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ABSTRACT

A detailed analysis and method of calculation is pre-

sented for determining the complete thermodynamic cycle of

a two-fluid electrohydrodynamic (EHD) power generator. The

analysis takes fully into account the compressibility of

the media. Parameters are included which express the ther-

modynamic losses in the various components of the overall

system. The severe restriction on output created by the

electrical breakdown limit of the medium is clearly shown.

The method for computing the net-electrical work output per

unit mass of primary fluid and the net overall thermal

efficiency of the system is carefully developed. A sample

output together with the FORTRAN program are included.
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1. Background

This is the final report of the project "Study of

Mark's Electrothermodynamic (ETD) Power Generator", spon-

sored by the Department of Energy (DOE) . The primary ob-

jective of this effort has been to provide a detailed

theoretical analysis of a type of electrohydrodynamic (EHD)

power generator proposed by the Marks Polarized Corporation.

Once a sound analytical basis was developed, it was possible

to ascertain the limitations of the proposed system and to

seek improvements

.

The results of our first study are reported in detail

in Ref. (1) and summarized more concisely in Ref . (2)

.

That work indicated the originally proposed design would

yield unacceptably poor performance and suggested a certain

design revision. Further work was done to analyze such a

design revision and is reported in the Appendix to Ref. (1).

An improved simplified and shortened version of that work is

reported in Ref. (3). Unfortunately, the new results indi-

cated that the revised design, while showing somewhat im-

proved performance, still would not appear sufficiently

competitive in overall efficiency.

In the first study, some minor effects of compressibili-

ty of the medium were neglected. This was done in order to

simplify the calculations. Also, it has been conjectured by

Marks and others that it might be possible to improve greatly



the performance of EHD-generators which utilizes an ejector

by employing a two-fluid cycle. Finally, performance gains

that a diffuser might bring about appeared worthy of study.

To this end, a second study for a two-fluid cycle was under-

taken in which a diffuser is introduced just prior to the

EHD generator and where full account is taken of the com-

pressibility of both fluids at all locations.

The principal earlier effort along the lines of our

second study is Ref. (4) , by Huberman, et. al , but our

present work has gone beyond anything undertaken in Ref.

(4) . Although a two-fluid generator is analyzed in Ref.

(4), including the compressibility of both fluids, Huberman

et. al , make no attempt to study the complete thermodynamic

cycle. There are, moreover, a number of questionable

assumptions which cast serious doubt in the validity of the

results given in Ref. (4) .

The computational scheme that we have developed was

reported in Ref. (5) . There a methodical derivation of

the working formulas is given together with some preliminary

results. Some further results are given in Ref. (6).

The present report updates the material given in Refs

(5) and (6) . In particular, we have found that instead of

writing an energy balance across the condenser, it is more

convenient to use a momentum balance as shown in Section II

of this report. We have reproduced herein the complete analy-

sis in its latest version.



A sample calculation for the two-fluid system is also

included together with the computer program listing.

Figure 1.1 is a schematic of the generator configura-

tion studied. In Marks' design, the centerline of the

channel, which is shown in Fig. 1.1 as a straight line, is

curved sc as to form a closed loop.
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2 . Introduction

For purposes of analysis, the overall thermodynamic pro-

cess in the two-fluid EHD generator may be represented by the

schematic flow diagram shown in Fig. 2.1.

Primary fluid enters the ejector at station 1, secondary

fluid enters at station 2 and the mixture leaves at station 3.

The mixture then passes through a diffuser, process 3->-4,

the basic purpose of which is to reduce the kinetic energy of

the flow and thereby decrease the associated friction losses

downstream of the diffuser. On the other hand the diffuser

introduces certain losses of its own so that some care is

necessary to optimize the design in this respect.

The gas mixture then passes through the electrical power

section, process 4-*5 , from which the gross electrical power is

extracted.

Finally, the gas mixture enters the condenser/separator

at station 5. The primary fluid is separated from the gas

mixture by condensation and leaves at station 6. The fluid at

this point is assumed to be compressed liquid at a known static

pressure P
g

and a known static temperature T
g

. Kinetic

energy at station 6 is regarded as negligible. The secondary

fluid leaves the condenser/separator and enters the ejector at

station 2. We assume, moreover, that

and

P
6

= P
2

= P
x

(2.1)

T
6

= T
2

(2.2)
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The primary fluid which leaves the condenser/separator

at station 6 is circulated back through the pump and through

the boiler/superheater, process 7-KL.

It should also be explained that the primary fluid at

station 1 is a condensible vapor of high molecular weight

which contains fine liquid droplets. Unless specifically

stated otherwise the quality z at this location is taken

as 0.95. The important thermodynamic static properties at

station 1 can be expressed in the following form.

h, = h
f

+ z h
f

Enthalpy (2.3)

s, = s
f

-1
-- z s

f
Entropy (2.4)

Here subscript f denotes the saturated liquid and subscript

fg denotes the change between saturated liquid and saturated

vapor. All properties are evaluated at a specified pressure

P, ; the corresponding saturation temperature T, is then

also known.

The corresponding stagnation properties T , and h ,
S -L Si.

are fixed when the stagnation pressure P , is specified.

Of course the entropy has the same value s, at the stagna-

tion condition as at the corresponding static state. Thus

specification of P , and s, suffices to fix all otherr si 1

stagnation properties.

While it is convenient to start the analyses by stipula-

ting the quality at station 1, it is also advisable later in

the calculation to determine the corresponding quality at



station 4, the entrance to the electrical working section.

It is essential that the fluid entering the working section

contain finely dispersed liquid droplets of the proper size.

These droplets carry the electrical charges that are the

central feature of EHD power generation. We assume tentatively

that acceptable droplet characteristics are obtained by

maintaining the quality at the inlet to the working section

in the range 0.92 to 0.98. These limits are only estimates.

The thermodynamic analysis would be greatly simplified

if both fluids were perfect gases with constant specific

heats. In fact only the secondary fluid satisfies this re-

quirement. Nevertheless, we can define an "equivalent perfect

gas" which adequately approximates the essential thermodynamic

properties of the primary vapor/liquid mixture. When carried

out judiciously, this procedure simplifies the analysis at the

7
cost of only a small loss in numerical accuracy .

The ratio of specific heats y of the "equivalent perfect

gas" may be deduced from the important relation

Y 1 /(Y 1
" 1)

(P
sl

/P
l

} " (Tsl
/T

l } (2 ' 5)

Solving this for Yi gives

-1

Y l

_ ^(T
sl/Tl )

to(P
8l

/P
1

)
(2.6)

Another fundamental property of the "equivalent perfect

gas" is its specific heat C , which may be evaluated from

the expression



(h
sl - h

l
]

C
pl

=
(T
gl

- T
x

)

(2 ' 7)

where all quantities on the right are now known.

It then follows from standard perfect gas relations that

the gas constant R, and the molecular weight W, of the

"equivalent perfect gas" are, respectively,

Ri=( IiT7^Si (2 - 3)

and

W .I < 2 - 9 >

1 R
l

where R = universal gas constant

= 8 317 joules/kg-mole °K

Eqs. (2.6) through (2.9) complete the definition of the

"equivalent perfect gas" which adequately simulates the essen-

tial thermodynamic properties of the primary vapor/liquid

mixture.

It should also be explained that the secondary fluid at

station 2 is predominantly a noncondensing gas of low molecu-

lar weight primary vapor.

It can be shown that the mass ratio co of condensible

primary vapor to dry secondary gas at station 2 is given by

the expression

wv vv»" v^ Lp
2
-p

v it
6
)J

(2 - 10)



where

W = true molecular weight of condensible vapor (not to

be confused with the "equivalent molecular weight

W," considered earlier)

WG = molecular weight of noncondensing gas

P (T
6

) = vapor pressure of condensible primary fluid at known

temperature Tg

P
2

= known static pressure at station 2

The present analysis is restricted to conditions under

which oo is very small compared with unity and may be neglec-

ted. Thus the fluid at station 2 may be treated as dry gas.

This greatly simplifies the analysis. Eq. (2.10) is useful for

verifying that this assumption is indeed satisfied in any par-

ticular instance.

It should be added that if it later becomes of interest

to make calculations for circumstances under which parameter

oj is not negligible, the present analysis can in fact be

generalized to include this effect. For the present, however,

we prefer to deal only with the simpler situation in which oo

may be neglected.

10



3. Ejector

The ejector receives a primary stream of high molecular

weight gas at station 1, a secondary stream of low molecular

weight gas at station 2 and discharges the resulting mixture

at station 3. Static conditions at these three stations are

designated by subscripts 1 , 2 , 3 . Stagnation conditions

at the corresponding stations are designated by subscripts

si / s2 and s3 .

The following quantities are arbitrarily specified or

known at stations 1 and/or 2, namely,

Molecular weights : W, and W
2

Ratios of specific heats: y, and Yo

Stagnation pressure of primary jet: P ,

Stagnation temperature of primary jet: T ,

Static pressures: P, = P
2

(= Pg)

Static temperature of primary jet: T, (= saturation tempera-

ture of primary fluid at pressure P,)

Static temperature of secondary jet: T
2

(= T
g

)

Mass flow ratio: m,/nu = m
1
/(m, + itu) = x

Velocity ratio: V-j/V-, - y

We treat the fluids at stations 1, 2, 3, 4 and 5 as per-

fect gases with constant specific heats.

The velocity ratio of the ejector may be developed as

follows:

\ fl 'h Pl R
l

T
sl

M
l _1 ,, ,,

V
2 " ^ " a

2
M
2 1 "'2 R

2
T
2 a)

T
s1

/T
1

' M
2

11



We can now use this result and other standard perfect

gas relations to complete the calculation of key thermody-

namic properties at stations 1 and 2. It is convenient to

arrange these calculations sequentially as follows

:

M
i - Vttt^t (Jf "

}
< 3 - 2 >

M
2 = fv31

*1 R
l

T
sl

M
1

Y
2

R
2

T
2 \|

T
sl

/T
l

(3.3)

T
«?2 Y 2 " 2

ff = 1 + ^^ M
2

(3.4)

T
s2 " T

2
(T

s2
/T2> < 3 - 5 '

Y 2

»-,\ ^.,\P2 " X
)

F
2 / V 2

(3.6)

P
s2 = P

2 (Jf)
< 3 ' 7 >

Before we can determine the actual conditions at station

3, the outlet of the ejector, it is first necessary to analyze

two other hypothetical cases as indicated schematically in

Fig. 3.1. In all three of these cases the flow is taken as

steady and adiabatic.

The first case, that shown in Fig. 3.1(a) , involves a

hypothetical device which receives two gas streams at stations

1 and 2 and discharges the resulting mixture at station x . In-

let conditions at 1 and 2 are identical to those of the actual

ejector.

12



#w (l-x)

©

Hypothetical Minimum

Loss Device

(a)

©

©

W (1-X)

©

Actual Ejector

(c)

©

Fig. 3.1 COMPARISON OF ACTUAL EJECTOR WITH IDEAL
EJECTOR AND WITH HYPOTHETICAL MINIMUM
LOSS DEVICE.
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Recall that the adiabatic mixing of two different gases is

an inherently irreversible process that always involves a cor-

responding entropy increase. We stipulate that the first case

is such that the only irreversibility which occurs is that asso-

ciated with this mixing. We term this mass mixing to distin-

guish it from another type of mixing considered below which we

term momentum mixing.

The second case, that shown in Fig. 3.1(b) , involves an

ideal ejector which receives two gas streams at stations 1 and

2 and discharges the resulting mixture at station y. Again,

the inlet conditions at 1 and 2 are identical to those of the

actual ejector. This case satisfies, among other relations, the

idealized one-dimensional momentum equation for frictionless

,

constant area flow. It can be shown that in this case there is

an overall entropy increase which includes not only the previ-

ously mentioned effect of mass mixing but also a further increase

associated with momentum mixing.

The third case, that shown in Fig. 3..1(c) , represents the

actual ejector itself which receives input streams at stations

1 and 2 and which discharges the resulting mixture at station 3.

All three of the above cases refer to constant area pro-

cesses in the sense that

A
x

= A
y

= A
3

= (A
x

+ A
2

) ( 3.8)

Once the hypothetical operating conditions at stations x

and y have been found, it then becomes possible to express the

14



corresponding actual conditions at station 3. This is accom-

plished through the use of an ejector effectiveness n E .

This parameter is defined more explicitly in the later analysis

Values of ri_ must be estimated by reference to test data on

ejectors (i.e., Ref. 8/ 9/ 10).

15



4. Adiabatic Mixing of Two Streams

The process in the ejector is treated as the adiabatic

mixing of two streams. The following relations can be shown

to apply.

R = 8315 Joule/kg-mole °K (4.1)

"i-Sr u - 2)

R2=^ (4 ' 3)

R^ = R = R, = x R. + (1 - x) R (4.4)X y 3 1 2

c
pl

=
Y
l

R
l

<*1 - 1)

C
P2

=
Y 2

R
2

(Y
2

- 1)

Y*
= y

y
= Y

3
=

(c
p3

p
- R

3
)

( 4.5)

( 4.6)

C = C = C. = xC, + (l-x)C (4.7)px py p3 pi p2

(4.8)

Tsx " T
sy - T

s3 " C^ t* Cpl
T
sl

+ (1 " X) C
P2

T
s2 ] ^.9)

A
x

= A = A
3

= (A
x

+ A
2

) (4.10)

Notice that the quantities R , C , y r T and A . all^ p s

have the same values at stations x, y and 3.

This fact may be used to simplify many of the subsequent

expressions. It is always permissible to substitute subscript

3 for subscripts x or y on any of these quantities.

16



5. Mass Flow

It is convenient temporarily to omit station subscripts

1, 2, 3, x, y and thereby develop certain needed mass flow

relations in generalized form. Thus the mass flow across an

arbitrary station may be written and developed as follows.

m = pAV =
RT j

A (/fRT m) = PAM^
P A
s

T /T
s

jwr^K^ M (5.1)

This may be rewritten as

m =
P A

^rt77
f (M) (5.2)

where the auxiliary function f(M) is defined as follows.

f(M) = /V T

TpTpT
M = M 1 + (1^1) rf

(Y + 1)

2(y - 1)

(5.3)

Eq. (5.2) can be applied specifically to stations 1, 2,

x, y, 3 as follows

m
x

=
P . A.
sl 1

/R
1

T
sl/Y l

f (M
1

) (5.4)

P , A
m =

SZ Z f(Mj
/K

2 s2 X <2

( 5.5)



P A

K = SX f(M) (5.. 6)

^R 3
Ts3^3

P A
in = =^ — f(M ) (5.7)
y <R

—

t—7^r- y
^/
R
3

T
s3/Y

P -a A
m
3

= SJ
^

f(M
3

) (5.8)

VR 3
T
s3/y 3

also

ft)-
m = A = m_ = rti. + m (5.10)X y j x ^

From Eqs. (5.4), (5.5), (5.9) and (5.10) we readily find

that

'M . k /
P
s2\ /

R
l

T
sl ^2 f(M2>

a
2

J
• tt^tt U>s1

//r
2

t
s2 Yl hm^t

Then from Eq. (5.10) we infer also that

(5.11)

'M (VV
A3/ (1 + A

x
/A

2
)

(5.12)

Since all quantities on the right side of Eq . (5.11) are

now known, Eqs. (5.11) and (5.12) fix the area ratios A, /A_

and A /A- .

From Eqs. (5.5), (5.6), (5.9), (5.10) and (3.8) we deduce

further that

18



(1 - A./A-) /P \ R T . Y ~

All quantities on the right side of Eq. (5.13) except

P„„ are now known. The method of determining P is ex-sx r sx

plained in a later section; refer to Eq . (5.15). Once P
S X

has been found, Eq . (5.13) fixes f(M ) whereupon Eq. (5.3)X

fixes M itself. The solution of Eq. (5.3) for M when

f(M) is known involves an iterative procedure which is ex-

plained later in this section.

From Eqs. (5.6), (5.7), (5.8) and (5.10) we also find that

P
sx

f(V = P
sy

f(V " P
s3

f(M
3

} (5 ' 14)

Assuming P and M known, this relation along with Eq. (5.3)
S X x *

fixes P when M is specified; it also fixes f(M_) and
sy y 3

M. when P , is specified. The methods of calculating M
3 s3 r

y

and P
3

are explained later; refer to Eqs. (7.8) and (8.14) .

Fig. 5.1 is a rough sketch of the function f(M) as defined

by Eq. (5.3). This function vanishes at M = and at M = * .

The maximum value occurs at M = 1 and equals

(Y + 1)

fmax

2(y - 1)

(5 .15)

max '

Y + 1_

It is clear from the figure that in the range 0<f< f

Eq. (5.3) has two positive real roots, one subsonic and the

other supersonic. Usually the supersonic root must be discarded

because it is not consistent with a further constraint imposed

by the second law of thermodynamics.

19
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Fig. 5.1 APPROXIMATE SKETCH OF FUNCTION f(M)
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In order to solve Eq. (5.3) for M when values of f

and y are specified, we utilize an iterative procedure based

on Newton's method. Let M denote the nth trial value of
n

M . We then define a function F(M ) and its derivative
n

F (M ) as follows,
n

F(M )n
= f 1 + Y " 1 M

(Y + 1)

2( Y - 1)
- M

n
(5-16)

F' (M )n
= ff*.

+ 11

—

M
n

1 + Y - 1 M

(3

?77
Y)u

- 1 (5.17)

The (n + l)st trial value of M may now be taken as

F(M )

M, , » = M - ,

n
(n + 1) n

(5.18)
F (M )

n

The cycle of calculations defined by Eqs . (5.16) , (5.17)

and (5-18) is repeated until the result for M converges to

a stable value at the desired level of accuracy.

Thus

M = ilim M
n

n (5.19)

It is readily apparent that the value of M so obtained

satisfies Eq. (5.3) for the prescribed values of f and y .



6 . Entropy

Consider the case shown in Fig. 3.1(a). The specific

entropy s of the discharged gas may be expressed in the

form

s
x

= x pi \?o 1 n\P
Q

xl

+ (1 - x) C t £n
P2

x

2 n
x2

(6.D

where P , and P 9 are the partial pressures of the two com-xl x2

ponents of the gas mixture. Symbols P and T denote the

pressure and temperature of the ambient atmosphere. The en-

tropy of each component is assigned the value zero at this

reference state P , T
o o

Incidentally, the primary fluid, being condensible, might

well exist only in the liquid state at the reference condition

P , T . Nevertheless, so long as it is in the gaseous state

at station x , Eq. (6.1) may still be used.

The partial pressures of the two components are propor-

tional to the respective mol fractions. Hence

xl
X R,

X
x R n

+ (1 - x) R_ \ P
1 Z \ O

* R
l /

P
x

R, \ P
(6 .2)

x2
(1 - x)R

2

x R, + (1 - x) R
2

x (1 - x)R,

rT
(6 .3)

22



Upon substituting Eqs. (6.2) and (6.3) into (6.1) and

simplifying we may obtain the result in the form

sx= S
m

+ C
p3

*n

(*f)
_ R

3
ta (Jj) (6 - 4)

where

s^ = R
3

in R
3

- x R
L

in (x R
±

) - ( 1 - x)R
2

in [(1 - x)R
2

]

(6.5)

It can be shown that this quantity s represents them c

entropy increase associated with the mass mixing of the two

different gases.

Moreover, since the entropy of the stagnation state s

is by definition identical to that of the corresponding static

state x , we may replace T and P in Eq. (6.4) by T

and P , respectively. Thus we obtain

s
x = sm + C

p3
ln

(Jf) " R
3

Zn
(ff)

<6 - 6>

In previous studies of this series, we have considered

only the special case in which the same fluid is employed for

both the primary and secondary streams. In that case we have

R
x

= R
2

= R = R ( 6. 7)

C,=C =C. = C (6-8)
pi p2 p3 p

Y X
= Y 2

= Y 3
= Y (6 . 9)

Moreover, in this special case there is no mass mixing, so

that we must set
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-s = (6-10)m

Consequently, Eq. (6.6) now simplifies to

s
x

= + C
p

in (JJS) - R in (jsj (fi.ll)

Next reverting to the case of two different gases, let

At denote a time interval during which unit mass crosses

station x . During this same interval x units of mass cross

station 1 and (1 - x) units of mass cross station 2. The

entropy which leaves across station x must equal the entropy

which enters across stations 1 and 2 plus the entropy increase

caused by the mass mixing. Thus
i

s =s + x s, + (1 - x)s~ ( 6 12)
x m 1 2

where

s
i V £n

(*f) '
R
i

ln
(pfy

(6 - 13)

s
2

C
p2

ln
(ff) " R

2
tn

(ff

)

<6 - 14)

Upon eliminating s between Eqs . (6.6) and (6.12) , we

find that s also cancels from the result. It is then a
m

simple matter to solve for the exit stagnation pressure in the

form

inl^l- i- jc
p3

£n (J&) - x s
x

- (i - x)s
2 j

(6.15)
P N

SX
P
o '
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Thus the sequence defined by Eqs. (6.13), (6.14) and

(6.15) new fixes P . Next referring back to Eq. (5-13),
sx

we can calculate the value of f (M ) ; finally, from Eqs.
X

(5.16), (5.17), ( 518) we can calculate M itself. Once
X

P , T = T - and M are known, it is a simple matter to
sx sx s3 x ' ^

calculate the corresponding conditions P , T from the
X X

usual perfect gas relations.
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7. Momentum

Consider the idealized one dimensional constant area

ejector shown in Fig. 3.1(b). The momentum equation for this

system may be written

(P
1

+ Pl V
1

2
)A

1
+ (P

2
+ p

2
V
2

2
)A

2
= (P

y
+ p

y
V
y

2
)A

y
(7.1)

The mass conservation relation for this system can be

expressed in the form

P
l
A
l I °2

A
2
V
2 , „ ,, ,,—

5

rr=^r =pyVy (7-2)

Let us divide the three terms of Eq. (7.1) by the corres-

ponding three terms of Eq. (7.2). Notice that the areas can-

cel out of the result. In this way we obtain

(Pl + Pl v,
2

) <p
2

+ p 2
v
2

2
) _ (P

y
+ Py v

y

2
)

p
l

V
l

(

p
2

V
2

"

^ V
y

(7.3)

Temporarily dropping the station subscript, we next deve-

lop the typical term of Eq. (7.3) in generalized format as

follows

.

(P + pV2 ) _ [
P +

If <Y*T>"
2

] _ p7 (1 + TM
2

)

P — ART M V
,
/yW M » Y M /T /T

Kl S

(1 ± YM
2

)

(7 ' 4)

mA + (

Y " 1
)M

Observe that the pressure P cancels from the result.

It is convenient to define the auxiliary function
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g(M) = % *- A + (I_ZJ:)M2
( 7 .5)

(1 + yM )

With this notation Eq. (7.3) may be rewritten in the

form

x /
R
l

T
sl . (1 - x) A T

s2 1 /*3 T
s3 ,,,,

gTHpv y x
g(M

2
)
/— g73TT / y

3

(7 * 6)

Rearranging gives

3 s3 ) x / 1 si (1 - x) / 2 s2
g(V = /-^jg^T /^f* ^tTH^/^Tf-J (7- 7:

Since ail quantities on the right are known, Eq. (7.7)

fixes g(M ) . Then M itself can be found by inverting
y y * *

Eq. (7.5). Fortunately, an explicit solution is possible in

2
this case as Eq. (7.5) can be reduced to a quadratic in M

The result is

M
2 = (1 ~ 2Yg2) t A - 2(y ^ l)g

2

(7>3)

1 - Yd " 2 Y g
2

)

The general character of the function g(M) is sketched

in Fig. 7.1. Notice that g(M) vanishes at M = , reaches

its peak value g at M = 1 , and decreases toward the
max

limit g as M-*» . It can be shown that

(7.9)

(7.10)

a
Hlcl.X

/2(Y + i)

9co "
l Ay
y /.

- 1)

2
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t
g(M)

M

Fig. 7.1 APPROXIMATE SKETCH OF FUNCTION g(M)
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Fig. 7.1 discloses the existence of a supersonic root over

the range <?0O
< g < gmax « This root should not be accepted until

a check calculation is made to determine whether the result is

consistent with the second law of thermodynamics. The subsonic

root is found by retaining only the negative sign before the

radical in Eq. (7.8).

Once M has been found from Eq. (7.8) , the corresponding

value of P may be found from Eqs. (5.3) and (5.14). This
sy

suffices to fix all properties at states y and sy .
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8. Availability

The entropies s. and s- of the two input streams

were defined earlier in Eqs. (6.13) and (6.14). The corres-

ponding steady flow availability functions with respect to an

ambient atmosphere at pressure P and temperature T may

be written

*1
= C

pl
(T
sl - V " T

o
s
l

(8 - 1)

*2 = C
p2

(T
s2 " V * T

o
s
l

(3 - 2)

Consequently the total available energy entering the sys-

tem becomes

'^m
= X

^1
+ U " X)l

^2 ( 8,3)

The respective entropies of the streams leaving at stations

x , y and 3 are

s
x

Sm
+ C

p3
4n

(xf) " R
3

4n
(ff) «••«'

s
y " sm

+ C
p3

Zn
(Sf) " R

3
in

(ff)
(8 - 5>

s
3

" S
m

+ C
p3

in
(ff) " R

3
ln

(If)
(3 - 6)

where s has been previously defined in Eq. (6.5).m

The corresponding availabilities of the streams leaving

at stations x, y and 3 may therefore be written
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*x C
p3

(T
s3 " V " T

o
S
x

(8 ' 7)

*y
= C

p3
(T
s3 " V " T

o
S
y

(8 ' 8)

*3 " C
p3

(T
s3 " V " T

o
S
3

(8 ' 9)

Now consider the losses of availability listed below.

By substituting the above expressions for the quantities on

the left and simplifying we readily obtain the expressions

shown on the right. Thus

(tym ~ <J> ) = T s ( 8.10)m x o m

(*x
- *

y
) = R

3
T
o l*C^A (8.11)

( *x " *3> " R
3

T
o

la
(fff)

' 8 - 12)

These results are very significant. Eq. (8.10) defines

the loss of available energy caused by the mass mixing of the

two different gases. Eq. (8.11) defines the further loss of

available energy caused by the momentum mixing in an idealized

ejector. Eq. (8.12) defines the augmented loss of available

energy caused by the momentum mixing in the real ejector.

It is useful to postulate an empirical relation between

these last two losses which is shown below on the left. The

expression on the right then follows from Eqs. (3.11) and

(8 .12) . Thus

( »x - V _ n .
ta (P

sv
/P

sk' ..,,.
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We term n E the ejector effectiveness. Its value,

which is always less than unity, must be estimated from appro-

priate test data on ejectors.

If we treat n E as known, Eq. (8.13) fixes P
3

. The

solution is simply

1_
nE

We can next find f(M_) from Eq. (5.14) and M. from

Eqs. (5.16), (5.17) and (5.18). This suffices to fix all pro-

perties at states 3 and s3 thereby completing the analysis of

the ejector.
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9". Diffuser

It is convenient to analyze the diffuser in terms of the

concept of availability in steady flow. However, we wish to

deal with the characteristics of the diffuser itself and these

cannot depend on the arbitrary values P , T which happen

to characterize the condition of the ambient atmosphere. We

can achieve our objective by defining the availability with

respect to a reference state P~ , T- which characterizes

the diffuser rather than with respect to the ambient state

o ' o

Under these circumstances we may write the appropriate

availabilities at diffuser inlet and outlet as follows

*
S 3 = C

p3
<T
S3 " T

3> " T
3

{

C
p3

ta
(ff)"

R
3

ln
(Jf)j

(9 ' 1)

*s4 = C
p3

(T
s3 - T

3» - T
3

{

C
P 3

%n
(ff)-

R
3

to
(ff))

(9 - 2)

These equations make use of the fact that T . = T _ .

Also, states s3 and 3 are at the same entropy so that

(s
s3

-s
3

) =0 . Cp tn (jBl) - R
3 1»(!S2J ( 9 .3)

From Eqs. (9.1) and (9.3) we conclude that

. (t , - tj = ( -;
p-

/
V
3

^s3 = C
p3

(T
s3 " T

3
) -l-T (9,4)
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This result shows that the available energy at the

diffuser inlet is simply the inlet kinetic energy itself.

The loss of availability through the diffuser may be

found by subtracting Eq. ( £2) from (9.1). The result is

(
*s4 " *s3 ] " 4 * " + R

3
T
3 *n fe) (9 ' 5>

We now define the diffuser effectiveness as

so that

This reduces readily to

V s4/ (9.8)
(1 - n n )

=

y
3
M
3

>

Solving for the pressure ratio gives

Y
3
M

2

p., - (l - nJ
S 4

vx "D' 2
= e

P
s3 (9-9)

This is the result required. It fixes P . when P - ,

M_ and n D
are specified.
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Assuming the area ratio A./A
4

to be arbitrarily spec-

ified, we can find M
4

from the continuity relation. Refer-

ring to Eq. (5.8) we may write

PA PA
*3 = S3 3-- f(M,) =

s4 4
f(M.) = m. (9.10)

A3 Ts3^3
3

/*3 Ts3^ 3

4 4

Consequently

f(V =

te)ft)
f(M3' (9 - u>

Eq. (9.11) fixes f(M
4

) . Then M
4

follows in the usual

way from Eqs. (5.16), (5.17) and (5.18). The result suffices

to fix all properties at states 4 and s4 . Thus

W - (5?) - * f-^K
T
4 = T

s3
/(T

s3
/T

4
} (9 ' 13)

w m^ (9.14)

p
4 " P

s 4
/(Ps4''V (9 - 15 >

The configurations studied in earlier work did net incor-

porate a diffuser. For the purpose of comparing the results

of the present analysis with corresponding earlier work, it is

desirable to be able to eliminate the effects of the diffuser

in certain cases. This can be accomplished in the present

analysis simply by setting
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n D
= 1 (9.16)

and

ft)'
1 (9 - 17)

It is easy to confirm that under these circumstances

T
s4

= T
s3

(9.18)

P
s4

= P
s3

(9.19)

M
4

= M
3

( 9.20)

A
4

= A
3

etc. ( 9.21)

and all diffuser effects disappear.
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10. Electrical Power Section

The power conversion process in an EHD duct is usually

treated on the basis either of constant area or of constant

static state. Inasmuch as electrical power output per unit

mass is small, the numerical differences between the results

computed by these two methods is negligible. For definite-

ness in this analysis, however, we assume constant area.

The electrical power that can be obtained from an EHD

duct of constant area, negligible change of density and optimum

length can be estimated from the one dimensional version of

Poisson's equation which governs the electrical field. The

solution is well known and will not be derived here; a detailed

derivation may be found in Ref . (3) . The essential result may

be written in the form

p = i ze
2

A V (10.1)F
e 2

£b
b

A
4

v
4

where

P = gross electric power output, watts

£ = permittivity of medium

-12
= 8.854 x 10 farad/m (for any gas)

E, = dielectric strength of medium, volts/m

A, = area of duct (constant)

V\ = velocity
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According to the test data analyzed in Ref. 4, the dielec-

tric strength is well approximated by the expression

E
b

= C
B3

R
3
P 4 (10.2)

where CR3 is a characteristic constant of the medium. The

data show that Eq. (10.2) applies to air or steam up to about

10 atmospheres pressure with

C
B3

= 9.49 x 10
3 m

2
°K/cmb (10.3)

In this study we assume that Eq. (10.2) can be extrapolated

up to about 100 atmospheres pressure. We also assume that an

expression of the same form applies to other media besides air

or steam but that each medium has its own characteristic value

of the breakdown constant C_.

.

o

In the two-fluid system, the separate values of the

breakdown constants CR , and CR2 are usually known, but the

breakdown constant C_^ of the resulting mixture is seldom

known. In the absence of adequate test data bearing on this

point, we tentatively assume that CR3 can be estimated from

the hypothetical relation

C
B3

=
jg

[xR
l
CBl

+ (1 " X)R
2S2 ] (10.4)

Upon substituting Eq. (10.2) into (10.1)and dividing

through by the mass flow rate, we find the electrical work out-

put per unit mass of fluid in the form:

P
e (

£ CB3
R
3

m
4

P 4 = C
P 3

(T
s4 " T

s5 ) <
10 ' 5 >
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By use of standard perfect gas relations, Eq. (10- 5) can

be changed to a more useful form. In this connection set

(T
s4 " T

s5 } " AT
s

(10 - 6)

and
e cn : P

B = £i—2. (10.7)

o

2where P
q

= ambient pressure, N/m

T = ambient temperature, °K

Notice that 3 represents a dimensioniess version of

the electrical breakdown constant.

Eq. 10.5 now yields the important result

_1

AT
s H3 - VWM 2

L
. (

Y 3 " X
\.. 2

The corresponding gross electrical work output per unit

mass of fluid is then simply

W* = CL, AT dO-9)
e P3 s

Unfortunately, the known value of z and the typical

experimentally measured values of C~. are very small. Con-

sequently, the dimensioniess breakdown constant 8 is ex-

tremely small compared to unity. Hence the drop in stagnation

temperature AT c and the gross electrical work per unit mass

W* are also typically very small. This is a very basic and

serious limitation on the performance that can be obtained from

an EHD generator.

Treating the process 4->-5 as isentropic, we may write
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y
2

(y
3

- 1)

P = p f-^i) (10.10)p
ss

p
s4 ^s4 ;

By analogy with Eq. (5.8) we write the continuity rela-

tion as

* = s4 4
f(M.) = s5 5

• f (M.) = m_ (10.11)

/*3 Ts4^3 /*3 T
s5/Y 3

It then follows that

f(M ) =/5l(
/

!ii) f( M )
(10.12.)

V s4 \ s5/ 4

This fixes f(M_) whereupon ,M_ may be found in the

usual way from Eqs . (5.16), (5.17) and (5.18). However, con-

vergence should now be very rapid since we may take as a

first approximation

M « M
4

(10.13)

This solution now suffices to fix all properties at

states 4 and s4 .
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11. Condenser/Separator

The primary fluid which leaves the condenser/separator

at station 6 is assumed to be compressed liquid at known

static pressure P
g

= P
2

= p and at known static tempera-

ture T
6

= T
2

. The kinetic energy of the liquid at station

6 is assumed to be negligible.

Temperature T
g

must be equal to or greater than the

ambient temperature T in order to satisfy the require-

ments of a heat balance on the condenser/separator. No

attempt is made in this analysis to formulate this actual

heat balance; instead T
g

is simply treated as a given or

known quantity. However, it may be of interest later to

investigate the effects of varying T
fi

on the overall per-

formance of the EHD system.

The secondary fluid which leaves the condenser/separator at

station z consists primarily of a low molecular weight nonconden-

sing gas. It also contains some secondary vapor, but the mass

fraction of this vapor is treated as negligible in this analysis.

Thus the secondary fluid at station z is treated as dry gas.

The thermodynamic process in the condenser/separator can be

most conveniently analyzed and modelled by employing the momentum

theorem. We treat the condenser/separator essentially as a one

dimensional, constant area device in steady flow. By equating

the net applied pressure and drag forces to the change of

momentum flux in the direction of flow, we obtain the following

simple relation, namely,
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(p
5

- p
2
)A

5
- D = (1 - x)m

3
V
z

- ra
3
V
5

(11.1)

The effective drag force D in this equation represents two

irreversible momentum loss effects. One of these is the loss of

momentum produced when the condens ible vapor in the incoming flow

is condensed and brought to a halt on the stationary surfaces of

the condenser/separator. The other is the additional friction

drag force; the latter is conveniently expressed in terms of an

empirical friction coefficient c
f

. Thus we may write

D = x m
3
V
5

+ c
f

( jP5V5
2)A

5
(11.2)

Next we substitute Eq. (11.2) into 11.1) , bring all terms

to one side of the equation, regroup terms, and divide through by

the quantity PcA^ . We also make use of the following auxiliary

relationships, namely,

P5V5A5
m
3
V
5 v M 2 M1 ,.

a
= ^— =

Y-5M^ (11.3)
P 5

A
5 p 5

A
5

Y 3 5

and

m
3
V
z Y 2

R
2
T
zJ z = y M M (11 4)

P 5
A
5

Y
3
M
5
M
z ^^

In this way the following result is finally obtained -
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The quantity E(x) serves here merely as a convenient abbre-

viation for the sum of terms shown. It may be said to represent

an excess of momentum available over that required to satisfy the

various losses that occur across the condenser/separator. In any

case, for assigned values of all other parameters, we seek by

successive trials a value of x such that E(x) = . Thus Eq.

(11.5) fixes the mass fraction x in a manner which is consistent

with the other specified input parameters.

Of course, if the various fixed input parameters are not

suitably chosen, Eq. (11.5) cannot be satisfied for any trial

value of x in the range < x < 1 , and no solution is physi-

cally possible under these conditions.
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12. . Cycle Efficiency

Once a solution has been found such that E(x) = , it

becomes a straightfoward matter to calculate the correspond-

ing overall cycle efficiency.

Because of the pressure drop through the boiler/super-

heater , the pressure P_ = P _ at boiler inlet is slightly

higher than the stagnation pressure P , of the primary

fluid at the ejector inlet. We assume that the ratio P . /P ,J si s7

is a specified constant. Hence with P . specified. P _r si v ' s7

is also known. Also the pressures P, = P n are known.
6 1

*
Consider the ideal pump work w done per unit mass of

primary fluid. For the present consider the hypothetical case

of a reversible pump. Also note that density changes across

the pump are negligible. Hence we may write

*
(P
s7 " Vw = —Si — (12.. 1)

P P
6

The ideal gross electrical work output per unit mass of

mixed fluid has earlier been established in Eq.(10.5). It is

*
denoted by symbol w

Let us now denote the net useful electrical work output

per unit mass of primary fluid by symbol w . It may be

* *
related to w and w in the following way

e p
a-i

/
* *\

T\ W W \

w . - ——- £ Joule/kg (12.2)
net y x Tip/

where n , the excitation efficiency, allows for the small

electrical power expended to excite the system and where n ,
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the pump efficiency, allows for irreversibilities in the pump

The heat input in the boiler/superheater per unit mass

of primary fluid may be written

*

<*in
= (h

sl " V * J*
(1Z ' 3)

P

where h
g

is the enthalpy of the primary liquid at conditions

P
g

, T
g

as listed in suitable tables of properties.

The overall thermal efficiency of the cycle can now be

calculated from the simple formula

n
c

= ^it (12>4)

Both n and w , are useful parameters which charac-
c net c

terize the overall thermodynamic performance of the EHD sys-

tem.

Eq. (12.2) shows clearly how the ejector serves as a

kind of amplifier which increases the electrical work output

per unit mass of primary fluid. This effect is shown by the

presence of the parameter x in the denominator of the first

term. Notice the beneficial effect of a lew value of x on

parameters w and n . Unfortunately, the value of xc net c 2

cannot be stipulated independently in advance; it is fixed

by the other specified input parameters as explained in the

previous section.
*

Notice that owing to the fact that w is normally

very small, it is possible in some circumstances for w
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to take on values which are actually negative. When this

happens it means that electrical power output is insufficient

to drive the pump.

The relationships developed in this and the preceding

sections make it possible to carry out systematic parametric

studies of various one-fluid and two-fluid EHD cycles, with

realistic allowances for the various losses that occur. Such

studies can establish optimum design parameters and perfor-

mance limits under various circumstances. These results in

turn can finally permit informed conclusions to be drawn con-

cerning the ultimate feasbility of this general type of EHD

power generator.
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13. Calculation Sequence

In this section we summarize the various equations pre-

viously derived in the approximate order in which they would

be used in the calculation of system performance. Also listed

are the initial input parameters whose values must be specified

in order to start the calculation and various further input

parameters whose values must be specified in order to proceed

with various successive stages of the calculation.

Initial Input Data : P
i

= p
2

= P
6 '

T
l '

P
sl '

T
sl '

(h
sl

~ h
l

) '

R = 8315 Joule/kg°K

Y l -
(

1 - tntP,^)
)

<13 - 1>

(13.2)

R, = ['-± \c , (13.3)

c . =
pi

(hsl-• h
l»

(T
sl

-
• T

l>

'i yt rpi

W = | (13.4)
1 R

x

Further Input Data : W , W
Q

= W
£ , T

2
= T

6 , PV ( T
6

Verify that w<<l

(13.5)
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/MFurther Input Data : y 2 / I tj— )

= Y

M
i

=
ITu - i)

si - 1 (13.6)

M„ =
V
2\ Al R

l
T
sl

Vl/V^2 R
2

T
2

M.

v^sT7*;
(13.7)

Verify that M
2
<1 (13.8)

¥} -M v
T
s2 " T

2
(T

s2
/T

2
)

(13.9)

(13.10)

Y
2

lY
2

- 1)

s2 s2
(13.11)

P
s2 = P

2 P
s2 (1.3.12)

Further Input Data: x (trial value)

R
2 " w.

R
3

= xR
x

+ (1 - x) R
2

(13.13)

(13.14)

, _ Y 2
R
2

p2 (y, - n (13.15)

C
p3 = X C

pl
+ (1 " x) C

p2 (13.16)
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'21
"
3

=
(C

P 3 " R
3

}

(13.17)

T , = 7^- [x C , T . + (1 - x) C ~ T - ]s3 C - pi si p2 s2
(13.13)

f(M
1

) = M
1

Y
l " X

2
1 + -^- M

x

2

(Y
x

+ 1)

2(Y
X

- 1)

(13.19)

f(M
2

) = M
2

y
2 ' l

2
1 + -i-j- M

2

2

(Y 2
+ 1)

2Ty7^tt
(13.20)

/ P \ JR

T

V f f M )

x / s2\ ri sl '2 Ui
2

;

(1 - X)
\
PS1/V/ R

2
T
s2 *1 ^(M^ (13.21)

A
x

(A
1
/A

2
)

A
3

(1 + A
1
/A

2
)

(13.22)

Further Input Data: P , T
O O

s
i = c

pi
in

(Jf)-
r
i

*n
(5? (1 3.23)

So = C
p2

£n
, f)

" "» '" ('
s2

(13.24)

in
sx .u

R
3 | P 3

s3

o /

\ x s, - (1 - x) s. (1 3.25)

in (P
sx

/P )

P = P e
sx o (13.26)
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(1 - A /A
3

) /P
2
\ R

3
T 3 y

(Y 3
+ 1)

2 \
2^ 3 - 1*

"max \y-5 + 1,

2(Y, " 1

F(M ) = f
n

F' (M
n ) = f

(^> 4 !^> -3

(3 - Y-J

2 ^ 3
- I)

(1 + y x
M-p

M
l \ , ,

Y
1 " \ „ 2

50

(13 .2 8)

Verify that f(M ) = f<f (13.29)x max

For first approximation set M = M9 (3 3.30)

Iterate using Eqs. (13.31), (13.32), (1.3.33).

(Y
3

+ 1)

( (
Y
3

" X
) 2\

T3

I

1 + —T~j

VJ " M
n

(13 ' 31)

13.32)

F(M )

M
(n + 1)

" M
n - P(FT <l3 - 33)

n

Iteration converges to fix M

g ( Ml ) = ±—j- \ l + (-±j ) M^ (13.34)

M
2 y, - 1

g(M
2 ) = - * \ 1 + (-£, ) M, (13.35)

(1 + Y 2
M
2

2
)



g(M
y

)
= g =

R
3

T
s3

Y 3
g(M,) y

R
l

T
sl

+
(1 - x)

M
2 =

(1 - 2y
3 g

2
)

- y 1 - 2 (y 3
+ 1) g

2

l - y
3

(l - 2y
3 g

2
)

v-l

g(M,) V y

R T
s2

(13.36)

(13.37)

Eq. (13-37) applies provided that g ^ gOT
=

!f g =
goo t^ie solution reduces to

Y 3
" 1)

-=-, (13-38)
Y

3

My =
(Y 3

- 1]

2Y
(13.39)

Once M is known from Eq. (13.37) or (13.39)

(
Y 3

" X
)

(M
y> = M

y I

1 + -S M
y

(Y 3
+ 1)

2 C'3 " 1}

(1 3.40)

f(M )

p = p *
sy sx f (M

)

Further Input Data : n

(13.41)

33 sx
V
P
s X/

l/n.

(13.42)

f(M
3 ) = ip

/P...Nsx f(M )X

Verify that f(M
3

) = f<fMax

(13.43)

(13.44)
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For a first approximation take M_ = M

Iterate using Eqs . (13.31); (13.32), (13.33)

Iteration converges to fix M., .

s3 (
Y
3 " X

) 2
1 + ^-2— M

3

T
3 " T

s3
/(T

s3
/T

3
}

(13.45)

(13.46)

(13.47)

Y

Fy, - T.

s3 s3
(13.48)

P
3 = P

s3
/(P

s3
/P

3
)

Further Input Data ; n n , [
t—

- i - n

s4 s3

f(v = f =
ife)(i!;

f(M
3'

maxVerify that f(M ) = f<f

For a first approximation take M. =

Iterate using Eqs. (I3.3I), (13.32),

Iteration converges to fix M
4

M.

4
'

13.33)

(13.49)

(1.3.50)

(13.51)

(13.52)

(13.53)

T . = T -
s4 s3 (13.54)
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T
s4 fY 3 " X

) 2

T
4

= T
s4

/(T
s4
/T

4
) (13.56)

Y
3

P T (Y
3 " 1]

111 _ l£4
P " T*4 X

4

(1.3.57)

P
4 " P

s4
/(P

s4
/P

4
) (13 ' 58)

-12
Further Input Data : e = 8.854 x 10 farad/m, CB1 , cr2 '

3 2
(C„ = 9.5 x 10 m °K/cmb for air or steam)
o

C
B3

=
KJ

[X R
l

C
B1

+ (1 " X) R
2

C
B2 ] (13 - 59)

S CB3
2

Po
B = B% - (13.60)

V

T
s4 I

2 ''3 )\
P
o A T

s4'

m AT
T
S5 = (1 - =-£) (1 3.62)

T . S4
s4

T _ V {*3 " "
P
s5

- ?
s4 (^) (13.63,
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f<M5> =
'

=

^(fe)'^4
'

(1 3-64)

Verify that f(Mc ) = f<f av (13.65)

For a first approximation take M_ = M.

Iterate using Eqs. (13-31)/ (13.32), (13.33)

Iteration converges to fix M_ .

ff) • l + (^-l-) M
5

2
(l3 - 67)

T
5 " WWV (13.68)

Y
3

(Y
3

" 1)

P
5
)-\t

5
J

(13-69)

P
5 " P

s5
/(P

s5
/P

5
) (13 - 70 »

Further Input Data : c
f

, x ,-,
P
Zx /-. °f\ M 2 d3 -71)

E(X) = (1 " =~) + (1 - X )YA
P 5 2 6 b

^2 R
2

T
z

ir-3M5Mz"\/7I"s;'^
=

°
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Iterate from Eq. (13.14) until x converges.

Further Input Data: ( psl/
p
s7 ) • P

6
< <h

sl
- h

fi
) , n x , n

P
s7

= P
sl

/(P
sl

/P
s?' (1-72)

„* . Cp3 AT
S

(13.73)

w
* = U s7 V (13.74)
P p

6

c
<*in

n w w

"net = [-*** " n^ » ^^ (13 " 75)

*
w

q. = (h . - hf.) - -2- (13.76)^m si 5 n

w
n = ne - RESULT (13.77)
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14. OPTIMUM VELOCITY RATIO

The calculation sequence summarized in the preceding sec-

tion reveals that a comple cycle calculation requires us to

specify numerical values for about thirty input parameters.

One of these is the velocity ratio (V^/V-) = y . The calcula-

tion procedure outlined above then permits us to find the cor-

responding value of the mass flow ratio x , assuming that

there exists a value of x which satisfies the governing

thermodynamic relations for the specified values of the other

input parameters.

If we now change the value of y but hold all other in-

put parameters fixed, we can repeat the above procedure and

find a corresponding new value of x , if such a value exists.

It is evident, therefore, that x becomes some definite

function of y as long as we remain in the domain where a

real solution exists. Of course all other dependent variables

of the cycle are also functions of y . In particular, the

overall cycle efficiency n is some definite function of y .

Moreover, for prescribed values of the other input parameters,

there will be some definite value of y , let us designate it

as the optimum value y , which yields the greatest value

of n that is possible under the specified input conditions.

Our basic purpose therefore is to determine for any prescribed

values of the other input parameters, the value of v and thec c "opt

correspondina value of n ) • Of course the values of x_ ,c c max opt

and other dependent variables are also of interest.
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Since a working computer program is now available to es-

tablish values of y , n ) / x and so on for pre-
'opt c max opt ^

scribed values of the other input parameters, we can proceed to

study the effects of changes in these other parameters and to

search systematically for such values of the most important

input parameters as will yield the best overall performance

of the system.
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15. Conclusions and Recommendations

Based on the work reported here and in Ref . (6) , the

following conclusions are evident:

1) Ejector performance is substantially improved

through the use of a high molecular weight pri-

mary fluid (i.e., above 100) and a low molecular

weight secondary (i.e., below 30). The mixing

penalty which ensues is offset by the substantial

decrease in ejector losses.

2) The breakdown strength limitation is severe even

at higher pressures. Since the breakdown strength

of a mixture can often be smaller than that of a

single fluid, allowance for this must be made when

considering fluids to be used in the ejector. In

Ref. (6) it is stated that in mercury/hydrogen an

improvement by a factor of 5 in the breakdown

strength is required for a competitive thermodynamic

efficiency.

3) Consideration of the breakdown strength of mixtures

together with other factors seem to indicate that

the sequence of components shown in Fig. 1.1 might

not be the best possible. In particular, serious

thought should be given to an arrangement where the

electrical section precedes the ejector. Here,

mostly secondary fluid is present and the breakdown

strength will be at its highest value.
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The termination of the contract with DoE has left some

questions about the two-fluid cycle unanswered. With the

analysis presented in this report it should be possible to

carry out further thermodynamic studies with various fluid

combinations. Also, more fundamental knowledge on the

breakdown strength of dielectric fluids will be necessary

before the prospects for successful EHD power generation

can be fully evaluated.

59



16. Sample Output

A sample output is shown in the following pages. The

case is for mercury/hydrogen expanding from 1500 psia to

700 psia. The value of the breakdown constant, C„ , is 80 00,

The component loss parameters have numerical values corres-

ponding to CASE B in Ref. 6.
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FLUID PROPERTIES

I PS1= 1500.0 PSTA 7 TS1 = i 945 . O 0F8 R
3 Pl= 700.0 PSTA 4 T1= 1770.0 HPn R
5 (HS1-H1>= 13.50 RTM/LB A (HS1.-H6) = 1 70 70 ftTI|/l fi

7 RH06= 0.7500E 03 LB/FT3 9 CF1- . ROOOF 04 m^ riFn K /PMR

9 NFLIJID= 2 10 UG= 0.2016F 01
11 GAMMA2= 1.4000 12 CP2= O. ROOOF 04 M7 npn K/rMR

SYSTEM PARAMETERS
,

1 ETAE= 0.85 2 ETAD= 0.85 3 A3/A4=0.750 4 CF = . 80
5 ETAX= 0.98 6 . ETAP= 0.85 7 PS1 /PS7= l.OO

COMPUTATIONAL FORMAT

1 DELY = 0.10 2 YMIN= 1.00 7 YMAX = S . 00

U0= 0.2058E 03<EFF MOL WT VAPOR) PAMMA1= 1.1.81* y:'ih-= 0.1064

ENTER CONTROL CODE

Y X A1/A3 OYEWALI RE'LAi fUF M3 M5
FFF EFF

5.00 0.4375 0.0015 0.0228 o, 2285 .0285 • OO 71.

4.90 0.4531 0.0017 0.0213 0. 21 75 .0295 .0074

4.80 0.4375 0.O0 16 0.0228 0. 2285 A ,
0->96 . 0074

4.70 0.4375 0.0016 0.0728 0. 7205 .0707 A . 0076

4.60 0.4277 0,0016 0.0738 . 7384 .0707 n . 0077

4.50 0.4063 0.0015 0.07A1 . 2670 n .0708 .0077

4.40 0.4219 0.0016 0.0244 n

.

7^46 .031 9 . OOPO

4.30 0.4063 0.0016 0.0261 0. 2 6 20 , 0377 . OOPO

4.20 0.4063 0.0016 ,0761 0, 7670 0779 . OOR7

4.10 0.3906 0.00.15 0.0'^30 0. 7S07 O X77 rt . 0O87

4.00 0.3906 0.0016 0,0280 0. 'H'»q 0341 oops

3.90 0.3750 0.0015 -0300 0. 301.1 07 4A OORa

3.80 0.3594 0.001

4

0.0322 0. 3'->32 0350 OORR

3.70 0.3672 0.0015 0.031

1

. 31 1.9 0367 0091

3.60 0.3594 0.0015 . 0*22 . 3732 0370 009^

3.50 0.3438 0.0015 0.0346 . <4 73 0376 00<?4

3.40 0.3477 0.0015 0.0340' . 341 J. , 0'<!W n 0097

3.30 0.3398 0.0015 0.0352 . 7537 n

.

0397 0099

3.20 0.3281 0.0015 0.0372 n

.

7 73 7 0. 0406 01 07

3.10 0.328.1 0.0015 . 0372 0. 3737 n

.

041 9 01 OS

3.00 0.3125 0.0015 0.0401 . 4028 0423 . 0107
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3.00 0.3125 0.0015 0.0401 0.402H 0.0428 0.0107

2.90 0.3125 0.0015 0.0401 0.4028 O.044.< 0.01.11

2.80 0.3125 0.0016 0.0401 0.4028 0.045« 0.01 1S

2.70 0.2969 0.0015 0.0433 0.434<? 0.0470 0.0118

2.60 0.2969 0.0016 0.0433 0.4350 0.0488 0.0122

2.50 0.2969 0.0017 0.0433 0.4350 0.050P 0.0127

2.40 0.2891 0.0017 0.0451 0.4524 . 0526 0.0131

2.30 0.2813 0.0017 0.0469 0.470R 0.0S46 0.0136

2.20 0.2813 0.0017 0.0469 0.4708 0.0=570 0.014?

2.10 0.2734 0.0018 0.0488 0.4902 0.0S94 0.0148

2.00 0.2734 0.0018 0.0488 0.4903 0.0424 0.0156

1 .90 0.2656 0.0019 0.0'=;09 0.5109 0.0**3 0.0163

1 .80 0.2656 0.0020 • 0.0509 0.51.10 O.OA89 0.017?

1.70 0,2656 0.0021 . 050«? 0.5111 . /30 0.O1H?

1.60 0.2656 0.0022 0.0509 0.5112 0.0775 0.0193

1.50 0.2656 0.0024 0.0509 0.5114 0.0B27 . O?06

1.40 0.2734 0.0026 0.0489 0.4911 O.0fi<?0 O.O???

1.30 0.2813 0.0029 0.0470 0.4719 0.0964 0.0':>40

1.20 0.2969 0.0034 0.0435 0.4365 o.i 056 0.0263

1.10 0.3125 0.0040 0.0403 0.4046 0.1 1A5 0.0290
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17. Computer Program

In the section the FORTRAN program used is listed.

Results of cur calculations are given in Ref. 6.

C TWO FLUI
I 4PL
CJMM

+ A1A
OeLT

+ ny

,

•> i CJ t

+ XM X ,

+ 5MIX
+ J( 13

UATA FIL
J( i

J{ L

U( 1

U( 1

U( L

Ul I

U( I

J( 1

u( 1

J(
J(
J(
J(
o I Z
U( 1

U( 2
U( 2
U(
U{
U(
u<
U(
Ul
U(
U{
u(
J(
J{

U(
J(
U(
U(
J(3
U( 3
Jl j
J( 3
U( H
U<4

U (
'+

J{ <

J( *
J( 4
J(4

£.HJ GENERATOR
If IT i<cAL*'» ( A-H,G-Z)
CN V S I j 1 , T S ( o ) . X "

( 6 ) , r> { 6 ) , T ( 6 ) » K H l ( 6 ) , 3 { o ) r V ( 4 , 7 ) ,

3» A3A+tCr*l »C P2»CPitCyi ,C3<d ,CL<3 »CFt JELH, JcLHio* 'J6LY» '

S» JLLTi^tEfETAc ttrtiUi'tTAXtETAH f ETA3» FX.L, F*J2 , FM3 , FM4,F -15 »FMX f

(-
-1 A A ,rl 3FMXf F 53 F -'A iG A-KlAl t 3A'-4'4A2f o » -1 '""A j , .j1 l,ul2»ui3»ul4,ol3f

o2l , j2i » j 23 f ^2+ f o2 5 t 32o t G3 I »
:j32 » 33 J , j3 + f 33 5 » 33 6 i j il tu''12»uUi

A-'f ,XKO,XM,\FLUI ),?VTo,P0r p SlPS7, jl <,M»A2iiOi
, T j, .,: iWtX»»*Hf .i»\ET f.i^t .W,Y ,Y-1l^ y YMAX,TZt X-UtiUrFMZrPZt
,12) , * I 2 , 3

)

1)=1500.
2) =1 J/>.3
3) =900.
*») = 9 U .7
5) =4i.4
£)=6 76.3
n =*7. L7
3) = ^VyO.
9)=1 .

10i= Id.
L 1 ) = 1 . 3
1^ ) = 9<+90.
1 ) = 1 3 J Q .

2) = 1039.

4

3) =3 00.
4)=*77.9 ,

5)=52.0
b) =736.

5

ft = 4 7 . 3 5
3) = 9«+90.

10) = 13.
1 1 ) = 1 . 3
12 ) =94 *0.
1)=1500.
<i) =U09.2
3)=7JJ.
4)=962.3
5> = o4.

3

0) = 73o .

5

7 ) = > 3 . 7 3
3j= )4;o.
9) = 1.
10)=13.
1 1 ) = 1 . 3
1<1) =9490.
1) = i 53vJ.
t)=tlli.6
3) = SC0.
^) - >43. 9
5) = 73. *

c)=773.9
7) = 49. 75
3 ) = 9 4 ^ •
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2

u *»
J 4 »

u i 4 •

u 't t

J Ot
J 1

"3 »

u p»
J [ b<,

u : 5 f

u 3t
J 5 ,

u !
5 f

u 5t
J ~j

»

u 5 »

J 3 t

u O t

u 6 »

u 3»
J o

»

u 5 >

u u

»

u 6,
'J t>

»

J 6f
'J D .

u f

u 6 ?

u [ 7,
J 7,
J 7 t

J 7,
J 7,
J [ 7,
u 7,
in 7 t

7,
u 7,
J 7,
u ?,
u S»
u i o t

u o t

u b f

J 3

1

u b»
J< a»
J [ o ,

u
r

*f
u J t

u i 3 f

u rt

u * t

u 9,
-J [

'?,

9) = l

10) =

11) =

12) =

u-r
^) = i

3) =3
4) -9
5)=<J
e)=3
7) = D
d)=9
9) = 1

10) =

11) =

12) =

1) = 1

2) =1
3)-9
4) = 1

5)=3
6) = 1

7)= f

b)-4
9) = 2
10) =

li )
=

12) =

I) = 1

2)=l
3)-3
4) = 1

3) = 1

o)= i

7)=7
3)=4
9 ) = 2
10) =

II) =

12) =

1) = 1

2) = 1

3)-7
4) = L

5) = 1

6)=1
7)=7
H)=4
9) =2
10) =

11) =
12) =

l) = l

2)=2
3)=e>

15.
l.i
9490.
50 6.
L33.5
00.
26. 7

3.7
13.9
J. Yd
490.

18.
1.3
94 90.
300.
943 •

00.
300.

2^.3
4J.
000.

2.016
L.4
4 •

o00 •

9o.
JO,
770.
1.
2d.

7

50.
000.

2.016
1.4
4000.
500.
Jt3 .

00.
7i0.
3.5
30.7
50.
00 0.

2.016
1.4
4000.
50J.
05 0.
00.
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U(
U(
U(
Jl
U(
J{
0(
u(
J(

9,4) =1700.
9 , 5 i = 1 7 . 5

9,
9,
->»

U( 10
J( lo
U( 10
U( lo
U( 1 j

Q.7)-7 50.
jj =4000.
^)=2 .

LO-2.01S
111- 1.4
12 ) =40 3.
, 1 i = 1 5 u .

, 2 ) - 2 1 .

,3 ) =500.
, ' ) - 1 6o •

. , 5 ) - 1 * . 5

U( 10 ,6) = 137 .5

i 1 , 7 ) = 7 5 •

J{ 10,3)^4000.
0(10,91=2.
Ui 10,101-2.016

,ll)=i.4
, 1*: ) = -t-000.

1) = 1.
2)-l.
3)- J.
4J =0.
5) = 1.
L)=l .

7) -1
1>-.
2) =

j) =

4)-
5J =
6)=. 85
7) = 1

1) = .

2J = .

10
10
1

Ul
U(
V(
VI 1

V( 1

V( 1

V( 1

y/{ 1

V( 1

V(2
V(2
V( 2
V(2
V(
V(
VI
V(
V(

i.

»

2,
2,
3,

35
35
25
3
*3

V ( J , 3 ) = 1

V(
V(
VI
V(
s/{

V(
V(
V(
V(
VI
VI
«(

95
7

3,4)=2
3, o) = .

3, fc)-.
7)=1.
1)-.*
2J = 1.
3) =1.
H)=0.
5)=1.
u) =. 9
/) = 1.
1) = .5
2) = i.
J) = 2.
i)=.l
2)*l.
3)*5.

3,
4,
4,
4,
4,
4 ,

4,
4 ,

Li
1,
1,

w ( 2 ,

« I 2

,

,a 2

,
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DA
500
510

52 C

52 5

540

53
5b

57 J

530

13

Ta I

WRI
FiJK
R fc A
FOh
IF (

:f(
if (

IF (

WKI
F\j*
-<£m
FOK
IF (

[F(
IFt
IFt
IF (

U( I

L»U

,*RI
rJR
RE A
IF(
Ir {

IF<
IF(
IF (

V( I

Gfl

wKI

<* E A
IFt
1 = (

IF<
IF(
IF (

rt< I

30
PS(
Tit
P( 1

n i

GEL
JEL
PHC1
Cdl
3A '

3 A M
Gil
312
313
GW
315

NPUT
TE(6
-1A1 {

MAT {

lO.E
IU.c
I U . 2
IU.c
TE(o
AM (

0(5,
1AT(
JU.c
JU.F
J U • c
JU.c
JU.c
U , JO
TG D
TECj
MAT{
015,
J V • £
JV.c
JV.t
JV.E
JV.L
V , J J

TC o
TE< 6
-1AH
0(5,
JU.c
J...C
JW.C
J f* • c
J ft • E
WtJ'w
TC 5
1 ) = J
n = o
)=U(
)=U(
H = U(
Hio =

(6) =
= 0( i

MAi-
MA1 =
= <G*
= 011
= UA -i

= Gi3
-G12

i>lO)
0» ,

2j)
12)
. 0)
.-2
.-3

a,'
iO,

ENTER
I V , I

»'

CONTROL CODE • )

-4
53 J
0' ,

)

ST J

GO
GU

4J

.0)

.-:)

.-3

=zo
5
5*0
J' ,

<+G)

)

)

)

)

3X, *E
Ju,Z

9.4)
GO
30
GO

)

-4) GO

ro 130
TO 100
TO 232

INiTER FLU 10 PROPERTY CHANGES, IF ANY.'

J

TO 5 50
T3 500
TO 133
Tj 303
TO 232

)

3X, •ENTER SYSTEM PARAMETER CHANGES, IF ANY.')
JV.ZV
GO TO 5 70

) Gd Jy) 500
-c) GO TO 130

GO TO SOO
oJ TO 232

.0 J

-I

)

.-4)
-J

V

= ZV
3
9C3 J
J' ,

+0)
.0)
.-i
.-2
.-->
•—

t

= Zw

10,
10,
0,3
0,4
0,5
(10
( I J
,3)

)

3Xf , £NTift FORMAT CHANGES f IF ANY. »

)

J a , Z s

GO TO 150 •

) GO TO 500
i bu TO 130
) Gl. TO 300
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18. Nomenclature

A - area

a - speed of sound

CB
- characteristic breakdown constant (Eqn 10.3)

C - specific heat at constant pressure

Cf - friction loss coefficient - condenser

E, - breakdown electric field strength

E(x) - Eqn. 11.5

F(M )- Eqn. 5.16

f(M) - Eqn. 5.3

f - Eqn. 5.15
max n

g(M) - Eqn. 7.5

g - Eqn. 7.7

g - Eqn. 7.9
^max ^

g^ - Eqn. 7.10

h - enthalpy

I - irreversibility

M - Mach number

m - mass flow rate

p
- gross electrical power

p
- pressure

q. - heat input

R - gas constant

R - universal gas constant

s - entropy

s - entropy of mixing
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T - temperature

V - velocity

W - molecular weight
*

w - gross work out per unit mass
e
*

w - ideal pump work per unit mass

w - useful electrical output per unit massnet K L

x - m,/m
3

y - v
1
/v

3

z - quality of vapor

8 - Eqn. 10.7, dimensionless breakdown constant

Y - ratio of specific heats

A(
)

- change of

e - permittivity of the medium

n - overall cycle efficiency

r\
- Eqn. 8.13, ejector effectiveness

nn
- Eqn. 9.6, diffuser effectiveness

n - pump efficiency

n - excitation efficiency

p
- gas density

\\i
- steady flow availability

a)
- mass ratio of condensible primary to dry secondary
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Subscripts

- ambient conditions

1 - primary, entrance to ejector (exit from boiler/superheater)

2 - secondary, entrance to ejector (exit from separator)

3 - mixture, exit from ejector entrance to diffuser

4 - mixture, exit from diffuser entrance to generator

5 - mixture, exit from generator entrance to condenser

6 - primary, exit from condenser entrance to pump

7 - primary, exit from pump entrance to boiler

f - saturated liquid

G - gas or secondary

g
- saturated vapor

n - next value

s - stagnation

v - vapor

x - exit station of hypothetical minimum loss device

y - exit station of ideal ejector

z - exit station of condenser

75



19. References

1. T. H. Gawain and 0. Biblarz, "Performance Analysis of a Type
of Electrohydrodynamic Power Generator," NPS67-79-006 (April
1979) .

2. T. H. Gawain and 0. Biblarz, "Performance Analysis of a Type
of Electrohydrodynamic Generator," Proceedings of the 14th
IECEC (Boston, August 1979), pp. 162-167.

3. T. H. Gawain and 0. Biblarz, "Ejector-Augmented Electro-
hydrodynamic Power Generator," to appear in Advanced Energy
Concepts , C. Solbrig (ed.), Hemisphere Press (1981)

.

4. N. M. Huberman, H. Shelton, W. Krieve, and C. L. Dailey,
"Study of Electrofluid Dynamic Power Generation," AFAPL-TR-
76-31 (July 1976) .

5. T. H. Gawain and 0. Biblarz, "Analysis of a Two-Fluid EHD
Power Generator Including the Effects of Compressibility,"
NPS67-80-002 (January 1980).

6. T. H. Gawain and 0. Biblarz, "Estimated Performance of an
Electrohydrodynamic Power Generator which Utilizes a Two-
Fluid Ejector," preprint AIAA-80-1341 (Snowmass Co., 1980).

7. G. B. V/allis, One-Dimensional Two-Phase Flew , McGraw-Hill,
N. Y. (1969).

8. S. H. Hasinger, "Comparison of Experiment and Analysis for
a High Primary Mach Number Ejector," AFFDL-TR-23 (June
1978)

.

9. B. H. Anderson, "Factors which Influence the Analysis and
Design of Ejector Nozzles," AIAA Paper No. 72-46 (1972).

10. D. E. Groesbeck, R. G. Huf t , and U. H. von Glahn, "Compari-
son of Jet Mach Number Decay Data with Correlation and Jet
Soreading Contours for a Large Variety of Nozzles", NASA
TN D-8423 (1977) .

76



DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, VA 22314

2. Library 2

Code 0142
Naval Postgraduate School
Monterey, CA 93 940

3. Dean of Research 1

Code 012
Naval Postgraduate School
Monterey, CA 9394

4. Chairman 1

Department of Aeronautics
Code 67
Naval Postgraduate School
Monterey, CA 93940

5. Dr. Ryszard Gajewski, Director 2

Division of Advanced Energy Projects
Department of Energy
Mail Stop G-2 56, German town
Washington, DC 20545

6. Mr. Alvin Marks, Chief Scientist 1

Marks Polarized Corporation
153-16 10th Avenue
Whitestone, NY 11357

7. Professor T. H. Gawain 3

Department of Aeronautics
Code 67Gn
Naval Postgraduate School
Monterey, CA 93940

8. Professor 0. Biblarz
Department of Aeronautics
Code 67Bi
Naval Postgraduate School
Monterey, CA 93940

77



No. of Copies

9. Dr. H. R. Rosenwasser 1

Naval Air Systems Command
Code AIR 310C
Washington, D. C. 203 60

10. Dr. S. A. Satkowski 1

Office of Naval Research
Power Program, Code 47 3

Washington, D. C. 20360

11. Dr. S. Hasinger 1

Thermomechanics Branch
AFFDL
Wright-Patterson AFB , Ohio 45433

12. Dr. C. D. Hendricks 1

Lawrence Livermore Laboratory
L-482
P. 0. Box 808
Livermore, CA 94550

13. Dr. H. Velkoff 1

Department of Mechanical Engineering
Ohio State University
Columbus, Ohio 43210

15. Dr. Hans von Ohain 1

c/o
University of Dayton Research Institute
Dayton, Ohio 45469

16. Dr. J. R. Melcher ,

Department of Electrical Engineering
Room 3 6-319
Massachusetts Institute of Technology
Cambridge, MA 02139

17. Dr. J. E. Minardi 1

University of Dayton Research Institute
Dayton, Ohio 45409

18. Mr. M. 0. Lawson
University of Dayton Research Institute 1

Dayton, Ohio 45409

19. Dr. James Reilly 1

W. T. Schafer Associates
10 Lakeside Office Park
Wakefield, MA 01880

78



U196767



DUDLEY KNOX LIBRARY - RESEARCH REPORTS

5 6853 01068125 7
U19676


