anoun, institutional Archive of the Naval Postgraduate Schot

NPS55EY73041A

Monterey, California

MULTIVARIATE GEOMETRIC DISTRIBUTIONS

GENERATED BY A CUMULATIVE DAMAGE PROCESS

Ъy

J. D. Esary

and

A. W. Marshall

March 1973

Approved for public release; distribution unlimited.

FEDDOCS D 208.14/2:NPS-55EY73041A Frederici Laon 1212 111-12-11-2217 22

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral M. B. Freeman Superintendent M. U. Clauser Provost

ABSTRACT

Two (narrow and wide) multivariate geometric analogues of the Marshall-Olkin multivariate exponential distribution are derived from the following cumulative damage model. A set of devices is exposed to a common damage process. Damage occurs in discrete cycles. On each cycle the amount of damage is an independent observation on a nonnegative random variable. Damages accumulate additively. Each device has its own random breaking threshold. A device fails when the accumulated damage exceeds its threshold. Thresholds are independent of damages, and have a Marshall-Olkin multivariate exponential distribution. The joint distribution of the random numbers of cycles up to and including failure of the devices has the wide multivariate geometric distribution. It has the narrow multivariate geometric distribution if the damage variable is infinitely divisible.

Research jointly supported by the Office of Naval Research, Project Order 2-0251, 18 April 1972 (NR 042-300) and the Naval Postgraduate School Foundation Research Program, and the National Science Foundation, NSF GP-30707X1.

Prepared by:

1. Introduction

Suppose that we have a device for which exposure to failure occurs in discrete cycles, that on each cycle the device is damaged by an amount which is an observation on a nonnegative random variable X, and that damages, which are independent from cycle to cycle, accumulate additively. The device fails when the accumulated damage reaches Y > 0, its breaking threshold.

Let N be the number of cycles up to and including failure of the device. Then

(1.1)
$$N = \min\{k: X_1 + \ldots + X_k \ge Y\},$$

where X_1, X_2, \ldots are independent and identically distributed as X. If the component is to eventually fail, it must be that P[X>0] > 0.

Suppose now that the breaking threshold Y is a random variable, independent of the damages X_1, X_2, \ldots , and with the exponential survival function

(1.2)
$$\overline{G}(y) = P[Y>y] = e^{-\lambda y}, \quad \lambda > 0, \quad y \ge 0.$$

Since $N > k \ge 1$ if and only if $Y > X_1 + \ldots + X_k$, then

$$P[N>k] = P[Y>X_{1}+...+X_{k}] = E\overline{G}(X_{1}+...+X_{k})$$
$$= Ee^{-\lambda}(X_{1}+...+X_{k}) = \prod_{j=1}^{k} Ee^{-\lambda X_{j}}$$
$$= \{Ee^{-\lambda X_{j}}\}^{k}, \qquad k = 1, 2, \dots$$

Thus since N has the positive integers as its values, N has the geometric survival function

(1.3)
$$\tilde{F}(k) = P[N>k] = \theta^{k}, \quad 0 \le \theta < 1, \quad k = 0, 1, \dots,$$

with $\theta = Ee^{-\lambda X}$. That $\theta < 1$ follows from $\lambda > 0$ and P[X>0] > 0.

This paper is devoted to the properties of multivariate geometric distributions that can be generated by the process outlined above--subjecting a set of devices with different breaking thresholds to a common sequence of additive damages. The results are a step in the systematic study of the discrete multivariate life distributions that can be derived from cumulative damage models, and relate to the study of the continuous multivariate life distributions that can be derived from compound Poisson processes. A discussion of the general problem setting, univariate results, and a bibliography can be found in Esary, Marshall, and Proschan (1970). 2. Two bivariate geometric distributions

To place a discussion of bivariate geometric distributions in a context similar to that with which we began suppose that we have two devices for which exposure to failure occurs in discrete cycles, and are concerned with the joint distribution of K_1 and K_2 , the numbers of cycles up to and including failure of the devices.

One could assume that in each cycle there is a shock to the first device which it survives with probability θ_1 , a shock to the second device which it survives with probability θ_2 , and a shock to both devices which both survive with probability θ_{12} and neither survives with probability $1-\theta_{12}$, and that the events of surviving the three kinds of shocks are independent of each other and from cycle to cycle. If each device is to eventually fail, it must be that $\theta_1\theta_{12} < 1$ and $\theta_2\theta_{12} < 1$. Then the joint survival function of K_1, K_2 is

(2.1)
$$\overline{F}(k_1, k_2) = P[K_1 > k_1, K_2 > k_2] = \theta_1^{k_1} \theta_2^{k_2} \theta_{12}^{\max(k_1, k_2)}$$

 $0 \le \theta_1 \le 1, \quad i = 1, 2, \quad 0 \le \theta_{12} \le 1,$
 $\theta_1 \theta_{12} < 1 \quad \text{and} \quad \theta_2 \theta_{12} < 1, \quad k_1, k_2 = 0, 1, \dots$

We will say that positive integer valued random variables K₁,K₂ whose joint distribution is given by a survival function of the form (2.1) have a <u>bivariate geometric distribution in the narrow sense</u> (BVG-N). A BVG-N distribution has geometric marginals, an intuitive genesis similar to that for the univariate geometric, and is a discrete analogue

3

of the bivariate exponential distribution introduced by Marshall and Olkin (1967).

A wider class of bivariate geometric distributions can be generated if one assumes that on each cycle there is a shock to both devices with probabilities P_{11} that both devices survive, P_{10} that the first device survives and the second device does not survive, P_{01} that the first device does not survive and the second device survives, and P_{00} that both devices do not survive, and that the events of surviving the shocks are independent from cycle to cycle. If each device is to eventually fail, it must be that $P_{10} + P_{11} < 1$ and $P_{01} + P_{11} < 1$. Then the joint survival function of K_1, K_2 is

$$(2.2) \ \overline{F}(k_1, k_2) = P[K_1 > k_1, K_2 > k_2] = P_{11}^{k_1} (p_{01} + p_{11})^{k_2 - k_1} \quad \text{if} \quad k_1 \le k_2,$$
$$p_{11}^{k_2} (p_{10} + p_{11})^{k_1 - k_2} \quad \text{if} \quad k_2 \le k_1,$$
$$0 \le p_{ij} \le 1, \quad i, j = 0, 1, \quad \Sigma_{i,j=0}^1 \ p_{ij} = 1,$$

 $p_{10} + p_{11} < 1$ and $p_{01} + p_{11} < 1$, $k_1, k_2 = 0, 1, \dots$

We will say that positive integer valued random variables K₁,K₂ whose joint distribution is given by a survival function of the form (2.2) have a <u>bivariate geometric distribution in the wide sense</u> (BVG-W). Again a BVG-W distribution has geometric marginals, an appropriate genesis, and as will be established later, is also a discrete analogue of the Marshall-Olkin bivariate exponential distribution.

The survival function of a BVG-W distribution can be written in a form similar to that of a BVG-N distribution by introducing parameters θ_1 , θ_2 , θ_{12} that are the solutions of the equations

(2.3)
$$\theta_1 \theta_2 \theta_{12} = p_{11}$$

 $\theta_1 \theta_{12} = p_{10} + p_{11}$
 $\theta_2 \theta_{12} = p_{01} + p_{11}$

(See Figure 1).

$P_{11} = \theta_1 \theta_2 \theta_{12}$	$p_{10} = \theta_1(1-\theta_2)\theta_{12}$	$p_{1.} = \theta_1 \theta_{12}$
$p_{01} = (1 - \theta_1) \theta_2 \theta_{12}$	$p_{00} = 1 - \theta_1 \theta_{12}$ $-\theta_2 \theta_{12} + \theta_1 \theta_2 \theta_{12}$	$p_{0.} = 1 - \theta_1 \theta_{12}$
$p_{.1} = \theta_2 \theta_{12}$	$p_{.0} = 1 - \theta_2 \theta_{12}$	1

Figure 1.

Since

$$0 \le p_{11} \le p_{01} + p_{11} \le p_{10} + p_{01} + p_{11} \le 1,$$

$$\le p_{01} + p_{11}$$

then

$$0 \leq \theta_1 \theta_2 \theta_{12} \leq \theta_1 \theta_{12} \leq \theta_{12} (\theta_1 + \theta_2 - \theta_1 \theta_2) \leq 1,$$

i.e. θ_1 , θ_2 , θ_{12} must satisfy conditions which reduce to

(2.4)
$$0 \le \theta_1 \le 1, \quad 0 \le \theta_2 \le 1, \quad 0 \le \theta_{12}(\theta_1 + \theta_2 - \theta_1 \theta_2) \le 1.$$

Conversely, if the θ 's satisfy the conditions (2.4), then through (2.3) and $p_{00} = 1 - p_{10} - p_{01} - p_{11}$ they define p_{ij} , i,j = 0,1, that are probabilities that add to 1. Also θ_1 , θ_2 , θ_{12} must satisfy the additional conditions.

(2.5)
$$\theta_1 \theta_{12} < 1, \quad \theta_2 \theta_{12} < 1.$$

It follows that the survival function (2.2) of a BVG-W distribution can be expressed in the equivalent form

(2.6)
$$\overline{F}(k_1, k_2) = P[K_1 > k_1, K_2 > k_2] = \theta_1^{k_1} \theta_2^{k_2} \theta_{12}^{\max(k_1, k_2)},$$

 $0 \le \theta_1 \le 1, i = 1, 2, 0 \le \theta_{12}(\theta_1 + \theta_2 - \theta_1 \theta_2) \le 1,$
 $\theta_1 \theta_{12} < 1 \text{ and } \theta_2 \theta_{12} < 1, k_1, k_2 = 0, 1, \dots.$

Example 2.1. If $\theta_1 = \theta_2 = \frac{1}{2}$ and $\theta_{12} = \frac{4}{3}$, then the distribution defined by the survival function (2.6) is BVG-W but not BVG-N.

Since $0 \le \theta_1 \le 1$, i = 1, 2, implies $0 \le \theta_1 + \theta_2 - \theta_1 \theta_2 \le 1$, it is apparent from (2.1) and (2.6) that a BVG-N survival function must always be BVG-W. By contrast with the BVG-N and BVG-W distributions, the more familiar bivariate geometric (negative binomial) distribution described in Mardia (1970), Section 10.4, can be viewed as arising from a sequence of three outcome trials; success of type 1 occurring with probability p_1 , success of type 2 occurring with probability p_2 , and failure occurring with probability $1 - p_1 - p_2$, with K_1 and K_2 defined respectively to be the numbers of successes of types 1 and 2 prior to the first failure. 3. A bivariate cumulative damage process.

We can now consider the bivariate case of the problem which motivates this paper. Suppose that on each cycle both devices are damaged by the same amount, which is an observation on a nonnegative random variable X, and that damages, which are independent from cycle to cycle, accumulate additively. The first device fails when the accumulated damage reaches $Y_1 > 0$, its breaking threshold. The second device fails when the accumulated damage reaches $Y_2 > 0$, its breaking threshold. As before, if each device is to eventually fail, it must be that P[X > 0] > 0.

Let N_1, N_2 be the number of cycles up to and including failure of the two devices. Then as in (1.1)

(3.1)
$$N_i = \min\{k: X_1 + \ldots + X_k \ge Y_i\}, \quad i = 1, 2,$$

where X1,X2,... are independent and identically distributed as X.

We will be concerned with the case in which the breaking thresholds Y_1, Y_2 are random variables that are independent of the damages, and in particular will suppose that Y_1, Y_2 have a Marshall-Olkin bivariate exponential distribution, i.e.

(3.2)
$$\overline{G}(y_1, y_2) = P[Y_1 > y_1, Y_2 > y_2] = e^{-\lambda_1 y_1 - \lambda_2 y_2 - \lambda_{12} \max(y_1, y_2)}$$

$$\lambda_{i} \geq 0, \quad i = 1, 2, \quad \lambda_{12} \geq 0, \quad \lambda_{1} + \lambda_{12} > 0$$

and
$$\lambda_2 + \lambda_{12} > 0$$
, $y_1, y_2 \ge 0$.

The survival function (3.2) includes the case in which Y1,Y2 are independent and exponentially distributed.

Since $N_i > k \ge 1$ if and only if $Y_i > X_1 + \dots + X_k$, i = 1,2, then if $1 \le k_1 \le k_2$

$$P[N_{1} > k_{1}, N_{2} > k_{2}] = P[Y_{1} > X_{1} + \dots + X_{k_{1}}, Y_{2} > X_{1} + \dots + X_{k_{2}}]$$

$$= E \bar{G}(X_{1} + \dots + X_{k_{1}}, X_{1} + \dots + X_{k_{2}})$$

$$= \lambda_{1}(X_{1} + \dots + X_{k_{1}}) - \lambda_{2}(X_{1} + \dots + X_{k_{2}}) - \lambda_{12}(X_{1} + \dots + X_{k_{2}})$$

$$= E e$$

$$= (\lambda_{1} + \lambda_{2} + \lambda_{12})(X_{1} + \dots + X_{k_{1}}) - (\lambda_{2} + \lambda_{12})(X_{k_{1}} + 1 + \dots + X_{k_{2}})$$

$$= E e$$

$$= \{E e^{-(\lambda_{1} + \lambda_{2} + \lambda_{12})X_{1}}\}_{\{E e^{-(\lambda_{2} + \lambda_{12})X_{1}}\}_{\{E e^{-(\lambda_{1} + \lambda_{12})X_{1}}\}_{\{E e^{-(\lambda_{1} + \lambda_{12})X_{1}}\}_{\{E e^{-(\lambda_{1} + \lambda_{12})X_{1}}\}_$$

Similarly, if $1 \le k_2 \le k_1$, then

$$P[N_1 > k_1, N_2 > k_2] = \{E e^{-(\lambda_1 + \lambda_2 + \lambda_{12})X} \}^{k_2} \{E e^{-(\lambda_1 + \lambda_{12})X} \}^{k_1 - k_2}.$$

Letting

(3.3)
$$\theta_1 \theta_2 \theta_{12} = E e^{-(\lambda_1 + \lambda_2 + \lambda_{12})X}$$

$$\theta_1 \theta_{12} = E e^{-(\lambda_1 + \lambda_{12})X}$$
$$\theta_2 \theta_{12} = E e^{-(\lambda_2 + \lambda_{12})X},$$

the survival function of N1,N2 becomes

(3.4)
$$\overline{F}(k_1, k_2) = \theta_1^{k_1} \theta_2^{k_2} \theta_{12}^{\max(k_1, k_2)}, \quad k_1, k_2 = 0, 1, \dots$$

We will show that θ_1 , θ_2 , θ_{12} satisfy the conditions that make (3.4) a BVG-N survival function.

It is immediate from (3.3) that $\theta_i \ge 0$, i = 1,2, and that $\theta_{12} \ge 0$. Since $\lambda_1 + \lambda_{12} \ge 0$, $\lambda_2 + \lambda_{12} \ge 0$, and $P[X \ge 0] \ge 0$, it also follows that $\theta_1 \theta_{12} < 1$ and $\theta_2 \theta_{12} < 1$. We need to show that $\theta_i \le 1$, i = 1,2, and $\theta_{12} \le 1$.

Let $\omega(\lambda) = E e^{-\lambda X}$, $\lambda \ge 0$, be the Laplace transform of X, and $\psi(\lambda) = -\log \omega(\lambda)$. Then $\psi(0) = 0$ and ψ is concave and increasing in λ . It follows that ψ is subadditive, i.e. $\psi(\lambda+\nu) \ge \psi(\lambda) + \psi(\nu)$, $\lambda \ge 0$, $\nu \ge 0$.

To introduce some convenient notation let

(3.5)
$$\mu_{12} = \psi(\lambda_1 + \lambda_2 + \lambda_{12}), \quad e^{-\mu_{12}} = \omega(\lambda_1 + \lambda_2 + \lambda_{12}) = \theta_1 \theta_2 \theta_{12}$$

 $\mu_1 = \psi(\lambda_1 + \lambda_{12}), \quad e^{-\mu_1} = \omega(\lambda_1 + \lambda_{12}) = \theta_1 \theta_{12}$
 $\mu_2 = \psi(\lambda_2 + \lambda_{12}), \quad e^{-\mu_2} = \omega(\lambda_2 + \lambda_{12}) = \theta_2 \theta_{12},$

and define $\alpha_1, \alpha_2, \alpha_{12}$ by

(3.6)

$$\alpha_{1} + \alpha_{2} + \alpha_{12} = \mu_{12}$$

$$\alpha_{1} + \alpha_{12} = \mu_{1}$$

$$\alpha_{2} + \alpha_{12} = \mu_{2}$$

Then $\theta_{12} = e^{-\alpha_{12}}$, $\theta_{1} = e^{-\alpha_{1}}$, $\theta_{2} = e^{-\alpha_{2}}$. Thus N_{1}, N_{2} have a BVG-N distribution, i.e. $\theta_{i} \le 1$, i = 1, 2, $\theta_{12} \le 1$, if and only if $\alpha_{i} \ge 0$, i = 1, 2, and $\alpha_{12} \ge 0$.

Theorem 3.1. N1,N2 have a BVG-N distribution.

Proof. From (3.6), $\alpha_1 = \mu_{12} - \mu_2$, $\alpha_2 = \mu_{12} - \mu_1$, $\alpha_{12} = \mu_1 + \mu_2 - \mu_{12}$. Then $\alpha_1 \ge 0$, since ψ is increasing and $\mu_{12} = \psi(\lambda_1 + \lambda_2 + \lambda_{12}) \ge \psi(\lambda_2 + \lambda_{12}) = \mu_2$. Similarly $\alpha_2 \ge 0$. Also $\alpha_{12} \ge 0$, since ψ is subadditive, increasing and

$$\begin{split} \mu_1 + \mu_2 &= \psi(\lambda_1 + \lambda_{12}) + \psi(\lambda_2 + \lambda_{12}) \geq \psi(\lambda_1 + \lambda_2 + 2\lambda_{12}) \\ &\geq \psi(\lambda_1 + \lambda_2 + \lambda_{12}) = \mu_{12}. \end{split}$$

Thus N₁,N₂ are BVG-N.

The balance of the paper is devoted to the multivariate version of the problem just considered. While the definitions and approach generalize, it will appear that Theorem 3.1 is peculiar to the bivariate case. Figure 2 introduces a point of view towards the equations (3.6) which will be useful.

Figure 2.

In the figure α_1 , α_2 , α_{12} define point masses on all the vertices of a unit square except (0,0), and μ_1 , μ_2 , μ_{12} are the corresponding masses of the sets where the increasing Boolean functions $\phi(x_1,x_2) = x_1$, $\phi(x_1,x_2) = x_2$, $\phi(x_1,x_2) = x_1 \lor x_2 = x_1 + x_2 - x_1x_2$, $x_1 = 0$ or 1, i = 1,2, are equal to 1. The random variables N_1, N_2 have a BVG-N distribution if and only if the point masses are all nonnegative.

4. Two multivariate geometric distributions

It is apparent that K_1, K_2 have the BVG-N survival function (2.1) if and only if

(4.1)
$$K_{1} = \min(M_{1}, M_{12})$$

$$X_2 = \min(M_2, M_{12})$$

where M_1 , M_2 , M_{12} are independent, positive integer valued random variables with the distributions $P[M_1 > k] = \theta_1^k$, $P[M_2 > k] = \theta_2^k$, $P[M_{12} > k] = \theta_{12}^k$, k = 0,1,..., where $0 \le \theta_1 \le 1$, i = 1,2, $0 \le \theta_{12} \le 1$, $\theta_1 \theta_{12} < 1$ and $\theta_2 \theta_{12} < 1$. If a θ is less than 1, then the corresponding M has a geometric distribution. If a θ is equal to 1, then the corresponding M can be regarded as degenerate at infinity, <u>or simply can be omitted from the represen-</u> tation (4.1).

We will say that positive integer valued random variables K_1, \ldots, K_n have a <u>multivariate geometric distribution in the narrow</u> <u>sense</u> (MVG-N) if K_1, \ldots, K_n are distributed as though

(4.2)
$$K_i = \min\{M_i: i \in J\}, \quad i = 1, ..., n,$$

where:

(a) The sets J are elements of a class J of nonempty subsets of {1,...,n} having the property that

for each $i \in \{1, \ldots, n\}$, $i \in J$ for some $J \in J$.

(b) The random variables M_J are independent and geometrically distributed, i.e. M_J is positive integer valued and

$$P[M_J > k] = \theta_J^k, \quad k = 0, 1, ...,$$

for some $0 \le \theta_{T} < 1$.

This definition is a discrete analogue of a characterization of the Marshall-Olkin multivariate exponential distribution (See Marshall and Olkin, 1967, Theorem 3.2 and p. 41).

Next we consider a multivariate version of the BVG-W distribution. It is also apparent that K_1, K_2 have the BVG-W survival function (2.2) if and only if

(4.3)
$$P[\min(K_{1}, K_{2}) > k] = p_{11}^{K}$$
$$P[K_{1} > k] = (p_{10} + p_{11})^{k}$$
$$P[K_{2} > k] = (p_{01} + p_{11})^{k}, \quad k = 0, 1, ...,$$

where $0 \le p_{ij} \le 1$, i, j = 0, l, $p_{10} + p_{11} < 1$ and $p_{01} + p_{11} < 1$, and

$$(4.4) P[K_{1}>k_{1}, K_{2}>k_{2}] = P[\min(K_{1}, K_{2})>k_{1}]P[K_{2}>k_{2}-k_{1}] \text{ if } 0 \le k_{1} \le k_{2}$$

$$P[\min(K_{1}, K_{2})>k_{2}]P[K_{1}>k_{1}-k_{2}] \text{ if } 0 \le k_{2} \le k_{1}.$$

Let I be the class of nonempty subsets of $\{1, \ldots, n\}$, and for each $I \in I$ let $K_I = \min_{i \in I} K_i$. We will say that the joint distribution of positive integer valued random variables K₁,...,K_n

(4.5)
$$P[K_{I} > k] = \rho_{I}^{K}, \quad 0 \le \rho_{I} < 1, \quad k = 0, 1, ...,$$

for each $I \in I$.

Given a simplex $0 \le k_1 \le \ldots \le k_n$, let $I_1 = \{i_1, \ldots, i_n\}$ = $\{1, \ldots, n\}$, $I_2 = \{i_2, \ldots, i_n\}$, \ldots , $I_n = \{i_n\}$. We will say that positive integer valued random variables K_1, \ldots, K_n have a <u>multi-</u> variate geometric distribution in the wide sense (MVG-W) if:

(a) The joint distribution of K₁,...,K_n has geometric minimums.

(b) On each simplex $0 \le k_1 \le \ldots \le k_n$

(4.6)
$$P[K_{i_1} > k_{i_1}, \dots, K_{i_n} > k_{i_n}] = \prod_{j=1}^n P[K_{I_j} > k_{i_j} - k_{i_{j-1}}],$$

where $k_{i_0} = 0$.

This definition is also a discrete analogue of a characterization of the Marshall-Olkin multivariate exponential distribution (See Esary and Marshall, 1970, Application 5.1).

It is easy to see that MVG-N distributions are also MVG-W. Example 2.1 shows that there are MVG-W distributions that are not MVG-N. Both the MVG-N and MVG-W classes of distributions have the following properties: (P_1) If the joint distribution of K_1, \ldots, K_n is in the class, then the joint distribution of any subset of K_1, \ldots, K_n is in the class.

If the joint distribution of K_1, \ldots, K_n has geometric minimums, it will be convenient to let $\mu_I = -\log \rho_I$ for each $I \in I$, i.e. let $e^{-\mu_I} = \rho_I$. Since $\rho_I < 1$, then $\mu_I > 0$.

Theorem 4.1. Let K_1, \ldots, K_n have a MVG-W distribution. Then K_1, \ldots, K_n have a MVG-N distribution if and only if there exists an $\alpha_1 \ge 0$ for each $J \in I$ such that

$$\mu_{I} = \sum_{J:I \cap J \neq \emptyset} \alpha_{J}$$

for each $I \in I$.

Proof. Suppose K1,...,K have a MVG-N distribution. Let

$$e^{-\alpha_{J}} = \begin{bmatrix} \theta_{J} & \text{if } J \in J \\ e & = \end{bmatrix}$$

$$1 \quad \text{if } J \in I - J$$

If $J \in J$, then $\alpha_J > 0$ since $\theta_J < 1$. If $J \in I - J$, then $\alpha_J = 0$. Since

$$e^{-\mu}I = P[N_I > 1] = \prod_{J:I\cap J \neq \emptyset} \theta_J = e^{-\sum_{J:I\cap J \neq \emptyset} \alpha_J}$$

then
$$\mu_{I} = \sum_{J:I \cap J \neq \emptyset} \alpha_{J}$$
.

Suppose for each $I \in I$, $\mu_I = \sum_{I:I \cap J \neq \emptyset} \alpha_J$, where $\alpha_J \ge 0$, $J \in I$. Let J consist of the sets J in I such that $\alpha_J > 0$. We have noted that $\mu_I > 0$ for each $I \in I$. If $I = \{i\}$, then $\mu_{\{i\}} = \sum_{J:i \in J} \alpha_J$. Thus $\alpha_J > 0$ for some J such that $i \in J$, i.e. $i \in J$ for some $J \in J$. For each $J \in J$ construct a positive integer valued random variable M_J with the geometric distribution $P[M_J > k]$ $= \theta_J^k$, $k = 0, 1, \ldots$, where $\theta_J = e^{-\alpha_J}$. Since $\alpha_J > 0$, then $\theta_J < 1$. Since K_1, \ldots, K_n have a MVG-W distribution, then on the simplex $0 \le k_{i_1} \le \ldots \le k_{i_n}$

$$P[K_{i_{1}} > k_{i_{1}}, \dots, K_{I_{n}} > k_{i_{n}}]$$

$$= \exp[-\mu_{I_{1}}k_{i_{1}}]\exp[-\mu_{I_{2}}(k_{i_{2}}-k_{i_{1}})]\dots\exp[-\mu_{I_{n}}(k_{i_{n}}-k_{i_{n-1}})]$$

$$= \exp[-k_{i_{1}}\Sigma_{J}:I_{1}\cap J \neq \emptyset^{\alpha}_{J}]\exp[-(k_{i_{2}}-k_{i_{1}})\Sigma_{J}:I_{2}\cap J \neq \emptyset^{\alpha}_{J}]$$

$$\dots \exp[-(k_{i_{n}}-k_{i_{n-1}})\Sigma_{J}:I_{n}\cap J \neq \emptyset^{\alpha}_{J}]$$

$$= \exp[-\Sigma_{J\in J}k_{j}\alpha_{j}] = \prod_{J\in J}\theta_{J}^{k_{J}},$$

where $k_J = \max\{k_i : i_j \in J\}$. Thus K_1, \dots, K_n are distributed as if $K_i = \min\{M_J : i \in J\}$, $i = 1, \dots, n$, i.e. K_1, \dots, K_n have a MVG-N distribution. 5. A multivariate cumulative damage process.

In keeping with the damage model that we have previously described, let

(5.1)
$$N_i = \min\{k: X_1 + \ldots + X_k \ge Y_i\}, \quad i = 1, \ldots, n,$$

where X_1, X_2, \ldots are independent and identically distributed as a nonnegative random variable X such that P[X > 0] > 0. Assume that (Y_1, \ldots, Y_n) is independent of $\{X_1, X_2, \ldots\}$ and that Y_1, \ldots, Y_n have a Marshall-Olkin multivariate exponential distribution, i.e. that Y_1, \ldots, Y_n are distributed as if

(5.2)
$$Y_i = \min\{S_i : i \in J\}, \quad i = 1, ..., n,$$

where the sets J are elements of a class J of nonempty subsets of $\{1, \ldots, n\}$ such that for each i, $i \in J$ for some $J \in J$, and the random variables S_J are independent with the exponential distributions $P[S_J > s] = e^{-\lambda} J^S$, $\lambda_J > 0$, $s \ge 0$.

For each $I \in I$, let $N_I = \min_{i \in I} N_i$ and $Y_I = \min_{i \in I} Y_i$. Then by computations parallel to those that led to (1.3) and (3.3) it is easy to see that for $k \ge 1$,

$$P[N_{I} > k] = P[Y_{I} > X_{1} + ... + X_{k}] = \{E e^{-\eta_{I}X_{k}}\},\$$

where $n_{I} = \sum_{j:I \cap J \neq \emptyset} \lambda_{j}$, and that for $l \leq k_{i_{1}} \leq \ldots \leq k_{i_{n}}$,

$$P[N_{i_{1}} > k_{i_{1}}, \dots, N_{i_{n}} > k_{i_{n}}]$$

$$= P[Y_{i_{1}} > X_{1} + \dots + X_{k_{i_{1}}}, \dots, Y_{i_{n}} > X_{1} + \dots + X_{k_{i_{n}}}]$$

$$= \{E e^{-\eta_{I_{1}} X_{i_{1}}} \{E e^{-\eta_{I_{2}} X_{i_{2}}} \}_{1}^{-\eta_{I_{2}} X_{i_{2}}} + \sum_{i_{1} \dots \{E e^{-\eta_{I_{n}} X_{i_{n}}} \}_{n}^{-k_{i_{n+1}}},$$

where $I_1 = \{i_1, \dots, i_n\} = \{1, \dots, n\}, \quad I_2 = \{i_2, \dots, i_n\}, \dots, I_n = \{i_n\}.$ Letting $\rho_1 = E e$, $I \in I$, the survival function of N_1, \dots, N_n becomes

(5.3)
$$\overline{F}(k_1, \dots, k_n) = P[N_1 > k_1, \dots, N_n > k_n]$$

$$= \rho_{I_1} \overset{k_{i_1}}{\rho_{I_2}} \cdots \overset{k_{i_n} - k_{i_n}}{\dots} \overset{k_{i_n} - k_{i_{n-1}}}{\prod_{n}}$$

on the simplex $0 \le k \le \dots \le k$. The content of the preceding in remarks is summarized by the following theorem.

Theorem 5.1.
$$N_1, \ldots, N_n$$
 have a MVG-W distribution.
Now let $\mu_I = -\log \rho_I$, $I \in I$, i.e. $e^{-\mu_I} = \rho_I = E e^{-\eta_I X}$.
The following definitions and lemmas are directed towards finding
conditions on X for which the equations $\mu_I = \sum_{J:I \cap J \neq \emptyset} \alpha_J$, $I, J \in I$,
have a set of nonnegative solutions α_J . Then by Theorem 4.1,
 N_1, \ldots, N_n will have a MVG-N distribution.

A coherent structure function of order n is an increasing binary function $\phi(\mathbf{x}) = \phi(\mathbf{x}_1, \dots, \mathbf{x}_n) = 0$ or 1 of binary arguments $\mathbf{x}_i = 0$ or 1, $i = 1, \dots, n$, such that $\phi(0, \dots, 0) = 0$ and $\phi(1, \dots, 1) = 1$. The <u>coherent life function</u> $\tau(\mathbf{t}) = \tau(\mathbf{t}_1, \dots, \mathbf{t}_n)$, $\mathbf{t}_i \ge 0$, $i = 1, \dots, n$, that corresponds to ϕ is defined by

$$\tau(t) = \sup\{u: \phi\{x(u,t_1),...,x(u,t_n)\} = 1\},$$

where x(u,t) = 1 if u < t, x(u,t) = 0 if $u \ge t$ (cf. Esary and Marshall (1970b). The <u>dual</u> of ϕ is the coherent structure function $\phi^{D}(x_{1}, \dots, x_{n}) = 1 - \phi(1-x_{1}, \dots, 1-x_{n})$, and τ^{D} is the life function that corresponds to ϕ^{D} . The coherent structure function $\phi_{1}\phi_{2}$ has $\min(\tau_{1}, \tau_{2})$ as its corresponding life function. The coherent structure function $\phi_{1} \lor \phi_{2} = \phi_{1} + \phi_{2} - \phi_{1}\phi_{2}$ has $\max(\tau_{1}, \tau_{2})$ as its corresponding life function. The dual of $\phi_{1}\phi_{2}$ is $\phi_{1}^{D} \lor \phi_{2}^{D}$ and the dual of $\phi_{1} \lor \phi_{2}$ is $\phi_{1}^{D}\phi_{2}^{D}$.

The following lemma holds for Y₁,...,Y_n with an arbitrary joint distribution.

Lemma 5.2. For each coherent structure function ϕ of order n, <u>let</u> $m(\phi) = P[\phi^{D}(Y) \leq X]$. <u>Then</u>:

> (a) $m(\phi) \ge 0$. (b) $\phi_1 \le \phi_2$ implies $m(\phi_1) \le m(\phi_2)$. (c) $m(\phi_1 \lor \phi_2) = m(\phi_1) + m(\phi_2) - m(\phi_1 \phi_2)$.

<u>Proof</u>. That (a) holds is immediate since $m(\phi)$ is a probability. To show (b), note that

$$\begin{split} \phi_{1} &\leq \phi_{2} \implies \phi_{1}^{D} \geq \phi_{2}^{D} \implies \tau_{1}^{D} \geq \tau_{2}^{D} \\ & \Rightarrow P[\tau_{1}^{D}(Y) \leq X] \leq P[\tau_{2}^{D}(Y) \leq X] \\ & \Rightarrow m(\phi_{1}) \leq m(\phi_{2}). \end{split}$$

To show (c), note that

$$\begin{split} \mathsf{m}(\phi_1 \lor \phi_2) &= \mathsf{P}[\min\{\tau_1^{\mathsf{D}}(\underline{Y}), \tau_2^{\mathsf{D}}(\underline{Y})\} \le X] \\ &= \mathsf{P}[\tau_1^{\mathsf{D}}(\underline{Y}) \le X, \tau_2^{\mathsf{D}}(\underline{Y}) \le X] \\ &= \mathsf{P}[\tau_1^{\mathsf{D}}(\underline{Y}) \le X] + \mathsf{P}[\tau_2^{\mathsf{D}}(\underline{Y}) \le X] \\ &- \mathsf{P}[\max\{\tau_1^{\mathsf{D}}(\underline{Y}), \tau_2^{\mathsf{D}}(\underline{Y})\} \le X] \end{split}$$

$$= \mathbf{m}(\phi_1 + \mathbf{m}(\phi_2) - \mathbf{m}(\phi_1\phi_2)).$$

Thus, (a), (b) and (c) all hold.

Each coherent structure function has a representation

$$\phi(\mathbf{x}) = \prod_{i \in \mathbb{P}_1} \mathbf{x}_i \vee \cdots \vee \prod_{i \in \mathbb{P}_p} \mathbf{x}_i,$$

1

where P_1, \ldots, P_p are the <u>minimal path sets</u> of ϕ , i.e. the minimal subsets P of {1,...,n} such that $x_i = 1$ for all i \in P implies $\phi(x) = 1$. The equivalent representation for the life function corresponding to ϕ is

(5.4)
$$\tau(t) = \max_{j=1,\ldots,p} \min_{i \in P_j} t_i.$$

The random variable X is <u>infinitely divisible</u> if X is distributed as if $X = X_{1,r} + \ldots + X_{r,r}$ for each $r = 1, 2, \ldots$, where $X_{1,r}, \ldots, X_{r,r}$ are independent and identically distributed as a random variable X_r . Since X is nonnegative and P[X > 0] > 0, then X_r is nonnegative and $P[X_r > 0] > 0$. As before let $\omega(\lambda) =$ $E e^{-\lambda X}$ be the Laplace transform of X, and $\psi(\lambda) = -\log \omega(\lambda)$. Let $\omega_r(\lambda) = E e^{-\lambda X} r = \omega(\lambda)^{1/r}$ be the Laplace transform of X_r . Then $r\{1 - \omega_r(\lambda)\} \neq \psi(\lambda)$ as $r \neq \infty$.

The following lemma uses the assumption that Y_1, \ldots, Y_n have a Marshall-Olkin multivariate exponential distribution to the extent that then Y_I has an exponential distribution for each $I \in I$, i.e. Y_1, \ldots, Y_n have <u>exponential minimums</u>.

Lemma 5.3. Let X be infinitely divisible. For each coherent structure function ϕ of order n, and each r = 1, 2, ..., define $m_r(\phi) = P[\tau^D(X) \leq X_r]$. Then

$$m(\phi) = \lim_{r \to \infty} rm_r(\phi)$$

exists for each ϕ , and m satisfies (a), (b) and (c) of Lemma 5.2.

Proof. From (5.4)

$$m_{r}(\phi) = P[\tau^{D}(Y) \leq X_{r}] = P[Y_{P_{1}} \leq X_{r}, \dots, Y_{P_{p}} \leq X_{r}],$$

where P_1, \ldots, P_p are the minimal path sets of ϕ^D . Then by a standard inclusion and exclusion argument

$$m_{r}(\phi) = \sum_{j=1}^{p} \{1 - P[Y_{P_{j}} > X_{r}]\} - \sum_{j,k=1}^{p} \{1 - P[Y_{P_{j}} > X_{r}, Y_{P_{k}} > X_{r}]\}$$

$$+ \dots \pm \{1 - P[Y_{P_{1}} > X_{r}, \dots, Y_{P_{p}} > X_{r}]\}$$

$$= \sum_{j=1}^{p} \{1 - \omega_{r}(n_{P_{j}})\} - \sum_{j,k=1}^{p} \{1 - \omega_{r}(n_{P_{j}} \cup P_{k})\}$$

$$+ \dots \pm \{1 - \omega_{r}(n_{P_{1}} \cup \dots \cup P_{p})\}.$$

Since for each λ , $r\{1 - \omega_r(\lambda)\} \rightarrow \psi(\lambda)$ as $r \rightarrow \infty$, it follows that $m(\phi)$, the limit of $rm_r(\phi)$ exists. Since for each r, m_r satisfies (a), (b) and (c) of Lemma 5.2, so does m.

For each $I \in I$, let $\phi_I = \bigvee_{i \in I} x_i$, where $\bigvee_{i=1}^n x_i = x_1 \vee \cdots \vee x_n$. Then I is the only minimal path set of ϕ_I^D . Embedded in the proof of Lemma 5.3 is the observation that $m_r(\phi_I) = 1 - E e^{-\eta_I X_r} = 1 - \omega_r(\eta_I)$ and

(5.5)
$$m(\phi_{I}) = \lim_{r \to \infty} rm_{r}(\phi_{I}) = \psi(\eta_{I})$$

$$= -\log E e^{-\eta_{I}X} = \mu_{I}$$

Theorem 5.4. If X is infinitely divisible, then N₁,...,N_n have a MVG-N distribution.

<u>Proof.</u> By Theorem 5.1 N_1, \ldots, N_n have a MVG-W distribution. Then by Theorem 4.1 it is sufficient to show that for each $I \in J$ $\mu_I = \sum_{J:I\cap J=\emptyset} \alpha_J$, where $\alpha_J \ge 0$, $J \in J$.

Let m be defined as in Lemma 5.3. Since m satisfies (a), (b) and (c) of Lemma 5.2, it follows from Lemma 3.1, Esary and Marshall (1970a) that there exists a nonnegative function $\alpha(x)$ such that

$$\mathfrak{m}(\phi) = \sum_{\mathbf{x}} \alpha(\mathbf{x}) \phi(\mathbf{x})$$

for each coherent structure function ϕ of order n.

Let the ith coordinate of $\stackrel{J}{\sim}$ be 1 if $i \in J$ and 0 if $i \in J$. Then $\phi_{I}(\stackrel{J}{\sim}) = 1$ if and only if $I \cap J \neq \emptyset$. Let $\alpha_{J} = \alpha(\stackrel{J}{\times}) \ge 0$, $J \in I$. Then from (5.5)

$$\mu_{\mathbf{I}} = \mathbf{m}(\phi_{\mathbf{I}}) = \Sigma_{\mathbf{J}:\mathbf{I}\cap\mathbf{J}\neq\emptyset} \alpha_{\mathbf{J}}.$$

Thus N₁,...,N_n have a MVG-N distribution.

For the purpose of the following theorem, assume that Y_1, \ldots, Y_n are independent and that Y_i has the exponential distribution $P[Y_i > y] = e^{-\lambda_i y}$, $y \ge 0$, $\lambda_i > 0$, i.e. that Y_1, \ldots, Y_n have a special case of the Marshall-Olkin multivariate exponential distribution.

Theorem 5.5 (Converse to Theorem 5.4). If N_1, \ldots, N_n have a MVG-N distribution for each n and all $\lambda_1 > 0, \ldots, \lambda_n > 0$, then X is infinitely divisible.

<u>Proof</u>. Since N_1, \ldots, N_n have a MVG-N distribution, it follows from Theorem 4.1 that for each $J \in I$ there exists an $\alpha_J \ge 0$ such that

$$\mu_{I} = \sum_{J:I \cap J \neq \emptyset} \alpha_{J}$$

for each $I \in I$. Let $\alpha(\underline{x}) = \alpha_J$ where $J = \{i: x_i = 1\}, x \neq (0, ..., 0),$ and define $m(\phi) = \sum_{\underline{x}} \alpha(\underline{x})\phi(\underline{x})$ for each coherent structure function ϕ of order n. Then m satisfies conditions (a), (b) and (c) of Lemma 5.2. Also

$$m(\phi_{I}) = \sum_{x} \alpha(x) \bigvee_{i \in I} x_{i} = \sum_{J:I \cap J \neq \emptyset} \alpha_{J}$$

 $= \mu_{I} = \psi(\eta_{I}) = \psi(\sum_{i \in I} \lambda_{i}).$

26

Then, with the incidental use of an inclusion-exclusion argument based on condition (c) of Lemma 5.2, for $n \ge 2$ (letting $\phi_i = \phi_{\{i\}}, \phi_{ij} = \phi_{\{ij\}}, etc.$),

$$- \alpha_{2...n} = m(\prod_{i=1}^{n} x_{i}) - m(\prod_{i=2}^{n} x_{i})$$

$$= \sum_{i=1}^{n} m(\phi_{i}) - \sum_{\substack{i,j=1 \\ i < j}}^{n} m(\phi_{ij}) + \dots + m(\phi_{1...n})$$

$$- \sum_{i=2}^{n} m(\phi_{i}) + \sum_{\substack{i,j=2 \\ i < j}}^{n} m(\phi_{ij}) + \dots + m(\phi_{2...n})$$

$$= m(\phi_{1}) - \sum_{i=2}^{n} m(\phi_{1i}) + \dots + m(\phi_{1...n}).$$

Thus

$$(-1)^{n} \alpha_{2...n} = m(\phi_{1...n}) - \dots + \sum_{1=2}^{n} m(\phi_{11}) + m(\phi_{1})$$
$$= \psi(\lambda_{1} + \dots + \lambda_{n}) - \dots + \sum_{i=2}^{n} \psi(\lambda_{1} + \lambda_{i}) + \psi(\lambda_{1})$$
$$= \Delta_{\lambda_{n}} \dots + \Delta_{\lambda_{2}} \psi(\lambda_{1}),$$

where $\Delta_{y}f(x) = f(x+y) - f(x)$. Since $\alpha_{2...n} \ge 0$, it follows that

$$(-1)^{n} \psi^{(n-1)}(\lambda_{1}) \ge 0, \qquad n = 2, 3, \dots,$$

where $\psi^{(n)}(\lambda)$ is the nth derivative of $\psi(\lambda)$ with respect to λ . Thus

$$(-1)^{n} \frac{d^{n}\psi^{(1)}(\lambda)}{d\lambda^{n}} \geq 0, \qquad n = 0, 1, \dots, \lambda > 0,$$

i.e. $\psi^{(1)}(\lambda)$ is a completely monotone function. It follows from Theorem 1, p. 425, Feller (1966) that $\omega(\lambda) = e^{-\psi}$ is the Laplace transform of an infinitely divisible random variable, i.e. that X is infinitely divisible.

Acknowledgment.

The authors thank P. A. W. Lewis for his helpful comments on the manuscript.

REFERENCES

- Esary, J. D. and Marshall, A. W. (1970a). Multivariate distributions with exponential minimums. Naval Postgraduate School Report NPS55EY70091A.
- [2] Esary, J. D. and Marshall, A. W. (1970b). Coherent life functions. SIAM J. Appl. Math. 18, 810-814.
- [3] Esary, J. D., Marshall, A. W. and Proschan, F. (1970). Shock models and wear processes. Florida State University Statistics Report M194.
- [4] Feller, W. (1966). An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York.
- [5] Mardia, K. V. (1970). Families of Bivariate Distributions. Hafner, Darien, Connecticut.
- [6] Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. J. Amer. Statist. Assoc. 62, 30-44.

INITIAL DISTRIBUTION LIST

	No.	Copies
Defense Documentation Center (DDC) Cameron Station		12
Alexandria, Virginia 22314		
Library (Code 0212)		2
Naval Postgraduate School Monterey, California 93940		
Library (Code 55)		2
Department of Operations Research and Administrative Sciences		
Monterey, California 93940		
Dean of Research		2
Code 023		
Naval Postgraduate School Monterey, California 93940		
Dr. Nancy R. Mann		1
Research Division		
6633 Canoga Avenue		
Canoga Park, California 91304		
Professor Ingram Olkin		· 1
Department of Statistics		
Stanford University Stanford California 9/305		
Staniord, Californita 94505		
Professor J. Neyman		1
Department of Statistics		
Berkeley, California 94720		
Professor William L. Hutchings		1
Department of Mathematics		
Whitman College		
Walla Walla, Washington 99362		
Professor Frank Proschan		1
Department of Statistics		
The Florida State University		
Tallanassee, Florida 32300		
Dr. Sam C. Saunders		1
Mathematics Department		
Washington State University Pullman, Washington 99163		
- GALGARY TRUITALLE VIL VILVA		

Dr. Seymour M. Selig Office of Naval Research Arlington, Virginia 22217	1
Professor Z. W. Birnbaum Department of Mathematics University of Washington Seattle, Washington 98105	1
Professor R. E. Barlow Department of Industrial Engineering and Operations Research University of California Berkeley, California 94720	1
Professor Ernest M. Scheuer Management Science Department San Fernando State College Northridge, California 91324	1
Professor D. R. Cox Imperial College Exhibition Road London SW 7, England	1
Professor Zvi Ziegler Israel Institute of Technology, Technion Haifa, Israel	1
Professor Samuel Karlin Mathematics Department Weizmann Institute of Science Rehovot, Israel	1
Professor Chin Long Chiang Division of Biostatistics University of California Berkeley, California 94720	1
Professor G. J. Liebermann Department of Operations Research Stanford University Stanford, California 94305	1
Professor A. W. Marshall Department of Statistics University of Rochester Rochester, New York 14627	10
Professor J. D. Esary Department of Operations Research and Administrative Sciences Naval Postgraduate School Monterey, California 93940	10

Professor Lucien Le Cam Centre de recherches mathématiques Université de Montréal Case postale 6128, Montréal 101, Canada Department of Operations Research and Administrative Sciences Naval Postgraduate School Monterey, California 93940 Professor D. P. Gaver 55Gv Professor P. A. W. Lewis 55Lw Professor K. T. Marshall 55Mt Professor R. W. Butterworth 55Bd Professor D. R. Barr 55Bn CDR R. A. Stephan 55Xd Dr. Bruce J. McDonald Office of Naval Research Arlington, Virginia 22217 Dr. B. H. Colvin Applied Mathematics Division National Bureau of Standards Washington, D. C. 20234

Dr. Guil Hollingsworth Technical Director Naval Air Development Center Warminster, Pennsylvania 18974 1

1

1

1

1

1

1

1

1

1

	UNCLASSIFIED			2.2
	Security Classification			33
	DOCUMENT CONTR	ROL DATA - R	& D	
	Security classification of title, body of abstract and indexing a	innotation must be e	ntered when the	overall report is classified.
1 041	GINATING ACTIVITY (Corporate author)		28. REPORT S	ECURITY CLASSIFICATION
	Naval Postgraduate School Monterey, California 93940		J Unc	lassified
			26. GROUP	
3 REF	PORT TITLE		1	
	Multivariate Geometric Distributions G	Generated by	a Cumulat	ive Damage Process
1 053	CRIPTIVE NOTES (Type of report and inclusive dates)			
4. 02.	Technical Baront March 1072			
5 411	Lechnical Report - March 1975			
5 40				
	James D. Esary			
	Albert W. Marshall			
6. REP	ORTOATE	78. TOTAL NO. O	FPAGES	7b. NO OF REFS
	March 1973			6
Ba. CC	IN TRACT OR GRANT NO.	98. ORIGINATOR'	S REPORT NUM	BER(S)
b. PF	OJECT NO.			
	0.0051			
с,	2-0251	95. OTHER REPO	RT NO(5) (Any	other numbers that may be assigned
		inis report)		
d.		NSF GP-30707X1		
10. OI	STRIBUTION STATEMENT	1		
	Approved for public release; distribut	ion unlimit	ed.	
11. SU	PPLEMENTARY NOTES	12. SPONSORING	MULTARY ACT	
			•	
	•			
13. AB	STRACT			
	Two (narrow and wide) multivari	late geometr:	ic analogu	es of the
	Marshall-Olkin multivariate exponentia	al distribut	ion are de	erived from the
	following cumulative damage model A	set of devi	ces is ext	posed to a
	common domago process Damage occurs	in discrete	cvcles.	On each cycle
	common damage process. Damage occurs	- abgarwatio		pregative random
	the amount of damage is an independent	- UDSELVALIO	dovioo hoo	its own random
	variable. Damages accumulate additiv	very. Each	uevice nas	maga avaoade
	breaking threshold. A device fails wh	nen the accu	mulated da	amage exceeds
	its threshold. Thresholds are indepen	ndent of dama	ages, and	nave a Marshall-
	Olkin multivariate exponential distrib	oution. The	joint dis	stribution of
	the random numbers of cycles up to and	d including	failure of	the devices
	has the wide multivariate geometric di	istribution.	It has t	the narrow
	multivariate geometric distribution if	f the damage	variable	is infinitely
	divisible.			
	GTATOTOTOTO:			

UNCLASSIFIED

S/N 0101-807-6921

.

Securi	ty Classi	fication				

KEY WORDS	LIN	K A	LIN	КВ	LI
······································	ROLE	жт	ROLE	WT	ROLE
		-			
Multivariate geometric distributions					
Compound Poisson process					
Multivariate exponential distributions					
Coherent systems					
Reliability					
		0			
		0.15			
			-		
			-		
	-				
	-				

