
Department of Administrative Sciences

FEDDOCS
D 208.14/2:

NPS-AS-91-04

v REASONING WITH ASSUMPTIONSJPEFEASIBLY,
IN MODEL FORMULATION

Hem a n t K.< Bhargava

and

Ramayya Krishnan

)
Working Paper No. 91-04

":
. /

Naval Postgraduate School.
u

Monterey, California

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36722946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DUDLEY KNOX LIBRARY

NAVAL POSTGRADUATE SCHOOL
MONTERFV C& 63843-5101

N?CJT)0C£ , ,

L7L

Working papers of the Naval Postgraduate School Department of Administrative

Sciences are preliminary materials circulated to stimulate discussion and critical

comment. The views stated herein are the author's and not necessarily those of

the Department of the Navy or the Naval Postgraduate School.

List of working papers on inside backcover.

For additional copies, write to:

Department of Administrative Sciences

Working Paper Series

Code AS
Naval Postgraduate School

Monterey, California 93943-5026

(408) 646-2471

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREV CA 93S43-51Q1

Reasoning with Assumptions, Defeasibly, in Model Formulation

Hemant K. Bhargava *

Naval Postgraduate School

Monterey CA 93943

5186p@navpgs.bitnet

(408) 646-2264

Ramayya Krishnan

Carnegie-Mellon University

Pittsburgh PA 15213

rk2x+@andrew.cmu.edu

(412) 268-2174

October 4, 1991

Abstract

This paper examines the relevance of reasoning with

assumptions in two processes that are desired to be

supported in model management systems, namely mo-

del formulation and model version management. We
submit, and illustrate with an example, that the abil-

ity to represent and reason with assumptions in mod-

eling languages could lead to significant improvement

in the functionality of model management systems.

We also argue that the process of reasoning with

assumptions is non-monotonic and propose that de-

feasible reasoning is a useful candidate for modeling

this process.

1 Introduction

This paper examines the relevance of reasoning with

assumptions in two processes that are desired to be

supported in model management systems, namely mo-

del formulation and model version management. A

model is often defined as a collection of assumptions.

In this sense developing, and reasoning with, assump-

tions is a fundamental process in modeling. Yet, few

languages and systems for model management pro-

vide useful ways to represent, and to reason with,

assumptions. It then becomes relevant to pose the

following two questions. One, would the ability to

'This author's work on this paper was performed in con-

junction with research funded by the Naval Postgraduate
School.

represent and reason with assumptions lead to sig-

nificant improvement in the functionality of model

management systems? Two, how should assump-

tions be represented in a language for model man-

agement, and what inference mechanisms would yield

the desired functionality? In this paper we mainly at-

tempt to provide an affirmation of the first question

by motivating the need for an explicit representation

of assumptions, and mechanisms for reasoning with

them, in modeling languages. It is our secondary pur-

pose to provide partial answers to the second ques-

tion.

The model construction process usually involves

the development of mathematical abstractions corre-

sponding to selective aspects of a problem situation

[6, 8, 15]. The specific mathematical formulation de-

pends largely on what assumptions are made by the

modeler, and its usefulness depends partly on how

reasonable these assumptions are. Yet, in studies

of modeling practice, Gass [8] found that "analysts

do not document, cannot or will not write well, will

not state modeling assumptions, ..." While recently

developed algebraic modeling languages (e.g., [3, 7])

support the modelers' algebraic notation directly, and

even provide means for the representation of addi-

tional qualitative information (e.g., [2, 1, 4, 9]), they

have few features for the representation and use of

assumptions.

Research in computer-aided model formulation is

concerned with the analysis, design and development

of computer systems to assist human modelers in the

formulation of models. We argue that the process

of reasoning with assumptions during model develop-

ment is non-monotonic, in that a change in (or ad-

dition of) an assumption might cause the modeler to

delete previously developed components of the model.

We will illustrate with an example that defeasible rea-

soning is a suitable method for (non-monotonic) rea-

soning with assumptions in model management sys-

tems. That is the subject of §3. First, we give a

quick introduction to defeasible reasoning in the next

section.

2 Defeasible Reasoning

Predicate logic and sentence logic are systematic meth-

ods of reasoning, which, for most practical purposes,

can be viewed as reasoning with a set of rules that can

be stated in the form: IF conditions fa,. . . ,<j>„ are

true, THEN conclusion xp holds (or, <j>i,

.

.
.

,

<j>n —< ip).

Such logics have the property that they are mono-

tonic, i.e., the addition of new premises may lead to

new conclusions but cannot override earlier conclu-

sions. Defeasible reasoning is a form of non-monotonic

reasoning, in that it allows tentative conclusions to be

defeated in the face of new, relevant information.

Defeasible reasoning works with three kinds of

rules, called absolute rules, defeasible rules, and de-

featers [12].
l In this sense, the rules of first-order

logic are all absolute, in that a conclusion of a rule

must hold if all its conditions are true. An example

is the rule

V x (penguin(x) —< bird(x)) (Rule A)

A defeasible rule is a rule whose conclusion is nor-

mally true when its antecedents are, but which con-

clusion may be defeated in the face of new informa-

1 We will use the operator —• for absolute rules, => for de-

feasible rules, and —» for defeaters.

tion. An example is the rule

V x (bird(x) => flies(x)) (Rule B)

which represents the observation that, typically, birds

fly. Of course, penguins and ostriches and sick birds

do not fly. Defeasible reasoning allows us to conclude,

in the absence of other information, that a bird flies.

And it prevents such a conclusion when appropriate

information is available. Defeasible rules can be de-

feated by other (conflicting) defeasible rules, or by

defeaters. In the first case, a defeasible rule simply

prevents the firing of the defeasible rule whose con-

clusion it contradicts. A defeater's role in defeasible

reasoning is to prevent a defeasible inference from

taking place. An example is

V x (bird(x), sick(x) »-» -n flies(x)) (Rule C)

Given a sick bird, this rule alone will not allow

us to conclude that it does not fly (indeed, there are

sick birds that do fly), but it will prevent the earlier

defeasible rule (B) from being used alone to conclude

that it does fly. The final conclusion will depend on

the other rules available and on the specificity of dif-

ferent rules that apply. The calculus of defeasible rea-

soning (really calculi, since there are several versions

of it) specifies how conclusions are reached in the

presence of possibly conflicting absolute rules, defea-

sible rules, and defeaters, some of whose antecedents

we may have no information about. Nute's version

of defeasible reasoning [12] uses a defeasible reason-

ing meta-interpreter to place the calculus of defeasi-

ble logic within a first-order logic framework, and is

supported by an implementation called d-Prolog [13].

Causey [5] describes a shell for defeasible reasoning,

EVID, which differs from Nute's d-Prolog in its treat-

ment of defeasible rules and negation by failure. One

of the interesting charactersitics about EVID is the

built-in meta-predicates (such as why, howdefeatit)

that explain why the system did or did not reach a

certain conclusion, or what would be required to de-

feat a certain conclusion.

3 Reasoning with Assumptions:

Model Development

There is general agreement among researchers in com-

puter-aided model construction that the cognitive pro-

cess employed in model creation involves the applica-

tion of a series of general model formulation rules con-

stituting a modeler's knowledge about models, model

classes, and modeling paradigms, to the information

the modeler obtains about the specific problem situa-

tion [10, 11]. Consequently, considerable research on

model construction has focused on building systems

that combine a set of such general purpose inference

rules with a domain-specific knowledge base. We be-

lieve, however, that there is a significant difference in

the way modelers use such rules and in the way model

formulation systems have attempted to do so.

Most of the earlier research efforts directed at

developing rule-based systems to support the con-

struction of mathematical programming models have

either ignored, or have made implicit, the role of

assumptions in the modeling process. For example,

a system for linear programming formulation [10] au-

tomatically and implicitly assumes, on detecting a

problem with "sources" and "destinations," that the

demand at the destinations must be fulfilled. Thus

the rules in such systems implicitly rely on certain

assumptions that may not be made clear to the user

and that may often not be verified. Further, we find

that the process of reasoning with such assumptions

is defeasible. In this section we show that the the-

ory of defeasible reasoning can be used to represent,

and accurately model the process of reasoning with,

assumptions.

Our application of defeasible reasoning to model

construction is based on the premise that modelers

first develop initial versions of a model based on cer-

tain core and obvious information about the prob-

lem, and on some default assumptions. They then

retract or modify some of the earlier conclusions af-

ter deeper examination of the problem situation and

of the assumptions that underlie these earlier ver-

sions. Thus the process of reasoning while apply-

ing modeling knowledge during model construction is

non-monctonic. If a rule-based system is to support

this process, it must also be able to make tentative

conclusions and revise them in the face of additional

information. In what follows, we illustrate that a

system using defeasible reasoning in model construc-

tion has the following kinds of advantages: a) for a

given problem, the system can support the develop-

ment of multiple alternative mathematical formula-

tions which contain differences in their assumptions,

b) the system can support model revision and main-

tenance as the problem situation or beliefs about it

change over time, and c) the rule base of the system

can be methodically and easily revised over time to

incorporate new knowledge just as modelers change

their rules over time as they learn. We do so with the

following example.

Example 1 Power Transmission

Electric power needs to be transmitted

from a set M of power plants to a set N of

electric companies. Company j requires

dj units of power. We have a^ units of

power available at plant i. It will cost Cj
;

to transmit one unit from plant i to com-

pany j , and we would like to minimize the

transmission costs. What we need to de-

termine is the number of units i i; that go

from plant i to company j.

This description suggests that the problem can be

formulated mathematically as a transportation mo-

del. Of course, this formulation assumes that the

transmission cost is directly proportional to the num-

ber of units transmitted.

Model la

Minimize YJ Yj cij x ij

«'€M j£N

2_. x >j < a
« ^ l € A/

«•< £x >dj Vj€7V

i - > V» € M V; e iV

This is an appropriate formulation given the available

information. Notice that this formulation assumes

that there are no losses during shipment (transmis-

sion). Indeed that is a reasonable assumption to

make in general, and one that most rule-based sys-

tems would make. In a rule-based system the second

set of constraints would be derived using rules of the

following type.

Amount Xjj is shipped from source i to destination j

— total shipment to destination j = Yj Xij (1)

Demand at destination j = dj

— constraint(total shipment

to destination j > dj) (2)

Similarly, the objective function might be derived us-

ing the following rule.

is reasonable to prevent, without further investiga-

tion, the firing of this rule. We can accomplish that

by making rule 1 defeasible (to obtain rule 4), and

by adding a defeater (rule 5) which negates (->) that

rule's conclusion.

Amount x,
;

is shipped from source i to destination j

=> total shipment to destination j = Yj x ij (4)

There are shipment losses

h-» ->(total shipment to destination j = Y~] xij) (5)

Notice here that there could be several other de-

featers for each conclusion, some of which will not be

relevant to our example. For instance, rule 1 could

also be defeated if the customer (destination) could

reject certain shipments or could return them at a

later time. Since the preconditions of these defeaters

are not satisfied, they do not enter the reasoning pro-

cess at all. Returning to the defeater of rule 5, how-

ever, the system would now be forced to search for

an alternate rule that had a similar consequent (total

shipment) and whose antecedents were true. The fol-

lowing rule from our defeasible rule base would now

apply.

Amount x,
;

is shipped from source i to destination j

AND unit cost of shipment from source i

to destination j is c,
;

— objective(Minimize >J yj ci; x«j) (3)

However, now suppose we wish to take account of

losses in shipment, which in our example are trans-

mission losses. Then the conclusion derived using

rule 1 appears to be incorrect, though it might still be

appropriate if the losses are negligible or if we choose

to ignore them in our optimization. In any case, it

Amount Xij is shipped from source i to destination j

AND a fraction /
(J

is lost in shipment

from source i to destination j

=> total shipment to destination j

= E0 -/.;)*.;• (6)

Further, rules 2 and 3 assume respectively that

demand must be met (or exceeded), and that the

selling price is the same for each (i,j) pair. Now

suppose that we want the system to model the fact

that the selling price can vary, that it may not even

be profitable to supply certain customers, and that

a revenue would be earned for only as many units

as each customer requires. In our example, assume

that an electric company j is willing to pay pij for

1 unit of power received from plant i. Any supply

over a company's total requirement would be wasted

and would earn no revenue, invalidating the previous

demand constraint and objective function. The fol-

lowing defeaters would prevent what earlier seemed

to be obvious conclusions.

Marginal revenue for supply exceeding demand is zero

•— -<(constraint(total shipment

to destination j > dj)) (7)

Selling price can vary over (i, j) pairs

•— ->(objective(Minimize YJ YJ cij x ij)) (8)

The following rules from our defeasible rule base would

be used to reach new conclusions.

Demand at destination j = dj

AND marginal revenue for exceeding demand is zero

=£• constraint(total shipment

to destination j < dj) (9)

Amount z
tJ

is shipped from source i to destination j

AND unit cost of shipment from source i

to destination j is C{j

AND selling price of a unit shipped

from source i to destination j is p^

=>• objective(Maximize ^J V] (P>;
- c«j)

I
«j) (10)

i6M;£JV

Our problem would now have the following mathe-

matical formulation.

Model lb

Maximize J^ ^(Pi; - Cij)x {j

J2 x
>i - ai Vi€M

j€N
sL X*(i-'y)*s < d

i Vje^

Hj > Vi € M Vj E N

What we have illustrated thus far is how a defea-

sible knowledge base could be used to develop simple

initial versions of a model and then to systematically

revise pieces of it in the face of additional information

to make the model a more accurate reflection of re-

ality. It might appear that rather than go through a

process of defeasible reasoning, we could have devel-

oped and directly used "exhaustive" absolute rules

that took into account all such additional informa-

tion. That would be missing the point since a) the

model construction rules and process would become

far more complicated if we had to reason about all

possibilities at the start, and b) there would still be

defeaters to these new rules that reflected other ex-

ceptional conditions.

How robust and generalizable is this technique?

In other words is the example contrived to fit the de-

feasible rule base (or perhaps vice versa) or can such

rule bases be created to handle other kinds of situ-

ations? One might argue that even with a defeasi-

ble knowledge base we might have overlooked certain

conditions, and that we might learn of some such con-

ditions at a later time. Is there a systematic way to

revise the rule base that will not affect the validity of

existing rules? We extend this example to illustrate

how this is done

Consider the supply constraint in our previous two

formulations. This would have been derived using the

following rules.

Stock available at source i is ai

=> constraint(total shipment from source i

<a.) (11)

Amount x,
;

- is shipped from source i to destination j

^ total shipment from source i = VJ x,
; (12)

However, now suppose that it were possible to

procure additional units at source t at a procurement

price pi per unit and that these additional units had

an overhead transmission cost of cf, per unit. Then if

there were unsatisfied demand, and it were profitable

to meet it, we would want to defeat our earlier conclu-

sions about the supply constraint and the objective

function. Denote the procurement at each plant by

y,-, and suppose that the total budget for this pro-

curement is B. What we need to do is to update our

knowledge base in order that the system can reason

appropriately in a situation of this sort.

First, we note that rule 11 is no longer valid in

case additional units can be procured. Second, the

right-hand side of the constraint needs to be modified

to account for the additional units. We can encode

this knowledge into the following rules.

Additional units can be procured

for shipment from source i

k-» ->(constraint(total shipment from source i

<«<)) (13)

Stock available at source i is a,

AND yi additional units can be procured

for shipment from source i

=> constraint(total shipment from source i

<Oi + JH) (14)

Note that these rules are independent of the ex-

isting rules in the knowledge base, in the sense that

the earlier rules are still valid and will indeed be used

when there is no information on procurement or when

additional units can not be procured.

Next we wish to encode the knowledge that the to-

tal amount spent on procuring additional units must

not be greater than that available. This is done by

the following defeasible rules.

y, additional units are procured

for shipment from source t

AND unit procurement price at source i is p,

=> total procurement cost = Yj PiTJi (15)

Procurement budget is B

AND total procurement cost is C

=> constraint(C < B) (16)

Finally, we wish to modify the objective func-

tion to account for the overhead transmission cost

for these additional units. We add a defeater to de-

feat the previous rule (10) and add a new defeasible

rule to the knowledge base.

Overhead transmission costs exist for certain units

h-» -i(objective(Maximize _] /] (pij ~~ frj)xij)) (17)

Amount x tj is shipped from source i to destination j

AND unit cost of shipment from source i

to destination j is c,^

AND selling price of a unit shipped

from source i to destination j is pij

AND yi additional units are procured

for shipment from source i

AND overhead transmission cost for

additional units from source i is d{

=> objective(Maximize

Z) Zfoi " "«)*« " Z dM) (18)

i6A/;€jV i€A/

Now these rules would apply to the revised in-

formation about the problem situation to create the

following mathematical formulation, which is quite

different from the original formulation.

Model lc

Maximize^ ^2(Pij - cij) x ij ~ Yl diy^

^x tJ
- < a, +y< Vi€ M

si. j€ ^r

*^,y<>0 VieA/Vje^

We have illustrated how a knowledge-based mod-

eler based on defeasible reasoning would represent

and reason with assumptions. Specifically, we showed

that defeasible rules and defeaters could be employed

to make tentative conclusions based on the available

information, and to revise them suitably when further

information about the problem becomes available. It

is easily seen that a defeasible reasoning system's

built-in metapredicates (see §2 could provide useful

information to a modeler in the model formulation

process. For example, the predicate howdefeatit [5]

could be used to examine under what circumstances

a certain constraint or objective function would be

an invalid (or valid) representation of the problem

information. Our examples show that a rule-based

system for model formulation could be made more

useful by the inclusion of defeasible reasoning calcu-

lus to enable the system to reason with assumptions.

Now we turn to a brief discussion of other ways in

which the representation of assumptions could pro-

vide useful functionality for model formulation in a

model management system.

The process of model development often results

in several model versions, where each version corre-

sponds to a certain set of assumptions. A change

in an assumption affects not only the rules that get

defeated as a consequence, but also other rules that

have antecedents that are now no longer valid. For

instance, in Example 1, a change in the assumption

about shipment losses altered the model for total ship-

ment at a destination. In addition, this change also

invalidated the old formulation of the demand con-

straint and created a new one. A change in an assump-

tion immediately raises the question "Which compo-

nents of a model are affected by this change?" A

system that represents model assumptions explicitly

should be able to answer this question. Such a sys-

tem would have the information necessary for it to

a) retrieve the assumptions underlying a given model

version, b) isolate the differences or commonalities

in assumptions between two different model versions,

c) explain the consequences of a change in an assump-

tion, d) examine whether a model version is consis-

tent with a given set of assumptions, and e) retrieve

all model versions that are consistent with a given set

of assumptions. We submit that this would be mate-

rially useful in a model development process wherein

several model versions are developed and refined be-

fore the final model is formulated. While we have not

specified how all of this might be achieved, we hope to

have made clear the need to explicitly represent and

reason with assumptions in a model management sys-

tem.

4 Conclusions

There is general agreement among researchers that

the cognitive process employed in model creation in-

volves the application of a series of general model

formulation rules constituting a modeler's knowledge

about models, model classes, and modeling paradigms,

to problem-specific information and assumptions. How-

ever, most research efforts directed at developing rule-

based systems to support the construction of mathe-

matical programming models have either ignored, or

have made implicit, the role of assumptions in the

modeling process. In addition, they have not suit-

ably modeled the process of reasoning with assump-

tions. This process involves making tentative conclu-

sions (either because of the unavailability of certain

information or to keep the formulation simple at the

start) and then revising these conclusions to reflect

new information about the problem. We have ar-

gued that the theory of defeasible reasoning is effec-

tive in explicitly and systematically representing the

consequences of making certain assumptions, and in

modeling the process of reasoning with assumptions.

Modeling knowledge can be represented using abso-

lute rules, defeasible rules, and defeaters. Defeasi-

ble rules are employed in making conclusions under

some tacit assumptions that are normally satisfied.

Their use is prevented by defeaters and other defea-

sible rules when information to the contrary is avail-

able. The details of implementing all of this in a

formal system remain to be developed—and it is not

clear how this might be done—but we believe that the

issues discussed in this paper raise some interesting

research challenges for the logic modeling and model

management communities.

References

[1] Bhargava, H.K., and S.O. Kimbrough, "Mo-

del Management: An Embedded Languages Ap-

proach," Decision Support Systems, forthcom-

ing, 1992.

[2] Bhargava, H. K., "A Logic Model for Model

Management: An Embedded Languages Ap-

proach," Ph.D. Dissertation, University of Penn-

sylvania, 1990.

[3] Bisschop, J., and A. Meeraus, "On the Develop-

ment of a General Algebraic Modeling System in

a strategic planning environment," Mathemati-

cal Programming Study, 20, 1982.

[4] Bradley, Gordon H. and Robert D. Clemence,

Jr., "Model Integration with a Typed Executable

Modeling Language," Proceedings of the Twenty-

First Annual Hawaii International Conference

on System Sciences, Vol. Ill, Decision Support

and Knowledge Based Systems Track, B.R. Kon-

synski, ed., (January 1988), 403-10.

[5] Causey, R.L., "EVID: System for Interactive De-

feasible Reasoning," Decision Support Systems

Special Issue on Logic Modeling, forthcoming,

1992.

[6] Clements, R.R., Mathematical Modeling: A Case

Study Approach, Cambridge University Press,

New York, NY, 1989.

[7] Fourer, R., D. Gay, and B.W. Kernighan, "A

Mathematical Programming Language," Man-

agement Science, 36: 5, May 1990.

[8] Gass, S., "Managing the Modeling Process: A
Personal Reflection," European Journal of Op-

erations Research, Vol. 3, No. 1, 1987.

[9] Geoffrion, Arthur M.,"The SML Language for

Structured Modeling," Working Paper No. 378,

Western Management Science Institute, UCLA,

1990. (Two-part extract forthcoming in Opera-

tions Research.)

[10] Krishnan, R., "PM*: A Logic Modeling Lan-

guage for Model Construction," Decision Sup-

port Systems, Vol. 6, pp. 123-152, 1990.

[11] Murphy, F., and E. Stohr, "An Intelligent Sys-

tem for Formulating Linear Programs," Decision

Support Systems, Vol. 2, pp. 39-47, 1986.

[12] Nute, D., "Defeasible Logic and the Frame Prob-

lem," in Knowledge Representation and Defea-

sible Reasoning, Studies in Cognitive Systems,

Kluwer Academic Publishers, Boston, 1990.

[13] Nute, D., and M. Lewis, "A User's Manual for

d-Prolog,", Advanced Computational Methods

Center, University of Georgia, Athens, Georgia,

1990.

[14] Raghunathan, S., "An Artificial Intelligence Ap-

proach to the Formulation and Maintenance

of Models," Ph.D. Dissertation, University of

Pittsburgh, 1990.

[15] Saaty, T., and J. Alexander, Thinking with Mod-

els: Mathematical Models in the Physical, Bi-

ological, and Social Sciences, Pergamon Press,

New York, NY, 1981.

Distribution List

Agency No. of copies

Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22314

Dudley Knox Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943

Office of Research Administration 1

Code 08
Naval Postgraduate School

Monterey, CA 93943

Library, Center for Naval Analyses 1

4401 Ford Avenue
Alexandria, VA 22302-0268

Department of Administrative Sciences Library 10

Code AS
Naval Postgraduate School

Monterey, CA 93943

Ramayya Krishnan 1

SUPA
Carnegie-mellon University

Pittsburgh, PA 15213

Sumitra Mukherjee 1

SUPA
Carnegie-mellon University

Pittsburgh, PA 15213

Hemant K. Bhargava 5

Code AS/Bh

Naval Postgraduate School

Monterey, CA 93943

List of Recent Working Papers

1991

91-01 Shu S. Liao, Thomas P. Moore, and Andrew G. Mackel

"Modeling the Transportation and Logistic Support System for the Aviation

Assets Aboard a Navy Aircraft Carrier", October 1990.

91-02 Nancy Roberts
"Case Development Program Naval Postgraduate School: An Overview," May
1991.

91-03 Thomas P. Moore
"Collection of Wartime Data-are Reserves the Solution?," August 1991.

1990

90-01 Hemant JL Bhargava
"A Simple and Fast Numerical Method for Dimensional Arithmetic," March 1990.

90-02 Thomas P. Moore
"A Multiple Repairable Equipment and Logistics-Maintenance System (REALMS)
Model," April 1990.

90-03 Daniel R. Dolk
"Structured Modeling and Discrete Event Simulation," August 1990.

90-04 Daniel R. Dolk
"Model Integration and Modeling Languages," March 1990.

90-05 William R. Gates and Katsuaki L. Terasawa
"The Economics of Defense Alliances," June 1990.

90-06 Katsuaki L. Terasawa and William R. Gates
"Allies, Adversaries and Commitment in Defense Alliances," September 1990.

DUDLEY KNOX LIBRARY

3 2768 00442622 1

