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1 .0 Introduction

The subject of linear optimal approximation has received considerable

attention in recent years [4], [5], [6], [7], [8]. The subject of multi-

variate approximation for scattered data, including optimal approximations,

is reviewed in [9]. The idea is appealing since the optimal approximation

in a certain space of functions minimizes the norm of the error functional

for approximations in that space. When the space is a Hilbert space, the

computation of optimal approximations becomes rather simple, in theory [2].

A known reproducing kernel function provides the representers of linear

functional s defined on the space. The optimal approximation satisfies the

system of equations obtained by requiring that the approximation be exact

for the representers of the functional s being used for the approximation,

usually point evaluation functionals.

In practice, it seems that optimal approximations have not been used

\/ery much. This is perhaps partly because of a lack of experience with them,

as well as the fact that use of the representers as a basis set for optimal

approximation is the analog of the use of truncated power functions as a

basis set for univariate spline approximation.

The particular space of functions of two variables to be considered here

are the Sard "corner spaces", B- , [8]. A suitable completion of these

spaces into a Hilbert space and construction of the reproducing kernel was

recently accomplished [1]. Since these spaces are made up of functions whose

partial derivatives, up to a certain order in each variable, are absolutely

continuous, these spaces contain spline functions in two variables, and the

optimal approximations are splines. The Sard corner spaces have the property

that the representers reduce to products of functions of one variable, thus
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simplifying matters somewhat. Associated with the Sard space B r - isK
lp,ql

a base point (a,b) in the region of interest. While this point can theo-

retically be anywhere, practically it is desirable for it to be at one of

the corners of the region of interest (assumed rectangular). There are two

reasons for this; (i) Computation of the representers is simplified; and

(ii) the representers have continuous partial derivatives in x only up

through order p - 1 at x = a and in y only up through order q - 1 at

y = b , while at other points partial derivatives in x and y are contin-

uous up through order 2p - 2 and 2q - 2 , respectively. The second reason

is the primary reason we assume that (a,b) is the origin and that we are

only interested in (x,y) points in the first quadrant.

In connection with the previous paragraph, we note that approximations

in Bp -, are not invariant with respect to translation (unless the base

point (a,b) is also translated), nor with respect to stretching or shrink-

ing of the coordinate system. The author had previously commented that they

were invariant [3]. The base point (a,b) is the point at which Taylor

series (with remainder) for the functions exist, and the approximations are

clearly dependent on that point.

In the general case, the reproducing kernel function for B,- -, is of

the form K(a,b;u,v,x,y) = g (a;u,x)g (b;v,y) where for a < u ,x ,

g (a;u,x) = (-l) p (x - u)j
2p " 1}

+ I {(u - a)
(i)

(x - a)
(i)

+

i<p

(-D^x - a)
(i+1)

(u - a)^ 1 - 11
}

Here the notation w^ means w /i! while

( w , w >

( , w <

w+
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For the case we consider, with a=b=0, p=q , and where the func-

tional are point evaluations, say at the point (x. ,y.) , the representers

are K. (x,y) = g (0;x.,x)g (0;y. ,y) . As in what follows we have

here used simplified notation for the representer associated with (x.,y.) .

We will consider q = 1 and q = 2 and thus note that 9-,(0;x. ;x) = 1 + x -

(x - x
i

) +
and g^Ojx^x) = 1 + X..X + j x.x

2
- 1 x

3
+ l{x - x^ 3

.

One observation about optimal approximations is now in order, and should

lead to increased interest in their use for approximations where the data is

irregularly spaced. The data points themselves generate the representers,

and hence a set of basis functions for the approximations. One does not

need to be concerned about whether or not the basis functions have the inter-

polation property on the set. Unlike more common basis functions, e.g.,

polynomials, the representers naturally form a linearly independent set over

the data points. This is not meant to imply that the representers of point

evaluation functional s are well suited to computation, however. We treat

this problem in more detail in later sections.

1 .1 The interpolation problem

The underlying problem we shall be considering is that of function

approximation by interpolation for functions of two or more variables. The

case of more than two variables is a straightforward, if tedious, general-

ization, and the discussion is limited to two independent variables. Assume

that the points (>c. a^
r .»^.) , k = 1,...,N are given. No assumptions are

generally made as to the spacing of the points, although in some instances

we will consider special cases. We assume that if i * k, (x.,y.) * W^iP
Approximation problems other than interpolation are treated in identical

fashion. One obtains the same coefficient matrix for approximate integration

or differentiation, for example.

-6-



2.0 Optimal approximation in Br, , ,

In this section we will consider in some detail the problem of computing

optimal approximations in the Sard space Br, ,-. . Again we emphasize that

the region of interest is assumed to lie in the first quadrant and that the

base point (a,b) is taken to be the origin.

2.1 Representers of point evaluation functional s as a basis

As noted in the introduction, the representers of point evaluation

functional s have the form K-(x,y) = [1 + x - (x - x.)
+
][l + y - (y - y-),'] .

j j j

These functions K. are continuous, with first partial derivatives in x
vJ

and y which have jumps at x = x. and y = y- , respectively. In each
<J J

of the rectangles [0,x ,]x[0,y.j] , [0,x.]x[y
. ,») , [x . ,°°)x[0,y .] , and

[x. ,°°)x[y .
,oo) the function is bilinear. In the latter rectangle it takes

J J

on the constant value (1 + x.)(l + y.) .

vJ vJ

Use of the K.(x,y) as basis functions appears to be suspect. The

coefficient matrix (the Gram matrix) is symmetric, but casual observation

would lead one to suspect it is not particularly well conditioned. We shall

see that it is better than the author's inclination toward it. The system

of equations has the form

N

(1) S A.K.(x.,y.) = z , i = 1.....N .

j=l J J

Some numerical experiments were conducted to compute the condition number

(with respect to max row sum norm) of some Gram matrices of various sizes.

Points were generated by a random number generator in the square [0,10]x[0,10] ,

the Gram matrix was formed, and the condition number computed. In case (i) the

points were allowed to be anywhere in the square. In case (ii) the square was

subdivided into [vffi] squares, then one point was generated at random in each
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smaller square, and any remaining points were generated at random throughout

[0,10]x[0,10] . In cases (iii) and (iv) the points in (i) and (ii) were

translated to the square I90,100]x[90,100] . In cases (v) and (vi) the

points in (i) and (ii) we stretched over the interval [0,100]x[0,100] .

In case (vii) points with integer coordinates in [0,10]x[0,10] were selectee

by a random number generator. These cases give some indication of condition

numbers and the effects of translation and stretching. No claim is made that

the cited results are representative nor that an exhaustive set of calculatior

were made. Other computations, not tabulated here, follow the same trend,

however. The results of the calculations are tabulated in Table 1. Not all

combinations were computed.

Case N > 10 25 50 100

(i) 170 3400 6700 67000

(ii) d2n 1500 5700 36000

(iii) 2400 48UUU 1 auuuo

(iv) 3600 37000 200000

(v) 190 3200 8600

(vi) 600 6100 6200

(vii) 2900 15000

Table 1: Condition Numbers of (K.(x.,y.)) for Br, ,-i

One can make several observations from the table. First, for moderate

values of N , even up to 50 or 100, satisfactory results can easily be obtain

by computing with the representers as basis functions. Depending on the

accuracy required in the computed answer and the precision one can (or is

willing) to use in the computations, N could be quite a large number, per-

haps as large as is feasible to consider for a global approximation. Second,

the effect; of stretching on the condition number is rather mild. Third, the

translation of the points away from the base point increases the condition
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number, indicating that one should select the base point (a,b) close to a

corner of the region of interest, as we have done.

2.2 A set of basis functions with compact support

It is possible to construct a set of basis functions with compact support

which leads to a block tridiagonal system of equations, where each block is

tridiagonal, for approximations in Br, ,-i . Unfortunately the scheme is

practical only in the special instance that the data points lie on a grid.

Such a grid exists for any set of points, but ordinarily only one point lies

on each horizontal and each vertical grid line. For the scheme to be prac-

tical it is not necessary that each grid point be a data point, but many

points should be on most grid lines. This will be made more explicit after

the development.

We must alter our usual notation slightly. Suppose we have grid points

(x.,y-)» i = 1 ,. . . , n, j = 1 ,. . . ,m . We assume that the x. and y. are in

increasing order. Denote the set of subscript pairs corresponding to data

points by I . Then corresponding to each [k i i)el there is a known function

value z. . Nondata points on the grid will be denoted as (i,j)/I , where

we will always assume that 1 < i ^ n and 1 < j < m .

It is easy to obtain functions of one variable of the appropriate form

which have compact support. They are

n

G.(x) = z a. g-i (0;x ,x), i = l,2,...,n ,
1

r=l
n r

where as before g, (0;x ,x) = 1 + x - (x - x ) + ,

1 + x
2 ]

Wlth a
ll

=
(1 + Xl )(x

2
- X] )

'
a
12

=
x

1

- x
2

1

x
i+l "

x
i-l

;

ii-l * xu}
- x. '

a
ii (x. - x

i+1
)(x

i
_ ]

- x.) '
a
ii + l x. - x.

+1
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— 00

= 1 = 1

a
nn-l x -, - x '

a
nn x - x ,""

' n-1 n n n-1

and a. = if |i - r\ > 1 . For convenience, let x
Q

= and x ,

then we note that 6. (x.) = 6.. as well as G.(x) * only over the interva

(x. i, x.,,) . Also construct the dual functions H.(y) , withv
i-l * l+l ' y J

Hj(y) = E 3j S
g^Ojy^y) . Note that the G. and H, are linear B-splines.

To satisfy the interpolation requirements in terms of the local basis

n m
functions G.(x)H.(y) ,we obtain the equations z z a. .G.(x. )H.(y ) hJ

j_i
j_-j I J 1 K J *

a
k £

= Z
k i * ^ k ' £ ^

e l
*

For ^ k '^ ^ l
'

the Products g-j
(0;x

|<

,x)g
1
(0;y^ 9y

cannot appear in the approximation. Substituting for G.(x) and H.(y) the

n m
approximation becomes E z a.. G.(x)H.(y) = z a., z a. g,(0;x ,x) z

i=l j = l
1J ] J

i,j J
r

ir
'

r
s

6
js 9

1
(0;y

s
,y) = z_ a^. E a

ip
6
js g

1

(0;x
r
,x)g

1
(0;y

s
,y) .

l » j r jS

We then set the coefficient of g-.(0;x. ,x)g,(0;y ,y) for (k,£) £ I ,

equal to zero, obtaining as the system of mn equations for the a.. ,

aM = Z
k,£ '

(M) "
l

(2)

* a
ij

a
ik

e
j£

=
°. < k^ * l •

If we order the equations and variables in some logical fashion, say

(1,1),.., (l,m), (2,1),..., (2,m),..., (n,m), for m < n , the fact that

a.. = if |i - k| > 1 and 6- = if |j - Jl| > 1 shows that the
IK j x.
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resulting coefficient matrix of the system of equations is of the form

T =

/

Tn T

\

12

T
21

T
22

T
23

T
i

T
nn-1 nn

Where each T. . = a. .

11 p
12

'21 p
22

D
23

mrn-1 mm

except that a row of T corresponding to (k,2,) e I is replaced by a new

row with zeros everywhere except for the unit diagonal element.

We can note that 8. . , and B.. , are nonpositive and except for
J J j J I

j = 1 and j = m,
JJ jj-1 - 6

jj+l •

while for J "I. Bn > - 3 12JJ

and for j = m , 6 = - S •] . Thus each block T.. is diagonally

dominant. An interesting aside is that the system (2) looks very much like

the system of equations obtained when solving Laplace's equation by finite

differenceson a rectangular grid, where a 9 point approximation to the Laplacian

is used. Here, of course, the "boundary conditions" may be scattered through-

out the region. In this respect the coefficient matrix is well suited to the use

of iterative methods for solution of (2).

2
For the usual case, the above leads to a system of N equations, and the

amount of computation will be too large for even moderate N. Use of a block

elimination equation solver reduces the problem to one of repeated solution

of n systems of equations of m equations (usually full, but not always).

-11



3
Although the original problem can be solved in about N /6 operations, the

3 4
new basis requires about n m , or about N operations if m = n = N .

One should point out, however, that after obtaining the a., one has sufficie

information to obtain the value of the interpolating function by bilinear inte

polation since a., represents the function value at (x.,y.) .

We will consider the case in which there are several data points on each

grid line. The amount of work required to solve (2) decreases somewhat as

the fraction of known grid values increases, however, the major effect is that

the relationship between (n,m) and N changes. Assume that the fraction

of grid points at which data is known is p, < p < 1 . The total number

of data points is then N = pmn , and the number of operations required to

3 3 3
solve (1) is about (pmn) /6 . For (pmn) /6 « nm we see that

p ~6/n , or p siv^n" '
. Representative values of these fractions are

given in Table 2, along with the total number of equations in (1) and (2).

If p is larger than the listed value in Table 2, (2) can be solved in fewer

operations than (1).

n P N mn

4 .721 2.88m 4m

8 .454 3.63m 8m

15 .299 4.48m 15m

50 .134 6.69m 50m

100 .0843 8.43m 100m

1000 .0182 18.2m 1000m

Table 2: Fraction p of grid points to be

known for comparable number of operations in

solving (1) and (2).
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2.3 Basis functions which are zero in some regions

Because the representers of point evaluation functional s are constant for

large enough values of the independent variables, a certain linear combination

of any two can be made zero for large enough values of the independent vari-

ables. In particular, consider K.(x,y) and K-(x,y) . The function

(1 + x. )(1 + y^K^x.y) - (1 + Xj.)(l + y
j
)K

i

(x,y) is zero for x > max(x.,x.)

and y > max(y. ,y.) . Thus a new set of basis functions with zero values over

part of the region of interest can easily be constructed. It is desirable to

first order the data points in terms of their "distance" from the origin. It

seems reasonable to order the (x, ,y, ) in terms of nondecreasing values of

(1 + xtJO + V
k

) • This is not the only ordering which can be used, but it

carries the assurance that the new j basis function will be nonzero at the

f"h

j point, and also has an added benefit we will discuss later.

Assume that the data points are ordered so that q v
= (1 + xj(l + yj

,

k = 1,...,N is a nondecreasing sequence.

pjKj
+1

(x,y) - Pj + 1

Kj(x,y)
Then define L.(x,y) = -^

—

rz—;n—^— vTZ—Z~T , j = 1 , . . . ,N - 1'y 'y; " p-K" ,(x.,y.) - p-^Mx.,y.)

and LM (x,y)
=

K
N
(x,y)

Then the L-(x,y) satisfy L
j(

xj>yj) = 1 » j = 1 ,. . . ,N and

* *
L-(x,y) = for x > x .

= max(x. ,x.
+ 1

) and y > y. = max(y . ,y .

+1 ) , j = 1,

Using these basis functions, the interpolation problem requires the so-

lution of the system

N

(3) I A.L.(x ,y ) = z., i = 1.....N .

•13-



Because of the above ordering on the data points, there is some possibility

of the entry L-(x.,y.) being zero for j < i , that is an element below

the diagonal of the coefficient matrix.

The basis functions L-(x,y) have a property which is desirable and

which arises out of our ordering of the data points.

Proposition : In the first quadrant, |L.(x,y)| < 1 .

We note that it is also true that if p i+1
< p- , then |L.(x,y)| < 1

J J J

except along one of the rays which start at (x.,y.) and extend horizontally
J <J

to the right and vertically upward. The proof is simple and will not be

given. It consists of considering the value of L-(x,y) at all points where

the first partial derivatives are discontinuous, since any extrema must occur

at such a point. These points are (0,0), (x.,0), (x.
+-,,0), (0,y.)> (0,y. +1 )

(Xj,yj), ( xj»
xj+-|)» (

x
j +

]>y.j) > and (Xj
+1

>y

-

+] ) • Typical function values

are shown in figure 1. Recall that in each r<

hence determined by its values at the corners

are shown in figure 1. Recall that in each rectangle L-(x,y) is bilinear an

-14-



10
-.286 -.857

-.286 -.857

(x
2
,y

2
) = (2,8)

048 143
(x^y^ (6,2) 1.000

1.000

016 .048 333 .333

Figure 2: Values of L-,(x,y)

10
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Certain behavior can be classified further. For example: (i) if

Xj
+1

> x
j>y-j+i

> yj . then |Lj(x,y)| < 1 except at (x-,y.) ; (ii)

if P i+ i
= Pa » then L.(x,y) = for x <_ min(x, ,x. , ) and

y ±min(y.,y
i+1

) and Lj(x..
+1

,y

-

+1 )
= -1 .

The coefficient matrix of the system (3) has its largest element (in

magnitude) on the diagonal, and some zeros may occur below the diagonal.

The data points used to generate Table 1 were used to test the effect-

iveness of the introduction of zeros and to determine the condition numbers

associated with the new basis functions. The results are shown in Table 3,

with the number in parenthesis indicating the number of leading zeros in

the matrix. By reordering the columns of the matrix it is sometimes possible

to introduce many more leading zeros, and while a scheme of this sort has not

been implemented, in many cases it would substantially reduce the number of

operations required for solution of the system (3).

The system (3) does not have a symmetric coefficient matrix, and unless

approximately 30% leading zeros are introduced, it will take fewer operations

to solve (1) than to solve (3). However, the condition number of the new

coefficient matrix has been smaller in e\/ery case examined, sometimes by a

factor of 15 or more, but more commonly by a factor of 2-5. Reordering

columns for a maximum number of leading zeros will often result in 30% or

more leading zeros, based on some hand computations where no effort was made

to obtain the maximum number of leading zeros.
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Case N * 10 25 50 100

(1) 36(4) 250(20) 1800(261) 18000(535)

(11) 32(18) 460(32) 2000(162) 12000(582)

(ill) 1800(6) 2600(39) 30000(315)

(iv) 160(18) 3300(62) 19000(288)

(v) 23(2) 150(20) 1400(195)

(vi) 28(18) 390(16) 1500(105)

(vii) 620(21) 6200(146)

Table 3: Condition Numbers of (L-(x.,y. )) and Number of

Leading Zeros (in Parenthesis)

3.0 Optimal Approximation in Br. .-i .

The problem of computing optimal approximations in the Sard space

Bp,
pi

1S somewhat more difficult than for Br, ,-i . The reproducing kernel

functions are seen to be piecewise bicubic functions, reducing to bilinear

functions for sufficiently large values of the independent variables. We

shall investigate the feasibility of extending the results of the previous

section to Bp
? -i in this section.

3.1 Representers of point evaluation functional s as a basis

The representer of the point evaluation functional at the point (x.,y.) is

2 , , , 3-, r , „ , . , 3.

Kj(x,y) =[l +x.x + i*. x-Ix^iU-x.g 1 ^y^y^jy^
2

y-^y^liy

This function is cubic in x for < x < x . , and linear in x for

x > x
. , and the dual holds in y . These functions increase rapidly since the

point x = x. is the inflection point of the cubic in x , and thus when the
J

17-



function is linear in x , it has slope the same as the maximum slope of the

cubic. Because of this, the Gram matrix is not well conditioned. Following

a similar path to that taken in the preyious section, some condition numbers

for the Gram matrix were computed for some sets of randomly generated points.

The results are given in Table 4. The point description column refers to the

descriptions in section 2.1.

Case N -> 10 25 50 100

(i) 3.94-10
4

3.51 -TO
7

8.27-10
7

4.58-10
9

(11) 3.89-10
5

1.89-10
6

4.47-10
9

9.95-10
8

Table 4: Condition Numbers of (K.(x.,y.) for B r„ o7

The observations which we wish to make are that: (1) One will quickly be

in numerical trouble in Real *4 on the IBM 360, and (2) While the condition

number is large, meaningful computations can be done in Real *8.

3.2 A set of basis functions with compact support

A similar construction for Br
2

„-i as was pursued for Br, ,-i in section

2.2 can be done. There is some question as to what conditions should be imposed

on G-j , G
2

, G
3

, G
4

, G
N _ 3

, G
N _2

, G^-j , and G
N

, (as well as the corresponding

dual functions H.)> but several reasonable options are open. In the general
n

case one wants G.(x) = Y a. g 9 (0;x ,x) so that G. (x. ) =1 , G.(x) = ,

x 1 x i_2 or x — x
i+2

* Proceeding In similar fashion one will obtain a system

of equations which in block form has 5 non-zero blocks, each block being a

square matrix with 5 non-zero elements per row. Numerically this is somewhat

more complicated than before, but there are instances where it could be useful.
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No details of the construction have been carried out here, but the general

ization is straightforward. Also note that the G. and H. here are cubic
' J

B-splines.

3.3 Basis functions which are zero in some regions

It seems natural to be able to extend this idea to B,-
? ?

-j . The basis

functions K.(x,y) are bilinear for x >_x. and y >_ y • , thus it seems
J J J

possible a certain linear combination of them could be made identically zero

to the right and above all points (x.,y.) associated with those five basis
j j

functions. Proceeding in the obvious fashion, ordering the points ( x. ,y , )

by some rule, we then wish, for j <_ N - 4 , to construct functions

j+4
Lj(x,y) =

l^ Yj-

k
K
k
(x,y) such that

K - J

Lj(x,y) = for x > x* = max (x
j+4>

x
J+3

, x
j+2

, x
j+ ,

, Xj )

d y^yNmax (y y j+3> yj+2 , y
J+1

, y )
am

and L
j^

x
j'yj^

=
] ' Unfortunatel y> if tn e points (x.

+4 ,yj+4 ), (x
j+3 ,yj+3 ),

(x.
+2 ,y. +2 ), (x.

+ i
,y .

+
-, ) lie on any bilinear curve, this system of equations

generally has no solution. Thus the ordering imposed earlier would at least

have to restrict one away from four successive points lying on a bilinear

curve. In general, this is not possible.

Because of the rather more restrictive region where the function is zero,

less benefit is likely to accrue anyway. In addition, even when one can con-

struct such sets of basis functions, it is not possible to bound the function

L-(x,y) as in the Br, ,-i case, and in particular it cannot be bounded by one,
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4.0 Conclusions

This investigation has determined that use of the representers of point

evaluation functional s can be used as a basis for some problems without en-

countering severe computational problems. For smooth approximations this is

probably not generally true, however. In addition, because the computational

burden for global approximations is likely to be quite large, it is the

author's opinion that local approximations must be investigated for smooth

interpolation. The time is perhaps propitious for an investigation into the

underlying mathematical basis for some previously suggested schemes for local

smooth interpolation.

The use of optimal approximations in Sard corner spaces for the inter-

polation of irregularly spaced data results in an approximation which has

discontinuities along the lines parallel to the axes through each data point.

This would seem to the author to be unnecessarily complicated, and the author

intends to investigate global approximations in which the discontinuities

are less numerous and local in character rather than extending alona lines to

infinity.

-20-



REFERENCES

1. R. E. Barnhill and G. M. Nielson, "Reproducing Kernel Functions for
Sard Spaces of Type B*," SIAM J. Numer. Anal. 11 (1974) 37-44

2. P. J. Davis, Interpolation and Approximation , Blaisdell, New York, 1963

3. R. Franke, "Locally Determined Smooth Interpolation at Irregularly Spaced
Points in Several Variables", Technical Report #NPS-53Fe75041 , Naval

Postgraduate School, Monterey, CA, April 1975.

4. M. Golomb and H. F. Weinberger, "Optimal Approximation and Error Bounds",
in On Numerical Approximation , R. E. Langer (Editor), p. 117-190,

University of Wisconsin Press, Madison, Wisconsin, 1959.

5. L. E. Mansfield, "On the Optimal Approximation of Linear Functional s in

Spaces of Bivariate Functions", SIAM J. on Numer. Anal. 8 (1971) 115-126

6. L. E. Mansfield, "Optimal Approximation and Error Bounds in Spaces of
Bivariate Functions", J. Approx. Theory 5 (1972) 77-96

7. G. M. Nielson, "Multivariate Smoothing and Interpolating Splines," SIAM
J. Numer. Anal. 11 (1974) 435-446.

8. A Sard, Linear Approximation , Mathematical Surveys, No. 9, American Mathe-
matical Society, Providence, RI , 1963

9. L. L. Schumaker, "Fitting Surfaces to Scattered Data", in Approximation
Theory II , G. G. Lorentz, C. K. Chui , and L. L. Schumaker, Eds.,
Academic Press, New York-London, 1976.

-21



DISTRIBUTION LIST

No. of Copies

Defense Documentation Center 2

Cameron Station
Alexandria, VA 22314

Library 2

Naval Postgraduate School

Monterey, CA 93940

Dean of Research 2

Naval Postgraduate School

Monterey, CA 93940

Professor Craig Comstock 1

Department of Mathematics
Naval Postgraduate School

Monterey, CA 93940

Dr. Richard Lau 1

Office of Naval Research
Pasadena, CA 91100

Professor Carroll 0. Wilde 1

Department of Mathematics
Naval Postgraduate School
Monterey, CA 93940

Professor R. E. Barnhill 1

Department of Mathematics
University of Utah

Salt Lake City, UT 84112

Chief of Naval Research 2

ATTN: Mathematics Program
Arlington, VA 22217

Professor Gregory M. Nielson 1

Department of Mathematics
Arizona State University
Tempe, AZ 85281

Professor Richard Franke 5

Department of Mathematics
Naval Postgraduate School
Monterey, CA 93940

22-



>-9



Uiffliunw

'

RESEARCH REP0RTS

5 6853 01067314 8


