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ABSTRACT

The calculation of the exact reliability of complex systems is a

difficult and tedious task. Consequently simple approximating techniques
have great practical value.

The hazard transform of a system is an invertible transformation of

its reliability function which is convenient and useful in both applied
and theoretical reliability work. A simple calculus for finding an
approximate hazard transform for systems formed by series and parallel
combinations of components is extended so that it can be used for any
coherent system. The extended calculus is shown to lead to conservative
approximations

.

A first order version of the extended calculus is also discussed.
This method of approximation is even more simple to use, but is not always
conservative. Examples of its application indicate that it is capable of

giving quite accurate results.

This research was partially supported by the Office of Naval Research (ONR

042-300) under Purchase Order 2-0251 and the Strategic Systems Project
Office (TA 82415) under Work Request 3-5001, both to the Naval Postgraduate
School.
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1. INTRODUCTION

Suppose that two components perform independently and have probabil-

ities p.. and p of doing so successfully, i.e. of functioning. If

the components constitute a series system, i.e. a system that functions

only if both of its components function, then the probability that the

system functions is

P = h(p
1
,p

2
) = P-^,

where h(p ,p ) is a reliability function. With due regard for the

limitations imposed by assuming that the components perform indepen-

dently, the reliability function of a two component series system is a

convenient summary of its stochastic properties. The convenience stems

from the variety of interpretations that can be attached to the term

functioning, for the components, and consequently for the system. For

example, p.. and p. could be component success probabilities for a

mission that develops in time, or one of several types of component avail-

abilities. In each case p, as computed from h(p..,p
9 ),

will be the

corresponding quantity for the system. The reliability functions of

more complex systems have the same utility.

The quantities u = -log P-,> uo = -log p~ are the component hazards
_,

and u = -log p is the system hazard. For the two component series

system

u = n(u
1
,u

2
) = u

1
+ u

2 ,



where n(u..,u ) is a hazard transform. The hazard transform of a system

is equivalent to its reliability function, but for many purposes repre-

sents its properties in an even more convenient way. Examples of the

application of hazard transforms are given in Esary, Marshall and Proschan

(1970) .

For the two component parallel system, i.e. the system that functions

if either of its components functions, the reliability function is

h(
P;L ,p 2

) = 1 - (l-Pl)(l-p2 ),

and the hazard transform is

-u -u

n( U;L ,u2
) = -log {1 - (1-e

1
)(l-e

z
)

}

The contrast in complexity between the series and parallel hazard trans-

forms is apparent. However, for small component hazards u-,u_, i.e. for

large component success probabilities p ,p~,

n(Ul ,u2
) - Ulu2

is a good approximation for the parallel system, and is conservative in

that it overestimates system hazard and thus underestimates system relia-

bility.

An approximate hazard transform n* can be defined by:

n*(u
1
,u ) = n(u..,u ) = u

1
+ u for two components in series,

n*(u
1
,u_) = u.. u. for two components in parallel.

These definitions lead to a simple calculus for finding an approximate

hazard transform for systems that can be formed using series and parallel



combinations of components. For example, the system with the reliability

block diagram shown in Figure 1 has, following the above rules of compu-

tation, the approximate hazard transform

(1.1) n*(u
1
,...,u

5
) = ( U;L u2

+ u
3
)(u

4
+ u)

I J

'—m 5

FIGURE 1

Rubinstein (1961) introduced this calculus as a step in deriving life

test procedures for large systems, and considered (1965) more refined

approximations for parallel and some other systems. The calculus is

employed in the GUIDE MANUAL FOR RELIABILITY MEASUREMENT issued by the

Navy Special Projects Office.

Our purpose is to note a simple extension of the calculus to systems

that cannot be formed using just series and parallel combinations of com-

ponents, e.g. the system with the block diagram shown in Figure 2, and

to show that the extended oaloulus is conservative.



FIGURE 2

We also comment on a first order version of the extended calculus

which is not necessarily conservative, but which gains in simplicity and

can give quite accurate results.

2. AN APPROXIMATE HAZARD TRANSFORM

The approximate hazard transform we consider can be defined for the

class of coherent systems. Systems describable by a reliability block

diagram or by a fault tree using "and" and "or" gates are coherent.

Alternately, the performance of the components in a system can be indi-

cated by Bernoulli random variables X- , , . .
,X , where X. = 1 if theJ 1 n' x

i— component functions, X. = if the i— component fails to function,

and the performance of the system can be indicated by a structure function

<J>(X) = <j>(X
1
,...,X ), where 4>(X) = 1 if the system functions, <J>(X) =

if the system fails to function. The system is coherent if
<J>

is

increasing in each of its coordinates and <j>(l,...,l) = 1, <j>(0,...,0) = 0,

conditions which are clearly satisfied by systems described by block dia-

grams or fault trees.



If the components in a system perform independently, i,e. if

X-,...,X are independent, then the probability p = P[<f)(X) = 1] that

the system functions can be computed from the marginal probabilities

p. = P[X. =1], i = l,...,n, that the components function. If not,

then p depends on the joint distribution of X. , . . .
,X . The reliabilityIn

function h of a system describes the relationship between p and p,,...,p

in the case of independence. It is formally defined by

h(p) = h(Pl ,...,pn
) = P[<j>(X) = 1],

where X..,...,X are independent and P[X. = 1] = p., < p. < 1,

i = 1,... ,n.

It is common in the assurance disciplines to work with hazards rather

than with probabilities. Examples are the "parts count" method in which

component hazards are added to obtain a system hazard (in effect assuming

that the system is series) , and the practice of adding hazards over phases

of a mission to obtain a mission hazard.
-u.

Recall that the component hazards axe u. = -log p., so that p. = e ,

i = l,...,n, and the system hazard is u = -log p = -log h(g) . A hazard

is zero when the probability of functioning is one and increases to infinity

as the probability of functioning decreases to zero, which to some extent

makes the name appropriate. The hazard transform n of the system

relates u to u. u and is defined byIn
-u -u

n(u) = n(u
1
,...,u

n ) = -log h(p) = -log h(e ,...,e ),

where u. t 0, i = l,...n. Knowing the hazard transform of a system is

equivalent to knowing its reliability function since



-n(u) -r\(-log p ±
,f . . ,-log pn )

h(p) = e e

The assumption that components perform independently is implicit in the

definition of a hazard transform, just as it is in the definition of a

reliability function.

The approximate hazard transform we consider can be conveniently

introduced by first considering an approximation for the hazard transform

of a parallel system and then extending the approximation to an arbitrary

coherent system, using a representation of the system as a series of

parallel subsystems related to its "minimal cuts."

The n component parallel system functions if at least one of its

components functions, so that its structure function is

*(x) - i - TT^d-x.),

and its reliability function is

h(p) = P[<J>(X) = 1] = 1 - P[X
X
= 0,...,X

n
= 0]

= i -TTAp[x
i

= 0] = x -TTi^a-Pi).

Its hazard transform is

-u -u -u.

(2.1) n(u) = -log h(e \...,e n
) = -log [1 - Jf^l-e

X
) ]

.

An approximate hazard transform for the n component parallel system is

(2.2) n*(u) = TTV^i » ii
> 0,

where = (0.....0) and u > means u. > 0, i = l,...,n. The



approximation is baaed on the power series expansion for n(u).

The following lemma shows, for parallel systems, that: (a) the exact

and approximate hazard transforms agree for perfectly reliable compo-

nents, (b) the approximate hazard transform is conservative, i.e.

it indicates greater hazard (less reliability) than the exact transform,

and (c) the accuracy of the approximate hazard transform decreases as

the component hazards increase. The lemma extends an observation of

Rubinstein (1965, Appendix B).

Lemma 2.1 For an n component parallel system the following compari-

sons exist between the hazard transform n and the approximate hazard

transform n*:

(a) n*(0) = n(0) = 0.

(b) n*(u) * n(u), u > 0.

(c) n*(u) - n(u) is increasing with respect to u., i = l,...,n,

Proof. It is immediate that n*(0) = and that n(0) = -log 1=0.

Thus (a) holds. That (b) holds follows from (a) and (c) . To verify (c)

note that

-u. -u.

£ivHS) - n(a» - TLj^i L—— •

i - TTj^d-e h

-u. -u.

Since u. > 1-e J so that T--- u - - T-v-( 1_e
J
)> and

-u. -u.

1 - ]"["" (1-e J
) > e

X
(the reliability of a parallel system is not

less than the reliability of one of its components), it follows that



3 (n*(u) - n(u)} > 0. Thus (c) holds. D

= u

3u.
1

The assumption that the components perform independently is crucial

to the comparisons of Lemma 2.1, as is shown by the following example.

Example 2.2 Suppose the components in a two component parallel system

perform dependently in the strong, positive sense that X. = X_ = X,

i.e. if one component fails, so does the other. Then <j>(X-,X,-) =

1 - (1-Xj) (l-jy = X, and

p = P[<f)(X
1
,X

2
) = 1] = P[X= 1] =

?1
= p

2
,

where p. = P[X = 1] and p = P[X =1]. The system hazard is

u = -log p and the component hazards are u = - log p, = u, u_ =

- log p 9
= u. If one now tries to approximate n = u by n* ~ u-U_

only part (a) of Lemma 2.1 remains valid. In particular if < u < 1,

then n*<n, i.e. the approximation is not conservative.

In a coherent system those combinations of components whose failure

is just enough to cause a system failure are called minimal cuts. More

precisely, a set of components K is a out if X. = 0, i e K and

X. = 1, i i K implies <j>(X) = 0, and K is a minimal out if no proper

subset of K is also a cut. For example, the system shown in Figure 1

has the four minimal cuts

K
±

= {1,2,4}, K
2

= {1,2,5}, K
3

= {3,4}, K
4

= {3,5}.

and the system shown in Figure 2 also has four minimal cuts, but these are

K
x

= {1,2}, K
2

= {1,3,5}, K
3

= {2,3,4}, K^ = {4,5}.



We will denote the minimal cuts of a coherent system by K..,...,iC
,

where k is the number of minimal cuts.

Any coherent system can be represented in terms of its minimal cuts

by forming, for each minimal cut, a parallel subsystem from the compo-

nents in the cut, and then connecting the parallel subsystems in series

Formally the system structure function <$> satisfies

(2.3) KX) = TTjl^jCX)

where <f>.(X) = 1 ~ T- y (1~X.)> j = l,t..,k, are the structure func-

tions of the parallel subsystems corresponding to the minimal cuts of

the system. More graphically, the minimal cuts of a coherent system

determine a particular way of drawing its block diagram. For example,

the block diagram shown in Figure 3 is equivalent to the block diagram

shown in Figure 1, and the block diagram of Figure 4 is equivalent to

the block diagram of Figure 2.

L_ 4

4 -I 5 -J

FIGURE 3
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-T7I [TV-

- 5

FIGURE 4

An important thing to note about the minimal cut representation of

a coherent system is that the same component can appear in several mini-

mal cuts. So even though the components perform independently, the

parallel subsystems corresponding to the minimal cuts in general do not.

Thus, if h.(p) = 1 - 1~[". (1-p.), j = 1, . , . ,k, are the reliability

J

functions of the parallel subsystems, then the relationship h(p) =

I I
._ih.(p) which would hold if the parallel systems performed independently

is not necessarily valid. What is true is that

(2.4) h(p) > "Tfj^h (p) , <p < 1,

(Esary and Proschan, 1963, Theorem 4.1). The function

(2.5) h
MC (p) = TTj^hjCp) • 2 * E * h

is the minimal out lower bound on the exact reliability function h.

Recall that n(u) = -log h(p) is the exact system hazard transform.

Define the minimal out upper bound on n by

(2.6) nMC (~ }
= ~ l°g h

MC (S}
=

£j=l
n
j

(~ }
' ~ " 5 '
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where n (u) m - log h (p) , j = l,.,.,k f The bound is obtained by

finding the exact hazard transform for each of the parallel subsystems

in the minimal cut representation for the system and adding these to-

gether as if the parallel systems performed independently. The following

lemma is largely a restatement of inequality (2.4).

Lemma 2.3 For a adherent system the following comparisons exist between

the hazard transform n and n _, the minimal out upper bound on x\:

(a) nMC
(0) = n(0) = 0.

(b) nMC
(u) > n(u), u > 0.

Proof. That i\,„(0) = follows from (2.6) and part (a) of Lemma 2.1.

If u = 0, then p » (e ,...,e ) = 1, and n(0) = -log h(l) = -log 1=0.

Thus (a) holds. That (b) holds follows from inequality (2.4), since

^MC^
= ~l°g h

MC (je) "
~ l°g h(£ )

= n ^~)# D

Remark 2.4 In contrast with part (b) of Lemma 2.1, part (b) of Lemma 2.3

remains valid, in essence, when component performances are positively

dependent in a sense called "association" (Esary, Proschan, and Walkup,

1967 and Esary-Proschan, 1970). However, making use of this fact in the

calculation of conservative approximate hazard transforms requires finding

suitable modifications, under whatever degree of association is specified,

to the approximation (2.2) for parallel systems. D

The approximate hazard transform that we consider for an arbitrary

coherent system with minimal cuts K-,...,K, is

k
(2.7) n*(u) = L^n^Cu), u >

;
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where n*.(u) =
| • K

u - > J
= 1, »..,k« The approximation is obtained

3 ' le
j

X

by finding the approximate hazard transform for each of the parallel sub-

systems in the minimal cut representation for the system and then adding

the results as if the parallel systems performed independently. Thus

approximations at two different levels are involved. For example, the

approximate hazard transform for the system of Figures 1 and 3 is

(2.8) n*(u
1

, . . . ,u
5
) = u

1
u
2
u^+u

1
u
2
u +u u +u u

and for the system of Figures 2 and 4

(2.9) n*(u1> . . .,u
5
) = u-jU^u-jU^+u^u^+u^.

The following theorem shows that the approximate hazard transform for

a coherent system is: (a) exact for perfectly reliable components, and

(b) conservative.

Theorem 2.5 For a adherent system the following comparisons exist between

the hazard transform r\> the minimal out upper bound r\ on the hazard

transform, and the approximate hazard transform n*:

(a) n*(Q) = nMC (Q) = n(0) = 0.

(b) n*(u) > nMC
(u) > n(u), u > 0.

Proof. That n*(0) = is immediate from (2.7). That nMC
(0) - n(0) =

is part (a) of Lemma 2.3. Thus (a) holds. To show (b) recall that

nMr (u) ^ ti(u) is part (b) of Lemma 2.3, and note that from (2.6), (2.7),

and part (b) of Lemma 2.1

n*<u) = Zj-i^jCa) * £j=i
n
j

(^ = nMC
(u).

Thus (b) holds.
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3. A CALCULUS FOR APPROXIMATE HAZARD TRANSFORMS

One of the most attractive features of the approximate hazard trans-

form (2.7) is the simple calculus by which it can be computed for certain

important categories of coherent systems, notably the class of systems

that can be formed by successive series and parallel combinations of sub-

systems with non-overlapping sets of components, i.e. the class of simple

systems considered by Lomnicki (1973) , The essential ideas of this cal-

culus are described in Section 1, and its application to the system of

Figure 1 is illustrated. Note that the approximate hazard transform for

that system given in (1.1) agrees with the approximate hazard transform

given in (2.8),

For the purposes of this section we will denote a system by a couple

(C,<j>), where C is the set of components used in forming the system (from

the mathematical viewpoint C is a set of indices i used to label the

components) and
<J>

is the structure function of the system. We will be

considering coherent systems (C,<}>) formed from two coherent subsystems,

(C
1 ,(f> 1

) and (C-,<J)-). In this situation C = C.uC_, i.e. the system com-

ponent set consists of all the components appearing in either subsystem.

The subsystems have non-overlapping or disjoint component sets if

C. nC_ = 0, where is the empty set, i.e. no component appears in both

subsystems. The reason for being interested in subsystems with disjoint

component sets is that if all the aomponents in C perform independently

and C ,C are disjoint3 then the subsystems perform independently .

The system (C,<j>) is a series combination of the subsystems (C..,<|>..)

and (C
2

<}>

2
) if
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(3.1) «J>(X) = ^Qp^Qt), for all realizations of X,

where X is the vector of component performance indicators X., ieC.

If C and C are disjoint, then <j> depends only on those X. such

that ieC. , and <j>~ depends only on those X. such that ieC_. Simi-

larly, (C,<}>) is a parallel combination of (C ,<}> ) and (C ,<J> ) if

(3.2) <KX) = 1 - {1-<J>1
(X)}{1-* (X)}, for all realizations of X.

It is easy to check that a series or parallel combination of coherent

subsystems is a coherent system. Graphically, these definitions corres-

pond to being able to display the block diagram for the system as a series

or parallel combination of the block diagrams for the subsystems. The

following proposition describes how approximate hazard transforms can be

computed, for series and parallel combinations of subsystems with disjoint

component sets, to obtain results that agree with (2.7).

Proposition 3.1 Suppose a coherent system (C,<}>) is a combination of

the coherent subsystems (C-,^.) and (C-,^-) where C and C are

disjoint. Let n* be the approximate hazard transform for (C,<j>) and

n* ,n*9
be the approximate hazard transforms for (C ,<J>-) and (C , <j>_) .

Then for all u > 0:

(a) n*(u) = n*
1
(u) + n*

9
(u), if the combination is series.

(b) n*(u) = n*, (u) n*
9
(u), if the combination is parallel.

Proof. Suppose (C.., <(>..) has the minimal cuts K , ...,K , and (C-jfjO

has the minimal cuts K , ...,K .

(a) If the combination is series, then since C and C are disjoint,
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(C, 4>) has k = k +k~ minimal cuts, namely

K
i

= Ku \ -VV = "
21 Vk

2
"v

From (2.7)

n*W - ^-JW* - I>=iTTt£K^vl^ -t
J 1 lJ

x

J
2 2j

2

= n^Cu) + n*
2
(u) ,

so (a) holds.

(b) If the combination is parallel, then since C and C are dis-

joint, (C,<J>) has k = k k minimal cuts, namely all K. = K, . uK„ . where12 J IJ-l 2j
2

j = l,...,k as J 1
= l,...,k

1
and j = l,...,k

2
. From (2.7)

k, k
1

IT

k, kk
l

k
2

J l
l 3 2

1 leK
li,

x 1£K
2i.

X

UK..
U
i

k k

J l lj
x

J
2 2j

2

so (b) holds. D

It is clear that if a system is formed by a sequence of series or paral-

lel combinations of modules , i.e. subsystems with non-overlapping component

sets, then parts (a) and (b) of Proposition 3.1 can be applied in the same

sequence to evaluate its approximate hazard transform. Thus the proposition

defines a calculus which is applicable to simple systems.

Remark 3.2 Proposition 3.2 can be extended to show that whenever a module

(cf . Birnbaum and Esary, 1965) occurs in a coherent system, the approximate
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transform for the system can be found by first finding the approximate

hazard transform for the module and then proceeding as if the module were

a component in the larger system with the hazard given by its approximate

transform. D

A specialized application of the approximate hazard transform is found

in the GUIDE MANUAL FOR RELIABILITY MEASUREMENT (Section 3.1.6). All com-

ponents are assumed to have exponential life distributions, i.e. for a

-At
mission of duration t, p. = e , i = l,...,n. The mission length is

taken as the unit of time measurement, and the component failure rates A.

are scaled accordingly. In this way the mission reliability of a component
-A.

has the simple form p. = e . The component mission hazard is then

u. = A.. Under these conventions the calculus used in the manual is a
1 l

special case of the approximate hazard transform calculus.
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4. THE FIRST-ORDER APPROXIMATION

The approximate hazard transform n* is always conservative. In this

section we describe a first-order approximate hazard transform n which

is easier to compute than n*» sometimes more accurate than n*, but is

not always conservative.

The approximate hazard transform n* is based on all minimal cuts of

the system, i.e. n*, computed from (2.7), is the sum of the products of

component hazards over each minimal cut. The first-order approximation is

computed in a similar manner but using only the minimal cuts having the small-

est number of components. The procedure is best illustrated by an example.

Recall that the system shown in Figures 2 and 4 has four minimal cuts.

Two minimal cuts, K = {1,2} and K, = {4,5}, contain two components.

The other cuts contain more than two components. The first-order approxi-

mation for this system is based only on cuts K and K_ , i.e.

(4.1) n (u
1
,...,u

5
) = u^+u^.

The procedure for the first-order approximation, then, is to identify

the smallest minimal cuts and to sum the products of component hazards over

those cuts. By ignoring the larger minimal cuts, the first-order approxi-

mation tends to "correct" for the conservative error in the approximate

hazard transform. Of course the "correction" may be too large, i.e. the

first-order approximation is not always conservative.

If a component does not appear in any of the smallest minimal cuts, e.g.

component 3 of Figures 2 and 4, then the first-order approximation implicitly

treats the component as being perfectly reliable. If the reliability of such

components is no less than the reliability of the components in the smallest

minimal cuts, then the first-order approximation usually gives rather good

results.
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5. NUMERICAL COMPARISONS

In this section we compute system hazard using the approximate hazard

transform n* and the first-order approximation n , and compare the re-

sults with the true system hazard n for selected examples. The compari-

son is shown in terms of "percent error" where

% error = ^ °r "*> " n
x 100.

In the examples, and in the experience of the authors with similar

examples involving small systems, the accuracy of the approximations usu-

ally decreases with decreasing component reliabilities. If the reliabil-

ities are greater than 0.9, the approximations usually are in error by less

than 20%.

The formulas for the true system hazard are not exhibited in the

examples. Some appreciation of the need for approximations can be gained

by working them out. The motivation for the approximations discussed here

is not only that numerical calculations are less tedious, but also that a

formula for numerical calculations, or other purposes, can be derived with

relative ease.

Example 5.1 Suppose the components in the system of Figures 1 and 3 have

independent times to failure, exponentially distributed with parameters
-A.t

A-,..., A,.. Then for a mission of duration t, p. = e and u. = A.t,

i = 1,.,.,5. The approximations to the system hazard for the mission are

1 2
n = u u

4
+u

3
u
5

= A
3
tA

4
t + A

3
tA

5
t = A

3
(A

4
+A

5
)t

,

and
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n* = (A
1
A
2
t
2
+ x

3
t)(x

4
t + At)

[cf. (1.1)]. Some numerical comparisons for this system are tabulated

below.

Case 1 X = A = X = X. = A c
= 0.1012 3 4 5

Percent Error

0.2

0.4
0.6
0.8
1.0

n
1

n n*

.0008 1.2 2.4

.0031 2.2 6.0

.0070 3.3 9.5

.0122 4.5 12.8

.0189 5.8 16.4

Case 2 x
x

= A
2

= A
3

= °' 20
'

A
4

= A
5

= 0,1°

Percent Error

n
1

n n*

.0016 — 4.4

.0064 0.8 8.8

.0142 1.6 . 13.8

.0249 2.7 19.1

.0385 4.0 24.7

0.2
0.4

0.6
0.8
1.0

In Case 2, when t = 1.0, p. =0.82, i = 1,2,3. This low component

reliability adversely affects the accuracy of the approximate hazard

transform. G

Example 5.2 Let components 1,2,3,4 in the system of Figures 2 and 4 have

independent times to failure with the distributions shown below. Let com-

ponent 3 be a "one-shot" device which, independently, either functions

for a mission of any duration or is failed from the outset.
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Component

1

2

3

4

5

Distribution

EXPONENTIAL

EXPONENTIAL

BERNOULLI

WEIBULL

WEIBULL

Component Hazards
for a Mission of

Parameters Duration t

A At

X At

P
3

y,a

-log p
3

yt

y,a yt

For a mission of duration t

1 2 2
,

2 2a
n = X t + y t

[cf. (4.1)], and

1 2 2 , i s _. a+1
, 2 2a

n* = A t - ( Zo# pj 2Ayt + y t

[cf. (2.9)]. Some numerical comparisons are tabulated below.

Case 1 A = 0.10, p„ = 0.90, y = 0.10, a = 2

Percent Error

0.2 .0004

0.4 .0019

0.6 .0050

0.8 .0106

1.0 .0197

1
H*

-1.5 2.4
-2.7 4.3
-2.5 6.5
-1.1 9.1
+1.5 12.2

Case 2 A = 0.10, p„ = 0.95, y = 0.15, a = 2

Percent Error

0.2 .0006

0.4 .0030

0.6 .0081

0.8 .0179

1.0 .0342

1
n*

0.1 2.5

0.7 4.8
2.3 7.4

5.2 10.8
9.5 15.2
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In Case 1 the first-order approximation is not conservative for t < 0.8,

i.e. system reliability is overestimated. Note that the component ignored

by the approximation, component 3, is the least reliable component in

the system for t < 1.0. D
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