
NPS55Zr75081

NAVAL POSTGRADUATE SCHOOL

Monterey, California

NUMERICAL PERFORMANCE OF MATRIX INVERSION

WITH BLOCK PIVOTING

by

Gerald G. Brown

August 1975

Approved for public release; distribution unlimited

Prepared for:

Naval Postgraduate School

Monterey, California 93940

FEDDOCS
D 208.1 4/2: NPS-55ZR75081

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/36722853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Isham Linder jack R. Borsting
Superintendent Provost

This work was partially sponsored by a grant from the Research
Foundation, Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

Prepared by:

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NPS55Zr75081

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Numerical Performance of Matrix Inversion with

Block Pivoting

5. TYPE OF REPORT ft PERIOD COVERED

Technical Report
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORC*;

Gerald G. Brown

8. CONTRACT OR GRANT NUMBERS

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School

Monterey, California 93940

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

61152N; RR 000-01-10
N0001475WR50001

II. CONTROLLING OFFICE NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

August 1975
13. NUMBER OF PAGES

21

14. MONITORING AGENCY NAME ft ADDRESS(U different from Controlling Office") 15. SECURITY CLASS, (of thla report)

Unclassified
15«. DECLASSIFI CATION/ DOWN GRADING

SCHEDULE

1«. DISTRIBUTION STATEMENT (of thta Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetrmct entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide It nacaaaary and Identify by block number)

Large Scale Mathematical Programming Page Processing
Large Scale Linear Programming Virtual Memory Systems
Factorization Methods in Optimization Matrix Storage Allocation
Paged Memory Arithmetic Numerical Algorithm Performance

20. ABSTRACT (Continue on reverae alda If nacaaaary and Identify by block number)

An experiment with matrix inversion using block pivots is presented.
Large scale matrix computations can often be performed more efficiently by
use of partitioning. Such matrix manipulation lends itself to paged or cache
memory systems since computation is staged to be completely performed in

local blocks of controllable size. On other systems retrieval overhead can
be balanced with computation for "in-memory/out-of -memory" applications.
Parallelism in such schema leads to efficient utilization of some multiple +

DD ,^N
RM

73 1473 EDITION OF 1 NOV 68 IS OBSOLETE
S/N 0102-014-6601

|

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGe (When Data Bnteted)

UNCLASSIFIED

-LCUW1TY CLASSIFICATION OF THIS P AGE(Whmn Dmtm Entmrmd)

19. Matrix Inversion
Inversion Algorithms
Partitioned Matrices

20. processor environments. Timing results indicate, however, that
choice of block size should not necessarily be dictated by hardware
page size for most efficient operation and that classical methods
of estimating computation times are not always adequate.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGEfWh«n Dmtm Entmrmd)

1 . INTRODUCTION

This paper reports a numerical experiment with an approach to inversion

of a real matrix using a block partitioning structure. The study arises in

the context of design of a large scale mathematical programming system for

use within various computer environments. The scheme permits controlled

explicit pagination of mathematical operations to coincide with boundaries

specified by hardware memory management. The timing results presented in-

dicate that maximizing work-per-page does not necessarily minimize total

execution time as folklore would advise. Further, performance of an

inversion scheme such as this is not always adequately estimated by

classical means. The implications even for the simple cases reported here

are potentially of importance to our further design work.

Obtaining the explicit numerical inverse of a real matrix presents a

classic problem in numerical methods which has received intense study in the

literature; the wide spectrum of applications requiring inversion of matrices

bears testimony to its fundamental nature. Numerous algorithms for matrix

inversion have been presented and analyzed for error and speed [8,12,31] as

have methods for error reduction by pivot selection and scaling [1,9],

iterative improvement of accuracy [33], and exploitation of special features

in the matrix to be inverted, especially sparseness [7,22,23,24,28,30,34,35],

symmetry and band structure [26]. Studies of the form and complexity of the

inversion process have included graph theoretic descriptions [4,28], statis-

tical characterizations [19], exploitation of algorithmic parallelism [20],

exercising special features of multiprogramming environments [17], and so

forth.

One of the active application areas for numerical matrix inversion has

been in large scale mathematical programming. Most successful codes for

large problems must resort to some form of inversion (and often, reinversion)

technique based either on special structure in the problem recognized a

priori, or on special storage mechanisms for the inverse matrix. The moti-

vation for these efforts is that the available main memory on modern digital

computers is not sufficiently large to store the inverse explicitly for

problems of contemporary scale (say, thousands of rows).

Unfortunately, many methods based on a priori structure in problems are

inherently ad hoc in nature - decomposition methods [2,6,11,25] are con-

sidered by many to exemplify this shortcoming. On the other hand, for some

important classes of problems sharing a common special structure, new tech-

niques developed in concert with new data structures for problem represen-

tation have led to remarkable breakthroughs. In fact, sometimes a

triangulated basis is superior to an explicit inverse. As an example, a

primal (simplex) network code [3] has triangulated node-arc incident matrices

of rank 10,000 in 20 seconds (IBM 360/67) with no rounding error. Other

successful special methods have included element generation by generalized

upper bounding [5], factorization [15], and other compact working inverse

basis methods [14].

Special storage mechanisms for the inverse have typically included

columnwise product form representation (with "ETA" columns) [18] and modifi-

cations attempting to maintain sparcity in the inverse [13]. Also, inversion

and manipulation of sparce matrices is possible based on other structural

decompositions, including doubly linked lists, bit maps, etc. [22,29].

The introduction of computers with memory organized in pages which are

transferred in bulk swapping transactions between high speed magnetic devices

and main memory has led many to conclude that the vastly increased virtual

memory capacity will allow design of large scale algorithms ignorant of

main, or cache, memory configurations. Unfortunately, algorithms designed

originally for conventional systems have performed very poorly in the paged

environment. The study of dynamic program behavior within paging systems

indicates that the global cost of page swaps is far from negligible. Thus,

with a given amount of work to perform in inverting a matrix, design

criteria now include consideration of both minimizing page swaps and

maximizing the work performed on each page during its cache residence [16,

17].

This paper presents an approach to inverting a real matrix using a

partitioning structure and block pivots ("B pivots") which perform bulk

inversions of interior submatrices [21,27]. The technique is demonstrated

to have theoretical computational efficiency in terms of long (floating

point) operations equal to classical methods, and parametric high resolution

timing of a FORTRAN routine executed on a dedicated processor with blocks of

varied size is given, with some discussion of surprising behavior.

This scheme employs explicit pagination of the mathematical operations

in inversion and is potentially useful for large scale mathematical programming.

The reason that the empirical study concentrates on a dedicated processor is

two-fold. For contemporary large scale programming applications, the wall

clock time, rather than central processor active compute time, often dominates

the attention of the user - these applications are capable of laying seige to

the entire computer system, whether paged or not. Second, we are interested

in the performance characteristics of various numerical techniques imbedded

in a large scale mathematical programming code now under development. The

design of the new system, based on parametric studies such as this, includes

3

the provision for robust performance within varied computer environments.

Similarly, the examples are chosen to be full rank and dense in the

interests of emphasizing the execution performance of the partitioned

algorithm, rather than that of exercising some supporting storage structure,

list mechanism, or other feature not under study here. Even for large,

sparce problems, however, nonzero elements can often be aggregated to dense

blocks over subsets of the matrix rows and columns.

The advent of minicomputers, micro computers, and various multiple

processor configurations portends further application of B-pivot inversion

even for relatively small or intermediate scale problems.

2. INVERSION TRANSFORMATION

The classical inversion method used here is in-situ Gauss-Jordan

pivoting, chosen for speed, generality, and storage economy. To illustrate,

let A be the nonsingular real square matrix of rank n to be inverted,

with a., a general element of A. An in-situ scaler pivot on a. is

defined as follows for a. f with "«-" indicating elemental replace-

ment:

a
k£

*] / a
k£ (Pivot element) (1)

a
kj

"*" a
kj

f \l l J sl »--»ni J?1 (pivot row)

aU *" ~aU / a
k£

; i=1 "-' n
' ^ k (pivot column)

a
ij

* a
ij

" a
i£

a
kj

7 a
kj^;

i=l,..,n; i7k (general

j=l,..,n; j>£. elements)

An inverse is developed in place by performing n sequential pivotal

transformations of this type on the main diagonal elements a , p=l,..,n.

However, since the accuracy of the computations can be adversely affected by

the relative magnitude of the elements in A , and since the transformation

is not defined for a. = , a pivot selection strategy is usually employed

in inversion.

Notably, "partial" pivots use sequential rows for k and in each select

l by finding the largest absolute element in a previously unused column.

"Full" pivots select the largest absolute matrix element remaining in an

unused row and column. Often equilibration, or scaling, of the matrix columns

for partial pivoting, and of rows and columns for full pivoting can further

increase accuracy.

Both partial and full pivot strategies require that the inverse be

recovered by recording the coordinates for each pivot and using this history

to permute rows and columns of the result matrix left by pivoting. If

r = k and c = £ for pivot p, p=l,..,n , then inverse row c. is

located in matrix row r. , and inverse column r. is located in matrix

column c.. Thus, the increased accuracy of these pivot selection schemes

comes at the cost of extra scanning of elements in pivot selection tourna-

ments, bookkeeping and in reordering the resulting inverse.

A simple computation timing estimate for Gauss-Jordan pivoting can be

arrived at by concentrating only on the floating point arithmetic required

by (1).L^ 3 J Assuming an efficient program utilizing partial results in the

pivot rows, or columns, in computing the general elements, a total of n

pivots will be performed, each requiring 1 + 2(n - 1) multiplications and

o
(n - 1) additions. Aggregating operations for each pivot gives the total

W(n) = 2n
2

- 2n + 1 , (2)

and a complete inversion time of n W(n). For simplicity the effect of

pivot selection strategy and other program overhead has been ignored.

Now let us introduce B-pivots to the inversion by partitioning A into

submatrices as follows:

A =

-1L±
A
L2-

A "T
A~

M
21 i

rt
22

(3)

If A-|i is b x b , an in-situ B-pivot on A,, is defined as follows

for nonsingular A,-,

:

A
ll

"*" A
ll

-1
(B-pivot block) (4)

A
i2

*" An A
i2

(B-pivot row)

A
21 *"

'A
21

A
ll

•1

(B-pivot column)

-1
A22 *" A

22 " A
21

A
ll

A
12

general elements)

Since A-,-,"
1

is found by using the Gauss-Jordan transformations in the

first b rows and columns, it is clear that if we continue with another

B-pivot in the next n - b rows and columns of A
22

» A will have

been formed. The resulting inverse in terms of the original elements in

(3) is:

A
-1

An + An A
i2

B A
2i

An

-B A
21

An
-1

^n"
1
A
i2

B

with

22 "
21 11 12 '

and may be verified by multiplication.

This B-pivot process may be continued analytically to any number P of

B-pivots of varying size b , p=l,..,P, indeed, with b,=...=b = 1, and
r r

P = n, or with b-, = n, and P = 1, the process is simply the Gauss-Jordan

transformation.

A computation timing estimate using the simple approach producing (2)

for a B-pivot of size b will give

b W(b) = 2b
3

- 2b
2

+ b

operations for the inversion of the pivot block in (4), for the B-pivot row

b (n - b) (2b - 1) operations, an equal number in the B-pivot column, and

2 2
(n - b) (2b - 1) + (n - b) floating point computations for the general

elements. This again sssumes an efficient program which uses partial results

in the B-pivot row, or column, to compute general elements. For the complete

B-pivot we have the total

b (2n
2

- 2n + 1) = bW(n) . (5)

Thus, the B-pivot approach nominally requires no more computational effort,

stated in terms of floating point operations, than scaler pivots.

3. APPLICATION SCHEME

Let b, = b
2
=...=b , , b = n -

J,
b . This "fixed block" strategy

r '

requires nonsingular A,-.,...,A . Applying this method to test matrices of

dimensionality n = 10(10)50 with b = 1(1)n in a FORTRAN test program

produced the timing results shown in Figures 1 and 2 when run on a dedicated

IBM 360/67. The times shown are for active computation with memory resident

matrices and are precise to four significant digits. As indicated, both

partial and full pivot selection strategies within pivot blocks were tested.

The FORTRAN program specifies a matrix of appropriate dimensionality,

the block size to be used, and then exercises subroutines to perform the

block inversions, row block transformations, column block transformations,

and general block transformations. The program is compiled and optimized

for run time efficiency by the IBM FORTRAN (H) compiler.

The timing prediction of (5) appears to hold at least as a polynomial

form for the full block (b = n) execution times in Figure 1. However,

note the surprising gain in speed for intermediate sizes of b in Figure 2.

This is partially due to the work avoided in restricting to the pivot blocks

the range of scalar pivot selection and subsequent matrix permutations.

8

Conversely, for very small B-pivots and those requiring a last B-pivot much

smaller than b, an "odd B-pivot", the housekeeping overhead of the program

increases the execution time significantly. Thus, it may be advantageous to

choose block sizes which partition the problem into blocks of homogeneous

size, rather than to fill a page.

For these examples, the classical assumption that long floating point

operations required by an algorithm dominate performance on a computer appears

to be contradicted. It is certainly true that the time required for floating

point operations relative to others such as register loads, compares, and so

forth, has decreased greatly from the days of software arithmetic subroutines

to contemporary floating point hardware (such as on the IBM 360/67 used here).

As a practical matter, resident memory for three blocks is required for

each complete B-pivot as shown in (4). The program can easily be modified

to emulate hardware delays caused by page swaps, or other interference by a

paging mechanism. The times reported do not reflect such modifications.

4. DISCUSSION

For matrix inversion and other matrix arithmetic the "fixed block"

approach allows b to be chosen to fit within a page, or cache area, and

minimize boundary violations by the computation. However, the folklore

which specifies that each page should be as nearly filled as possible is not

necessarily true. The problem dimension (or other consideration) can in

some cases dictate a less than full page scheme for fastest (or best)

execution.

It is important to note that the block approach generates, a priori,

demands for the matrix blocks from the out-of-memory device. Thus, an

agenda of input/output operations can be used to achieve simultaneity with

computation. This can be much faster than a memory page fault and interrupt

mechanism. Even in traditional single user environments the block size may

be chosen to balance access-transfer time for slow magnetic devices with

computation time, minimizing retrieval overhead with little memory cost.

Note from Figures 1 and 2 that even a relatively small block pivot requires

sufficient computation time (e.g., more than one second for n = 40) to

permit simultaneous access to a disc or drum device.

The fixed blocks provide a convenient parcelling of matrix manipulation

effort as well as storage, and permit for many applications a more convenient

access structure than traditional column by column methods. This is useful

for large mathematical programming problems with block angular, staircase,

or other special block structure, [14]. These B-pivots on fixed blocks may

also be used to equitably distribute computation among available parallel

processors in sizeable bulk to permit relatively lengthy independent

operation.

5. CONCLUSION

The usefulness and speed of B-pivot schemes come with one important

disadvantage: the pivot blocks must be nonsingular mathematically and in

the stricter numerical sense. Since scalar pivot selection is restricted

to each pivot block, one should try to assemble the matrix A accordingly.

For instance, in large linear programming problems a history of algorithm

progress can be used to provide A,

,

A . In fact, B-pivots may be

considered in this context as an extension of the concept of product form

inverse. The B-pivot method works well for such problems, providing a

10

convenient tool for fast inversion, or reinversion, of kernels embedded in

technological coefficients.

Other classes of matrices exhibit a natural diagonal dominance permitting

effective B-pivot inversion. For instance, the noise covariance matrix has

been proposed for such use in [21], which includes an extensive group

theoretic characterization of admissability. Also, algorithms have been

proposed for rearranging matrices to block angular form [32].

The accuracy of B-pivots may be improved by computing inner products

with extended precision and special ordered addition. In some special

cases of A, such as zero-one or sparse conditions as

A = A 'A
ll

,

-

A ' Art
21 | 22

' .

significant effort can be avoided by the B-pivot approach coupled with appro-

priate modifications of program logic. Several approaches to avoiding B-pivot

singularity failures have been suggested, including "dynamic" blocks, "gang"

blocks, pivot block selection procedure, and a matrix construction to be

performed concurrently with a scaling algorithm as in [9]. Fortunately,

none has been necessary in applications to date.

Continuing research focuses on block triangulation and dynamic factor-

ization schemes for large scale mathematical programming, combined with

generalized upper bounding in a hybrid system with both explicit and logically

generated elements. It is becoming increasingly clear from experiments such

as this that the (logical) algorithm and data representation of the program,

and the (physical) organization of computations performed on the host computer

under operating system control interact in subtle ways to give aggregate per-

formance which is often counter-intuitive and seldom improved by ignoring the

11

details of either. The effect can be so pronounced that we are reexamining

several classical techniques in this new light.

12

CI-,
zr.

^i

uJ

FCLL

PfSTJPL

DIMENSION
so.::

Figure 1 - Execution times for maximal "fixed block" pivots b = n
P

13

U1
Dh
2T.

'

O -

U c
1

1 • —

LlJ

V

N -- 50 FJU-

N =- 50 PRfT] RL

N « 43 PRFT]RL

N = 30 FJLL

N -- 30 PARTIAL

N ? 28 FHr^jni

N " JO PBBCJRL

io. a: 20. 2: 30.00

3--PJU0T SIZE

~1

—

40. 00 50.!

FIGURE 2 - Execution times for "fixed block" B-pivots

14

6. REFERENCES

1. Bauer, F., "Optimally Scaled Matrices," Numerische Math 5 (1963), 73-87.

2. Benders, J., "Partitioning Procedures for Solving Mixed Variables
Programming Problems," Numerische Math 4, 1962, 238-252.

3. Bradley, G., Brown, G. and Graves, G., "A Comparison of Storage Structures
for Primal Network Codes," ORSA/TIMS Meeting, Chicago, April 1975.

4. Chen, W. , "The Inversion of Matrices by Flow Graphs," SIAM J. 12,
3(September 1964), 676-685.

5. Danzig, G. and Van Slyke, R. , "Generalized Upper Bounding Techniques,"
J. Computer System Sci. 1, 1967, 213-226.

6. Danzig, G. and Wolfe, P., "Decomposition Principle for Linear Programs,"
Operations Research 8, 1960, 101-111.

7. Dulmage, A. and Mendelsohn, N., "On the Inversion of Sparce Matrices,"
Math. Comp. 16, 1962, 494-496.

8. Fadeeva, V., Computational Methods of Linear Algebra . Dover, New York,
1959.

9. Fulkerson, D. and Wolfe, P., "An Algorithm for Scaling Matrices," SIAM
Review 4, 2 (April 1962), 142-146.

10. Graves, G. and McBride, R., "Factorization in Large Scale Linear
Programming," to appear in Mathematical Programming .

11. Graves, R. and Wolfe, P., Recent Advances in Mathematical Programming ,

McGraw-Hill, New York, 1963.

12. Householder, A., The Theory of Matrices in Numerical Analysis . Blaisdell,
New York, 1964.

13. Larsen, L., "A Modified Inversion Procedure for Product Form of the

Inverse Linear Programming Codes," Communications of ACM 7, 1962.

14. Lasdon, L., Optimization Theory for Large Systems , Macmillan, New York,

1970.

15. McBride, R., "Factorization in Large-Scale Linear Programming," UCLA/WMSI

Report 200 , June 1973.

16. McKellar, A. and Coffman, F., "Organizing Matrices and Matrix Operations
for Paged Memory Systems," Communications of ACM 14, 3 (March 1969),
153-165.

17. Moler, C. , "Matrix Computations with Fortran and Paging," Communications

of ACM 4(April 1972), 268-270

15

18 Orchard-Hays, W. , Advanced Linear Programming Techniques . McGraw-Hill,

New York, 1968,

19. Oswald, F., "Matrix Inversion by Monte Carlo Methods," in Ralston, A.

and Wilf, H., Mathematical Methods for Digital Computers , Wiley, New York,

1960. 78-83.

20. Pease, M., "Matrix Inversion Using Parallel Processing," J. of ACM 14,

4(0ctober 1967), 757-764.

21. Pease, M. , "Inversion of Matrices by Partitioning," J. of ACM 16, 2(April

1969), 302-314.

22. Pooch, U. and Nieder, A., "A Survey of Indexing Techniques for Sparce
Matrices," ACM Computing Surveys 5, 2(June 1973), 109-133.

23. Reid, J. (editor), Large Sparce Sets of Linear Equations . Academic Press,
New York, 1971.

24. Rose, D. and Willoughby, R. (editors), Sparce Matrices and Their Appli-
cations . Plenum Press , New York, 1972.

25. Rosen, J., "Primal Partition Programming for Block Diagonal Matrices,"
Numerische Math . 6, 1964, 250-260.

26. Schwartz, H., Rutishauser, H. and Stiefel, E., Numerical Analysis of

Symmetric Matrices . Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

27. Swift, G., "A Comment on Matrix Inversion by Partition," SIAM Review 2,

2(April 1960), 132-133.

28. Tewarson, R., "The Product Form of Inverses of Sparce Matrices and Graph
Theory," SIAM Review 9, 1 (January 1967) , 91-99.

29. Tewarson, R., "Row Column Permutation of Sparce Matrices," Computer J.

10, 1967, 300-305.

30. Tewarson, R., Sparce Matrices . Academic Press, New York, 1973.

31. von Neuman, J. and Goldstine, H., "Numerical Inverting of Matrices of
High Order," Bulletin Am. Math. Soc. 55 (1947), 1021-1099.

32. Weil, R. and Kettler, P., "Rearranging Matrices to Block-angular Form
for Decomposition (and other) Algorithms," Management Science 18,

1 (September 1971), 98-108.

33. Wilkinson, J., "The Solution of Ill-conditioned Linear Equations," in

Ralston, A. and Wilf, H., Mathematical Methods for Digital Computers ,

Wiley, New York, 1967 (v. 2) 65-93.

16

34 Willoughby, R., ed., IBM Sparce Matrix Proceedings," IBM Report RA1-11077 ,

1969.

35. Willoughby, R., "Sparce Matrix Algorithms and Their Relation to Problem
Classes and Computer Architecture," IBM Report RC 2833 , 1970.

17

INITIAL DISTRIBUTION LIST

Copies

Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

Library, Code 0212
Naval Postgraduate School
Monterey, California 93940 2

Dean of Research, Code 023
Naval Postgraduate School
Monterey, California 93940 2

Library, Code 55

Naval Postgraduate School
Monterey, California 93940 1

Dr. Jackson L. Albuquerque
Dept. de Estatistica Cx. Postal 1103
Universidade Federal do Ceara
60.000 Fortaleza, Ceara
Brazil 1

A. Goncalves
Faculty of Management Sciences
University of Ottawa
Canada 1

Jaques Ferland
Department D'Informatique
Universite de Montreal
C.P. 6128, Montreal 101

Canada 1

Dr. W. James White
Info Results, Ltd.
Suite 204, 2074 Lawrence Avenue West
Toronto, Ontario
Canada 1

E. V. Pole
Library
EMGAS
De Montfort Street
Leicester LEI 9DB
England 1

18

Copies

H. Higgens
Institut fiir Okonometrie und Operations Research
Universitat Bonn

53 Bonn 1 , Postfach 589
Nassestrasse 2

Germany 1

Mrs. E. May, Librarian
World Institute
19A Keren Hayesod Street
Jerusalem 94188
Israel 1

Ronald M. Sawey
Corporate Planning Division
City Public Service Board, Box 1771

San Antonio, Texas 78296 1

Shmuel Oren
Xerox Palo Alto Research Center
3180 Porter Drive
Palo Alto, California 94304 1

William C. Day
Operations Research Department
AT&T Longlines, Room 813
5 World Trade Center
New York, New York 10048 1

Lynn Hanson
Program for Urban and Policy Sciences
State University of New York
Stony Brook, New York 11790 1

William W. White
International Business Machines Corporation
2651 Strang Boulevard
Yorktown Heights, New York 10598 1

Charles A. Steele, Jr.

RDP, Inc.

30 Shawsheen Avenue
Bedford, Massachusetts 01730 1

Gary J. Koehler
119 Bryon Hall

Department of Management
University of Florida
Gainesville, Florida 32601 1

19

Copies

Dr. Bill Mitchell (Management)
Department of Management Sciences
School of Business and Economics
California State University
Hayward, California 94542 1

Technical Library
Naval Ordnance Station
Indian Head, Maryland 20640 1

Mr. W. L. Nicholson (Statistics)
Staff Scientist
Pacific Northwest Laboratories
Ba telle Boulevard
Richland, Washington 99352 1

Richard E. Nance, Head
Department of Computer Science
560 McBryde Hall

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061 1

Ms. Victoria Moulton
Maryland National Bank
225 North Calvert Street
11th floor - 153
Baltimore, Maryland 21203 1

Jaime E. Varela
Universidad de Los Andes
Facultad de Ingenieria, Departamenta de Ingenieria Industrial
Bogota D.E. Columbia 1

Richard P. O'Neill
Department of Computer Science
Louisiana State University
Baton Rouge, Louisiana 70803 1

Les Frair
Virginia Polytechnic Institute and State University
Department of Industrial Engineering and Operations Research
Blacksburg, Virginia, USA 24061 1

D. M. Carstens
Burroughs Corporation
200 W/Lancaster Avenue
Wayne, Pennsylvania 19087 1

A. A. Diaz
Box 3743
Las Cruces, New Mexico 88003 1

20

Copies

John E. Powell

School of Business
University of South Dakota
Vermillion, South Dakota 57069 1

Paul J. Wendos
MIT Overalp Project
5th Floor, 575 Technology Square
Cambridge, Massachusetts 02138 1

B. Dickman
Celanese Corporation
1211 Avenue of America
New York, New York 10036 1

Robert Reich
Department of Operations Research
Case Western Reserve University
University Circle, Cleveland
Cleveland, Ohio 44106 1

Dr. E. D. Homer, Chairman
Management Science and Engineering Department
C.W. Post College
Long Island University
Greenvale, New York 11548 1

C. J. McCallum, Jr.

Bell Telephone Laboratories, Incorporated
Holmdel , New Jersey 07733 1

Gerald G. Brown, Code 55Zr
Naval Postgraduate School
Monterey, California 93940 20

Glenn W. Graves
Graduate School of Management
University of California
Los Angeles, California 90024 1

Professor Gordon H. Bradley (Code 55Bz) 5

Professor Donald P. Gaver (Code 55Gv)
Professor James K. Hartman (Code 55Hh)
Professor Gilbert T. Howard (Code 55Hk)
Professor Samuel H. Parry (Code 55Py)
Professor David A. Schrady (Code 55So)
Professor Michael G. Sovereign (Code 55Zo)

Department of Operations Research
and Administrative Sciences

Naval Postgraduate School

Monterey, California 93940

21

1)170544

DUDLEY KNOX LIBRARY RESEARCH REPORTS

llll

