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ABSTRACT:

An algorithm for rational Chebyshev approximation based on computing
the zeros of the error curve was investigated. At each iteration the pro-
posed zeros are corrected by changing them toward the abscissa of the

adjacent extreme of largest magnitude. The algorithm is formulated as a

numerical solution of a certain system of ordinary differential equations.
Convergence is obtained by showing the system is asymptotically stable at

the zeros of the best approximation. With an adequate initial guess, the

algorithm has never failed for functions which have a standard error curve,
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1. Introduction

We will consider the problem of computing the best approximation to a

m . n
continuous function f(x) by a rational function R = ^ a.x / y^ b .xJ

mn
1=0

1
j=0 J

where the measure of the error is the weighted sup norm,

f - R = sup
a<x<b

f(x) - R (x)
mn

w(x)

w(x) > on [a,b] . A number of methods have been proposed, and a brief

description and numerical comparison of some of them is given by Lee and

Roberts [8]

.

We have implemented and analyzed an algorithm for computing the best

rational approximation. This algorithm [7] has not yet appeared in the

literature. The convergence rate is linear, and although the algorithm

is relatively slow compared to some others, the algorithm was successful

in instances where others, such as the Remes algorithm and Maehly's second

method, fail. For functions which have a standard error curve, the algorithm

has never failed to converge to the best approximation, provided the initial

approximant did not have a pole in [a,b].

The algorithm is formulated as the numerical solution of a system of

m + n + 1 differential equations. The dependent variables are points of

zero error in a proposed approximation. When there are m + n + 2 alternations

in the error curve, the system of equations is at a rest point. Under the

assumption of a relatively mild hypothesis, the algorithm is proved convergent

by showing that the system of equations is asymptotically stable at that rest

point.



2. A method for computation of R *
mn

We assume that the best approximation R * = P*/Q* exists, and is
mn

in reduced form. The basis for several algorithms, such as that of Remes

(see, for example [3]) and Maehly's second method [9] is the following

characterization theorem, which can be found in may texts, e.g. Cheney [2].

Theorem 1: In order that the irreducible rational function P/Q be a

best approximation to f of the form R , it is necessary and sufficientrr mn J

that the error have a least 2 + max(m + deg 0, n + deg P) alternations.

As with Maehly's second algorithm, we assume that the error curve is

"standard" in that it has exactly K = m + n + 1 points of zero error

and K + 1 alternations. If the points of zero error are known, the

best approximation can be computed as the rational function of the form

R which interpolates to the value of f at those points,
mn

Let z * < z * < ... < z * be the points of zero error for
1 L K

f (x) - R * (x)

E*(x) = - mn
w(x)

Let Z = (z, z„) be an approximation to Z* = (z *,..., z *) . Let
i K IK

R (x) be the rational function which interpolates to f at z , ...,z .

mn l k

Let z = a, z - = b, and define N, = sup |e(x)| , where E(x) =
U Ktx k , .

z
k-l-

x- z
k

R
mn ^ . If Z is close to Z* , R exists and the N. are__ mn k

w(x)

finite. Let x, be the point in [z,_..,z,] such that |E(x )| = N ,

k = 1,...,K + 1 . For Z close to Z* these points must be unique.



Any of the variables with superscript asterisks will denote that variable

for the best approximation. Note that N , , * - N * = , k = 1,2,...,K .

K."T*X K.

Under our assumptions, if N
-^

~ N, =
> k = 1,2,...,K , then (at least for

Z in some neighborhood of Z*) Z = Z*, although in general this is not true.

In a talk given at the joint SIAM-MAA meeting for the Northern California

sections in February 1972, Dr. Milton W. Green of the Stanford Research

Institute discussed an algorithm based on the above ideas [7] . Given an

initial guess Z at Z* , one computes R , and then N. ,...,N.. in .

mn 1 K+l

The value of each z is then corrected by changing it so that its new

value is nearer to x , or x , as N, - N is positive or negative,

respectively. That is, z, is changed toward the point of largest (in

magnitude) error in the interval [z, , , z ]. Dr. Green reported that he

had had good success with the algorithm.

In an attempt to systematize the method and to make it amenable to

analysis for its convergence properties, we considered the basic idea in

the following form. We formulated the method as a continuous (in the corrections

to the z ) rather than a discrete problem. Consider the system of ordinary

differential equations,

*k-"k*i-"k >
k = 1 K

•

where z, and N are as defined previously, and Z = Z at t = is

an approximation to Z* , used as the initial condition. This system, when

solved by Euler's method, yields an algorithm similar to that proposed by

Dr. Green.



The algorithm we study is based on a slightly different system of

equations. Although the convergence properties are similar, we wished to

remove the effect of linear transformations, and to incorporate some

indication when the z * bunch together, as happens when f has a large

slope at some point. Consequently, we considered two somewhat modified

systems of equations, neither of which seems to yield results markedly

superior to the other. The first, and the one we analyze, is the system

(1) \ -
B

(\+i
- V •

k = 1 K
N

where x, is as defined previously, and N = max N, , again with
l<k<K+l

*

Z = Z at t = . The other system was

N
k+1 " N

k , ,

(2) z
k

= 2 \\ ~ yk l i
k = 1,...,K

N

where y.
k

" "fcfl - \ s
° •

fcfl
-f

"fcfl - \ >
° •

and again Z=Z at t=0.

The factors x
V i-i

~ x i » ^nd
|
z, - y, |

are both an attempt to "slow"

z, when the z* bunch together. In some cases (2) is superior to (1),

and in others (1) is superior to (2) . We choose to analyze (1) because it

seems to be more consistent in the optimum "time step" when solved by Euler's

method. The analysis of (2) is nearly the same.

The point Z* is clearly a rest point of the system (1) , and in the

next section we give an analysis showing that under appropriate assumptions,

(1) is asymptotically stable at Z = Z* .



There are many algorithms now possible, depending on the numerical method

used to solve (1). Any method could be used, subject only to the appropriate

choice of "time step". However, we should bear in mind that the goal is not

necessarily to solve (1) accurately, but rather to approach Z* closely.

Thus, the use of Euler's method for the solution. The choice of "time step"

appears to be a matter of experience. It is desired to use a near optimal

"time step", one which yields R * to the desired accuracy in a minimum

number of time steps, or iterations. It is seen that the "time step" is a

parameter similar to the parameter in the solution of elliptic boundary

value problems by the alternating-direction implicit method [10] . It is

doubtful that it can be taken arbitrarily large in our case, however.

3. Convergence

The convergence of the algorithms possible in the setting of Section 2,

when an appropriate "time step" is used, is determined by whether or not

the system (1) is asymptotically stable at Z = Z* . We will make use of

the following theorem, which is paraphrased slightly from the way it appears

in most references, e.g. [1],

Theorem _2: The system of equations

(3) Z = A • (Z - Z*) + H(Z - Z*) ,

where A is a constant K x K matrix and H(Z - Z*) is a vector function

which is small compared to Z - Z* , is uniformly asymptotically stable at the

point Z = Z* if the eigenvalues of A all have negative real parts.



Thus, in order to analyze the system (1) we must put it in the form (3).

Denote sign (E(x)) on ( zu_i > O bY °"

k
• By our assumptions about E(x)

we can write

K
E(x) = G(x) n (x - z.) ,

i=l
1

where G(x) is continuous and single signed if Z is close to Z* . Then
K

we have N = a G(x ) f] (xk
- z.) » k=l,...,K+l. Recall also that

i=l

a = z
Q
< x

±
< z

±
< . . . < x

K < z
K < x

x+1
= b .

We now make an assumption about the dependence of G(x) on the z. .

As was done by Maehly and Witzgall [9], we assume that near the point Z* ,

the function G(x) does not depend very much on the z. . (Note: In the

case of approximating x by a polynomial of degree < K - 1 , with

w(x) = 1 , we have G(x) = 1.) Then we have, for a given value of x ,

9E(x) n/ :

k
, N E(x)

zt~ a " G(x)
,"

(x - z
i

}
= - irrr. •

Then, since x is the point of extreme error, even though x, may change

significantly with z. , it is seen that the extreme value does not. Thus

9N
k °k

E(x
k }

N
we have -— ~ ~ , since near Z* , N. « N. Then we

9z, x.-z. x. - z. k
j k j k j

have

+ H
k

, k = 1,...,K ,



H
l

where H =
^

!

J
is small compared to Z - Z* . Further simplification gives

H
K

the expression

K *z .
- z *

(x. ^_
* - x *) / -. -1

}
— —

- + H, , k = 1 K .k+1 k JL^ (x. _* - z.*) (x * - z.*) k ' ' '

•
i

k+1 j k j
J=l

Thus, we have the system (1) in the form (3) with

2
Cx * - x *)^ xi,+ i

x
i, i

(4) A =
(x * - z *) (x * - z *)K k+1 j

;
^ k j

;

k,j = 1.....K .

Now we must investigate the location of the eigenvalues of the matrix

A . To simplify the notation, we drop the asterisks from the variables. We

will show that the matrix -A is a matrix of class |( (see Fiedler & Ptak

[6]. These matrices are also known as M-matrices.)

Let B be a square matrix with nonpositive elements, except possibly

on the diagonal. Matrices of class (( are a subset of such matrices,

characterized by many equivalent properties [6]. The two equivalent pro-

perties we shall use are given in

Theorem 3 : The following properties of B are equivalent. (i) The real

part of every eigenvalue of B is positive, (ii) Every leading principal

minor of B is positive.

Lemma 4 : The matrix A defined by (4) has negative elements on the diagonal

and positive elements elsewhere. Further, the principal minors of -A ,



(x
k+l " x

k
}

Det |-
(

_ z ) (
_ Z)

J

are positive for f- 1.2.....K ,

whenever X;L < Z;L < x
2
< z

2
< . . . < x

R < z
R < x

R+1
.

(x
k+l " X

k }

Proof: We consider the element a. . = -, :—

;

-
. The numerator

kj (x
k+1

- z.) (x
k

- z.)

is positive, and if j < k , then z . < x . . n < x. < x. . . , and hence
J J+l ~ k k+1

a. . > . If j>k,we have x, < x.
, n < x . < z . , and again a, . > .

kj k k+1 - j j kj

If i = k , x. =x. < z. < x,,. = x. ,, , hence a, . < . We now consider
k j j j+l k+1 kj

i „th - .

the I principal minor of -A ,

(x
k+l " X

k
)2

Det
(x
k+l " Z

i
} (x

k
~ z

1
}

1 J k J
/ k.j - 1,...,*

2
Removal of the factor (x,,, - x, ) from each row does not change the sign

of the determinant, so we consider the

I k.j = l,...,jg

The value of the latter determinant being nonzero is equivalent to the

existence of a unique solution to the following interpolation problem: With

functions gk
(y) = - 7^ x ,

——r , k = l,...,i , and given points

(y.»w.) , j = 1.....J0 , find constants o> k = l.....i such that
J J k

'\+l 'j' v"k 'j

^kW = §" <x^ - yj (x. - y J
= w

j
*



Here we assume that none of the y. coincide with any of the x, , which
3 k

we have guaranteed in the case of interest. The above discussion says that

D is nonzero if the set of functions g, (y) , k = 1 , . . .

,

I is unisolvent on

the permitted set of points. See Davis [5] for further discussion.

The interpolation problem is known to be uniquely solvable, if and only

if any linear combination of the g^(y) > k = 1,...,£ which is zero at I

distinct points is identically zero. Consider G (y) = /J a i_8i,(y) • Now
k=l

i+i P„ , (y)

c (y) - - 1 Z a
k

n
<
x

,
- y)

.

n
,

(x
k - y) ^k

k=1 U+i

where P„_, and Q are polynomials of degree £ - 1 and I + 1 , res-

pectively. We see that P
1

, and hence G can have at most I - 1 dis-

tinct zeros, unless G is identically zero. Hence D * .

Now let y ,...,y be variable, but such that each y. satisfies the
1 * J

condition stated for z. in the lemma, i.e., x. < y. < x. in . Let y. y,
J j j j+1 1 I

replace z ,...,z , respectively in D , and note that x - y, appears
X X/ X- K. K.

only on the diagonal. Hence by choosing y, sufficiently close to x, , the

determinant is diagonally dominant, and is thus positive. By the continuity

of D as a function of z ,...,z , and the fact D is never zero, we

conclude that D > . This completes the proof of the lemma.

Application of Theorems 3 and 2 to the system (1) yields the fact that

(1) is asymptotically stable at Z = Z* .



4. Numerical Implementation.

A version of the algorithm, which we will call "Algorithm G", was

implemented in double precision Fortran on the IBM 360/67 at the Naval

Postgraduate School. We used Euler's Method to solve (1) numerically, using

the initial guess Z to be the zeros of the Chebyshev polynomial of

degree K , translated to the interval [a,b] . The rational function R
mn

was found by solving the linear system obtained by requiring R to

interpolate to f at the z. . The IMSL routine LEQTIF was used to

solve the system.

The extreme values N, were found by the method suggested by Maehly

and Witzgall [9]. A search is made for a "turning point" using the

previous value of x, as an initial estimate, using steps of

h = . 015(z, - z. -). When three points have been computed so that
k k k-1

|E(x)| is largest at the middle point, the value of x^ is approximated

by passing a parabola through the three points, and finding its extreme

point. The alternative is to convert the problem to a discrete one by

evaluating the error at a fixed number of points, as did Lee and Roberts [8]

We feel our method is probably faster, especially in the latter stages,

although it assumes the error curve has but one local extreme in each

interval ( zi_i > ziJ • ^e believe the method to be more accurate for smooth

problems, as well as preserving the continuity of the original problem.

1 IMSL - International Mathematical and Statistical Libraries, Inc.,

6200 Hillcroft, Suite 510, Houston, Texas 77036

10



Algorithm G was tested by running a variety of problems. The same

2
problems were also run using the Remes algorithm and Maehly's second

method; the latter program was written by the author. The problems ranged

from "easy", such as exp(x), T(x) , and log x, to "hard" problems such

I
— /— 1 1

as vx on [0,1] and vx on ["Tjl] and [y-r,l] , the latter two with weight

function w(x) = Vx
-

for relative fits. In addition, the function r(x) =

(arctan 8x) v(8x-l) + 1 /8x , with w(x) = 1 , on [-1,1] was attempted.

This latter function is due to Rutishauser (see Cody & Stoer [4], p. 179)

and is difficult because the initial guesses usually used (data from

appropriate Chebyshev polynomial) with the Remes algorithm lead to

approximants with a pole in [-1,1]

.

The approximations of the form R. , R _ , R
?9 , and R,„ were usually

attempted, although in some specific instances others were computed. In

the case of the "easy" functions all three algorithms worked well, with

the Remes algorithm converging very rapidly, of course. The Remes algorithm

and Maehley's method failed on one or more of the "hard" problems, while

Algorithm G, for appropriate "time step", did not fail. We note that one

iteration of the Remes algorithm requires the solution of a non-linear

system, Maehly's method requires the solution of two linear systems, while

Algorithm G requires the solution of one linear system.

The difficulties with Rutishauser 's function r(x) were investigated

more closely. Aside from the problem of poles, the function has a large

slope near x = , which apparently causes difficulties. The programs

2 The IMSL routine IRATCU was used. This is a Fortran version of procedure

Che.by6h.ev due to Cody, Fraser, and Hart [3].

11



for the Remes algorithm and Maehly's method were modified to accept input

initial guesses. For initial guesses at the extremes which were accurate

to seven significant digits, the Remes algorithm failed. For initial guesses

at the interpolation points which were accurate to seven significant digits,

Maehly's method failed. No particular difficulties were experienced by

Algorithm G.

With regard to the possibility of poles in the initial approximant,

we have discovered that while theoretically the method fails, the numerical

algorithm may be able to recover. For example, when approximating sin x

on [0, 4.1] with R = P_/Q , using the Chebyshev points as initial

guesses gives an initial approximant with a pole near x = 1.7. However,

because of the approximation to the extremes, the routine recovers, forces

the pole out of the approximation, and then converges to the correct result.

This may not be a general rule, however, but is an interesting example of

how robust the algorithm can be.

Having satisfied ourselves that the algorithm works quite well, a study

was made of how one should choose the "time step". We found that "time step"

At = .20 was usually (not always) small enough for convergence. The optimum

value for At is dependent on the problem, and sometimes is significantly

larger than .20. As might be expected, the optimum value is larger than

required for accurate solution of (1) , and it is better to underestimate

At than to overestimate it. Table 1 gives the number of time steps (or

iterations) required for convergence of various approximations to exp(x)

on [0,1], Vx~ on [0,1], and r(x) on [-1,1], versus At . The iterations

were stopped when successive approximations were obtained whose respective

12



coefficients had relative differences of less than 10

Because the solution of (1) is close to the solution of Z = A(Z - Z*)

for large times, the convergence rate is seen to be linear. Further, we

can see in Table 1 that convergence is slow even for smooth functions

such as exp(x), where 10-20 iterations are required. In the case of v^~ >

where most of the z tend to bunch near zero, significantly more iterations

are required, the number increasing with K .

Table 1: Search for optimum At

exp(x) \/x~ r(x)

\t VQ.1 VQ
2 V Q

1
P
2
/Q

2 VQ.1 P
2
/Q

2 VQ
2

.10 36 64

.125 51 >100 29 64 61

.15 23 47 41 97 22 49 53

.175 44 82 17 39 42

.20 16 35 >100 >100 22 failed failei

.225 14 32

.25 12 28

.275 19

.30 36 23

.325

.35 19

.375 18

.40 16

.425 16

13



5. Conclusion.

Algorithm G appears to be very robust. When coupled with the appropriate

"time step", it is likely infallible, provided the initial guess did not

yield an approximant with a pole in the interval. Even then, the version

of the algorithm we implemented has recovered in specific instances.

While this algorithm cannot compete with the Remes algorithm on the

basis of speed, our tests show its speed to be comparable to Maehly's

algorithm, which shows up quite well, on that basis, in the Lee and Roberts

study. One suspects the Lee and Roberts timing is biased since cases where

the algorithm was successful were likely to be the relatively easier (and

faster) cases.

The simplicity of the algorithm coupled with its high success rate,

make it worthy of consideration for computing approximations which result

in failure of the Remes algorithm. The principal disadvantage seems to

be the assumption that there are no more than m + n + 1 zeros of the

error curve. Degenerate cases can be handled by increasing the degree of

the numerator and/or denominator so that the error curve becomes standard.

If the cause for more than m + n + 1 zeros is not degeneracy, the algorithm

may fail.
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