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Let H be a Hankel operator defined by its symbol p = x/x where x is a monic polynomial of degree

n and x is a polynomial of degree less than n. Then H has rank n. We derive a generalized Takagi

singular value problem defined by two n x n matrices, such that its n generalized Takagi singular

values are the positive singular values of H. If p is real, then the generalized Takagi singular value

problem reduces to a generalized symmetric eigenvalue problem. The computations can be carried

out so that the Lanczos method applied to the latter problem requires only 0(n log n) arithmetic
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matrices required can be determined in 0(n 7
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1. Introduction

Let H — [f?y+k]^fc= o be a be a Hankel operator defined by its rational symbol p = n/x, where

n-l

tt(A) := J2 ***' and X(A) := ]£»*'. Xn = 1. (1.1)

J=0 j=0

We assume that n and x have no common zeros. The elements rjj of H are then given by

In order to simplify our presentation, we assume that the zeros {Afc}£=1 of x are distinct. How our

formulas need to be modified in order to remove this assumption is discussed in Remark 1.1 below.

Hence p has a partial fraction decomposition

k=i *

Expansion of the right hand side of (1.3) into a geometric series, and comparison with (1.2), yields

n

!?y = £c*Aj. (1-4)

We now express (1.4) in matrix form. Let

A: = diag[ai ,a2 ,...an ]
eCnXn

, (1.5)

A:= dioy[A1 ,A2 ,...A ri]e<r
nXn

J (1.6)

and introduce the Vandermonde matrix

Vb : = [Ai+JJjio .« €7»
x ». (1.7)

Define

^ := [VylJLo c CcoXn
, (1-8)

where

Vy :=VbA^, j>l. (1.9)

Then (1.4) can be written as

i/ = VA7T
. (1.10)

Let I
2 denote the vector space <C°° equipped with the Euclidean norm.



Proposition 1.1. H : I
2 -> I

2 bounded <& \X k
\

< 1 for 1 < k < n.

Proof. The proposition holds independent of the multiplicity of the A^. In the present proof we
assume that the A^ are distinct. The proof for confluent A*, is commented on in Remark 1.1.

Let ei = [ej]?l c <C°° be the axis vector with e = 1- Then

h = [»7y]yl := He x €. I
2
=> rj

3
-> as j -> oo =>

\X k
\

< 1 for 1 < k < n,

where the last implication follows from (1.4).

Conversely, assume that |Afc| < 1 for 1 < k < n. Then by (1.8) - (1.10) we obtain

ll^ll2<||A|! 2 |^||2<||A|| 2 ||V ||l||^(A^Ar||?

= l|A|| 2 ||^!l^||(/-(A
//
A)

ri )- 1

||l -

We assume henceforth that \\ k \
< 1 for 1 < k < n. Introduce

U:=VV- \ (1.11)

Ho-VqAV*. (1.12)

Then Ho has rank n. We note , by comparing (1.12) with (1.10), that Hq is the leading principal

n x n submatrix of //. From (1.10) - (112) it follows that

H = UH U T . (1.13)

The leading n x n submatrix of U is In , the n x n identity matrix. U therefore is of rank n and

can be factored

U = QR, Qe(U°° Xn
, Re(CnXn

,

where QH Q — In and R is a nonsingular right triangular matrix. We obtain

a+{H) = a+{QRH RTQ
T

) = a{RH RT ), (1.14)

where a denotes the set of singular values and a+ denotes the subset of the positive ones.

The n x n matrix RH RT is complex symmetric. Takagi [Tal], [Ta2] showed the existence of a

complex symmetric singular value decomposition

RH RT = WEWt
,
We(D ,,Xn

, X = diag[aJ} (T2,- <?n}, (1.15)

where W^W = /„ and a
}
> are the singular values of RHoRT . In Section 2 we present an

elementary proof of the existence of this decomposition. Let W — [wi,W2, u^ ri ]
, w

}
(. Cn

. Then

(1.15) can be written as the Takagi singular value problem

RHQRTw3
= Wjaj, w'/wk = 5:h , 1 < j,k < n, (1.16)

3



where the bar denotes complex conjugation and 8 k is Kronecker's 8 function. The problems (1.15)

- (1.16) could be solved by the algorithm described in [BGG], but this would require RH RT to be

explicitly computed. In order to avoid these matrix multiplications we let v
3
:= RH w

3
and obtain

from (116) the generalized Takagi singular value problem

H vj = {RH R)- 1
v,a,, vf{RH R)~ 1

vk = 8jk , l<j,k<n. (1.17)

The solution of (1.17) requires (RH R)' 1 to be known. In Section 3 we show that

{R'JR)- 1 = I-B B», (1.18)

where Bo c CnXn is a triangular Toeplitz matrix. The elements of Bo and Ho can be determined

from the coefficients of n and x in 0(n log n) arithmetic operations by the fast Fourier transform

(FFT) method. This is demonstrated in Section 4. Section 5 shows that

RHR = T1M T{I
}

Tu M eCnXn
, (1.19)

where T\ and Mo are Toeplitz matrices, and describes a numerical scheme for the computation

of this factorization from (1.16) in 0(n2
) arithmetic operations. We also present a Hermitian

factorization of RH R into n x n triangular matrices.

The factorization (1.19) may be of interest for the numerical solution of (1.17). Assume that

the coefficients of n and x are real valued. Then Ho, (RH R)~ 1
e IR

nXn
, and (1.17) reduces to

a generalized symmetric eigenvalue problem. The Lanczos method ([Pa, Section 15.11], [ER])

would appear suitable for solving this eigenproblem for the following reason. Let C e <C
nXn be a

Hankel or Toeplitz matrix and let v e <V
n be arbitrary. It is well known that Cv can be computed

in 0{n log n) arithmetic operations using FFTs. Hence H v, (RH R)~ 1
v and (RH R)v can be

computed in 0(n log n) arithmetic operations, where we use (118) - (1.19). Each iteration of the

Lanczos algorithm given in [Pa, p. 324] therefore requires only 0(n log n) arithmetic operations.

The computation of singular values of H is important in Hankel norm approximation problems of

systems theory, such as the model reduction problem [Gil. The approximation of functions by the

Caratheodory - Fejer method yields another application [Gu], [Tr].

Other methods for reducing the singular value problem for H to a finite dimensional one have been

described by Kung and Gutknecht [Gu] and Young [Yo]. These methods, however, do not preserve

symmetry. Moreover, Young's approach requires generally 0(n 3
) arithmetic operations to compute

the matrices required.

Remark 1.1. Formulas (1.3) - (1.8) and the proof of Proposition 1.1 require distinct A^. This

restriction can be removed. Assume first that Aj = A 2 = ... = An . Then (1.3) - (1.4) have to be

replaced by

n oo . ,

k=l j= o

In (1.5) A has to be substituted by the upper triangular Hankel matrix

i4=[ai+Jfc+1 £fc* e CnXn
;

ap := 0, p > n.

4



The matrix A in (16) has to be replaced by the Jordan matrix with all diagonal elements equal to

A : and all superdiagonal elements equal to one. The matrix V in (1.7) need be replaced by the

onfluent Vandermonde matrix. For instance, we obtain for n = 3

A =
A! 1

Ai 1 Vn = Ai 1

A? 2A,

With A, A and V modified as described, we define V
:
and V by (18) - (1.9), U by (111) and

Hq by (1.12). Then (1.10) and (1-13) hold and Hq is the leading principal n x n submatrix of H

.

Also (1.14) - (119) remain valid. Proposition 1.1 can be shown by replacing (1.4) by (14'), and

by bounding the sum

nE( A" A
)«>wi

j=0

where A now is a Jordan matrix. This sum is bounded if |A]

valid.

< 1, and the proposition remains

In general, when the A*, are of arbitrary multiplicity, A in (1.5) has to be replaced by a block

diagonal matrix, where each block is an upper triangular Hankel matrix. The blocks are of the

same sizes as the multiplicities of the A^, and the number of blocks equals the number of distinct A^

.

A in (1.6) is replaced by a Jordan matrix with Jordan boxes of the same sizes as the multiplicities

of the Afc, and the number of boxes equal to the number of distinct A^. Vq in (1.7) is replaced by

an appropriate confluent Vandermonde matrix. With these changes (1.10) - (1.19) are valid, and

so is Proposition 1.1. We omit the details since the numerical computations are independent of the

multiplicity of the A*., m



2. The Symmetric Singular Value Decomposition

In this section we present an elementary proof of Takagi's theorem, i.e. we show the existence of

a symmetric singular value decomposition of a complex symmetric matrix. Let C — CT e CnXn
,

and define A, B e RnXn by C := A + iB, i := \/^\. Then A = AT and B = BT , so the matrix

C :=
A B
B -A

is real and symmetric. Let {0]}
T

j=\ be the positive eigenvalues of C and form

£ := diag{au a2 ,...,a r }.

Let

with

and

Write (2.1) as

and note that (2.2) also can be written as

AV +
BV U){-E),

(-S)

A B U U
s

B -A V V
2_

U,Ve Rnxr

UT U + VTV = Ir .

AU + BV UE
.BU - AV VH

(AV + B{-U) V{-X)

i.e.

A
B

B
A

V
-u

V
u

with

VTV + {-U)T {-U) = Ir .

(2.1)

(2.2)

(2.3)

Hence C has at least r negative eigenvalues. We could also have let ay be the negative eigenvalues of

C and then (2.3) would have given us positive ones. We therefore may assume that ±aj , ±02, •••> i^Y

are all the nonzero eigenvalues of C

.

Since eigenvectors associated with distinct eigenvalues of a real symmetric matrix are orthogonal,

we have

= [vT ,-u : = VT U - UT V.

The spectral resolution of C is thus

A B
B -A

U
V

V
u

UT

V T
V T

U T



which yields

f A = UEUT -VEVT

\B = VEUt + UEVt
.

Therefore
C = A + iB = UZUT - VEV T + i{VT,U T + UY,VT

)

= {U + iV)E(£/T + tVr ) = WEWT = ^ akww

U + iV =:W = {wu w2 ,...,wr },
wk ( <D

n

T
h >

fc=l

where

Moreover

W HW = (UT - iVT )(U + iV) = (UT U + VT V) + i(U
TV - VT U) = Ir .

If r < n then one may replace £ by

S ~diag\a
1 ,a2l ...,a T ,0 >

...,0} c RnXn

and W by

W := [wi,w2 ,
...,wr ,wr+1 ,

...wn
]

e €nXn
,

where wr+i, ...,wn e C n
are chosen so that WqWq = In . m



3. A Simple Expression for (RH R) *

In this section we derive (1.18). Introduce the Frobenius matrix

F:={e2 ,e3} ...,en> -f}eCnXn ,

where

ey:=[*iy,fci,...,$Bjf
r etfn

.
2 < 3 < ", (3-1)

f: = {Xo,Xu-,Xn-i]
TcCn

-

Then F is the companion matrix of x and

FTVQ = V A. (3.2)

Throughout this section V and A are defined by (1.6) - (1.7) if the A*, are distinct. For confluent

Afc we modify V and A according to Remark 1.1. The following lemma shows that

G := RH R (3.3)

satisfies a Stein equation. This will enable us to obtain a simple expression for G _1
by an application

of the Sherman-Morrison-Woodbury formula.

Lemma 3.1. G is the unique solution of the Stein equation

X - FnXFnH = In , Xe Cnxn
. (3.4)

Proof. By (1.8), (1.9) and (1.11) we obtain

oo

RHR = UHU = J2 Vo~
H
{k

nk
)
Hv

o
HvoknkVo~\ (3-5)

and (3.2) yields now
CO

G = J2Fnk{Fnk )

H
. (3.6)

k= Q

The series in (3.5) - (3.6) converge because |A
fc |

< 1 for all k. Substitution of (3.6) into (3.4)

shows that G solves (3.4). The unicity follows from |Afc| < 1 for all k. The latter can be seen by a

similarity transform of Fn
to Schur triangular form, m

Introduce the cyclic downshift operator in <C
2n

JB:=[e2 ,e3 ....,cn , Cl ]
e C2nx2n

,

where

tj :=l6l3i 62j;...,62ntJ ]

T eIR2n . (3.7)

Let

t:=[xo,Xi,-,Xn,0,0,...,0)
Te€2n

,

8



and define the Toeplitz matrix T of parallelogram form

T := \t,Et,E2
t,...,E

n -h} e C2nxn . (3.8)

Let T be the leading n x n submatrix of T, and let Tj be the trailing n x n submatrix of T. Then
T is a left triangular Toeplitz matrix, and Ti is a unit right triangular Toeplitz matrix.

Example 3.1. Let n = 3. Then

Xo

Xi Xo

X2 X2 Xo

X3 X2 Xl

X3 X2

X3

To

Xo X3 X2 Xi

X\ Xo Ti = X3 X2

X2 Xi Xo. X3_

where we note that X3 — 1- •

Lemma 3.2. Let To and T\ be defined as above. Then

T"T + T**TX
= TqTo" + T^Ti

a
(3.9)

Proof. Let N := THT = T^T + T?TX . We first show that N is a Toeplitz matrix. Let ey be

defined by (3.1). Then by (3.8) we have for 1 < j,k < n,

ej Nek = e THT ek = t
H {EH y- l Ek~H = t

H Ek
~>t,

where we have used that E = E~ l
. We next define the reversal matrix

Toeplitz matrices are counter symmetric, i.e. N = J

N

T
J. Using that N is counter symmetric and

Hermitian yields

T"To + T?Tx = N = JNT J = JNJ = J{Tfn + T^TX )J
= JT^J JTqJ + JTjj • JYX J = T T^ + TXT? . ,

The next lemma presents a Gaussian factorization of Fn
in terms of To and T\. This will be used

together with Lemma 3.1 to express G~ l
in terms of T and Tj

.

Lemma 3.3.
- iFn = -ToTf

1
. (3.10)

Proof. We first show that

T rrT]
Po,^

V

V A'

0.

Let ey be defined by (3.7) and assume for the moment that the A^ are distinct. Then

V
$\tLiT]

V„A f

ek = XMKj-i

(3.11)

(3.12)



and the right hand side vanishes for 1 < j, k < n. If the A^ are confluent, then the right hand side

expression of (3.12) contains derivatives of x(^) evaluated at A*.. The right hand side of (3.12),

however, still vanishes and (3.11) holds.

We now write (3.11) as

TrVo + T
1

TVo A
n =

and apply (3.2). This shows (3.10). •

We are now in a position to show (1.18). By (3.4) G satisfies

G = I + FnG FnH

and an application of the Sherman-Morrison-Woodbury formula yields

G~ l = (/ + FnG F"") -1 = / - Fn {G~ 1 + pnH Fn )~ l FnH . (3.13)

We now determine an expression for

Y — I-G' 1
. (3.14)

Substitute Y and (3.10) into (3.13) to obtain

Y = To (To" To + T^Ti - T^YT^T^

.

(3.15)

In order to determine a simple expression for Y from (3.15) we need the following observation,

which is also central to Section 4. To and T£~ are both left triangular n x n Toeplitz matrices.

Multiplication of To with T^ H can be identified with polynomial multiplication, see [Hel, Section

1.3] and Section 4. Since multiplication of polynomials commutes, we obtain

T T{H =T{HT . (3.16)

From the correspondence between polynomials and left triangular Toeplitz matrices it also follows

that TqTi is a left triangular Toeplitz matrix.

Lemma 3.4. Equation (3.15) has the unique solution

Y = Tr^ToTo^Tj
-1 = ToT^Tr 1 ^". (3.17)

Proof. Unicity follows from (3.14) and that (3.4) has a unique solution. From (3.16) we obtain

T~H T T^T^ =T Tr
HT^ 1

Tf. (3.18)

Now substitute

Y ^T^TqT^T- 1

into (3.15). We obtain

T^ HT TgT^ 1 = To(To"To + TfT, - T T^)- XT^

.

(3.19)

10



An application of (3.9) reduces (3.19) to (3.18). The latter has already been shown to be valid.

Therefore (3.17) solves (3.15).

Let

Bo := ToT~ T = Tr
TT . (3.20)

Then Bq is a left triangular n x n Toeplitz matrix. By (3.14) and (3.17)

G = / — BqB = I — Bq B .

From (3.3) it now follows that

{RH R)~ 1 = I- B B^. (3.21)

11



4. Computation of Hq and Bq

We summarize some results in [He 1, Section 1.3] and [He 2, Section 13.9] in order to show that the

elements of Ho and Bo can be computed in 0(n log n) arithmetic operations from the coefficients

Xj of x and n
3
of 7r, see (l.l). To a polynomial or power series

n-l

we associate the left triangular n x n Toeplitz matrix

^ = [&-fc]?,fc=o. ?y=0fori<0,

and we write f
—

* Z . If f (A) is a polynomial and X a left triangular n x n Toeplitz matrix such

that £ —» X, then it is easily seen that c£ —» ZX. In particular, ZA is a left triangular n x n

Toeplitz matrix. From £f = $£ and £c —* XZ is follows that ZA" — XZ

.

Assume that fo ^ and let 1/c -» Z'. Then 1/f • f -» /, Z'Z and ZZ\ We obtain Z' = Z _1
and

therefore Z _1
is a left triangular Toeplitz matrix.

Example 4.1. We have x ~* To. Let

n

X(A) := Art
x(l/A) =2>B-y

A'. (4.1)

Then x ~* 3Ti and the Blaschke product

4 ^T T^H = B . (4.2)
X

Now let £(A) and c(A) be arbitrary polynomials such that f (0) 7^ 0. Henrici [He2, Theorem 13. 9e
]

shows that the first n coefficients in the MacLaurin expansion of f(A)/c(A) can be computed in

0(n log n) multiplications. The proof uses FFT. It is easily seen that the number of additions also

is 0{n log n).

From Xn — 1 and (4.1) we obtain x(0) 7^ 0. Hence, the first n terms in the MacLaurin expansion

of x/x °an be computed in 0(n log n) arithmetic operations. By (4.2) therefore T T^ H = Bo can

be computed in 0(n log n) arithmetic operations.

Because A"x(l/A) 7^ for A = 0, we can compute the first n terms in the MacLaurin expansion of

A",(l/A) yyv+. 0(jn

in 0(n log n) arithmetic operations. This shows that i/ can be computed in 0(n log n) arithmetic

operations.

12



5. A Factorization of RH R

It follows from (3.3) and (3.20) - (3.21) that

G' 1 = (RH R) =I-B Bg = 1- Tf^To^rf 1

,

and therefore

T^G' 1^ = T^TX
- T T** =: M "

i

(4.1)

(4.2)

The expression defining M _1
is a Gohberg-Semencul formula for the inverse of an n x n Toeplitz

matrix, see, e.g., [Io, Theorem 18.2, p. 152]. We denote this Toeplitz matrix by Mo. From the left

hand expression of (4.2) and the nonsingularity of T^ and R it follows that M is Hermitian and

positive definite. The desired factorization of RH R is

>// HR" R = T1 M T(

We will now show how Mq can be computed. The computation involves running the Levinson

algorithm backwards.

Consider the related Gohberg-Semencul formula, see, e.g., [Io, Theorem 18.1, p. 148] or [AG],

H

m^ =

Xn X'i —

1

Xo

Xn-l

Xn

Xn-l

XO

\1

lXn-1

Xo

Xi Xo OJ lXn-1

Xo

Xn-l

Xn

H

(4.3)

Xi Xo

where the four triangular Toeplitz matrices define the inverse of an (n + 1) x (n + 1) Hermitian

Toeplitz matrix. Denote this Toeplitz matrix by Mx . Then M is the leading principal n x n

submatrix of M\, see [Io, Theorems 18.1 - 18.2].

Let R x
:= [pjk]^ k=o e <T

(n + 1)x(n+1) be the unit right triangular matrix, and let

Di := diag\8(),5i
t
...,8n ]

be the diagonal matrix such that

R? Mj R1 = Dl . (4.4)

L3



Given Mi =
[/
iy-fc]?fc=o> ^ne matl"ices #1 an<3 D\ can be computed by the Levinson algorithm, and

by comparing R\ with (4.3) one finds that

Pjn = Xj> < i < n and 6n = Xn,

see, e.g., [AG]. We now apply the recursion formula in Levinson's algorithm backwards in order

to determine i?i and D\ from the last column of R± and <5ri . Then the recursion formula is used

forwards to determine Mq. We will also obtain a Hermitian factorization of R R into triangular

matrices.

Backward Levinson algorithm

input: [Pjn]?=o>^n ;
output: Ri,Di, Schur parameters {7y}?=1 of Mo;

for k :— n,n — l,n — 2, ...,1 do

Ik := Pofci Pfc-i,fc-i := 1;

for j := 1,2, ...,integer part(|) do

solve for pj_i f
fc_i and /?fc-i-j,fc-i the linear system of equations

1 Ik

Ik 1

P]-l,k-l

.Pk-l-j,k-l .

Pl,k

~Pk- 3 ,k

&-i := (&/(i - W))/(i + W);

Levinson recursion for computing M

input: Hi, JDi,{7y}y=1 ; output: {/*y}y~J;

/i := ^o; A*i := -$o7i;

for A; := 1,2, ...,n - 1 do

Mfc+i := -*fc7fc+i - £y=i Wy-i.fc;

[Mj'-fcjjfcio

Hence Mq,R\, and Z?i are computed in 0(n2
) arithmetic operations from the coefficients of x- Let

Rq and Do denote the n x n leading principal submatrices of R\ and D\ respectively. Similarly to

(4.4) we have

RgMoRo = D . (4.5)

1/2
Because Mo is positive definite, so is Dq. D can therefore easily be computed. We obtain from

14



(4.1) - (4.2) and (4.5), with R := D l /2R^\

RHR={RT{{

)

T {RT
1

H
). (4.6)

The right hand side of (4.6) is a Hermitian factorization into triangular matrices. It can be computed

in 0{ n2
) arithmetic operations from the coefficients of X-
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