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PROBLEMS OF IDENTIFICATION

D. P. GAVER
P. A. JACOBS

I. G. O'MUIRCHEARTAIGH
A. MELDRUM

1 . Formulations: Background and Introductory Comments

Envision this abstract situation. There are J items, distinct from one

another and bearing names. Think of them as BIRDS of different types. Each

one is characterized by a vector of identifying components (you can possibly

think of physical characteristics such as color, flight speed,

characteristics of song, etc. as these parameters). In addition, it may (or

may not) be known where the items are located geographically; they

occasionally move, and may move together in suitable flocks.

Next, there is a group of individuals, called WATCHERS, who are

sensitive to the parameters (physical characteristics) just mentioned, when

the latter become evident. In effect, some bird may sing his song, and one

or more of the WATCHERS will hear and record various features of the

song, but with error; the same with other feat 'ores or parameters.

Observations are made "in the dark:" observing WATCHERS cannot see the BIRDS

before the song and other qualities become evident. In fact, the objective

of the group of individuals is to collectively identify the BIRDS in

question as well as possible just by comparing notes on the parameter

announcements, e.g. song and other feature characteristics.

Errors of various types are easily made, depending upon the operating

characteristics of the WATCHERS and on the distribution of the parameters.



Perhaps a group of BIRDS will all sing, and two WATCHERS will confuse two or

more BIRDS whose songs they hear: both will state their estimates of "the"

song length of what they take to be a single BIRD, whereas in fact, they

have focused on two different BIRDS with similar-enough songs.

If the individual assessments are error-prone (as they will be) and if

the distribution of the vector parameters is unfortunate, being tightly

concentrated around a point in p-space (parameter space) the advantage of

the WATCHERS is minimal: they will be unable to accurately discern a

particular BIRD'S presence, much less how many BIRDS are singing. If

several WATCHERS are responding to two different BIRDS, their composite

single assessment of the parameter may fail to conform to anything real.

The general problem is to identify singing BIRDS using error-prone and even

gross error (outlier) prone observations.

With this as background we begin to formulate a variety of simple

problems and to consider their implications.

2. The Single Item - One Parameter Case

To get started, focus on the information available from an announcement

(song) by a single BIRD. Call the parameter value 0, and focus first on

estimating 9 from observations made by I WATCHERS on announcement of 0. Now

it may actually be known that if

9 - u j-1 ,2, ...J (2.1)

l. y,
*

the BIRD is the j of a group, and is named George; if the estimated G, Q,

actually is very near y., then we announce confidently that we have heard an

announcement by George the robin ("by George, I think I heard him"). Things
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might not be quite so simple: the actual parameter announced may be

distributed somewhere near the value y,„ Increasing the spread or

variability of announced values of around \x. will be confusing to each

WATCHER, and the announcement that we indeed heard George himself becomes

less likely to be true.

2.1 A First Step: Likelihood

Suppose each individual, reacting to announcement (song), estimates or

A. L.

quotes a 0-value X (for the i ), and further it is known that

P{X
i

e(dx
i
)|9} » f (x ;9)dx . (2.2)

An important special case is that errors are normally distributed (or

Gaussian):

x -9 2

f (x ;9) - exp[- 1 (4—) ] —1~ . (2.3)

so WATCHER i (i-1 , 2, . . . , I) estimates the value of the parameter with

errors that are N(0,o?). For the moment, assume that there is just the one

BIRD present. If all I WATCHERS independently estimate and do so with

independently distributed errors, then it makes sense to write down and

examine the likelihood function

I

L(0;x) - n f (x ;0) (2.4)

i-1

-3-



or, taking logs and concentrating on the Normal form,

I

l(0;x) - I In f (x ;0)

i-1

I

- k • -1
I U

L
- 0)

2
(^-) (2.5)

i-1

2
omitting irrelevant constants. Now with a. known the unrestricted

maximization of the likelihood produces the time«honored formula

I

0--^ (2.6)

I "of
i-1

•

i.e. the variance-weighted mean of the individual observations. The

variance of the estimate is

Var[e] - —-
. (2.7)

I I/O
J

i-1
x

If all the above assumptions hold true, then one presumably compares to

the "known" parameters of various BIRDS and picks BIRD j#, where

|0 - y.„ |
<

1
— u

-
1 » j^j#; call this the nearest neighbor strategy, NN.

Because of symmetry, the solution is also the mean of a Bayes posterior

with non-informative (flat, improper) prior. It is also the best linear,

unbiased (BLUE) estimator of 0, so it should be at least mildly satisfactory

-4-



to most non-rabid statisticians of any faith or persuasion. In the

important (oversimplified) case in which each individual bird sings

precisely on key so the unknown - u, for some j then the procedure yields

the maximum likelihood estimator of u from the restricted parameter space

{u,»u » •••» U T
}« See Hammersley (1950) for an early discussion of this

problem.

2.2 A More Robust Likelihood

While many (perhaps transformed) measurement errors of physical

quantities are approximately Normal, especially "in the middle" of their

distribution, there can well be occasional outliers, in this case possibly

caused by individual mis-performance. In order to model this empirically

observed feature, it is becoming conventional to extend the tails of the

Normal in (2.3) in one of these ways

(a) continuous scale mixing, where o.
2 is taken to be a conveniently

distributed (e.g. inverse Gamma) random variable

.

(b) e contamination, wherein

' (x 0) - (1 - e ) exp[- I (-i
) ]
—]—11 i 2 °11 ^ o n

e. exp[-l (^-) ]
-1- (2.8)

1 2 a
i2 /2t o

i2

-5-



in which usually 1 - e. - e. is close to one and o.
1

is relatively

small (on < o.
? ), while e. > is close to zero, but o

?
is

large, e.g. o.
?

- 10a... This model was utilized in a classical

robustness context by Tukey, and also by Berger and Berliner

(1983) for Bayesian robustness purposes.

Begin by discussing (a). This approach can (but need not) lead to

replacement of the normal observation density by a Student t form:

C(d )W e) x-e 2
; (d +i)/2

- (2 - 9)

[ 1 + ^v i ]

d
i 2

Here view d as a shape tuning parameter; Var[X J - _ 0. if d. > 2, but

kurtosis (fourth central moment scaled to be dimension-free) can induce very

extended tails, simulating outlier occurrence. If d - 1 , we get the

centered and scaled Cauchy, with notoriously long, symmetric tails. The

Cauchy tails are so long that neither mean nor variance — nor any other

moment — exists. The likelihood obtained by combining individual measures

is now

I C(d )

L(0^ V1 x-02 ; (d.+n/ 2
(2 - 10)

i 1

and so, up to irrelevant constants,
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I d +1 x -0 2

to L(0;x) = 4(0;x) - I [~J-) ln[l + (-|— ) t1 ].
*

i-1 i i

Now differentiation with respect to gives

2(x,-0) -r^-
I d +1 i od

H-I (4-) S =sM -0 (2.11)
30 , / 2 ' x -0 2

i-1
, + (_L_) 1

°i
d
i

as a condition for a maximizing 0, denoted by 0. In principle this equation

could have more than one solution; Copas has discussed this situation.

To obtain a usually sensible (optimal) solution, proceed as follows:

Iterative Reweighting

Rewrite (2.11) as follows?

|| - 0: I Uj-eCr+Dj-lr • Wl (r) -0 (2.12)

or

i-1 i

I x

I (4) w (r)

e(r+1)«±S - (2.13)
I

I

i-1
w
i

I l£) w
t
(r)

where the weight

w (r) - =
. (2.14)

x -0(r) 2
,

1+ (~
) T"

•

a
i

d
i

-7-



One might start the iteration at

0(1) - median (x ,x , ..., x_). (2.15)

and then compute the first weight

V 1

w (1) - i (2.16)

x -9(1) 2 ,

°i
d
i

and use this to find the second estimate 0(2). Even the first iteration, as

described, will be quite successful at taming down individual widely

discrepant values, or "outliers". The smaller is d (d £ 1, presumably)

the more effectively discrepant values are reduced in influence.

After obtaining convergence, one may apply the NN approach to identify

j , the name (number) of the BIRD actually singing.

The above procedure will usually work satisfactorily, but may err

because of an unfortunate starting estimate. If each BIRD sings almost

precisely on key, so the unknown 0=y. for some j, then a precise maximum

likelihood solution can be obtained by simple enumeration: one simply

evaluates (2.10) for {y , y , ..., y } and picks j-j that gives the
< <— <i

maximum. For small J this is computationally feasible and provides the

truly maximum likelihood solution given the problem formulation. On the

other hand, the weights produced by the iterative solution provide a



convenient index as to the relative importance to be attached to the data

values by the iterative procedure, so it seems sensible to become a "weight

watcher". The pattern of weights might suggest reasons for relative comfort

or discomfort with an identification: for instance, a relatively uniform

distribution of low weights perhaps gives discomfort, while mostly high

weights with a few very low ones thrown in may give reason for comfort —

presumably with a consensus of the high-weighted values. One fact that

should be noted is that the likelihood equation (2.10) may well have

multiple peaks or modes, and the primary one is presumably usually found by

the re-weighted iteration NN scheme suggested. In any case, the parameter

space point-by-point enumeration is often feasible.

Next discuss the e-contamination model (b). Unfortunately the

likelihood is of an awkward form

2
i . x -e

L(0;x) - n [I, exp[- 1 .(Jj—
) ]
—L_

i-1 11 /2-n a.
11

2

e exp[- 1 £— ) ]
—L-

]. (2.17)
°i2 /2T o

Now it can be seen that if the multiplication is carried out and some re-

arrangement is done, we can express the likelihood as

K
1

Q-Mx) 2
.

L(9;x) - I n (x) expC- \ {

"
) ] (2.18)

k-1
k Z V- ;

/2ir o (x)

**9~



where

\(*) " \ exp{ ~| V-)} (2.19)

and K - 2 . It turns out that \l (x) is a linearly weighted function of the

2
individual observations, and 1/a. (x) is a corresponding sum of inverse

variances; Rv (x)
measures the discrepancy of the individual observations

from Pk
(x)«

For illustration, suppose I - 2, so, up to multiplicative constants,

2 2
2 x ~ x —

L(e.s) -
lSl

CI, 4 exp(-l (-!_] }
* « 1 expf-1 U-) 1 ]

• 2tt o.. 11 /2ir a.p i2

M , e-y,(x)
. I ir (x) exp[— i a (x) ) ]

:

k-1
k 2

°k
C^ /2ir o

k
(x)

where {it } « {e.,^' e
i
e ?' z

\
z?' e

i
e ?^ ; tne terms ui<^2i^ and a

\c^—^
are

obtained by completing the square in the exponent of each summand.

The form of (2.18) suggests that L(0;x) is a possibly multimodal

function, as was true of the Student t likelihood. An iterative scheme can

be set up as detailed below to estimate and the NN approach can then be

taken. If each BIRD sings almost precisely on key so the unknown * u. for

some j , then a precise maximum likelihood solution can be obtained by simple

enumeration as before.
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Iterative Reweighting

Taking logarithms of (2.17) and differentiating with respect to

results in the equation

|| - 0: I (x. -e(r+1)) [(—

)

2
+ w.(r)[(—

)

2 -(—

)

2
]] (2.20)

30
A-1

1 . o
12

1 on o
12

where the weight

A.(r)
w
i
(r) - ijncr) (2 - 21)

with

A^r) - (1- Ei ) o
i2

exp|- 1 (x^Otr))
2

C(-^-)
2-(~-) 2

] (. (2.22)
11 12

°11

As for the Student t distribution, one might start the iteration at 0(1)

median (x..,x
?
,...x ) and then compute the first weight; use the weights

to find the second estimate; etc.
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3. Bayesian Formulations: Everything Normal

In addition to the information X on coming from individual i there

may be information on codable in the form of a probability density:

P (0). The latter may actually take the form of a series of near delta

functions, one for each of the BIRDS in question. For the sake of a bit of

generality write

P (0) - I P.exp[-1 h-1") 1 —r—

•

(3-D

Here possibly P. * — , where J represents the number of BIRDS believed to be
J *J

in the vicinity and of interest. If t. - then the above indeed represents

a "Dirac comb" with teeth at the points u., j»1,2,...,J; the sharpness of
w

the teeth dictated by t.: small x. means that the j tooth (density) is

long (tall) and sharp.

Now by routine Bayes we get for the posterior density

p
e|x

(8) *£ f
Xi

(x
i
:9)p

e
(s) (3 - 2)

and, if we adopt the Normal model,

p
e|x

(0) "

"J 'x {"i«
e)p

e
<e)

-12-



, I x * 2 J , - y, 2

- K exp[- 1 I
(-i—

-) ] • I P. exp[-l (—-^) ]. (3-3)

i-1 i j-1
J

J

This can be simplified: write

- y.(x) 2 - y, 2 I x -0 2

( A=-) - Q. - ["
A

)
+ I (

Jl~) (3.^)
T IX ) I T 0.T
j

v- J T
j i-1 i

where Q, doesn't depend on 0, and look for y.(x) and x
2
. (x) in terms of the

J WW'
observations and parameters; to do so differentiate with respect to to

find

- y.(x) - y I - x

j - j i-1 i

Since the coefficients of and 1 on each side of the equation must match,

-T7-T - A- * I A- (3.6)W T i-i T
and

y . I x„

(3.7)M*) » [7I- +
I 4] x*(x).

To identify Q. let - y.(x) in (3.4); then
J

y.(x)-y 2 I x.-y.(x) 2

Q, " (
j I

J
) > I (

L

g

J "
) ; (3.8)

J
i i-1 i

-13-



4- L.

that is, Q, is the scaled sum of squared deviations of (a) the j posterior
w

mean from the j prior mean and (b) the j posterior mean from each

individual observation. Now return to (3.3) and substitute:

p

?
|x

(e)
« J,

p
j
«p[- 1 [-^m ] lexp( - 1 q

j
] - (3 - 9)

By normalization,

1 - I P
e

, (6) d6
_<x> _ I —

J
1 f" 1

©-n.(x) 2

- K^ Pj exp[- 1 Q.] Tj (x) J^ exp[- \ [-^) ] . «
£)

( 3 .10)

J"
1

- K I P exp[- 5 Q ]
/~2^ t.(x).

j-1 J J J

Thus the posterior density is of the form

J ,. , e-y.(x) 2

P
|

(9) - I P*(x) exp[-l (
J

) ]
—

J

O.n)
- 1 - j-i J d V- ; /2i t.(x)

where

#
P

i

e V^
P

4
(x)-—

J

:
J (3.12)

J - £ Q,

I P.e * J t.(x)

J-1
J J

-14-



In other words by completing the square in (3. 1*), the resulting form of the

posterior density (3.12) and the prior density, (3.1) ( resemble each other

2
closely. For the important special case in which t. - 0, j-1, 2,..., J, one

obtains the discrete distribution concentrated at the values p

(j-1 ,2, . . ., J) having probability mass function

1 I /
>. exp[- j l^ ( Xi

- p.) /oj

I P. exp[-l I (x. - p. Y/*\
j-1 J

i-1
J

P{9 - y, x} - PT(x) - : — = . (3.13)
1 r t ^2, 2-

The component probabilities P. are very simply modified in accordance with

the observations, and can be easily updated as more observations become

available. One could hope that after a set of observations has become

ava Liable then , say >

'3- 1

and

*]- for j 4 3

which points strongly at BIRD 3 as being the one that is actually singing.

If, on the other hand, all P. -values were to remain similar it might be

thought that some individuals have focused on two or more different items,

or that the noise is not well represented by the normal (Gaussian) model.

This possibility is not included in the present model, however. Note, too,

that if the {P. -, j = 1, 2, ..., J}, the discrete uniform distribution,
J <J

then naming j»j by picking the maximum probability from (3.13) is exactly

equivalent to maximizing the likelihood by direct enumeration.

-15-



3.1 Bayeslan Formulations; (1) Student t Observations

Let the prior information on BIRDS be given by (3.1). Individual

watchers independently observe with errors distributed according to the

Student t family:

C(d )

V*i' e)
IT1 (d, TTHl T~ (3 - 14>

i. A . \J j J- I

Then the posterior density is of the form

0-U. 2

P
fl
.(0) - K n f„ (x ;0) I P exp[- 1 (—-J-)

] (3.15)
-I- 1-1 l

l
j-1 J T

j

J , 9-u. 2 I X.-0 2

K' I P. exp[- 1 (—A ) ]exp[- I I (d +1) ln[1 + (-±-) !-]•]

j-1 J " j *i-1 °i l

In order to normalize this expression (determine K'), and to compute moments

(for point estimates, the NN approach, etc.) it is necessary to integrate

over all 0-values; of course no simple analytic closed form expression

exists. There are two practical options:

(a) numerical integration , using Gauss-Hermite integration, e.g., by

adopting the program of Naylor and Smith (1982); or

(b) analytical approximation , using a variant of the Laplace method,

see deBruijn (1958) or the equivalent; this classical approach has

been invoked by Mosteller and Wallace (1964), Gaver (1985),

-16-



Tierney and Kadane (1986), Lindley and Singpurwalla (1986), and by

many others as well

.

To apply Laplace, write

J 4 S
1We) - K I P.e J (3.16)

:'- j-i J

where

0-y. 2 I x -0 2

* ' i-rr
1

)
+ I (d

t
+ D ln[l + (-±— ) • 1-] .

J
j i-1 i i

(3.17)

The plan is to replace S. by an approximating quadratic in 0, and thus to
u

exhibit closed-form approximating expressions for the updated probabilities

P.(x) that are quite analogous to the "exact" formulas (3.12) obtainable

under normal /Gaussian error specifications.

To proceed, assume that the exponent is of the form

0-y.(x) 2

s
j

=
(-^tir> *V*> <3 - ,8)

where Q.(x) is at least nearly independent of 0. Now differentiate the two

forms on 0:

-17-



e-p.(x) e-u, i d +1 (e-x. )
1

V- T
j i-i i

, . r_L_i J_ *

•i
d
i

Now identify the coefficients of and 1 to see that

1 1
l

1
(d

i

+ 1)/d
i 1

X
1

#-^I^T • Ve *
,. -t

+

Ji^ Wl <3 - 20)

and

U (x) - t*(x) [4+1-4 w ]-. (3.21)

where the weights are

(d + 1)/d
w - ri . (3.22)

x -0

i l

In practice, it will be necessary to estimate by an iterative re-weighting

procedure, so approximate weights will be used:

(d + 1)/d.

w
i

- Hr-~ (3.23)
x.-0

,

Now replace S. in (3.16) by the quadratic approximation to find

-18-



e-u 4
(x) 2

p«... (e)
e|£

(0) " K
'i/j

exp[_
i V*)]exp[ " I H$F7> 1 (3 « 24)

where the approximate prior probability revision factor is from (3.18)

y -y (x) 2 I x *u (x) 2

Q,(x) - (-4-J
) I <d + 1) ln[l (-^-J

) . J_] (3.25)

and so

... P.e
H ^V^ t.(x)

P*(x) - y
3 pt J_ (3„26)

J-1
J J

provides the approximate data-updated probability that BIRD j is singing.

It is reasonable to designate j-j if P.»(x) > P.(x) for j»*j . The form of
J J

the Bayes posterior is of course quite analogous to that derived for the

normal errors case. Here we have

J ... e-ii.(x) 2

P
nlx (0) ' E P'(x) exp[- 1

(

J
) ]—

j

(3.27)

with the squared-error^minimizing point estimate, i.e., the expected value

of given observations x f is

-19-



- I p* (x) m (x). (3.28)

j-1 J J

It is this value that should apparently appear in the weights, w. , in the

course of the iterative calculation.

The behavior of Q..(x)» and hence of the prior to posterior revision

P + P Ax) seems intuitively appealing: first, one is lead to estimate the
J J

most likely characteristic of the song of the j BIRD, y.(x), by combining

data x., i - 1, 2, ..., I (using the knowledge that outliers will occur, so

the estimate is made robustly) and prior information about the variability

of BIRD j's song. Then this estimate is effectively compared to (1) the

candidate true mean value of j BIRD'S song, \i., and (2) the data obtained

by the listeners; both (1) and (2) measured on an appropriate scale of

variability. If the sum of these distances (squared and scaled) is small,

the conditional probability of j being the songster is correspondingly

increased; otherwise, it is reduced.

If x* - 0, j-1, 2,..., J, so the BIRDS always sing precisely on key, then

the above density becomes a probability mass function:

p*U) -p|e-j|x| -kp n l_
l

2
(3.29)

i-i
[, (_i-l) 1-] i

where
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J I C(d )

1
" "AVi
—

v, 2
1

(vi)/2 <3 - 30)

# #
determines K. To identify the optimal j-j , simply locate the maximum P .

4. Results of Simulation Experiments

This section reports some of the results of simulation experiments to

study the performance of various methods of combining WATCHER observations

to obtain an estimate of the parameter of the singing BIRD. All simulations

were carried out on an IBM 3033AP at the Naval Postgraduate School. Random

numbers were generated using IMSL routines. Some details and results of the

simulations are given below; for more see Mel drum [1986],

4.1 BIRDS with Univariate Parameters

There are 5 BIRDS with parameters {p } equal to 1, 2, 3. 4 and 5. The

BIRD that sings has parameter \i. with probability p..

The number of WATCHERS varies between 2 and 5. The observation of the

i
th

WATCHER is

X. - 0+E
i

(4.1)

where is the parameter of the BIRD that sings and E is the observational

error. The distributions of observational error considered are:

1) the normal distribution with mean and standard deviation o = 0.5

(e.g. (2.3));

2) the e-contaminated normal (2.8) with mean 0, standard deviations

o - 0.5 and o
p

- 5, and contamination probability e - 0.1 and 0.25; CN(e);
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3) the Student t distribution (2.9) with o - 0.5 and d - 1, which is

the Cauchy distribution.

Each simulation case has 10,000 replications. In each replication the

BIRD with parameter y was drawn to sing with probability p and WATCHER
J J

observations were generated. The following estimates of the parameter of

the singing BIRD were computed:

1. the mean of the observations;

2. the median of the observations;

3. the iterative Student-t estimate (2.12)-(2.16) with assumed values

o»0.5 and d - 1 and 10;

4. the iterative e-contaminated normal estimate (2.20)-(2.22) with

assumed parameter values a. - 0.5, o^ - 5.0 and e - 0.1 and 0.25.

In each case, the BIRD whose parameter was closest to the estimated 9

was estimated to be the BIRD that sang.

In each replication Bayes procedures for combining WATCHER observations

were also considered. The prior probability of the BIRD with parameter u.

singing was assumed to be 1/5 in each case; (equally likely prior). The

assumed error distributions for the Bayes models were as follows:

1. normal with mean and standard deviation o » 0.5;

2. Student t with o - 0.5 and degrees of freedom d - 1, and 10;

3. The e-contaminated normal with o. - 0.5, o_ - 5 and e - 0.1 and

0.25. For each assumed error distribution the posterior probability of the

singing BIRD having parameter y wa3 computed.

The BIRD whose parameter had the largest posterior probability was the

estimate of the BIRD that sang.
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In Table 1 proportions of correct identifications are given for a

simulation in which BIRD with parameter u sings with probability 1/5. The

number of WATCHERS varies between 2 and 5. Observation errors were

generated using the "true error distribution". Estimates of were computed

using both correct and incorrect assumptions given in the first column

concerning the error distribution. The Bayes estimates assumed the equally

likely prior and correct and incorrect assumptions given in the first column

about the error distribution.

Here are some conclusions that may be made from the simulations. The

BIRD estimates based on the mean and the normal Bayes model are the most

sensitive to incorrect error distribution assumptions; note that in the case

in which the true error distribution is e-contaminated normal with e =» 0.25,

increasing the number of WATCHERS actually decreases the proportion of

correct identifications for these two procedures. This behavior results

from the fact that, with small numbers of WATCHERS, increasing the number

WATCHERS increases the chances of having one or more outlying observations.

A more detailed explanation of this phenomenon can be found in the Appendix.

All of the procedures do about the same when the true error distribution is

normal. When the true error distribution is not normal, the Bayes estimates

based on the correct prior of equally likely BIRDS and error distribution

other than normal or Student t with 10 degrees of freedom tend to have the

highest proportion of correct identifications.

In Table 2 the proportions of correct identifications are given for a

simulation experiment in which the BIRD with parameter p - 1 always sings in

each replication; this parameter is on an extreme of the parameter set. In
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Table 3, the proportions are given for an experiment in which the BIRD with

parameter y - 3 always sings; this parameter is in the middle of the

parameter set. The other parameters in the simulations remain the same as

those for the simulation in Table 1. In particular the Bayes estimation

procedures use the (incorrect) prior of equally likely BIRDS.

Comparing Tables 1-3, the proportion of correct identifications is

smallest (respectively largest) in the case in which BIRD 3 (respectively

BIRD 1) always sings; that is, the position of the parameter of the singing

BIRD within the parameter space can make correct identification easier or

harder. Once again procedures based on the normal distribution (mean and

normal Bayes) do well if the true error distribution is normal but tend to

have smaller proportions of correct identifications if the true error

distribution is not normal; this decrease in the proportion of correct

identifications is greater than the decrease obtained by using, procedures

based on non-normality of the error distribution when in fact the

observations have normal errors. In Tables 2 and 3 the effect of using

incorrect prior distributions in the Bayes models has been to make their

proportions of correct identifications closer to those of the parametric

procedures. However, the Bayes procedure based on an error distribution

Student- t with 1 degree of freedom appears to be quite robust to model

assumptions particularly for the case of 2 WATCHERS.

4.2 BIRDS with Bivariate Parameters

In this subsection there are 5 BIRDS. Each BIRD has two parameters

associated with it. Two configurations of the BIRDS' parameters were

considered:
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INE:
K<1

- (1,1), y2
- (2,2), K - (3,3), ^ - (4,4), H

- (5,5)

BOX: ^ " (2,2), y
2

- (2,4), H - (3,3), ^ - (4,2), y
5

- (4,4)

The observation errors have the following distributions

1. e -contaminated bivariate normal with density function

f(x,y) - (1-e)
1

> i exp {
-Q (x,y)l (4.2)

27ro
1,1 °1,2

/ 1 p
1

1

+ £
2ir L . o„ • 1-p» 6XP { "Q2

(x ' y)}
'2,1

w
2,2 '

p 2

where

2(1-p.
2

) Q.(x,y) - (i
)

2

-2p <£ )<* ) + <* )

l i o.

«

i a. 4 o. - o. _
il 11 12 i2

The parameters used are a
i i " °-t ? " °*^' °2 1

* °2 2 " ^

P 2
- p - ~0.5, 0, 0.5, and e - 0, 0.1, and 0.25.

Note when e 0, the error distribution is bivariate normal with o = a *

0.5 and p =» - 0.5, 0, 0.5.

2. A bivariate Student-t with density function

f(Xfy) . 2_ tl + 1 _\
[( JL_) - 2p(JL)(JL) + (Ji_

)

2
]r

((d +2)/2)

1 °2 * 1
~
p d 2(1-p) z

o. o. o- o_ J

where c is a constant and d is the number of degrees of freedom. The

parameters used are o. - 0.5, o
p

5c0, d-1 , and p » -0<,5
S 0, 0.5.
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Each simulation case has 2,000 replications. For each replication a

BIRD with parameter y is drawn to sing with probability p.. An independent

observational error is drawn for each WATCHER from one of the error

distributions. The WATCHER observations are combined by using one of the

procedures below to determine the BIRD that sang.

1. Median : Compute the medians of the WATCHER observations of the

first parameter and of the second parameter. Compute the Euclidean distance

of the median pair to each BIRD parameter pair. The BIRD whose parameter

pair has the smallest distance is estimated to be the one that sang.

2. MLE normal : The observational errors are assumed to have a

bivariate normal distribution with parameters a. - 0.5 o
?

- 0.5 and

correlation coefficient p. The likelihood is calculated for each BIRD

parameter pair and the BIRD having the largest likelihood is estimated to be

the BIRD that sang.

3. MLE CN : The observational errors are assumed to have an e
-

contaminated normal distribution function with parameters o.. » a.
?

- 0.5

and o
?1

- Q*- - 5, p and e. The procedure is the same as 2.

4. MLE T : The same as 2 and 3 except the observational errors are

assumed to have a Student t distribution with parameters a - o = 0.5, p

and d.

Table 4 shows the proportion of correct identifications for a case in

which the BIRDS' parameters are in the LINE configuration. Each BIRD is

equally likely to sing for each replication. The true error distributions

simulated were the bivariate normal, the e-contaminated normal with e = 0.1,

the e-contaminated normal with e - 0.25, and the Student t with 1 degree of
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freedom, (Cauchy); they are listed in the first column of the table; the

correlation coefficients of the simulated errors were p - 0.5, 0, and -0.5

and are listed on the first row of the table. The number of WATCHERS varies

between 2 and 5. The estimation procedures are listed in the second column

of the Table and assumed p - 0.5.

The simulations of Table 5 used the same models and estimation

procedures as those of Table M except that the maximum likelihood procedures

assumed p - -0.5. A comparison of Tables 4 and 5 indicates that the value

of the assumed p for the maximum likelihood procedures made little

difference in the proportion of correct identifications.

In both Tables a comparison of the proportion of correct

identifications when the correlation coefficient of the true error

distribution is RH0 - 0.5 with those when RH0 - or -0.5 indicates that it

is more difficult to identify the correct singing BIRD when the errors of

observation for the BIRD'S two parameters are positively correlated.

A comparison of the proportion of correct identifications when the

normal maximum likelihood method is used, with the other methods indicates

that the normal estimate is the most sensitive to incorrect assumptions

concerning the error distribution. As was true in the uninvariate case, use

of the normal estimate on data whose true error distribution has longer

tails than normal can result in decreasing proportions of correct

identifications as the number of WATCHERS increases.

Table 6 reports results of a simulation experiment with models and

estimation procedures the same as in Table 4 except that BIRD whose

parameter is (3,3) always sings. Comparison of the results of Tables 4 and
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6 indicates that the position of the singing BIRD in a pattern can affect

the chances of a correct identification.

Table 7 reports results of a simulation experiment in which the

parameters and estimates are the same as those of Table 4 except that the

BIRDS' parameters are in the BOX pattern instead of the LINE pattern. A

comparison of Tables 4 and 7 indicates that, if the correlation coefficient

of the true error distribution is p - 0.5 (respectively p - -0.5), then it

is easier (respectively harder) to make a correct identification of the

singing BIRD with the BIRDS' parameters in the BOX pattern.

4.3 Conclusions from the Simulation Study

1. Estimation and identification procedures based on assumptions of

normal errors are sensitive to outlying observations.

2. Estimation procedures based on assumptions of a long-tailed error

distribution are more robust to incorrect error distribution assumptions

than normal estimation procedures.
;

3. Bayes estimation procedures are sensitive to incorrect

specification of the prior distribution of which BIRD is singing.

4. The following attributes affect the ability to correctly identify

the singing BIRD.

a. If each BIRD has more than 1 parameter, correlation between the

parameters' observation errors can influence the difficulty of

identification of the correct BIRD.

b. The configuration of the parameter space for the BIRDS can make

correct identification more difficult, e.g. LINE, BOX.
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c. The location of the parameter of the singing BIRD in the

parameter space can make correct identification easier or harder, e.g,

middle BIRD or end BIRD in the univariate parameter case.
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APPENDIX

HIT PROBABILITY WHEN BIRDS ARE ON A LINEAR LATTICE, ERRORS ARE e-

CONTAMINATED, AND A LINEAR SUMMARY, NEAREST -NEIGHBOR ALGORITHM IS USED:

LINEAR CONSENSUS PROCEDURES NEED NOT SHOW "SAFETY IN NUMBERS".

Suppose BIRD characteristics y are at equal intervals:

V - 0, ±1, ±2, ... with no limit to number. Let the i
tl

of I WATCHERS

have the e-contaminated error density

x —S 2 x —0 2

f^x^G) - I exp[- 1 (^—) ]—!— + e exp[- \ {^—) ] } (A-1)

t/2ti a.. /2ir o_

where e + £ - 1 9 e * 0, e £ 0. It is known that a BLUE of is

(A-2)

where here

,\ - I o*. e o
2\

(A-3)

and that
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Var
t®BLUE^ - I I •

(A"4)

I 1/0?
1-1-

X

Clearly there is a tendency for the above variance to decrease with I, so

one might conclude that adding more WATCHERS improves hit probability. This

conclusion is false. Perhaps more surprisingly, existence of theoretical

population moments does not seem to govern the behavior of the linear

2
estimate, Q„. ._. Of course, if o. doesn't exist then the above weighting

can not be carried out, but if the error scale is the same for all WATCHERS

then equal weighting is suggested. It can be seen analytically that the

Student t with one d.f. (the Cauchy) error model implies that 0_. ._ has
oLUh

exactly the same distribution regardless of the number of WATCHERS, and this

effect is plainly visible from simulations and numerical calculations. On

the other hand, the e-contaminated Normal/Gauss error model has all moments

finite, and yet can exhibit a hit probability that decreases with I, later

of course increasing as it must, eventually, by central limit theorem

effects. For what is possibly a plausible example, the advantage of number

becomes evident only after about a dozen WATCHERS are performing

simultaneously!
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Simplest Case; Statistically Identical WATCHERS

2 2 2 2 2 2
Let a... - a., o

?
. - o_, 0. < o

?
. To calculate hit probability, assume

with no loss of generality that BIRD is singing. Then the probability of

a hit is the probability that the ordinary average of I errors lies between

- x and + —

:

2 2

X + X + e o .+ X

P{HIT} - ?{-j < -
1

- < \\ (A-5)

Condition on the error components involved: If G represents the number of

2
"good" (small variance, o. ) observations, and B - I - G the number of "bad"

2
(large variance, o

?
) then G - Binomial (e,I) and, given G,

X, + X + ...+ X T Go? + (I-G)o*

X - -? 1 i > N(0 f
-J

?

2
)

(A-6)
1

I

so

P{HIT|G=g} - 2$( ) " 1 - §^ tl
(A-7)

/(g(o 2 - o
2
2 ) + Io^/I 2

Consequently, when the condition is removed,

PtHIT} - I (M(e) g
( e )

I_g L r
(A-8)

R=0
g ^ vi
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Numerical Illustration

Suppose BIRDS occur as above and that WATCHERS are independent with e-

contaminated errors having parameters e - .25, o.. 0.5, o_ » 10o ._,

so Op. - 5. Then the BLUE is the ordinary average, X - 0, which is also a

Bayes estimate if one were to assume that the error distribution is simple

Normal and the prior probabilities equal. Adopt the NN approach (what

else?) to identify the singing BIRD. Then we tabulate the

HIT PROBABILITIES

i i

ALGORITHM NUMBER OF WATCHERS, I

- AVERAGE, NN

- MEDIAN, NN

8 10

0.54 0.48 0.48 0.49 0.51

0.54 0.77 0.86 0.92 0.94

12 14

0.55 0.57

0.96 0.98

The effect mentioned is quite striking, with linear hit probability

awryyKov rff quickly, recovering slowly, and not approaching that of the

median until a value of I much larger than any in our table is reached.
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Table 1

Proportion of Correct Identifications
BIRDS Equally Likely

True Error Distribution

Normal
a -.5

Student-t
1 df

Contaminated Normal

c: -0.1 e -0. 25

per of WATCHERS: 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

jameter Estimate

,. .88 .93 .96 .98 .60 .60 .61 .60 .77 .78 .79 .77 .64 .61 .59 .58

lian .88 .89 .95 .95 .60 .75 .78 .83 .77 .85 .91 .92 .64 .78 .81 .86

:r. T ldf .88 .91 .95 .97 .61 .76 .80 .85 .77 .88 .92 .92 .64 .81 .85 .90

jr. T 3df .88 .93 .96 .98 .61 .76 .80 .84 .77 .88 .92 .95 .65 .80 .84 .89

»r. CN e=0.1 .88 .93 .96 .98 .60 .74 .78 .82 .77 .89 .93 .96 .64 .82 .86 .91

er. CN e=0.25 .88 .93 .96 .98 .60 .75 .78 .83 .77 .89 .93 .96 .64 .82 .86 .91

yes Estimates

rmal .88 .93 .96 .98 .60 .59 .60 .60 .77 .78 .78 .77 .64 .60 .58 .57

ldf .86 .92 .95 .97 .68 .77 .82 .86 .81 .88 .93 .95 .75 .82 .87 .91

lOdf .88 .93 .96 .98 .65 .74 .79 .83 .80 .88 .92 .94 .70 .78 .83 .87

e=0.1 .88 .93 .96 .98 .67 .75 .79 .83 .82 .90 .94 .96 .75 .83 .88 .92

e=0.25 .87 .95 .96 .98 .67 .75 .79 .83 .82 .89 .94 .96 .75 .83 .88 .92



Table 2

Proportion of Correct Identifications
BIRD with PARAMETER 1 SINGS

True Error Distribution

Normal
a -0.5

Student-t
1 df

Contaminated Normal

e =0. 1 ( =0.,25

Number of WATCHERS: 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Parameter Estimate

Mean .92 .96 .98 .99 .75 .75 .75 .74 .85 .86 .86 .86 .77 .75 .74 .75

Median .92 .93 .97 .97 .75 .85 .86 .89 .85 .91 .94 .95 .77 .86 .89 .92

Iter. T ldf .92 .94 .97 .98 .74 .85 .86 .90 .85 .92 .95 .96 .77 .87 .88 .93

Iter. T 3df .92 .95 .97 .98 .74 .84 .86 .89 .85 .92 .95 .96 .76 •87 .89 .93

Iter. CN e=0.1 .92 .96 .98 .99 .75 .84 .86 .89 .85 .93 .96 .97 .77 .89 .92 .95

Iter. CN e=0.25 .92 .95 .97 .98 .75 .84 .87 .90 .85 .93 .96 .97 .77 .89 .91 .95

Bayes Estimates

Normal .92 .96 .98 .99 .77 .79 .81 .82 .85 .87 .87 .87 .78 .76 .76 .78

T ldf .91 .95 .97 .98 .78 .85 .88 .91 .87 .93 .96 .97 .82 .88 .92 .94

T lOdf .92 .96 .98 .99 .77 .84 .87 .89 .86 .92 .95 .96 .80 .86 .89 .92

CN e=0.1 .92 .96 .98 .99 .76 .82 .87 .89 .87 .93 .96 .97 .82 .89 .92 .95

CN e=0.25 .92 .95 .97 .98 .76 .82 .87 .89 .87 .93 .96 .97 .82 .89 .92 .95



ler of WATCHERS:

nmeter Estimate

>i

jlan

tr. T ldf

ir. T 3df

;r. CN e=0.1

•r. CN e=0.25

/es Estimates

rmal

ldf

lOdf

[ £=0.1

I e=0.25

Table 3

Proportion of Correct Identifications

BIRD with PARAMETER 3 SINGS

True Error Distribution

Normal
a =0.5

Student-t
1 df

Contaminated Normal

e =0.1

.84 .91 .96 .97

.84 .86 .93 .94

.84 .89 .94 .96

.84 .90 .95 .97

.84 .91 .95 .97

.84 .90 .95 .97

=0.25

.84 .91 .96 .97

.82 .89 .94 .96

.84 .91 .95 .98

.84 .91 .95 .97

.49 .50 .50 .50

.49 .69 .72 .79

.51 .70 .76 .81

.51 .70 .74 .81

.49 .68 .73 .78

.49 .69 .73 .79

.71 .72 .72 .72

.71 .81 .88 .90

.71 .84 .90 .93

.71 .85 .90 .93

.71 .86 .92 .95

.71 .86 .91 .95

.49 .50 .50 .49

.62 .71 .78 .82

.56 .68 .73 .79

.49 .68 .73 .78

.84 90 .95 .97 .49 .69 .73 .79

.71 .72 .72 .72

.77 .85 .91 .94

.75 .83 .89 .93

.71 .86 .92 .95

.71 .86 .91 .95

.54 .51 .49 .48

.54 .73 .77 .83

.55 .76 .81 .87

.56 .75 .80 .87

.56 .77 .82 .89

54 .77 .82 .89

.54 .51 .48 .48

.69 .78 .84 .89

.63 .72 .79 .85

.54 .77 .82 .89

.54 .77 .82 .89



Table 4

LINE Pattern
Equally Likely BIRDS

Proportion of Correct Identifications

Assumed RHO=0.5

CORRELATION COEFFICIENT USED TO
GENERATE THE ERROR

RHOO.5 RHO=0 RHO= "0.5

Number of

WATCHERS

:

2 3 4 5 2 3 4 5 2 3 4 5

True •

Error Estimate
Dist.

CN(e-O) MEDIAN .92 .94 .98 .98 .96 .97 .99 .99 .99

NORMMLE .92 .96 .99 .98 .96 .99 .99

TMLE ldf .90 .95 .98 .99 .94 .98 .99

TMLE 3df .92 .95 .98 .99 .96 .98 .99

TMLE lOdf .92 .95 .98 .99 .96 .99 .99

CNMLE(e».l) .92 .96 .99 .99 .96 .99 .99

CNMLE(e=».25) .92 .96 .99 .99 .96 .99 .99

CN(e=0.1) MEDIAN .82 .91 .95 .96 .85 .93 .96 .98 .87 .97 .97 .99

NORMMLE .82 .81 .83 .84 .85 .84 .83 .83 .87 .85 .84 .82

TMLE ldf .87 .94 .96 .97 .92 .97 .98 1 .97 .99 1 1

TMLE 3df .88 .94 .97 .98 .93 .97 .98 .99 .97 .99 1 1

TMLE lOdf .88 .94 .97 .97 .92 .96 .98 .99 .95 .99 .99 1

CNMLE(e=0.1) .89 .94 .97 .98 .93 .97 .99 1 .97 .99 1 1

CNMLE(e=.25) .89 .94 .97 .98 .93 .97 .99 1 .97 .99 1 1

CN(e=.25) MEDIAN .68 .85 .86 .92 .70 .87 .88 .93 .73 .88 .89 .94
NORMMLE .68 .67 .65 .68 .70 .67 .67 .65 .73 .68 .67 .65

TMLE ldf .82 .91 .93 .97 .86 .94 .97 .98 .93 .96 .98 .99

TMLE 3df .82 .91 .93 .96 .86 .94 .96 .98 .92 .95 .98 .99

TMLE lOdf .80 .89 .92 .96 .85 .91 .94 .96 .89 .92 .96 .98

CNMLE(e=0.1) .83 .92 .94 .97 .87 .94 .97 .98 .93 .97 .98 .99

CNMLE(e=.25) .83 .92 .94 .97 .87 .95 .97 .98 .93 .97 .98 .99

T 1 d.f. MEDIAN .63 .79 .82 .87 .69 .83 .86 .91 .77 .88 .90 .93

NORMMLE .63 .63 .65 .64 .69 .68 .70 .69 .77 .77 .74 .76

TMLE ldf .78 .84 .89 .91 .80 .89 .94 .95 .88 .94 .97 .98
TMLE 3df .76 .84 .88 .91 .80 .89 .94 .94 .88 .94 .96 .98

TMLE lOdf .75 .80 .85 .89 .79 .87 .92 .94 .87 .93 .95 .97

CNMLE(e=0.1) .76 .81 .86 .89 .80 .87 .92 .94 .87 .92 .95 .97

CNMLE(e=.25) .72 .82 .87 .89 .79 .87 .92 .94 .87 .92 .96 .97



Table 5

LINE Pattern
Equally Likely BIRDS

Proportion of Correct Identifications

Assumed p "0.5

CORRELATION COEFFICIENT USED TO
GENERATE THE ERROR

RHO«=0.5 RHO=0 RHO-"•0.5

Number
of

WATCHERS

:

2 3 4 5 2 3 4 5 2 3 A 5

True
Error
Dist. Estimate

CN(e=0) MEDIAN .92 .95 .97 .98 .96 .97 .99 .99 1

NORMMLE ,92 .97 .98 .99 .96 .99 .99 1

TMLE ldf .89 .95 .97 .99 .95 .98 1 .99

TMLE 3df .91 .96 .98 .99 .96 .98 1 .99

TMLE lOdf .91 .96 .98 .99 .96 .99 .99 1

CNMLE(e=0.1) .89 .94 .97 .99 .95 .98 1 1

CNMLE(e=».25) .88 .94 .96 .98 .94 .98 .99 .99

CN( e»0 o 1

)

MEDIAN .82 .90 .95 .96 .86 .94 .96 .98 .87 .97 .98 .99

NORMMLE .82 .83 .82 .83 .86 .85 .83 .84 .87 .87 .84 .83

TMLE ldf .88 .92 .96 .98 .93 .97 .98 .99 .98 .99 1

TMLE 3df .89 .93 .96 .98 .93 .97 .99 1 .98 .99 1

TMLE lOdf .89 .93 .96 .98 .93 .97 .98 .99 .97 .99 .99

CNMLE(e=0.1) .87 .92 .96 .97 .93 .97 .99 .99 .98 1 1

CNMLE(e=.25) .87 .91 .95 .97 .93 .97 .98 .99 .98 1 1

CN(e=.25) MEDIAN .69 .82 .85 .92 .71 .86 .87 .94 .72 .89 .88 .95

NORMMLE .69 .68 .64 .66 .71 .68 .66 .66 .72 .67 .66 .66

TMLE ldf .82 .88 .92 .95 .87 .93 .97 .98 .93 .97 .99 .99

TMLE 3df .83 .88 .92 .95 .87 .93 .97 .98 .92 .97 .99 .99

TMLE lOdf .83 .87 .92 .96 .87 .92 .96 .97 .90 .95 .98 1

CNMLE(e=0.1) .82 .88 .92 .96 .87 .94 .97 .98 .93 .98 .99 1

CNMLE(e=.25) .81 .88 .91 .95 .87 .94 .97 .98 .93 .98 .99 1

T 1 d.f. MEDIAN .63 .79 .82 .87 .68 .83 .85 .92 .76 .89 .91 .94

NORMMLE .63 .64 .64 .63 .68 .69 .70 .70 .76 .76 .78 .77

TMLE ldf .76 .81 .87 .91 .81 .89 .93 .96 .89 .94 .97 .98

TMLE 3df .76 .82 .88 .91 .81 .89 .93 .96 .89 .94 .97 .98

TMLE lOdf .75 .81 .87 .90 .79 .87 .92 .95 .88 .93 .97 .98

CNMLE(e=0.1) .74 .80 .85 .88 .79 .88 .91 .95 .88 .93 .97 .98

CNMLE(e=.25) .74 .80 .85 .88 .79 .88 .91 .94 .88 .93 .97 .97



Table 6

LINE Pattern
BIRD (3,3) Always Sings

Proportion of Correct Identifications

Assumed RHO =0.5

CORRELATION COEFFICIENT USED TO
GENERATE THE ERROR

RHO=0.5 RHO-0 RHO= "0.5

Number
of

WATCHERS

:

2 3 4 5 2 3 4 5 2 3 4 5

True
Error Estimate
Dist.

CN(e-O) MEDIAN .90 .93 .97 .98 .95 .97 .99 .99 1 .99

NORMMLE .90 .96 .98 .99 .95 .99 .99 1 1

TMLE ldf .87 .94 .97 .99 .94 .98 .99 .99 .99

TMLE 3df .89 .95 .98 .99 .95 .99 .99 1 .99

TMLE lOdf .89 .96 .98 .99 .95 .99 .99 1 .99

CNMLE(e=0.1) .90 .96 .98 .99 .95 .99 .99 1 .99

CNMLE(e=.25) .89 .96 .98 .99 .95 .98 .99 1 .99

CN(eO.l) MEDIAN .75 .88 .94 .95 .81 .93 .96 .97 .85 .96 .96 .99

NORMMLE .75 .78 .78 .77 .81 .80 .79 .80 .85 .81 .79 .80

TMLE ldf .84 .92 .96 .97 .90 .96 .98 .99 .97 .99 1 1

TMLE 3df .85 .92 .96 .98 .90 .97 .98 .99 .97 .98 1 1

TMLE lOdf .84 .91 .96 .98 .89 .96 .98 .99 .95 .97 .99 1

CNMLE(e-O.l) .85 .92 .96 .98 .91 .97 .98 .99 .97 .99 1 1

CNMLE(e».25) .85 .92 .96 .98 .91 .97 .98 .99 .97 .99 1 1

CN(e=0.25) MEDIAN .59 .81 .83 .90 .62 .82 .85 .93 .66 .85 .87 .93

NORMMLE .59 .57 .58 .57 .62 .59 .57 .58 .66 .59 .59 .57

TMLE ldf .78 .86 .92 .95 .84 .91 .96 .98 .89 .95 .98 .99

TMLE 3df .78 .87 .93 .95 .83 .91 .95 .98 .89 .94 .97 .99

TMLE lOdf .76 .85 .91 .94 .80 .89 .94 .96 .85 .92 .96 .97

CNMLE(e=0.1) .79 .88 .93 .96 .84 .93 .96 .98 .90 .95 .98 .99

CNMLE(e=.25) .79 .88 .93 .96 .84 .93 .97 .98 .90 .96 .98 .99

T 1 d.f. MEDIAN .53 .74 .76 .85 .61 .80 .81 .89 .69 .84 .87 .93

NORMMLE .53 .54 .54 .56 .61 .63 .61 .62 .69 .69 .71 .73

TMLE ldf .71 .81 .85 .90 .76 .86 .90 .94 .84 .91 .95 .98

TMLE 3df .70 .80 .85 .90 .75 .86 .90 .94 .84 .91 .95 .98

TMLE lOdf .68 .78 .83 .89 .73 .85 .89 .93 .83 .89 .95 .98

CNMLE(e=0.1) .70 .79 .83 .87 .75 .84 .88 .92 .83 .89 .93 .97

CNMLE(e=.25) .70 .79 .83 .88 .75 .84 .89 .93 .83 .89 .93 .97



Table 7

BOX Pattern
Equally Likely BIRDS

Proportion of Correct Identifications

Assumed RHO = 0.5

CORRELATION COEFFICIENT USED TO
GENERATE THE ERROR

RHO='0.5 RHO=0 RHO= "0.5

Number
of

WATCHERS

:

2 3 4 5 2 3 4 5 2 3 4 5

True Estimate
Error
Dist.

CN(e=0) MEDIAN .96 .97 .98 .99 .97 .97 .99 .99 .96 .96 .99 .95

NORMMLE .96 .98 .99 1 .96 .99 1 .94 .98 .99 1

TMLE Idf .96 .98 .99 .99 .96 .98 .99 .93 .97 .98 1

TMLE 3df .96 .98 .99 .99 .96 .98 .99 .94 .97 .99 1

TMLE lOdf .96 .98 .99 1 .96 .99 1 .95 .98 .99 1

CNMLE(e=0.1) .96 .98 .99 1 .96 .98 1 .93 .96 .98 .99

-

CNMLE(e=.25) .96 .98 .99 1 .95 .98 .99 .92 .96 .98 .99

CN(e=0.1) MEDIAN .83 .93 .96 .98 .84 .94 .96 .98 .84 .93 .96 .97

NORMMLE .83 .81 .82 .79 .84 .83 .81 .82 .83 .81 .82 .79

TMLE ldf .92 .96 .98 .99 .92 .97 .99 1 .90 .95 .97 .98

TMLE 3df .92 .97 .98 .99 .93 .97 .99 .99 .90 .95 .98 .98

TMLE lOdf .90 .96 .98 .99 .91 .97 .98 .99 .90 .94 .98 .98

CNMLE(e=0.1) .93 .97 .99 .99 .93 .97 .99 .99 .90 .94 .97 .98

CNMLE(e=.25) .93 .97 .98 .99 .93 .97 .99 .99 .90 .94 .97 .98

CN(e=0.25) MEDIAN .70 .87 .87 .92 .70 .85 .88 .93 .71 .87 .87 .93

NORMMLE .69 .63 .63 .61 .69 .64 .62 .62 .70 .64 .60 .61

TMLE ldf .87 .93 .96 .98 .87 .93 .96 .97 .84 .91 .94 .97

TMLE 3df .87 .93 .96 .97 .87 .93 .95 .97 .84 .91 .94 .97

TMLE lOdf .85 .91 .95 .96 .85 .90 .94 .96 .83 .90 .93 .95

CNMLE(e=0.1) .88 .94 .96 .98 .87 .93 .96 .98 .84 .91 .94 .97

CNMLE(e=.25) .88 .94 .97 .98 .87 .93 .96 .98 .84 .90 .94 .97

T 1 d.f. MEDIAN .66 .83 .86 .91 .67 .83 .86 .91 .66 .83 .85 .91

NORMMLE .67 .71 .69 .69 .66 .67 .66 .66 .63 .63 .63 .63

TMLE ldf .81 .88 .92 .95 .80 .87 .92 .95 .77 .86 .90 .93

TMLE 3df .81 .88 .93 .95 .80 .87 .92 .95 .77 .85 .90 .92

TMLE lOdf .79 .87 .92 .94 .77 .86 .90 .94 .75 .84 .89 .91

CNMLE(e=0.1) .79 .87 .91 .94 .78 .85 .90 .93 .76 .85 .88 .91

CNMLE(e=.25) .80 .87 .91 .94 .75 .85 .90 .93 .75 .84 .88 .91
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