brought to you by TCORE

NAVAL POSTGRADUATE SCHOOL Monterey, California

NON-STATIONARY INFINITE SERVER MODELS

AND THEIR RELATIVES

by

D. P. Gaver

and

J. P. LEHOCZKY

October 1978

Approved for public release; distribution unlimited.

FEDDOCS D 208.14/2: NPS-55-78-026

Naval Postgraduate School Monterey, California

Rear Admiral T. F. Dedman Superintendent Jack R. Borsting Provost

 $\land \land$

This report was prepared by:

.

UNCLASSIFIED

	BEBORT DOCUMENTATION	PACE	READ INSTRUCTIONS
F	REFORT DOCUMENTATION	FAGE	BEFORE COMPLETING FORM
	NPS55-78-026	2. GOVT ACCESSION NO.	3. RECIPIENT S CATALOG NUMBER
4.	TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
	Non-Stationary Infinite Server M	odels and	Technical
	Their Relatives		
			C. FERFORMING ORG. REFORT NUMBER
7.	AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
ļ	D. P. Gaver and L. P. Lehoczky		
	4		
9.	PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
	Naval Postgraduate School		AREA & WORK UNIT NUMBERS
	Monterey, California 93940		
11.	CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
	Naval Postgraduate School		October 1978
	Moncerey, California 93940		13. NUMBER OF PAGES
14.	MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
			Unclassified
			15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16.	DISTRIBUTION STATEMENT (of this Report)		
	Approved for public releases dis	tribution unlimi	tod
	Apploved for public felease, dis		led.
_			
17.	DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different from	m Report)
18.	SUPPLEMENTARY NOTES		
19.	KEY WORDS (Continue on reverse side if necessary and	d identify by block number)	
	Compound Poisson Process		
	Service Systems		
	Non-stationary Processes		
	*		
20.	ABSTRACT (Continue on reverse side if necessary and	identify by block number)	
	A backward equation technique is	used to derive	properties of a time-
	dependent infinite server system	subject to comp	ound Poisson demand.
	The method is used to suggest a m	model leading to	Zipf's law.

TABLE OF CONTENTS

		raye
1.	Introduction	1
2.	A Backward Equation for System Occupancy: Poisson Arrivals	2
3.	Compound Poisson (Bunched) Arrivals	5
4.	Bunch Division into Two Classes	9
5.	Related Problems, or "Sons and Daughters of M/G/∞"	12
	5.1. Zipf's Law and Pareto Tails	14
	REFERENCES	20

NON-STATIONARY INFINITE SERVER MODELS AND THEIR RELATIVES

by

Donald P. GaverJohn P. LehoczkyNaval Postgraduate SchoolandCarnegie-Mellon UniversityMonterey, CA93940Pittsburgh, PA

1. Introduction

The waiting-time model characterized by (i) Poisson arrivals (ii) an unlimited number of servers, these characterized by to (iii) independent service times of arbitrary distribution--usually called the $M/G/\infty$ system--has a special significance and utility that stems from the simplicity of its solution. That is, if N(t), t > 0, denotes the number of arrivals being served at time t, conveniently referred to as system occupancy, and if N(0) = 0, then itself has the Poisson distribution. This fact is well-known N(t)when the Poisson arrival rate is a constant, λ , and F(x) is the distribution of service times perhaps with finite mean E[S] = $\mu^{-1} < \infty$; in this latter case the limiting distribution $(t \rightarrow \infty)$ is always **Poisson with parameter** $E[S] = \lambda/\mu$; see Parzen (1962). Such a model approximately characterizes

- a) the number of occupied channels in a system of parallel, lightly-loaded telephone or communication channels (see Feller (1967)).
- b) the number of items undergoing repair in a logistics system,
- c) the number of vehicles simultaneously using a city's freeway system (see Newell (1966)).
- d) the number of drug "particles" inhabiting a particular organ (compartment) in a human or animal body at time t (see Gaver and Lehoczky (1977)).

Research partially supported by National Science Foundation Grant Number MCS-77-07587 at the Naval Postgraduate School.

In this paper it is shown that N(t) possesses a Poisson distribution even if the arrival rate is time dependent, denoted by $\lambda(t)$, and if the distribution of the service time S_t , of an arrival at t is itself dependent upon t, i.e. is F(x;t), t being a parameter. Furthermore, if arrivals occur in bunches--is compound Poisson--then N(t) itself has the compound Poisson distribution. Incidentally, if $\lambda(t) = \lambda$, a constant, arriving bunches are geometrically distributed, and service times are exponential, the limiting distribution of N(t) is shown to be the negative binomial. The simple methods used are extended to study multivariate process models, and also to shot-noise, storage, and Zipf's law.

2. <u>A Backward Equation for System Occupancy: Poisson Arrivals</u> The distribution of N(t) may be approached as follows. Let N(t,u) denote the system occupancy at t that arrived after time u, 0 ≤ u ≤ t; clearly one takes N(t,0) = N(t), and N(t,t) = 0 with probability one. Let

$$p_{n}(t,u) = P\{N(t,u) = n\}$$
 (2.1)

Hold t fixed, and consider the possible events that may occur in a time period of length du. Write $\overline{F}(x,t) = P\{S_t > x\} = 1 - F(x,t)$, and observe that either (a) no arrival occurs that remains a system occupant by time t, an event of probability $1 - \lambda(u) du \overline{F}(t-u,u) + o(du)$, or (b) one arrival occurs and remains an occupant at t, an event of probability

 $\lambda(u) du \bar{F}(t-u,u) + o(du)$. All other possibilities are negligible. Thus

$$p_{n}(t,u + du) = [1 - \lambda(u)du \bar{F}(t-u,u)] p_{n}(t,u) + \lambda(u)du \bar{F}(t-u,u) p_{n-1}(t,u) + o(du)$$
(2.2)

Now subtract $p_n(t,u)$ from each side, divide by du, and let $du \rightarrow 0$. The result is the backward equation

$$\frac{-dp_n(t,u)}{du} = -\lambda(u) \overline{F}(t-u,u) p_n(t,u) + \lambda(u) \overline{F}(t-u,u) p_{n-1}(t,u),$$

$$n = 1, 2, 3, \dots$$
 (2.3)

and

$$\frac{-dp_{0}(t,u)}{du} = -\lambda(u) \bar{F}(t-u,u) p_{0}(t,u)$$
(2.4)

The equation (2.4) may be integrated from u to t to give

$$p_0(t,u) = \exp\left[-\int_{u}^{t} \lambda(v) \overline{F}(t-v) dv\right], \qquad (2.5)$$

and when $u \rightarrow 0$ this shows that

$$P_0(t,0) = P\{N(t)=0\} = \exp[-\int_0^t \lambda(v) \bar{F}(t-v,v)dv]$$

Invocation of the earlier equation (2.3) shows inductively that

$$p_{n}(t,0) = P\{N(t) = n\}$$

$$= \exp\left[-\int_{0}^{t} \lambda(v) \overline{F}(t-v,v)dv\right] \frac{1}{n!} \left[-\int_{0}^{t} \lambda(v) \overline{F}(t-v,v)dv\right]^{n}$$

and thus N(t) has a Poisson distribution.

An approach via generating functions is easy and direct. Define

$$E[z^{N(t,u)}] = g(z,t;u) = \sum_{n=0}^{\infty} z^{n} P\{N(t,u) = n\}.$$
 (2.7)

Note that the contribution to occupancy at time t from arrivals in $(u, u + du), \Delta N(t, u) = N(t, u) - N(t, u + du)$ is independent of the contribution from arrivals after u + du by Poisson process properties, so the convolution property of the generating function leads to writing

g(z,t;u)

$$= [z \lambda(u)du \bar{F}(t-u,u) + 1 - \lambda(u)du \bar{F}(t-u,u)] g(z,t; u + du) + o(du (2.8)$$

Next subtract g(z,t,u + du) from each side, divide by du and let $du \neq 0$. The result is

$$\frac{dg(z,t;u)}{du} = (z-1) \lambda(u) du \overline{F}(t-u, u) g(z,t;u)$$
(2.9)

This equation is immediately solved to produce

$$g(z,t;u) = \exp[(z-1) \int_{u}^{t} \lambda(v) \bar{F}(t-v,v) dv],$$
 (2.10)

which is recognized to be the generating function of the Poisson distribution (2.6).

3. Compound Poisson (Bunched) Arrivals

Next consider the situation in which the number of arrivals that occur together is random. In other words, bunches of arrivals occur together, and the bunch sizes are discrete random variables, so the arrival process is a (time-dependent) compound Poisson; see Feller (1967). Let B(u) be the size of a bunch that arrives at time u; its distribution and generating function are, respectively,

$$P\{B(u) = k\} = b_{k}(u) \qquad k = 1, 2, ...$$

$$E[z^{B(u)}] = h(z, u) = \sum_{k=1}^{\infty} z^{k}b_{k}(u) \qquad (3.1)$$

Again, let g(z,t,u) be the generating function of N(t,u) as in (2.7). Notice that g(z,t,u) represents the contribution to N(t,u) arising from arrivals in (u, u + du) plus the independent contribution from (u + du, t); see (2.8). To derive the g.f. of the contribution from (u, du), denoted by ΔN , condition on the event of an arrival and bunch size B(u); by independence of the services,

$$E[z^{\Delta N}|arrival in (u,du), B(u)]$$

= $[z\overline{F}(t-u,u) + F(t-u,u)]^{B(u)}$ (3.2)

Now removal of the condition on B(u) yields

$$E[z^{\Delta N}|arrival in (u, u + du)] = h[(z-1) \overline{F}(t-u, u) + 1, u].$$
 (3.3)

Of course

$$E[z^{\Delta N}|no arrival in (u, u + du)] = z^{0} = 1$$

so

$$E[z^{N}] = \lambda(u)du h[(z-1) \overline{F}(t-u,u) + 1,u] + 1 - \lambda(u)du + o(du) (3.4)$$

and thus

$$g(z,t,u) = [\lambda(u)du h[(z-1) F(t-u,u) + 1,u] + 1 - \lambda(u)du] g(z,t,u+du)$$

$$+ o(du)$$
, (3.5)

which leads to the differential equation

$$-\frac{dg}{du} = \lambda(u) \{h[(z-1) \overline{F}(t-u,u) + 1,u] - 1\} g(z,t,u), (3.6)$$

The solution of which is the generating function

$$g(z,t;u) = \exp[-\int_{u}^{t} \lambda(v) \{1-h[(z-1)]\bar{F}(t-v,v) + 1, v]\}dv] \quad (3.7)$$

Although inversion of (3.7) to produce a simple and familiar expression for the probabilities $\{p_n(t), n = 0, 1, 2, ...\}$ seems beyond the realm of possibility, certain facts do emerge. For example, differentiation of g(z,t;0) yields moments,

$$E[N(t)] = \frac{dg}{dz}\Big|_{z=1} = \int_{0}^{t} \lambda(v) E[B(v)] \overline{F}(t-v,v)dv ,$$
(3.8)
$$Var[N(t)] = E[N(t)] + \int_{0}^{t} \lambda(v) E[B(v) \cdot (B(v)-1)] (\overline{F}(t-v,v))^{2}dv,$$

and so forth. Note that Var[N(t)]/E[T] > 1 if bunch sizes are sometimes greater than unity, as is to be expected. Furthermore, setting z = 0 yields

$$P\{N(t) = 0\} = P_0(t,0) = \exp\{-\int_0^t \lambda(v) h[F(t-v,v),v] dv\}(3.9)$$

The form of the general coefficient of z^{j} may be deduced from consideration of (3.2) and (3.3). The coefficient of z^{j} in h[(z-1) $\overline{F}(t-u,u) + 1,u$] is the probability of exactly j "successes"--meaning survivals to time t from u in B(u) Bernoulli trials, hence

h[(z-1)
$$\overline{F}(t-u,u) + 1, u$$
] = $\sum_{j=0}^{\infty} z^{j}c_{j}(u)$
(3.10)

$$c_{j}(u) = \sum_{k=0}^{\infty} b_{k}(u) {k \choose j} (\bar{F}(t-u,u))^{j} (F(t-u,u))^{k-j}, j = 0, 1, 2, ...$$

Thus an alternative expression for g is

$$g(z,t;u) = \exp\left[-\int_{u}^{t} \lambda(v) \left\{1 - \sum_{j=0}^{\infty} z^{j}c_{j}(v)\right\}dv$$

Since $\{c_j(v), j = 0, 1, 2, ...\}$ is a discrete probability distribution for every v, as is evident from (3.10), N(t,u) clearly has a compound Poisson distribution.

Of interest is the following

EXAMPLE. Suppose $\lambda(v) = \lambda$, $\overline{F}(x,v) = e^{-\theta x}$, $b_k(u) = (1-\alpha)\alpha^{k-1}$, k = 1,2,.... This is the case of stationary "stuttering Poisson" arrivals. Substitution into (3.7) yields for u = 0,

$$g(z,t;0) = \exp\left[-\int_{0}^{t} \lambda \left\{1 - \frac{(1-\alpha)\left[(z-1)e^{-\theta(t-v)}+1\right]}{1-\alpha\left[(z-1)e^{-\theta(t-v)}+1\right]}\right\} dv\right]$$
$$= \exp\left[\lambda \int_{0}^{t} \frac{(z-1)e^{-\theta(t-v)}dv}{(1-\alpha-\alpha\left[(z-1)e^{-\theta(t-v)}\right]}\right]$$
$$= \exp\left[\frac{-\lambda}{\theta\alpha} \ln \left\{\frac{1-\alpha-\alpha\left[(z-1)\right]}{1-\alpha-\alpha\left(z-1\right)e^{-\theta t}}\right\}\right]$$
$$= \left[\frac{1-\alpha-\alpha(z-1)e^{-t}}{1-\alpha z}\right]^{\lambda/\theta\alpha}$$

as t tends to infinity the latter generating function approaches

$$g(z,\infty;0) = \lim_{t \to \infty} g(z,t;0) = \left(\frac{1-\alpha}{1-\alpha z}\right)^{\lambda/\theta\alpha}$$

the generating function of the negative binomial distribution. Hence the long-run distribution of server occupancy is, in this particular case, a familiar form that may readily be used in various applications in place of the ordinary Poisson that results from (2.6) or (2.10) under similar circumstances.

4. Bunch Division into Two Classes

Suppose that bunches arrive in a Poisson manner, but that each bunch is independently fragmented into subbunches of type 1 and type 2 customers with probability p_1 and p_2 respectively (although these probabilities may be time-dependent also, we do not bother with this). Items of type i are served in accordance with distribution $F_i(x,u)$. This setup may model demands on certain logistics systems, e.g. by landing aircraft with different failure categories. Although the number of types of arrivals is limited to two, there is no difficulty in extending it to more types if necessary.

Following the pattern leading to (3.5) one may write

9

$$E[z_{1}^{N_{1}(t,u)}, x_{2}^{N_{2}(t,u)}] = g(z_{1}, z_{2}, t; u)$$

$$= \{\lambda(u) du h[p_{1}(z_{1}-1), \overline{F}_{1}(t-u, u) + p_{2}(z_{2}-1), \overline{F}_{2}(t-u, u) + 1, u] + 1 - \lambda(u) du\}$$

$$\times g(z_{1}, z_{2}, t; u + du)$$
(4.1)

where $N_i(t,u)$ is the contribution to system occupancy of the type i arrivals between u and t. It then follows that

$$-\frac{dg}{du} = -\lambda(u) \{1 - h[p_1(z_1-1) \ \overline{F}_1(t-u,u) + p_2(z_2-1) \ \overline{F}_2(t-u,u) + 1,u] \\ \times g(z_1, z_2, t;u)\}, \qquad (4.2)$$

from which the joint generating function

$$g(z_{1}, z_{2}, t; 0) = \exp\left[-\int_{0}^{t} \lambda(v) \left\{1 - h\left[p_{1}(z_{1}-1) \ \overline{F}_{1}(t-v, v) + p_{2}(z_{2}-1) \ \overline{F}_{2}(t-v, v) + 1, v\right]\right\} dv$$

$$(4.3)$$

appears. Moments are obtained by differentiation; see (3.8); to obtain means and variances simply replace $\lambda(u)$ by $p_i \lambda(u)$. The covariance results from partial differentiations of the exponent at $z_1 = 1$, $z_2 = 1$:

 $\operatorname{cov}[N_{1}(t), N_{2}(t)] = \int_{0}^{t} \lambda(v) E[B(v)(B(v)-1)] p_{1}p_{2} \overline{F}_{1}(t-v,v) \overline{F}_{2}(t-v,v)dv$ which is always positive. (4.4)

EXAMPLE. Let $\lambda(\mathbf{u}) = \lambda$, $h(z, \mathbf{u}) = (1-\alpha)z/(1-\alpha z)$. If $\vec{F}_{i}(x, \mathbf{u}) = e^{-\theta_{i}x}$ then the following results:

$$g(z_{1}, z_{2}, t; 0) = \exp \left\{ -\lambda \int_{0}^{t} \left\{ \frac{p(z_{1}^{-1})e^{-\theta_{1}v} + p_{2}(z_{2}^{-1})e^{-\theta_{2}v}}{1 - \alpha + \alpha[p_{1}(z_{1}^{-1})e^{-\theta_{1}v} + p_{2}(z_{2}^{-1})e^{-\theta_{2}v}]} \right\} dv$$

$$(4.5)$$

which, regrettably, cannot be integrated in closed form <u>unless</u> $\theta_1 = \theta_2$ (= 1 for convenience) in that case we find that as t $\neq \infty$

$$g(z_{1}, z_{2}, \infty, 0) = \left[\frac{1 - \alpha}{1 - \alpha p_{1} z_{1} - \alpha p_{2} z_{2}}\right]^{\lambda/\alpha}$$
(4.6)

This is the generating function of a bivariate distribution with negative binomial marginal distribution.

5. Related Problems, or "Sons and Daughters of $M/G/\infty$ "

Models for shot-noise, see Rice (1954), and for dams and rainfall and runoff, see Gaver and Miller (1962), share the general structure of the previous infinite server models. Time-dependent versions of these will be formulated and briefly discussed using the backward equation approach.

Let $\lambda(u)$ be the rate of arrival of a certain event at time u, and let e(u,t) denote the random effect at time t of an event at time u, $0 \leq u \leq t$. In general e(u,t) will be real-valued random variable; in the shot noise application it represents the response at time t of an electrical circuit to an impuse at time u, and in the case of a dam or storage system it may be the amount of water in the reservoir resulting from a rainstorm at time u. Let the Laplace transform of e(u,t) be

$$\phi(s,t;u) = E[e^{-se(u,t)}]$$
(5.1)

Now write down a backward differential equation for

$$\psi(s,t;u) = E[e^{-sX(t,u)}],$$
 (5.2)

X(t,u) being the combined effect at t of all of the (sub, or component) effects occurring after u and before t:

$$X(t,) = \sum_{i=0}^{A(t,u)} e(u_{i},t) = \int_{u}^{t} e(s,t) dN(s)$$
(5.3)

where A(t) is the number of (Poisson) events in (u,t), and u_i is the instant at which the ith such event occurs. It is seen that

$$\frac{\partial \psi}{\partial \mathbf{u}} = [\lambda(\mathbf{u}) - \lambda(\mathbf{u}) \phi(\mathbf{s}, \mathbf{t}; \mathbf{u})] \psi(\mathbf{s}, \mathbf{t}; \mathbf{u}), \qquad (5.4)$$

exactly as was true for (3.6), and thus

$$\psi(s,t;u) = \exp\{\int_{u}^{t} \lambda(u) [\phi(\xi,t;v)-1] dv\}$$
(5.5)

EXAMPLE. Let $\lambda(u) = \lambda$ and $g(u,t) = Se^{-\theta(t-u)}$, $\theta > 0$, S having the exponential distribution with density $\mu e^{-\mu x}$. It follows that

$$\phi(s,t;u) = \frac{\mu}{\mu + se^{-\theta(t-u)}}$$
(5.6)

and thence that

$$\psi(s,t;0) = \exp\left\{\int_{0}^{t} \lambda \frac{se^{-\theta(t-u)}}{\mu + se^{-\theta(t-u)}} du\right\}$$
(5.7)
$$= \left(\frac{\mu + se^{-\theta t}}{\mu + s}\right)^{\lambda/\theta} \neq \left(\frac{\mu}{\mu + s}\right)^{\lambda/\theta}$$

as $t \rightarrow \infty$, so in the long run the total effect has gamma distribution. See Gaver and Miller (1962) for the same result derived differently.

5.1. Zipf's Law and Pareto Tails

Let $\lambda(u) = e^{\alpha u}$ and let $e(u,t) = S(u) e^{\theta(t-u)}$, $\theta > 0$, S(u) having the distribution F(); successive S(u) values are independent. This setup models a collection of organisms that are born at random times and grow independently and exponentially thereafter. We are interested in the fraction of all those born in (0,t) that exceed size x at time t; we shall see that the fraction exhibits the "Pareto tail" associated with Zipf's law; see Mandelbrodt (1978).

Let I(x,u,t) denote the indicator function

$$\sum_{i=1}^{n} (x, u, t) = \begin{cases} 1 & \text{if } e(u, t) > x \\ 0 & \text{if } e(u, t) \leq x. \end{cases}$$
(5.3)

In the present model define

$$p_{x}(u,t) \equiv E[I(x,u,t)] = \overline{F}(xe^{-\theta(t-u)})$$
 (5.9)

although what follows next does not require the latter explicit form. Now introduce the bivariate generating function

$$g(z_{a}, z_{x}, t; u) = E[z_{a}^{A(t, u)} z_{x}^{N(t, u)}]$$
 (5.10)

where A(t,u) is the number of arrivals (births) in (u,t), and $N_x(t,u)$ is the number of those organisms born in (u,t) that exceed x in size at time t; we put A(t,0) = A(t), and $N_x(t) = N_x(t,0)$. Then by the backward argument analogous to that producing (2.8),

$$g(z_{a}, z_{x}, t; u) = [z_{a} z_{x} \lambda(u) du p_{x}(u, t) + z_{a} \lambda(u) du (1-p_{x}(u, t)) + 1 - \lambda(u) du]$$
(5.11)
× $g(z_{a}, z_{x}, t; u + du) + o(du),$

which leads to a differential equation with solution

$$g(z_{a}, z_{x}, t; 0) = \exp\{\int_{0}^{t} \lambda(u) du[z_{a}(z_{x}-1)p_{x}(u, t) + (z_{a}-1)]\}$$
(5.12)

This shows that A(t) and $N_{\chi}(t)$ have a bivariate Poisson distribution; from (5.10) one finds

$$m(t) = E[A(t)] = Var[A(t)] = \int_{0}^{t} \lambda(u) du ,$$

$$m_{\mathbf{x}}(\mathbf{t}) = \mathbf{E}[N_{\mathbf{x}}(\mathbf{t})] = \operatorname{Var}[N_{\mathbf{x}}(\mathbf{t})] = \int_{0}^{\mathbf{t}} \lambda(\mathbf{u}) p_{\mathbf{x}}(\mathbf{u}, \mathbf{t}) d\mathbf{u}$$
(5.13)

 $Cov[A(t),N_{x}(t)] = \int_{0}^{t} \lambda(u) p_{x}(u,t) du = m_{x}(t) .$

Under many interesting circumstances, a notable instance being the specific model beginning this example, both E[A(t)] and $E[N_x(t)] \neq \infty$ as $t \neq \infty$.

$$E[A(t)] = \int_{0}^{t} e^{\alpha u} du = \frac{1}{\alpha} (e^{\alpha t} - 1) \sim \frac{1}{\alpha} e^{\alpha t} ,$$

$$E[N_{x}(t)] = \int_{0}^{t} e^{\alpha u} du \overline{F} (xe^{-\theta (t-u)})$$

$$= e^{\alpha t} \frac{1}{\theta x^{\alpha/\theta}} \int_{xe^{-\theta t}}^{x} z^{\alpha/\theta-1} \overline{F}(z) dz \qquad (5.14)$$

$$\sim \frac{e^{\alpha t}}{\theta x^{\alpha/\theta}} \int_{0}^{x} z^{\alpha/\theta-1} \overline{F}(z) dz$$

provided the integral exists.

Now define

$$f(x,t) = \frac{E[N_x(t)]}{E[A(t)]} \sim \frac{\alpha}{\theta} \frac{1}{x^{\alpha/\theta}} \int_0^x z^{\alpha/\theta-1} \bar{F}(z) dz , \quad (t \to \infty) \quad (5.15)$$

the long-time average fraction of those organisms born before t and that exceed x in size at t; clearly for large x this fraction exhibits the "Pareto tail" behavior: $x^{-\alpha/\theta}$, provided that the integral exists for large x, as will be assumed.

It will now be shown that with high probability the above law should actually hold for observed data in the following sense. Form the ratio of observable random variables $N_{\chi}(t)/A(t)$; this ratio should approximate to $f(x,\infty)$ as $t \neq \infty$. To show that this is so, consider, for $\varepsilon > 0$,

$$P\left\{\frac{N_{x}(t)}{A(t)} \leq f(x,t) + \varepsilon\right\} = P\{N_{x}(t) - A(t)[f(x,t) + \varepsilon] \leq 0\}.$$
(5.1)

For the specific model of this example both E[A(t)] and $E[N_{x}(t)] \neq \infty$ as $t \neq \infty$, consequently it can be shown (e.g. by the continuity theorem for characteristic functions) that $(A(t), N_{x}(t))$ are approximately bivariate normal for large t with parameters given by (5.13). Therefore

$$E[N_{x}(t) - A(t)[f(x,t) + \varepsilon]] = -E[A(t)]\varepsilon$$

$$Var[N_{x}(t) - A(t)[f(x,t) + \varepsilon]]$$

$$= Var[N_{x}(t)] + [f(x,t) + \varepsilon]^{2} Var[A(t)]$$

$$- 2[f(x,t) + \varepsilon] cov[N_{x}(t), A(t)]$$

$$= m_{x}(t) + [f(x,t) + \varepsilon]^{2} m(t) - 2[f(x,t) + \varepsilon] m_{x}(t)$$

$$= m(t) \{f(x,t) + [f(x,t) + \varepsilon]^{2} - 2[f(x,t) + \varepsilon] f(x,t)\}$$

$$= m(t) \{f(x,t)(1 - f(x,t)) + \varepsilon^{2}\}$$
(5.17)

w use the normal approximation to assess the probability (5.16):

$$P\left\{\frac{N_{x}(t)}{A(t)} \leq f(x,t) + \varepsilon\right\} = P\{N_{x}(t) - A(t)[f(x,t) + \varepsilon] \leq 0\}$$

$$\cong \frac{1}{\sqrt{2\pi}} \qquad \begin{array}{c} m(t) \varepsilon / [m(t) \{f(x,t) (1-f(x,t)+\varepsilon^2\}]^{1/2} \\ \int \\ -\infty \end{array} e^{-z^2/2} dx \qquad (5.18) \end{array}$$

 $t \neq 0$ the fraction f(x,t) approaches the (finite) right side (5.15) and then, since $m(t) \neq \infty$, the integral approaches unity; similar argument shows that $N_x(t)/A(t) > f(x,t) - \varepsilon$ with obability approaching unity. It follows that the ratio (t)/A(t) is a consistent estimator of f(x,t) at the point x $t \neq \infty$. The statement (5.18) can also be used to supply proximate confidence limits for f(x,t). An alternative formulation leads to similar asymptotic results. Suppose that the arrival rate is now taken to be $k\lambda(u)$, k being a parameter that will later approach infinity; see Barbour (1974) for an analogous model and analysis. The interpretation is that when k becomes large organism births occur thick and fast--even more so, of course, for later times than earlier when (now) $\lambda(u) = ke^{\alpha u}$ as in our example. Now all analysis goes through as before, and the average fraction function is

$$f_{k}(x,t) = \frac{E[N_{x}(t)]}{E[A(t)]} = \frac{1}{x^{\alpha/\theta}} \frac{e^{\alpha t}}{\theta(e^{\alpha t}-1)} \int_{xe^{-\theta t}}^{x} z^{\alpha/\theta-1} \overline{F}(z) dz , \qquad (5)$$

independent of k, while

$$m(t;k) = E[A(t)] = k \int_{0}^{t} \lambda(u) du = \frac{k}{\alpha} (e^{\alpha t} - 1) = km(t)$$
(5)

As $k \rightarrow \infty$ a central limit theorem argument once again applies (here for every finite t) to show that

$$P\left\{\frac{N_{x}(t)}{A(t)} \leq f_{k}(x,t) + \varepsilon\right\}$$

$$\approx \frac{1}{\sqrt{2\pi}} \xrightarrow{km(t)\varepsilon/[km(t)\{f_{k}(x,t)(1-f_{k}(x,t)+\varepsilon^{2}\}]^{1/2}} e^{-z^{2}/2} dz \qquad (5)$$

and the latter probability clearly approaches unity as $k \rightarrow \infty$, this

time for every t. The asymptotic normality also allows approximate confidence limits to be placed on $f_{k}(x,t)$.

We emphasize that the above analysis applies just to any single x-value. Analogous results should be derivable for any finite sequence of x-values, and thence extended by continuity to all real values, obtaining results similar to the Glivenko-Cantelli theorem for ordinary distribution functions. This, and other, generalizations are under development and will be reported in a subsequent paper.

REFERENCES

- Barbour, A.D. (1974). On a functional central limit theorem for Markov population processes. Adv. Appl. Probability, 6, pp. 21-39.
- Feller, W. (1967). An Introduction to Probability Theory and Its Applications, Vol. I, John Wiley and Sons, New York.
- Gaver, D. P. and Lehoczky, J. P. (1977). A diffusion approximation analysis of a general n-compartment system. <u>Math. Biosciences</u> Elsevier - North Holland, New York, pp. 127-148.
- Gaver, D. P. and Miller, R. G., Jr. (1962). Limiting distributions for some storage problems, Chapter 7 of <u>Studies in Applied</u> <u>Probability and Management Science</u>. Stanford University Press, Stanford, California.
- Mandelbrodt, B. (1978). Fractals: Form, Chance, and Dimension, W. H. Freeman and Co., San Francisco, California.
- Newell, G. F. (1966), Equilibrium probability distributions for low density highway traffic. J. Appl. Probability, <u>3</u>, pp. 247-260.
- Parzen, M. (1962). <u>Stochastic Processes</u>. Holden-Day, Inc., San Francisco, California.
- Rice, S. O. (1954). Mathematical analysis of random noise, in N. Wax, ed., <u>Selected Papers on Noise and Stochastic</u> <u>Processes</u>, Dover, New York.

DISTRIBUTION LIST

No	of	ſ∩	ni	20
	01	00	P^{1}	60

STATISTICS AND PREBABILITY CFFICE OF NAV AL RESEARCH CODE 436	FROGRAM]
VA	22217	
CFFICE OF NAVAL RESEARCH NEW YORK AREA CFFICE 715 BRDACWAY - 5TH FLDOR ATTN: DR. ROBER GRAFICN NEW YORK, NY	10003]
DIRECTOR CFFICE OF NAVAL RESEARCH EF 536 SCUTH CLAFK STREET ATTN: DEPUTY AND CHIEF SCT CHICAGO, IL	RANCH OFF IENTIST 60605	1
LIERARY NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA	92152]
NAVY LIBRAFY NATIONAL SPACE TECHNOLOGY L ATIN: NAVY LIERARIAN BAY ST. LOLIS MS	AB 39522]
NAVAL ELECTRONIC SYSTEMS CO NAVELEX 320 NATIONAL CENTER NO. 1 ARLINGTON VA	20360	1
DIFECTOR NAVAL REAEARCH LAE ATTN: LIERARY (DNRL) CODE 2025 WASHINGTON, C.C.	20375	1
DEFENSE COCUMENTATION CENTE CAPERON STATICN ALEXANDRIA VIEGINIA 22314	ĒR	2
TECHNICAL INFORMATION DIVIS NAVAL RESEARCH LABORATORY WASHINGTON, D. C.	20375	ļ

No. of Copies

OFFICE CF NAVAL RESEARCH SAN FRANCISCO AREA CFFICE 760 MARKET STREET SAN FRANCISCC CALIFORNIA 94102	1
TECHNICAL LIBRARY Naval Crenance Station Incian Heac Maryland 20640	1
NAVAL SHIP ENGINEERING CENTER PHILADELPHIA CIVISION TECHNICAL LIBRARY PHILADELPHIA PENNSYLVANIA 19112	1
BLREAU OF NAVAL PRESONNEL DEFARTMENT OF THE NAVY TECHNICAL LIERARY WASHINGTON C. C. 20370	I
LIERARY CODE 0212 NAVAL POSTGRADUATE SCHOOL PONTEREY CALIFORNIA 93940	2
PRCF. M. AEDEL-HAMEED DEPARTMENT OF MATHEMATICS UNIVERSITY OF NORTH CAROLINA CHARLOTTE NC 28223	1
PROF. T. W. ANCERSON DEFARTMENT OF STATISTICS STANFORD UNIVERSITY	1
FRCF. F. J. ANSCOMBE DEPARTMENT OF STATISTICS YALE UNIVERSITY NEW HAVEN CONNECTICUT C6520	1
PROF. L. A. ARCIAN INSITIUTE OF INCUSTRIAL ACMINISTRATION UNION COLLEGE SCHENECTADY , NEW YORK 12308	1

PRCF. C. R. BAKER DEPARIMENT OF STATISTICS UNIVERSITY OF NOTRH CAFCLINA CHAPEL HILL, NORTH CARCLINA 27514 1 PRCF. R. E. BECHHOFER CEPARTMENT OF OPERATIONS RESEARCH CORNELL UNIVERSITY] ITHACA NEW YORK 14850] FRCF. N. J. BERSHAD School of Engineering UNIVERSITY OF CALIFORNIA IRVINE CALIFERNIA 92664 P. J. BICKEL CEFARTMENT OF STATISTICS LNIVERSITY OF CALIFORNIA 1 BERKELEY , CALIFORNIA 94720 FROF. F. W. BLOCK DEPARTMENT OF MATHEMATICS UNIVERSITY OF PITTSBURGH FITTSBURGH] FĀ. 15260 PROF. JCSEPH BLUM DEPT. OF MATHEMATICS, STATISTICS AND COMPLTER SCIENCE THE AMERICAN UNIVERSITY WASHINGTON CC 20016] 1 PROF. R. A. BRADLEY DEFARTMENT OF STATISTICS FLORIDA STATE UNIVERSITY TALLAHASSEE , FLORIDA 32306 1 PROF. R. E. BARLOW OPERATIONS RESEARCH CENTER COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA BERKLEY CALIFERNIA 94720 MR. C. N EENNETT NAVAL COASTAL SYSTEMS LAECRATORY CODE P761 PANAMA CITY, 1 FLCRIDA 32401

No. of Copies

1

1

1

1

1

1

1

1

1

PRCF. L. N. BHAT COMPUTER SCIENCE / OPERATIONS RESEARCH CENTER SOLTHERN METHODIST UNIVERSITY CALLAS TE XA S 15275 FRCF. W. R. ELISCHKE DEPT. OF QUANTITATIVE BUSINESS ANALYSIS UNIVERSITY OF SCUTHERN CALIFORNIA LOS ANGELES, CALIFORNIA 90007 CR. DERRILL J. BCRDELON NAVAL UNCEFWATER SYSTEMS CENTER COCE 21 NEWPORT RI 02840 J. E. ECYER JR CEPT. OF STATISTICS SOUTHERN METHODIST UNIVERSITY DALLAS TX 75275 DR. J. CHANDRA U. S. ARMY RESEARCH F. G. EOX 12211 RESEARCH TRIANGLE PARK NOFTH CARCLINA 27766 9 FROF. H. CHERNOFF DEPT. OF MATHEMATICS MASS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 FFOF. C. EERMAN DEFARTMENT OF CIVIL ENGINEER ING AND ENGINEERING MECHANICS COLUMEIA UNIVERSITY NEW YORK 1002 10027 PRCF. R. L. DISNEY VIRGINIA PCLYTECHNIC INSTITUTE AND STATE UNIVERSITY DEFT. OF INCUSTRIAL ENGINEERING AND OPERATIONS RESEARCH BLACKSBURG, VA 2406 24061 MR. J. DCWLING DEFENSE LOGISTICS STUDIES INFORMATICN EXCHANGE ARMY LOGISTICS MANAGEMENT CENTER FORT LEE VIRGINIA 20390 20390

PROF J. C. ESARY DEFT. OF UPERATIONS RESEARCH AND ADMINISTRATIVE SCIENCES NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFERNIA 93940] -DEFENSE COMMUNICATIONS AGENCY 1860 WIEFLE AVENUE RESTON VIRGINIA 22070 1 FRCF. D. P. GAVER CEPT. CF CFERATIONS RESEARCH NAVAL POSTGRACUATE SCHOOL] MONTEREY CA 93940 MR. GENE F. GLEISSNER AFFLIED MATHEMATICS LABORATORY CAVID TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER BETHESDA] ЙĎ 20084 1 PROF. S. S. GLPTA DEPARTMENT OF STATISTICS PLREUE UNIVERSITY LAFAYETTE INCIANA 47907 FROF. C. L. HANSON DEPT OF NATH. SCIENCES STATE UNIVERSITY OF NEW YORK, BINGHAMTON 1 BINGHAMTON NY 13901 PROF. F. J. HARRIS CEPT. CF ELECTRICAL ENGINEERING SAN DIEGO STATE UNIVERSITY SAN DIEGO] Ć A 92182] PROF. L. F. HERBACH DEFT. CF OPERATIONS RESEARCH AND SYSTEMS ANALYSIS FOLYTECHNIC INSTITUTE OF NEW YORK ERCOKLYN 11201 NY FRCF. M. J. FINICH DEPARTMENT OF ECONOMICS VIRGINIA FOLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG . VIRGINIA 24061]

1

1

1

1

1

1

1

1

1

PFOF. W. M. FIRSCH INSTITUTE OF MATHEMATICAL SCIENCES NEW YORK UNIVERSITY NEW YORK 1C453 FRCF. D. L. IGLEFART DEPARTMENT OF OPERATIONS RESEARCH STANFORD UNIVERSITY STANFORD, CALIFORNIA 94350 FREF. J. B. KAEANE DEFARTMENT OF STATISTICS CAFNEGIE-MELLON FITTS BURGE PENNSYLVANIA 15213 DR. RICHARD LAU DIFECTOR CFFICE OF NAVAL RESEARCH ERANCH OFF 1030 EAST GREEN STREET PASADENA ĊA 91101 DF. A. R. LAUFER DIRECTOR CFFICE OF NAVAL RESEARCH BRANCH OFF 1030 EAST GREEN STREET PASACENA CA 91101 PROF. N. LEADBETTER DEPARTMENT OF STATISTICS UNIVERSITY OF NORTH CARCLINA CHAPEL HILL NOFTH CAROLINA 27514 CR. J. S. LEE J. S. LEE ASSOCIATES, INC. 2001 JEFFERSCN DAVIS HIGHWAY SUITE 802 ARLINGTON VA 22202 FRCF. L. C. LEE DEPARTMENT CF STATISTICS VIRGINIA FOLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG VA 24061 FRCF. R. S. LEVENWORTH CEPT. CF INDUSTRIAL AND SYSTEMS ENGINEERING UNIVERSITY CF FLORIDA GAINSVILLE FLCRIDA 32611

FRCF. P. A. W. LEW IS DEPT. CF CFERATIONS RESEARCH ADMINISTRATIVE SCIENCES NAVAL FOST GRADLATE SCHOOL MONTEREY, CALIFORNIA 93940	AND
FRCF G. LIEBERMAN STANFORD INIVERSITY DEPARTMENT OF OPERATIONS RESE STANFORD CALIFORNIA 94305	ARCH
DR. JAMES R. MAAR NATIONAL SECURITY AGENCY FORT MEADE , MARYLAND 20755	1
FRCF. R. W. MAESEN DEPARTMENT OF STATISTICS UNIVERSITY OF MISSOURI COLUMBIA MO	5201
DR. N. R. MANN SCIENCE CENTER ROCKWELL INTERNATIONAL CORPOR P.C. BOX 1085 THOUSAND C4KS, CALIFORNIA 91360	ATICN
CR. W. F. MARLCW PREGRAM IN LIGISTICS THE GEORGE WASHINGTON UNIVERS 707 22ND STREET , N. W. WASHINGTON , D. C. 20037	ITY
PROF. E. MASRY DEFT. APPLIED PHYSICS AND INFORMATION SERVICE UNIVERSITY OF CALIFORNIA LA JOLIA CALIFORNIA 52	0 93
CF. BRUCE J. MCCUNALD SCIENTIFIC DIRECTOR SCIENTIFIC LIAISON GROUP OFFICE OF NAVAL RESEARCH AMERICAN EMBASSY - TOKYC AFC SAN FFANCISCO 96	:503
PROF. J. A. MUCK STADT DEFT. CF CPERATIONS RESEARCH CORNELL UNIVERSITY ITHACA, NEW YOFK 19850	1

CR. JANET N. MYHRE THE INSTITUTE OF DECISION SCIENCE FOR BUSINESS AND PUBLIC POLICY CLAREMONT MEN'S COLLEGE 1 CLAREMONT C.A \$1711 MR. F. NISSELSCN BLREAU OF THE CENSUS ROCM 2025 FREERAL EUILEING 3 WASHINGTCN , D. C. 2033 1 MISS B. S. CRLEANS NAVAL SEA SYSTEMS COMMAND (SEA 03F) RM 10SC8 ARLINGTON VIRGINIA 2036) 1 FRCF. C. E OWEN DEPARTMENT OF STATISTICS SOUTHERN METHODIST UNIVERSITY 1 CALLAS TEXAS 75222 PROF. E. PARZEN STATISTICAL SCIENCE DIVISION STATE UNIVERSITY OF NEW YORK AT BUFFALC AMFERST NEW YORK 10 1 14226 DR. A. PETRASOVITS RCCM 2078 , FOCD AND ERLG BLDG. TUNNEY'S PASTLRE CTTOWA , ENTARIC K1A-CL2 , 1 CANADA FRCF. S. L. PHCENIX SIBLEY SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING CORNELL UNIVERSITY 1 ITHACA NY. 14850 CR. A. L. POWELL CIRECTCR CFFICE OF NAVAL RESEARCH BRANCH OFF 495 SUMMER STREET BCSTCN 1 MA 02210 MR. F. R. FRICFI CODE 224 CPERATIONSL TEST AND ONRS EVALUATION FOR(E (OPTEVFOR) 1 NCRFOLK , VIRGINIA

No. of Copies

20360

PROF. M. L. PURI DEFT. CF MATHEMATICS P.C. BOX F INCIANA UNIVERSITY FOUNDATION PLOOMINGTON 1 47401 ΙN PROF. H RCEBINS DEFARTMENT OF MATHEMATICS CCLUMEIA UNIVERSITY 1 NEW YORK, NEW YORK 10327 PFOF. M ROSENBLATT DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SAN DIEGO LA JOLLA CALIFORNIA 1 92093 PROF. S. M. RCSS COLLEGE OF ENGINEERING UNIVEFSITY OF CALIFORNIA BERKELEY 1 ĈĂ 9472) PROF. I RUBIN School of Engineering and Applied School of Engineering and Applied University of California LOS Angeles California 90024 1 FRCF. I. R. SAVAGE CEPARTMENT OF STATISTICS YALE UNIVERSITY NEW HAVEN, CONNECTICUT C6520] FRCF. L. L., SCHARF JR DEPARTMENT OF ELECKICAL ENGINEER ING COLORACO STATE UNIVERSITY FT. COLLINS, COLORACO 60521 1 PROF. R. SERFLING CEPARTMENT OF STATISTICS FLORIDA STATE UNIVERSITY 1 TALLAHASSEE FLORIDA 22306 PROF. W. R. SCHLCANY DEFARIMENT OF STATISTICS SOLTHERN METHODIST UNIVERSITY 1 CALLAS , TE XA S 75222

No. of Copies

.

PROF. C. C. SIEGMUND CEPT. OF STATISTICS STANFORD CA 54305	1
FREF. M. L. SHGOMAN DEPT. CF ELECTRICAL ENGINEERING POLYTECHNIC INSTITUTE CF NEW YORK BRCCKLYN, NEW YORK 11201	1
PROF. N. SINGPURWALLA LEPT. OF OPERATIONS RESEARCH THE GEORGE WASHINGTON UNIVERSITY 707 22ND ST . N. W. WASHINGTON, C. C. 20052	1
DR. A. L. SLAFKOSKY SCIENTIFIC ADVISOR COMMANDANT OF THE MARINE CORPS WASHINGTON, D. C. 20380	1
MR. CHARLES S. SMITH CASD (I&L), PENTAGEN WASHINGTEN DC 20301]
CR. C. E. SMITH DE SMATICS INC. P.C. BCX 618 STATE COLLECE PENNSYLVANIA 16801	1
PROF. W. L. SMITH DEFARTMENT OF STATISTICS UNIVERSITY OF NORTH CARCLINA CHAPEL HILL NOFTH CARCLINA 27514	1
FRCF. H SCLOMCN CEPARTMENT CF STATISTICS STANFORD UNIVERSITY STANFORD ; CALIFORNIA 54305]
MR. GLENN F. STAFLY NATIONAL SECURITY AGENCY FORT MEACE MARYLAND 20755	1

MR. CAVIC A. SWICK ADVANCED PROJECTS GROUP CODE 81C3 NAVAL RESEARCH LAB. MASHINGTON 1 20375 NR. WENDELL G. SYKES ARTHUR C. LITTLE, INC. ACCRN PARK CAMBRIDGE 1 MA 02140 PROF. J. R. THEMPSON DEPARTMENT OF MATHEMATICAL SCIENCE RICE UNIVERSITY HEUSTON, TEXAS 77001 1 PROF. W. A. THEMPSEN DEFARTMENT OF STATISTICS UNIVERSITY OF MISSOURI COLUMEIA, MISSOURI 65201 1 FRCF. F. A. TILLMAN DEPT. CF INDUSTRIAL ENGINEERING KANSAS STATE UNIVERSITY MANHATTAN KS] 66506 PRCF J. W. TUKEY CEPARTMENT OF STATISTICS FRINCETON UNIVERSITY 1 FRINCETON , N. J. 08540 PRCF. A . F . VEINOTT DEFARTMENT CF OPERATIONS RESEARCH STANFORD UNIVERSTITY STANFORD CALIFORNIA 1 94305 CANIEL H. WAGNER STATION SQLARE ONE FACLI, PENNSYLVANIA 19301] PRCF. GRACE WAHBA CEPT. CF STATISTICS UNIVERSITY CF WISCONSIN MADISON 1 WI 53706

.

PRCF. PETER ELCCMFIELD STATISTICAL DEPT. PRINCETON UNIVERSITY PRINCETON, N. J.		1
	C8540	
PRCF. G. G. BROWN CEFT. CF OR NAVAL POSTGRAEUATE SCHECL MONTEREY		1
CALIFORNIA	\$3 94 0	
R. W. BUTTERWORTH SYSTEMS EXPLORATION WEBSTER ST.		1
CALIFORNIA	93940	
DR. JAMES CAPRA 7218 CELFIELC STREET CHEVY CHASE		1
MÁRÝLAŇC	20015	
ER. D.R. CCX DEPT. CF MATHEMATICS		1
LCNDCN SW7	E NG LA N	
DEFENSE DOCUMENTATION CTR.		1
CAMEREN STATIEN ALEXANDRIA VIFGINIA	22314	
NORTHWESTERN UNIV. EVANSTON ILLINCIS		1
	602 C1	
MAN. SCE. RES. CTR. FACULTY OF COM. AND BUS. ADM. UNIV. CF ERITISH COLUMEIA	IN.	1
BRITISH CCLUMEIA VOT 165	CANADA	
MATN. DEFT. Northwestern Univ. Evansten		1
ILLINOIS	602.01	

PRCF. K. T. WALLENIUS DEFARIMENT OF MATHEMATICAL SCIENCES CLEMSON UNIVERSITY CLEMSON, 1 SOLTH CARCLINA 29631 PROF. G. S. WATSON DEFARTMENT OF STATISTICS FRINCETON , N. J. C854G 1 PROF. BERNARD WIDROW STANFORD ELECTRONICS LAB STANFORD UNIVERSITY 1 STANFORD ČA 94305 FRCF. G. I. WHITEHOUSE CEPT. OF INCUSTRIAL ENGINEERING LEHIGH UNIVERSITY EETHLEHEM] PΔ 18015 FFOF. S. ZACKS DEPT. CF MATHEMATICS AND STATISTICS CASE WESTERN RESERVE UNIVERSITY CLEVELAND., 1 CHIO 44106 PROF. M. ZIA-HASSAN CEPARTMENT OF INDUSTRIAL AND SYSTEMS ENGINEERING ILLINOIS INSTITUTE OF TECHNOLOGY CHICAGO 1 IL 60616 HEAD, MATH. SCI SECTION NAT. SCIENCE FOUNDATION 18CO G STREET, N.W. WASHINGTON, C.C. 1 20550 PROF A. F. ANDRUS CEFT. CF CR NAVAL POSTGRADUATE SCHOOL MONTEREY CALIFORNIA 1 93940 FFOF. C. R. BARR DEFT. CF CR NAVAL POSTGRACLATE SCHOCL MONTEREY 1 CALIFCENIA 93940

No. of Copies

No. of Copies

DR. R. ELASHCFF BIOMATHEMATICS		1
UNIV. CF CALIF. LCS ANGELES CALIFORNIA	900 24	
PROF. GECRGE S. FISHMAN UNIV. CF NORTH CARCLINA CUR. IN OR AND SYS. ANALYSIS PHILLIES ANALYSIS		1
CHAPEL HILL, NORTH CARCLINA	20742	
DR. R. GNANACESIKAN EELL TELEPHONE LAE HOLMDEL, N. J.		1
	07733	1
DR. A. J. GCLEMAN CHIEF, CR DIV. 2C5.C2, ADMIN. A428 U.S. DEPT. CF CCMMERCE WASHINGTON, E.C.	20234	'
DR. H. FIGGINS 53 BONN 1, POSTFACE 589 NASSESTRASSE 2		1
WEST GEI	RMANY	
DR. P. T. HOLMES DEPT. OF MATH. CLEMSON UNIV. CLEMSON SOUTH CAROLINA	29631	1
CR.J.A. FOCKI BELL TELEPFONE LAES Holmdel New Jersey		1
	07733	1
DR. RUBERT HOCKE MATH. DEPT. WEST INGHOUSE RËS. LABS CHURCHILL BEFE FITTSBURGH, PENNSYLVANIA	1 52 35	'
LR. D. L. IGLEFART DEPT. CF C.F. STANFORD LNIV. STANFORD CALLEGENIA		1
CHETT PLATE	943 05	

		No. of Copies
CR. PATRICIA JACOBS CR. DEP 1. NAVAL POSTGRADUATE SCHOOL MONTERBY CALIFORNIA	93940	1
DR. H. KGEAYASFI IBM YCFKTCHN FEIGFTS NEW YORK		1
	10598	
CR. JOHN LEHOCZKY STATISTICS DEPARTMENT CARNEGIE-MELLON UNIVERSITY FITTSBURGH PENNSYIVANIA		1
	15213	
		1
NAVAL PESTGRADUATE SCHOOL MONTEREY CALIFERNIA	93940	
DR. A. LEMOINE 1020 GUINDA ST. FALO ALTC, CALIFORNIA		1
	94301	
CR. J. MACQUEEN UNIV. CF CALIF. LOS ANGELES CALIFORNIA		1
	90024	
FRCF. K. T. MARSHALL DEFT. CF CF NAVAL POSTGRAEUATE SCHEEL MCNTEREY		1
	53 94 0	
DR. M. MAZUMCAR MATH. DEPT. ESTINGHOLSE RES. LABS CHURCHILL BCFC PITTSBURGH PENNSYLVANIA	15235	1
DR. LEON F. MCGINNIS SCHOLL OF INC. AND SYS. ENG. GEORGIA INST. OF TECH. ATLANTA		1
CELKGIA	30332	

ER. D. R. MCNEIL DEPT. CF STATISTICS PRINCETON UNIV. FRINCETON		
NEW JERSEY	08540	1
PRCF. P. R. MILCH DEFT. OF OR NAVAL POSTGRAEUATE SCHOOL MONTEREY CALIFORNIA		·
	93940	1
LR. F. MUSIELLER STAT. CEPT. FARVARC UNIV. CAMBRILGE MASSACHUSEITS		
	02139	1
PREF. R. R. READ DEPT. CF CR NAVAL POSTGRAEUATE SCHOOL MONTEREY		
CALIFORNIA	93940	1
DR. M. REISER IEM THOMAS J. WATSEN FES. CTR. YERKTOWN HEIGHTS		1
NEW YCFK	10598	
DEAN CF RESEAFCH CODE 013 NAVAL FOSTGRADLATE SCHOOL		1
CALIFERNIA	93940	1
FRCF. F. F. FICHARDS DEFT. GF OR NAVAL FCSTGFACLATE SCHOOL MONTERY		I
CALIFURNIA	93940	1
DR. J. RICREAN CEPT. OF MATHEMATICS RCCKEFELLER UNIV. NEW YORK		I
NEW TURK	100 21	
DR. LINUS SCHRAGE UNIV. CF CHICAGU GRAD. SCHOOL OF BUS. 5836 GREENWECE AVE. CHICAGE. ILLINGIS		I
CHICAOLY ILLINCID	60637	

DR. PAUL SCHMEITZER THOMAS J. WATSON RESEARCH OTH POST OFFICE BOX 218 YORKTOWN FEIGHTS	R 9	1
NEW YOFK	10598	
CR. RICHARE SCRENSEN CODE 303 NPRDC 271 CATALINA BLVD. SAN DIEGC CALIFORNIA]
	92152	
PFOF M. G. SOVEREIGN DEFT OF OF NAVAL POSTGRAEUATE SCHECL MONTEREY CALLECENIA		1
	\$3 94 0	
CR. V. SFINIVASAN GRADLATE SCHOOL OF BUSINESS STANFORD UNIVERSITY STANFORD CALLEGRNIA		1
	94305	
DR. R. M. STARK STATISTICS AND COMPUTER SCI. UNIV. OF DELAWARE NEWARK		1
LELAWARE	19711	
FROF. RICHARD VANSLYKE RES. ANALYSIS CORP. BEECHWOOD CLD TAFPEN FOAD		1
GLEN COVE NEW YORK	11 542	
PRCF. JOHN M. TUKEY FINE FALL FRINCETON UNIV. PRINCETON		1
NEW JERSEY	08540	
CR. THOMAS C. VARLEY CFFICE OF NAVAL RESEARCH CODE 434 ARLINGTON		1
VA	22217	
FRCF. G. WATSON FINE HALL PRINCETON UNIV. PRINCETON		1
NER JENSET	C8540	

1

1

20

Dr. Roy Welsch M.I.T., Solan School Cambridge, MA 02139

Dean of Research 012 Naval Postgraduate School Monterey, Ca. 93940

Professor D. P. Gaver Code 55Gv Naval Postgraduate School Monterey, Ca. 93940

R. J. Stampfel Code 55 Naval Postgraduate School Monterey, Ca. 93940

U185867

