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NON-STATIONARY INFINITE SERVER MODELS AND THEIR RELATIVES

by
*

Donald P. Gaver John P. Lehoczky
Naval Postgraduate School and Carnegie-Mellon University
Monterey, CA 93940 Pittsburgh, PA 15213

1 . Introduction

The waiting-time model characterized by (i) Poisson arrivals

to (ii) an unlimited number of servers, these characterized by

(iii) independent service times of arbitrary distribution—usually

called the M/G/°° system—has a special significance and utility

that stems from the simplicity of its solution. That is, if N(t)

,

t >^ , denotes the number of arrivals being served at time t, con-

veniently referred to as system occupancy , and if N(0) =0, then

N(t) itself has the Poisson distribution. This fact is well-known

when the Poisson arrival rate is a constant, A, and F(x) is the

distribution of service times perhaps with finite mean E[S] = y < °°;

in this latter case the limiting distribution (t -> °°) is always

Poisson with parameter E[S] = A/y; see Parzen (1962). Such a

model approximately characterizes

a) the number of occupied channels in a system of parallel,

lightly-loaded telephone or communication channels (see

Feller (1967) )

.

b) the number of items undergoing repair in a logistics system,

c) the number of vehicles simultaneously using a city's free-

way system (see Newell (1966) )

.

d) the number of drug "particles" inhabiting a particular organ

(compartment) in a human or animal body at time t (see

Gaver and Lehoczky (1977) )

.

*
Research partially supported by National Science Foundation Grant
Number MCS-77-07587 at the Naval Postgraduate School.



In this paper it is shown that N(t) possesses a

Poisson distribution even if the arrival rate is time dependent,

denoted by A(t), and if the distribution of the service time

S , of an arrival at t is itself dependent upon t, i.e.

is F(x;t), t being a parameter. Furthermore, if arrivals

occur in bunches--is compound Poisson—then N(t) itself

has the compound Poisson distribution. Incidentally, if

A(t) = A, a constant, arriving bunches are geometrically

distributed, and service times are exponential, the limiting

distribution of N(t) is shown to be the negative binomial.

The simple methods used are extended to study multivariate

process models, and also to shot-noise, storage, and Zipf's

law.

2 . A Backward Equation for System Occupancy: Poisson Arrivals

The distribution of N(t) may be approached as follows.

Let W(t,u) denote the system occupancy at t that arrived after

time u, <_ u £ t; clearly one takes N(t,0) = N(t) , and

N(t,t) =0 with probability one. Let

pn
(t,u) = P{N(t,u) = n} (2.1)

Hold t fixed, and consider the possible events that may occur in

a time period of length du. Write F(x,t) = P{S, > x} = 1 - F(x,t)

and observe that either (a) no arrival occurs that remains a

system occupant by time t, an event of probability

1 - A(u)du F(t-u,u) + o(du), or (b) one arrival occurs and



remains an occupant at t, an event of probability

A(u)du F(t-u,u) + o(du). All other possibilities are negligible.

Thus

pn
(t,u + du) = [1 - A(u)du F(t-u,u)] pn

(t,u)

+ A(u)du F(t-u,u) Pn _ 1
(t,u) + o(du) (2.2)

Now subtract p (t,u) from each side, divide by du, and let

du •*•
. The result is the backward equation

-dp (t,u)

^ = -A(u) F(t-u,u) pn
(t,u) + A(u) F(t-u,u) pn _ 1

(t,u),

n = 1,2,3, ... (2.3)

and

-dp (t,u)
^ = -A(u) F(t-u,u) p

Q
(t,u) (2.4)

The equation (2.4) may be integrated from u to t to give

t

p Q
(t,u) = exp[- / X(v) F(t-v)dv] , (2.5)

u

and when u •> this shows that

t

p (t,0) = P{N(t)=0} = exp[- / A(v) F(t-v,v)dv]



Invocation of the earlier equation (2.3) shows inductively that

pn
(t,0) = P{N(t) = n}

t t
= exp[- / X(v) F(t-v,v)dv] ~ [-/ A(v ) F(t-v,v)dv]

n

*

(2.6)

and thus N(t) has a Poisson distribution.

An approach via generating functions is easy and direct.

Define

. . oo

E[z (t,U)
] = g(z,t;u) =

J z*
1
P{N(t,u) = n}

.

(2.7)
n=0

Note that the contribution to occupancy at time t from arrivals

in (u, u + du) , AN(t,u) = N(t,u) - N(t, u + du) is independent

of the contribution from arrivals after u + du by Poisson

process properties, so the convolution property of the generating

function leads to writing

g(z,t;u)

= [z A(u)du F(t-u,u) + 1 - A(u)du F(t-u,u)] g(z,t; u + du) + o (du

(2.8)

Next subtract g(z,t,u + du) from each side, divide by du

and let du •> . The result is

dg(
du

t;U) = (Z_1) Mu)du F(t-u, u) g(z,t;u) (2.9)



This equation is immediately solved to produce

t

g(z,t;u) = exp[(z-l) / A (v) F(t-v,v) dv] , (2.10)
u

which is recognized to be the generating function of the Poisson

distribution (2.6).

3 . Compound Poisson (Bunched) Arrivals

Next consider the situation in which the number of arrivals

that occur together is random. In other words, bunches of

arrivals occur together, and the bunch sizes are discrete random

variables, so the arrival process is a (time-dependent) compound

Poisson; see Feller (1967) . Let B (u ) be the size of a bunch

that arrives at time u; its distribution and generating function

are, respectively,

P{B(u) = k} = b
k

(u) k = 1,2, . . .

E[z
B(u)

] = h(z,u) =
I z

k
b (u)

k=l

(3.1)

Again, let g(z,t,u) be the generating function of N(t,u) as

in (2.7). Notice that g(z,t,u) represents the contribution

to N(t,u) arising from arrivals in (u, u + du) plus the

independent contribution from (u + du, t) ; see (2.8). To

derive the g.f . of the contribution from (u, du) , denoted by

5



AN, condition on the event of an arrival and bunch size B(u)

;

by independence of the services,

E[z larrival in (u,du), B(u)]

= [zF(t-u,u) + F(t-u,u)

]

B(u)
(3.2)

Now removal of the condition on B(u) yields

E[zAN |arrival in (u, u + du) ] = h[(z-l) F(t-u,u) + l,u]. (3.3)

Of course

t. r
AN I n . , , . _ ,

E[z
I
no arrival in (u, u + du) J = z = 1,

so

E[z
N

] = A(u)du h[(z-l) F(t-u,u) + l,u] + 1 - X(u)du + o (du) (3.4)

and thus

g(z,t,u) = [A(u)du h[(z-l) F(t-u,u) +l,u] + 1 - X (u) du] g(z,t,u+du)

+ o(du) , (3.5)

which leads to the differential equation

"
5u"

= X(u) {h ^ z -
1S

> F(t-u,u) + l,u] - 1} g(z,t,u), (3.6)



The solution of which is the generating function

t

g(z,t;u) = exp[- / A (v) U-h[(z-l) F(t-v,v) + 1, vjldv] (3.7)
u

Although inversion of (3.7) to produce a simple and familiar

expression for the probabilities {p (t) , n = 0,1,2,...} seems

beyond the realm of possibility, certain facts do emerge.

For example, differentiation of g(z,t-0) yields moments,

, t

E[N(t)] = §2 = / X(v) E[B(v)] F(t-v,v)dv ,az
z=l

(3.
t - 2

Var[N(t)] =E[N(t)] +/ A (v) E [B (v) • (B (v ) -1 ) ] (F ( t-v, v) ) dv,

and so forth. Note that Var [N (t) ]
/E [T] > 1 if bunch sizes are

sometimes greater than unity, as is to be expected. Furthermore,

setting z = yields

t

P{N(t) = 0} = p (t,0) = exp{- / A(v) h[F(t-v,v),v ]dv}(3.9)

The form of the general coefficient of 7? may be deduced from

consideration of (3.2) and (3.3). The coefficient of 7? in

h[(z-l) F(t-u,u) + l,u] is the probability of exactly j

"successes"—meaning survivals to time t from u in B(u)

Bernoulli trials, hence



h[(z-l) F(t-u,u) + 1, u) ] =
I z^c^Cu)

(3.10)D=0 ^

c.(u) =
I b, (u) (

k
) (F(t-u,u)) j (F(t-u,u))

k j
, j = 0,1,2,..

3 k=0
K J

Thus an alternative expression for g is

t °°

g(z,t;u) = exp[- / A (v) {1 - £ z-'c . (v) }dv
u j=0 3

Since {c
.
(v) , j = 0,1,2,...} is a discrete probability distri-

bution for every v, as is evident from (3.10), N(t,u) clearly

has a compound Poisson distribution.

Of interest is the following

EXAMPLE . Suppose A

(

v ) = A , F(x,v) = e"
X

, b, (u) = (l-a)a "
,

k = 1,2,... . This is the case of stationary "stuttering Poisson"

arrivals. Substitution into (3.7) yields for u = 0,

g(z,t;0) = exp

= exp

[ f'ji (i-a)[( Z-De- e(t -v)
+l]

( . 1

[ * (z-l) e-
e(t -v) dv

]

j. (1 -a- a[( Z-l)e-
B(t -v)

]J

fll ,„ j
_l_z. a - at (z-l)]

j
1

I Get j , / i \ ~9t I

f 1 - a - a (z-l) e )

= exP 7T7 £n

[

1 - a - a(z-l)e fc
1

1 - az

A/9a



as t tends to infinity the latter generating function approaches

> A -

g ( z , °° ; ) = lira g ( z , t ; )
=

t -* °°

1 - gY
1- ctz)

the generating function of the negative binomial distribution. Hence

the long-run distribution of server occupancy is, in this particular

case, a familiar form that may readily be used in various applications

in place of the ordinary Poisson that results from (2.6) or (2.10)

under similar circumstances.

4 . Bunch Division into Two Classes

Suppose that bunches arrive in a Poisson manner, but that

each bunch is independently fragmented into subbunches of type 1

and type 2 customers with probability p. and p_ respectively

(although these probabilities may be time-dependent also, we do not

uother with tnis) . Items of type i are served in accordance with

distribution F. (x,u) . This setup may model demands on certain

logistics systems, e.g. by landing aircraft with different failure

categories. Although the number of types of arrivals is limited

to two, there is no difficulty in extending it to more types if

necessary.

Following the pattern leading to (3.5) one may write



E[
Vt,u> £(*.->, Mg(liflaft|B)

= {A (u)du h[p
1
(z

1
-l) F (t-u,u) + p (z

2
-l) F

2
(t-u,u)+l,u]+l-A (u)du)

x g(z,,z ,t;u + du) (4.1)

where N. (t,u) is the contribution to system occupancy of the

type i arrivals between u and t. It then follows that

|2- = -A(u) {1 - h[p
1
(z

1
-l) F

1
(t-u f u) + p 2

(z
2
-l) F

2
(t-u,u) +l,u]

x g(z
1
,z

2
,t;u) } , (4.2)

from which the joint generating function

g(z
1
,z2f t;0)

t
= exp[- / A (v) {l-h[p

1
(z

1
-l) F

x
(t-v,v) +

p

2
(z

2
-l) F

2
(t-v,v) + l,v] }dv

(4.3)

appears. Moments are obtained oy differentiation; see (3.8);

to obtain means and variances simply replace A(u) by p.A(u).

The covariance results from partial differentiations of the

exponent at z, =1, z = 1:

t
covlN^t) ,N

2
(t) ] = / A(v) E[B(v) (B(v)-l) ] p-^ F

1
(t-v,v) F

2
(t-v f v)dv

v,- v, • i * (4 - 4)
which is always positive.

10



EXAMPLE. Let A (u) = A, h(z,u) = (1-a) z/ (1-az ) . If
-e .x

P. (x,u) = e then the following results:

g(z
1
,z

2
,t;0) = exp I -A /

-6-.V " e
2
v

p(z,-l)e + p (z -1) e

-6 v -9
2
v

1 - a + a[p
1
(z

1
-l)e +p (z

2
~l)e ]

dv

(4.5)

which, regrettably, cannot be integrated in closed form unless

= 6
9

(=1 for convenience) in that case we find that as

g(z 1# z
2
,°°,0) I" L^ 1

1 - ap
1
z
1

- ap
2
z
2 J

A/a

(4.6)

Tttis is the generating function of a bivariate distribution with

negative binomial marginal distribution.

11



5 . Related Problems, or "Sons and Daughters of M/G/°°"

Models for shot-noise, see Rice (1954) , and for dams and

rainfall and runoff, see Gaver and Miller (1962>, share the general

structure of the previous infinite server models. Time-dependent

versions of these will be formulated and briefly discussed using

the backward equation approach.

Let A(u) be the rate of arrival of a certain event at time u,

and let e(u,t) denote the random effect at time t of an event

at time u, <_ u <_ t. In general e(u,t) will be real -valued

random variable; in the shot noise application it represents the

response at time t of an electrical circuit to an impuse at

time u, and in the case of a dam or storage system it may be the

amount of water in the reservoir resulting from a rainstorm at

time u. Let the Laplace transform of e(u,t) be

<j)(s,t;u) = E[e~ S£ (U ' t)
] (5.1)

Now write down a backward differential equation for

iMs f t;u) = E[e sX(t|U,
] f (5.2)

X(t,u) being the combined effect at t of all of the (sub,

or component) effects occurring after u and before t:

A(t,u) t
X(t,) =

I e(u.,t) = / e(s,t) dN(s) (5.3)
i=0 ~ 1

u

12



where A(t) is the number of (Poisson) events in (u,t), and u.

is the instant at which the ith such event occurs. It is seen that

|^ = [A(u) - A(u) <}>(s,t;u)] ^(s,t;u), (5.4)
a u

exactly as was true for (3.6) , and thus

t

iMs,t;u) = exp{ / A (u) [cj> ( S , t ;v) -1] dv} (5.5
u

EXAMPLE. Let A (u) = A and e,(u,t) = Se~° (t_u)
, 6 > 0,

S having the exponential distribution with density

ye y
. It follows that

4>(s,t;u) = -e(t-u )

(5 ' 6

y + se

and thence that

1

t se~
e(t-u)

)

^(s,t:0) = exp / A —~ _ Q ( t _u)
du ( 5 - 7

( y + se )

-et \ A/e / \A/<
y + se if y

y + s
y + s

as t -> "», so in the long run the total effect has gamma

distribution. See Gaver and Miller (1962) for the same result

derived differently.

13



5.1. Zipf s Law and Pareto Tails

Let A(u) = e
au and let e(u,t) = S(u) e

0(t~ u)
, e > 0,

S(u) having the distribution F( ); successive S(u) values are

independent. This setup models a collection of organisms that

are born at random times and grow independently and exponentially

thereafter. We are interested in the fraction of all those born

in (0,t) that exceed size x at time t; we shall see that the

fraction exhibits the "Pareto tail" associated with Zipf's law;

see Mandelbrodt (19 78)

.

Let I(x,u,t) denote the indicator function

( 1 if e(u,t) > x
I(x,u,t) = (5.3)

( if e(u,t) <_ x.

In the present model define

p (u,t) e E[I(x,u,t)] = F(xe"
9(t "u)

) (5.9)

although what follows next does not require the latter explicit form,

Now introduce the bivariate generating function

Aft u)
N
x
(t ' u)

g(z .z ,t;u) = E[z^ r ' u;
zv

X
] (5.10)ax ax

where A(t,u) is the number of arrivals (births) in (u,t), and

N (t,u) is the number of those organisms born in (u,t) that

exceed x in size at time t; we put A(t,0) = A(t), and

N (t) = N (t,0). Then by the backward argument analogous to that

producing (2.8) ,

g(z ,z ,t-u)
cl X.

= [z z A(u)du p (u,t) + z A(u)du (1-p (u,t)) + 1-A(u)du] (5.11)ax x a x

x g(z ,z ,t;u + du) + o(du),
a x

14



which leads to a differential equation with solution

g(z ,z ,t;0) = exp{/ A (u) du [z = (z-1) pv (u , t ) + (z-1)]} (5.12
^ a x

q
ax x a

This shows that A(t) and N (t) have a bivariate Poisson distri-

bution; from (5.10) one finds

t

m(t) = BlA(t)] = Var[A(t)] = / A(u)du
,

t

m (t) = E[N (t)] = Var[N (t)] = / A (u) p (u,t)du (5.13)
X X X

q
X

t

Cov[A(t),N (t) ] = / A(u) p (u,t)du= m (t) .x
Q

x x

Under many interesting circumstances, a notable instance being

the specific model beginning this example, both E[A(t)] and

E[N (t) ]
-* °° as t -> oo.

ElA(t;J =
/ e du = — (e -1) ~ — e ,

g
a a

nr H /j.\ i r ctu , -, -0 (t-u)

.

E [N (t) J =
J e du F(xe )

= e
at 1 / z

0176 " 1 F(z)dz (5.14)
ex

a/e
-et

xe

—aTe I z F(z)dz
ex 7

o

tSJ

provided the integral exists.

15



Now define

E[N (t)]
-,

x .

«<*'*> = EtA(t)] " I JJ75- I

Z ?(z)dZ
'
<t—X5.15

the long-time average fraction of those organisms born before t

and that exceed x in size at t; clearly for large x this

_a/6
fraction exhibits the "Pareto tail" behavior: x '

, provided that

the integral exists for large x, as will be assumed.

It will now be shown that with high probability the above law

should actually hold for observed data in the following sense.

Form the ratio of observable random variables N (t)/A(t); this

ratio should approximate to f (x,°°) as t •* °°. To show that

this is so, consider, for e > 0,

(

N
x
(t)

)

P HhtT - f (Xft) + £ = p <N
x
(t) - A(t) [f (x,t) + e] <0}. (5.1

For the specific model of this example both E[A(t)] and

F [N (t) ]
•* °° as t + °° , consequently it can be shown (e.g.

by the continuity theorem for characteristic functions) that

(A(t),N (t) ) are approximately bivariate normal for large t

with parameters given by (5.13). Therefore

16



E[N (t) - A(t)[f(x,t) +£]]=- E[A(t)]e

Var [N (t) - A(t) [f (x,t) + e] ]

= Var[N (t)] + [f(x,t) + e]
2
Var[A(t)]

- 2[f(x,t) + e] cov[N (t) , A(t)]

= m (t) + [f(x,t) + e]
2

m(t) - 2[f(x,t) + c] m (t)

= m(t) (f(x,t) + [f(x,t) + e]
2

- 2[f(x,t) + e] f (x,t)}

= m(t) {f(x,t)(l - f(x,t)) + e
2

} (5.17)

w use the normal approximation to assess the probability (5.16):

(

N
x
(t)

)

P — <_ f (x,t) +£=P{N (t) -A(t)[f(x,t) + e] £0}
(A(t) )

X

. m(t)£/[m(t) {f (x,t) (1-f (x,t)+£
2
}]

1/2
2 /9

/ e
z /z

dx (5.18)
"277

t + the fraction f(x,t) approaches the (finite) right side

(5.15) and then, since m(t) > °°, the integral approaches unity;

similar argument shows that N (t)/A(t) > f (x,t) - e with

obability approaching unity. It follows that the ratio

(t)/A(t) is a consistent estimator of f (x,t) at the point x

t * oo. The statement (5.18) can also be used to supply

proximate confidence limits for f(x,t).

17



An alternative formulation leads to similar asymptotic results.

Suppose that the arrival rate is now taken to be kX (u) , k being

a parameter that will later approach infinity; see Barbour (1974)

for an analogous model and analysis. The interpretation is that

when k becomes large organism births occur thick and fast—even

more so, of course, for later times than earlier when (now)

au
A (u) = ke as in our example. Now all analysis goes through as

before, and the average fraction function is

E[N (t)] , at x /Q .

.c / 4-\ x 1 e f a/0-1 -, » , , cf (x,t) = = —^ — / z F(z)dz , (5

E[A(t)] x
a/0

6(e
a

-1) -et

independent of k, while

t ,

m(t;k) = E[A(t)] = k / A (u) du = - (e -1) = km(t) (5
a

As k •> oo a central limit theorem argument once again applies

(here for every finite t) to show that

(

N
x
(t)

)p |^(tT < f
k ( *' t} + £

j

x
km(t)£/[km(t) (f

k
(x,t) (l-f

k
(x,t)+£

2
}]

1/2
_ z

?-

/2-
/ e / dz (5

/2tt -°°

and the latter probability clearly approaches unity as k -»- °°, this

18



time for every t. The asymptotic normality also allows approximate

confidence limits to be placed on f (x,t)

.

We emphasize that the above analysis applies just to any single

x-value . Analogous results should be derivable for any finite

sequence of x-values, and thence extended by continuity to all

real values, obtaining results similar to the Glivenko-Cantoll

1

theorem for ordinary distribution functions. This, and other,

generalizations are under development and will be reported in

a subsequent paper.
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