacian smoothing splines are a generalization of univa-

riate smoothing splines to several variables along the same
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direction as thin plate splines for interpolation. They were

mentioned by Harder and Desmarais [21] in their seminal paper for

the bivariate case under the physical interpretation of having

forces applied at the data points through springs with various

spring constants. This caused the surface to tend toward the

data points, but the not necessarily to pass through them.

The mathematical development of Laplacian smoothing splines

in the general case is given in Wahba and Wendelberger [64] . The

notation of Section 2.1 for points in s-dimensional space will be

followed in this discussion. The functional minimized in the

case of smoothing splines is

N

N
_1 ^[F(x j )-f

j]
2
/<7j + kJ

m ^ F)

j = l

where J is the pseudonorm associated with interpolating splines,m

and k is a smoothing parameter which governs the fidelity with

which the surface fits the given data. Here it has been assumed

that the errors are uncorrelated and have standard deviation c.

at the point x . The case of correlated errors is addressed

briefly in Wendelberger' s thesis [65],

Let a - (a*, a^, ... , Of) be a multi-index for partial

differentiation (denoted by F ), with each integer a. >_0 and \d
|

= a^a + • • • +a
s

- Then

Jm (F) =Z! /
(F«

)2 dx

|at=m •'R
3

In this functional one can think of m as a smoothness parameter,

the approximating functions being smoother (having higher order

derivatives) the larger m is. In order for the required func-
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tions to be in the appropriate spaces, it is necessary that

m>s/2.

The solution of the problem is of the same form as thin

plate splines,

N

F(x) = XX)V X) + qm-l (x)
'

j = l

where the coefficients a. and the coefficients ba of %,-a > a

polynomial of degree m-1, satisfy the system of equations

N

Va.tB.fx 1
) + NXj^..] + Vbfx 1

)

*

= f . , i=l,2, ... ,N

j=l )a|<m

N

^a
i
(x

1
)

0t
= 0, |a|<m.

1=1

In the above equations, <5 . is the Kronecker delta,

and ( x) = X-,
X

x ... x
s

.

1 <i s

The smoothing parameter X must be specified before the

smoothing spline can be computed, and Wahba and Wendelberger

suggest the use of Generalized Cross Validation (GCV) to select

the value. Although there is some evidence that GCV leads to

undersmoothing (see Seaman and Hutchinson [56]), Utreras [60] has

shown that GCV yields convergence under reasonable conditions.

GCV can also be used to decide on the smoothness parameter, m, to

be used, as well. A limitation of the scheme is that it is

difficult to compute when there are more than 200-300 data

points, since the problem involves the solution of a system of

more than N linear equations, although techniques such as those

of Dyn, described in the previous section, could be useful here.
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4 . 2 Least Squares Approximation

Least squares approximation to scattered data is an approxi-

mation with (presumably many) fewer basis functions than there

are data points. The problem at hand here, then, is to select

the basis functions. Previous work has been done using tensor

product cubic splines, and a number of authors (see ["], [8],

[9], for example) have considered the problem. Several computer

programs are available, and such methods are probably desirable

for cases where data is somewhat uniformly distributed. In cases

where the data is of greatly varying density, the use of tensor

products results in knot locations on a grid, and this may not

reflect the actual disposition of data points. In fact, there

could be knots with no data nearby. While such problems are not

insurmountable, they lead to nonuniqueness of the solution, and

the minimum norm solution tends to not be aesthetically pleasing.

For varying density of data points it seems desirable to

have flexibility in knot placement, and this leads to the idea of

least squares approximation by thin plate splines. The MQ ap-

proximations also could be used, however the discussion will be

in terms of thin plate splines, and the points at which these

basis functions are centered will be referred to as "knot"

points. Treatment of the knot point locations as parameters in

the minimization process is possible, and has been reported upon

by Schmidt [53]. The paper is brief, with few details of the

algorithm being given. The initial knot configuration was taken

to be of tensor product form, which may be apparent from the

final configuration of knots in the examples given. The overall

minimization process is a large nonlinear one, and if the
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problems of on© dimension carry over as one might expect, may be

complicated in that knots may coalesce and the solution may not

be unique. In addition it is likely true that the objective

function may have many local minima, so an algorithm to search

for a better local minimum, or to avoid a poor local minimum

would be necessary.

The problem with treating the knot locations as parameters

presently seems to be intractable mathematically, and for many

knots is computationally expensive, with results obtained being

of questionable quality. A different point of view on the prob-

lem is considered in McMahon [36], and a summary of his approach

and results will be given.

The main problem in the process is the selection of knots,

for once these have been decided upon, what remains is to solve

the equations in the least squares sense, in principle an unin-

teresting task. If the selection of knot locations is to be

decoupled from the least squares process, some assumption must be

made order to have an algorithm for selection of the knots. The

assumption in this case is that the independent variable data

reflects something about the behavior of the dependent variable.

For example, perhaps the density of data point locations is

dependent on the curvature of the surface, or more broadly, if

the function is changing behavior rapidly the density of data

points is great, whereas low density indicates slowly changing

behavior. This assumption is not universally satisfied in prac-

tice, for some data is taken based on accessibility (along roads

in rugged areas, for example) or other nonbehavioral criteria.

The assumption of data density indicating local behavior of
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the surface has a companion assumption that each data point is in

some sense equally important in defining the function, regardless

of whether it has a nearby neighbor or not. This leads to the

idea of "equal representation" for each data point by a knot

point. This means that each data point should be "close" to a

knot point, and that each knot point should "represent" about the

same number of data points. These two ideas are crucial to the

knot selection algorithm. First, it is desirable to minimize the

sum of the distances squared from each data point to the nearest

knot point. Let the knot point locations be given by (St.,f.),

j-1 , 2, . .
.

, K. Then the function to be minimized is

N

GN 2 = ^minnx^-a^+Cy^-y:,) 2
;

k=l j

This process has a default Dirichlet tesselation with respect to

the knot points, with each data point "belonging" to some knot

point by virtue of the Dirichlet tile to which it belongs. When

a data point lies on a tile boundary, some determination of which

it belongs to, or whether it is shared must be assumed. Local

minima for the above function are easily characterized: At a

local minimum, each knot point (x.,y.) is the centroid of the

data points in its tile. This leads to a nice algorithm for

iteration to a local minimum, by repeated computation of the

centroid of the data points in the Dirichlet tiles.

This algorithm works very well for obtaining a local minimum

9
of the function GN . Unfortunately the function is rife with

local minima, so that finding a desirable one depends on the

proper initial guess. Here the second idea regarding "equal

representation" comes into play. Since each data point is
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assumed equally important, it is reasonable to expect that the

Dirichlet tile for each knot should contain about the same number

of data points. This leads to a heuristic for a new initial

guess at knot locations once a local minimum for GN has been

found. It is still considered desirable to be at a local minimum

2 2of GN , but the idea of finding a global minimum of GN is

abandoned for the "equal representation" idea. Once a local

minimum has been found, a new measure of "goodness" is computed.

Let N. be the number of points in the Dirichlet tile for the j

knot point (£.,y.). Let

K

-E (N^N/K) 2
,

j = l

a measure of the "equal representation" for a particular knot

configuration. It was then attempted to determine knot locations

2which achieve a local minimum of GN and which also yield a small

value, hopefully a minimum, of D.

The general idea of the algorithm is to "nudge" the knot

locations from a local minimum of GN toward a configuration with

smaller D value. The rationale for this is to attempt to move

the tile boundaries across data points, yielding a more equitable

distribution. The search for the minimum of D could turn out to

be rather extensive, and for a large number of points with a

moderately large number of knot points, the computational effort

can be excessive. End results are still somewhat dependent on

the initial guess, although the results generally tend to look

quite reasonable. The program incorporates the option of inter-

nally generated ( quasi-gridded) or user input initial guesses.
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Examples are given which illustrate rather well the ability

of the scheme to select knot locations which reflect the under-

lying density of the data. Actual surface fitting and comparison

with two other methods, the Laplacian smoothing splines of Wahba

and Wendelberger , and the tensor product bicubic Hermite method

due to Foley [18], are reported upon. One example illustrates

the failure of the fitting scheme to accurately model the surface

when the data density does not reflect the underlying behavior of

the surface, as was assumed.

9

4 . 3 Subset Selection

To my knowledge, the first investigation into the use of a

subset of scattered data points upon which to base an interpolant

to be used as an approximation for the entire data set was by

Pickrell [47] . The application guided many of the ideas involved

in the thesis and they are not universally applicable.

Pickrell 's goal was to model underwater terrain from a large

number of measured depths, which were quite accurate, the most

important being those which were on ridges or other shallow

areas, since the resulting approximation could be used to gener-

ate charts for navigation.

The idea was to select as small a subset of points as pos-

sible such that the interpolant for these points yielded a sur-

face that satisfied a certain error tolerance at all the other

data points. An iterative scheme was used. Beginning with an

initial guess, either taken "uniformly" spaced over the region of

interest, or by perusal of the data for "critical" points such as

high and low values or areas of sharp gradients. Call the selec-
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ted points the "model" points. The interpolant (the MQ method

was used; parameter r=0 generally performed best) was constructed

and the deviation at other data points computed. Based on this

information, other points at which the deviation was large, or

one from a group of nearby points where deviations of the same

sign occurred, would be included in the set of model points.

Points with small coefficients might be eliminated from the set

of model points, as well. The investigation did not yield an

algorithm suitable for approximation with no intervention by the

user, since this was performed interactively by Pickrell. In the

examples reported, the required number of model points was gen-

erally on the order of 10-20% of the total number of points.

However, only limited consideration was given to the handling of

very large data sets which would require local application of the

ideas with a scheme for joining the pieces together.

These deficiencies and other matters were addressed by

Schiro and Williams [52]. In addition to automating the model

point selection process, he subdivided the region into kernel

groups based on a measure of homogeneity of the data. As a

starting point the region of interest was divided into a rectang-

ular grid of cells of size equal to the minimum to be considered.

The mean and standard deviation of the function values (again,

ocean depth data) were computed for each cell. Then, the cells

were considered in turn as a base cell, and contiguous cells

(with larger coordinates) having mean values within one standard

deviation of the mean for the base cell were combined to form a

larger rectangular cell, when possible. This larger group of

cells is called a kernel group. Thus, each kernel group in the

25



final subdivision was made up of one or more contiguous cells in

the original subdivision, all of which have similar mean behavior

The selection of model points for each kernel group is done

without user intervention. The initial set is chosen based on

deviation from the mean value. (Of course, if all points are

within the tolerance of the mean value, the mean value is used as

the approximation for the kernel group. ) The idea is similar to

Pickrell's: points with large deviation are selected to be added

to the set of model points, with the proviso that points closer

than a certain distance cannot be selected on the same iteration.

This avoids the problem of adding several points very close

together on the same iteration. The process is continued until

the deviations are below a specified tolerance.

The overall surface is made continuous by blending adjacent

surfaces when within a certain distance from boundaries of the

kernel groups. This is done via Hermite cubics to obtain a

smooth transition. The MQ method with r=0 was used to fit the

differences, data minus mean value, and this was observed to have

a beneficial effect in terms of the magnitude of the coefficients

in the representation.

Another approach to subset selection was taken by Bozzini

,

deTisi, and Lenarduzzi [5]. Here an attempt was made to deter-

mine a subset of points to be used to compute the approximation

by doing local computations to determine whether a particular

point has a significant influence on defining the surface. A

description of the ideas will be given. The first step is to

partition the region of interest into (probably overlapping)

regions of given shape (e.g., circular disks) by taking the
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region R. as large as possible so that

77^-t/ lf(x)-f.
a (RiVR. i,|

dx < K. , for some constant K.area Ki ) / •» j- 1 1

The value of K. specifies a kind of homogeneity of f(x) over R.

.

Then, for a weighting function c$ . (x), let

d. = / jf(x)-f.| <*(x) dx // 4>(x) dx

This value serves as measure of the level of homogeneity in the

region R . , weighted by 4> . Then a measure of the behavior of f(x)

at point i relative to point j (point j also in R. ) is given by

These values are averaged over the points in R. to obtain s.

.

The value of 3. is a measure of the what the authors call the

"importance" of the point i in the data set, and hence to the

definition of the approximating surface. The integrals in the

definition are approximated with the obvious quadratures in the

application. The point with the largest corresponding value of

s. is chosen. The process can then be repeated from the computa-

tion of the s. to obtain more points, or one can choose the

subset with the largest s. values from the initial calculation.

According to the authors, the method is not to sensitive to

deletion of a point from the set. Some examples are given to

illustrate approximation of surfaces from subsets of a given set

of points.
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