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1 . INTRODUCTION

This paper reports a numerical experiment with an approach to inversion

of a real matrix using a block partitioning structure. The study arises in

the context of design of a large scale mathematical programming system for

use within various computer environments. The scheme permits controlled

explicit pagination of mathematical operations to coincide with boundaries

specified by hardware memory management. The timing results presented in-

dicate that maximizing work-per-page does not necessarily minimize total

execution time as folklore would advise. Further, performance of an

inversion scheme such as this is not always adequately estimated by

classical means. The implications even for the simple cases reported here

are potentially of importance to our further design work.

Obtaining the explicit numerical inverse of a real matrix presents a

classic problem in numerical methods which has received intense study in the

literature; the wide spectrum of applications requiring inversion of matrices

bears testimony to its fundamental nature. Numerous algorithms for matrix

inversion have been presented and analyzed for error and speed [8,12,31] as

have methods for error reduction by pivot selection and scaling [1,9],

iterative improvement of accuracy [33], and exploitation of special features

in the matrix to be inverted, especially sparseness [7,22,23,24,28,30,34,35],

symmetry and band structure [26]. Studies of the form and complexity of the

inversion process have included graph theoretic descriptions [4,28], statis-

tical characterizations [19], exploitation of algorithmic parallelism [20],

exercising special features of multiprogramming environments [17], and so

forth.



One of the active application areas for numerical matrix inversion has

been in large scale mathematical programming. Most successful codes for

large problems must resort to some form of inversion (and often, reinversion)

technique based either on special structure in the problem recognized a

priori, or on special storage mechanisms for the inverse matrix. The moti-

vation for these efforts is that the available main memory on modern digital

computers is not sufficiently large to store the inverse explicitly for

problems of contemporary scale (say, thousands of rows).

Unfortunately, many methods based on a priori structure in problems are

inherently ad hoc in nature - decomposition methods [2,6,11,25] are con-

sidered by many to exemplify this shortcoming. On the other hand, for some

important classes of problems sharing a common special structure, new tech-

niques developed in concert with new data structures for problem represen-

tation have led to remarkable breakthroughs. In fact, sometimes a

triangulated basis is superior to an explicit inverse. As an example, a

primal (simplex) network code [3] has triangulated node-arc incident matrices

of rank 10,000 in 20 seconds (IBM 360/67) with no rounding error. Other

successful special methods have included element generation by generalized

upper bounding [5], factorization [15], and other compact working inverse

basis methods [14].

Special storage mechanisms for the inverse have typically included

columnwise product form representation (with "ETA" columns) [18] and modifi-

cations attempting to maintain sparcity in the inverse [13]. Also, inversion

and manipulation of sparce matrices is possible based on other structural

decompositions, including doubly linked lists, bit maps, etc. [22,29].

The introduction of computers with memory organized in pages which are

transferred in bulk swapping transactions between high speed magnetic devices



and main memory has led many to conclude that the vastly increased virtual

memory capacity will allow design of large scale algorithms ignorant of

main, or cache, memory configurations. Unfortunately, algorithms designed

originally for conventional systems have performed very poorly in the paged

environment. The study of dynamic program behavior within paging systems

indicates that the global cost of page swaps is far from negligible. Thus,

with a given amount of work to perform in inverting a matrix, design

criteria now include consideration of both minimizing page swaps and

maximizing the work performed on each page during its cache residence [16,

17].

This paper presents an approach to inverting a real matrix using a

partitioning structure and block pivots ("B pivots") which perform bulk

inversions of interior submatrices [21,27]. The technique is demonstrated

to have theoretical computational efficiency in terms of long (floating

point) operations equal to classical methods, and parametric high resolution

timing of a FORTRAN routine executed on a dedicated processor with blocks of

varied size is given, with some discussion of surprising behavior.

This scheme employs explicit pagination of the mathematical operations

in inversion and is potentially useful for large scale mathematical programming.

The reason that the empirical study concentrates on a dedicated processor is

two-fold. For contemporary large scale programming applications, the wall

clock time, rather than central processor active compute time, often dominates

the attention of the user - these applications are capable of laying seige to

the entire computer system, whether paged or not. Second, we are interested

in the performance characteristics of various numerical techniques imbedded

in a large scale mathematical programming code now under development. The

design of the new system, based on parametric studies such as this, includes

3



the provision for robust performance within varied computer environments.

Similarly, the examples are chosen to be full rank and dense in the

interests of emphasizing the execution performance of the partitioned

algorithm, rather than that of exercising some supporting storage structure,

list mechanism, or other feature not under study here. Even for large,

sparce problems, however, nonzero elements can often be aggregated to dense

blocks over subsets of the matrix rows and columns.

The advent of minicomputers, micro computers, and various multiple

processor configurations portends further application of B-pivot inversion

even for relatively small or intermediate scale problems.



2. INVERSION TRANSFORMATION

The classical inversion method used here is in-situ Gauss-Jordan

pivoting, chosen for speed, generality, and storage economy. To illustrate,

let A be the nonsingular real square matrix of rank n to be inverted,

with a., a general element of A. An in-situ scaler pivot on a. is

defined as follows for a. f with "«-" indicating elemental replace-

ment:

a
k£

* ] / a
k£ (Pivot element) (1)

a
kj

"*" a
kj

f \l l J sl »--»ni J?1 (pivot row)

aU *" ~aU / a
k£

; i=1 "-' n
' ^ k (pivot column)

a
ij

* a
ij

" a
i£

a
kj

7 a
kj^;

i=l,..,n; i7k (general

j=l,..,n; j>£. elements)

An inverse is developed in place by performing n sequential pivotal

transformations of this type on the main diagonal elements a , p=l,..,n.

However, since the accuracy of the computations can be adversely affected by

the relative magnitude of the elements in A , and since the transformation

is not defined for a. = , a pivot selection strategy is usually employed

in inversion.

Notably, "partial" pivots use sequential rows for k and in each select

l by finding the largest absolute element in a previously unused column.

"Full" pivots select the largest absolute matrix element remaining in an

unused row and column. Often equilibration, or scaling, of the matrix columns

for partial pivoting, and of rows and columns for full pivoting can further

increase accuracy.



Both partial and full pivot strategies require that the inverse be

recovered by recording the coordinates for each pivot and using this history

to permute rows and columns of the result matrix left by pivoting. If

r = k and c = £ for pivot p, p=l,..,n , then inverse row c. is

located in matrix row r. , and inverse column r. is located in matrix

column c.. Thus, the increased accuracy of these pivot selection schemes

comes at the cost of extra scanning of elements in pivot selection tourna-

ments, bookkeeping and in reordering the resulting inverse.

A simple computation timing estimate for Gauss-Jordan pivoting can be

arrived at by concentrating only on the floating point arithmetic required

by (1).L^ 3 J Assuming an efficient program utilizing partial results in the

pivot rows, or columns, in computing the general elements, a total of n

pivots will be performed, each requiring 1 + 2(n - 1) multiplications and

o
(n - 1) additions. Aggregating operations for each pivot gives the total

W( n ) = 2n
2

- 2n + 1 , (2)

and a complete inversion time of n W( n ). For simplicity the effect of

pivot selection strategy and other program overhead has been ignored.

Now let us introduce B-pivots to the inversion by partitioning A into

submatrices as follows:

A =

-1L±
A
L2-

A "T
A~

M
21 i

rt
22

(3)

If A-|i is b x b , an in-situ B-pivot on A,, is defined as follows

for nonsingular A,-,

:

A
ll

"*" A
ll

-1
(B-pivot block) (4)
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is found by using the Gauss-Jordan transformations in the

first b rows and columns, it is clear that if we continue with another

B-pivot in the next n - b rows and columns of A
22

» A will have

been formed. The resulting inverse in terms of the original elements in

(3) is:

A
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An + An A
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B A
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-B A
21
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1
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B

with
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21 11 12 '

and may be verified by multiplication.

This B-pivot process may be continued analytically to any number P of

B-pivots of varying size b , p=l,..,P, indeed, with b,=...=b = 1, and
r r

P = n, or with b-, = n, and P = 1, the process is simply the Gauss-Jordan

transformation.

A computation timing estimate using the simple approach producing (2)

for a B-pivot of size b will give

b W(b) = 2b
3

- 2b
2

+ b

operations for the inversion of the pivot block in (4), for the B-pivot row

b (n - b) (2b - 1) operations, an equal number in the B-pivot column, and



2 2
(n - b) (2b - 1) + (n - b) floating point computations for the general

elements. This again sssumes an efficient program which uses partial results

in the B-pivot row, or column, to compute general elements. For the complete

B-pivot we have the total

b (2n
2

- 2n + 1) = bW( n ) . (5)

Thus, the B-pivot approach nominally requires no more computational effort,

stated in terms of floating point operations, than scaler pivots.

3. APPLICATION SCHEME

Let b, = b
2
=...=b , , b = n -

J,
b . This "fixed block" strategy

r '

requires nonsingular A,-.,...,A . Applying this method to test matrices of

dimensionality n = 10(10)50 with b = 1(1 )n in a FORTRAN test program

produced the timing results shown in Figures 1 and 2 when run on a dedicated

IBM 360/67. The times shown are for active computation with memory resident

matrices and are precise to four significant digits. As indicated, both

partial and full pivot selection strategies within pivot blocks were tested.

The FORTRAN program specifies a matrix of appropriate dimensionality,

the block size to be used, and then exercises subroutines to perform the

block inversions, row block transformations, column block transformations,

and general block transformations. The program is compiled and optimized

for run time efficiency by the IBM FORTRAN (H) compiler.

The timing prediction of (5) appears to hold at least as a polynomial

form for the full block (b = n) execution times in Figure 1. However,

note the surprising gain in speed for intermediate sizes of b in Figure 2.

This is partially due to the work avoided in restricting to the pivot blocks

the range of scalar pivot selection and subsequent matrix permutations.

8



Conversely, for very small B-pivots and those requiring a last B-pivot much

smaller than b, an "odd B-pivot", the housekeeping overhead of the program

increases the execution time significantly. Thus, it may be advantageous to

choose block sizes which partition the problem into blocks of homogeneous

size, rather than to fill a page.

For these examples, the classical assumption that long floating point

operations required by an algorithm dominate performance on a computer appears

to be contradicted. It is certainly true that the time required for floating

point operations relative to others such as register loads, compares, and so

forth, has decreased greatly from the days of software arithmetic subroutines

to contemporary floating point hardware (such as on the IBM 360/67 used here).

As a practical matter, resident memory for three blocks is required for

each complete B-pivot as shown in (4). The program can easily be modified

to emulate hardware delays caused by page swaps, or other interference by a

paging mechanism. The times reported do not reflect such modifications.

4. DISCUSSION

For matrix inversion and other matrix arithmetic the "fixed block"

approach allows b to be chosen to fit within a page, or cache area, and

minimize boundary violations by the computation. However, the folklore

which specifies that each page should be as nearly filled as possible is not

necessarily true. The problem dimension (or other consideration) can in

some cases dictate a less than full page scheme for fastest (or best)

execution.

It is important to note that the block approach generates, a priori,

demands for the matrix blocks from the out-of-memory device. Thus, an



agenda of input/output operations can be used to achieve simultaneity with

computation. This can be much faster than a memory page fault and interrupt

mechanism. Even in traditional single user environments the block size may

be chosen to balance access-transfer time for slow magnetic devices with

computation time, minimizing retrieval overhead with little memory cost.

Note from Figures 1 and 2 that even a relatively small block pivot requires

sufficient computation time (e.g., more than one second for n = 40) to

permit simultaneous access to a disc or drum device.

The fixed blocks provide a convenient parcelling of matrix manipulation

effort as well as storage, and permit for many applications a more convenient

access structure than traditional column by column methods. This is useful

for large mathematical programming problems with block angular, staircase,

or other special block structure, [14]. These B-pivots on fixed blocks may

also be used to equitably distribute computation among available parallel

processors in sizeable bulk to permit relatively lengthy independent

operation.

5. CONCLUSION

The usefulness and speed of B-pivot schemes come with one important

disadvantage: the pivot blocks must be nonsingular mathematically and in

the stricter numerical sense. Since scalar pivot selection is restricted

to each pivot block, one should try to assemble the matrix A accordingly.

For instance, in large linear programming problems a history of algorithm

progress can be used to provide A,

,

A . In fact, B-pivots may be

considered in this context as an extension of the concept of product form

inverse. The B-pivot method works well for such problems, providing a

10



convenient tool for fast inversion, or reinversion, of kernels embedded in

technological coefficients.

Other classes of matrices exhibit a natural diagonal dominance permitting

effective B-pivot inversion. For instance, the noise covariance matrix has

been proposed for such use in [21], which includes an extensive group

theoretic characterization of admissability. Also, algorithms have been

proposed for rearranging matrices to block angular form [32].

The accuracy of B-pivots may be improved by computing inner products

with extended precision and special ordered addition. In some special

cases of A, such as zero-one or sparse conditions as

A = A 'A
ll

,

-

A ' Art
21 | 22

' .

significant effort can be avoided by the B-pivot approach coupled with appro-

priate modifications of program logic. Several approaches to avoiding B-pivot

singularity failures have been suggested, including "dynamic" blocks, "gang"

blocks, pivot block selection procedure, and a matrix construction to be

performed concurrently with a scaling algorithm as in [9]. Fortunately,

none has been necessary in applications to date.

Continuing research focuses on block triangulation and dynamic factor-

ization schemes for large scale mathematical programming, combined with

generalized upper bounding in a hybrid system with both explicit and logically

generated elements. It is becoming increasingly clear from experiments such

as this that the (logical) algorithm and data representation of the program,

and the (physical) organization of computations performed on the host computer

under operating system control interact in subtle ways to give aggregate per-

formance which is often counter-intuitive and seldom improved by ignoring the

11



details of either. The effect can be so pronounced that we are reexamining

several classical techniques in this new light.

12
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