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ABSTRACT

Two (narrow and wide) multivariate geometric analogues of the
Marshall-Olkin multivariate exponential distribution are derived from the
following cumulative damage model. A set of devices is exposed to a

common damage process. Damage occurs in discrete cycles. On each cycle
the amount of damage is an independent observation on a nonnegative random
variable. Damages accumulate additively. Each device has its own random
breaking threshold. A device fails when the accumulated damage exceeds
its threshold. Thresholds are independent of damages, and have a Marshall-
Olkin multivariate exponential distribution. The joint distribution of

the random numbers of cycles up to and including failure of the devices
has the wide multivariate geometric distribution. It has the narrow
multivariate geometric distribution if the damage variable is infinitely
divisible.
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1. Introduction

Suppose that we have a device for which exposure to failure

occurs in discrete cycles, that on each cycle the device is damaged

by an amount which is an observation on a nonnegative random variable

X, and that damages, which are independent from cycle to cycle,

accumulate additively. The device fails when the accumulated damage

reaches Y > 0, its breaking threshold.

Let N be the number of cycles up to and including failure

of the device. Then

(1.1) N = min{k: X + ... + X :> Y},

where X ,X , . . . are independent and identically distributed as X.

If the component is to eventually fail, it must be that P[X>0] > 0.

Suppose now that the breaking threshold Y is a random

variable, independent of the damages X ,X
9
,..., and with the expo-

nential survival function

(1.2) G(y) = P[Y>y] = e~
Ay

, X > 0, y £ 0.

Since N > k ;> 1 if and only if Y > X + . . . + X,, then

P[N>k] = P[Y>X + ...+X,] = EG(X
1
+...+X

k)

k -XX-

= (Ee
AX

} , k = 1,2,... .



Thus since N has the positive integers as its values, N has the

geometric survival function

(1.3) F(k) = P[N>k] = 6
k

, £ 9 < 1, k = 0,1,...,

-XX
with 9 = Ee . That 9 < 1 follows from X > and P[X>0] > 0.

This paper is devoted to the properties of multivariate geo-

metric distributions that can be generated by the process outlined

above—subjecting a set of devices with different breaking thresholds

to a common sequence of additive damages. The results are a step in

the systematic study of the discrete multivariate life distributions

that can be derived from cumulative damage models, and relate to the

study of the continuous multivariate life distributions that can be

derived from compound Poisson processes. A discussion of the general

problem setting, univariate results, and a bibliography can be found

in Esary, Marshall, and Proschan (1970).



2. Two bivariate geometric distributions

To place a discussion of bivariate geometric distributions in

a context similar to that with which we began suppose that we have

two devices for which exposure to failure occurs in discrete cycles,

and are concerned with the joint distribution of K and K , the

numbers of cycles up to and including failure of the devices.

One could assume that in each cycle there is a shock to the

first device which it survives with probability 6 , a shock to the

second device which it survives with probability 6 , and a shock

to both devices which both survive with probability 6 1?
and neither

survives with probability 1-9 , and that the events of surviving

the three kinds of shocks are independent of each other and from

cycle to cycle. If each device is to eventually fail, it must be

that 6 6 < 1 and 9
9
e
19

< !• Then the joint survival function

of Kr K
2

is

k k max(k
1
,k~)

(2.1) FCk^) = p[K
1
>k

1
,K

2
>k

2
] = e

x
e
2

9
12

£ e. £ l, i = 1,2, o <; e £ l,

e
i
9
12

< 1 and e
2
9
12

< 1
*

k
l
,k

2
= °' 1 '-" *

We will say that positive integer valued random variables K ,K whose

joint distribution is given by a survival function of the form (2.1)

have a bivariate geometric distribution in the narrow sense (BVG-N)

.

A BVG-N distribution has geometric marginals, an intuitive genesis

similar to that for the univariate geometric, and is a discrete analogue



of the bivariate exponential distribution introduced by Marshall

and Olkin (1967).

A wider class of bivariate geometric distributions can be

generated if one assumes that on each cycle there is a shock to both

devices with probabilities p that both devices survive, pin

that the first device survives and the second device does not survive,

p that the first device does not survive and the second device

survives, and pon that both devices do not survive, and that the

events of surviving the shocks are independent from cycle to cycle.

If each device is to eventually fail, it must be that p + p < 1

and p rtn + p., , < 1. Then the joint survival function of K n ,K„ isK01 *ll J 1' 2

k k -k
(2.2) F(k

1
,k

2
) = P[K

1
>k

1
,K

2
>k

2
] = ^(Poi+Pix)

2 1
if \ * k

2
'

Pll^lO^l^
X 2

if k
2 * V

* Pij * !' *•* " O; 1
-

2
Lj=0 p ij

= 1 «

P10
+ Pll

< 1 and P01
+ Pll

< 1
'

k
l'

k
2

= °' 1 '-" '

We will say that positive integer valued random variables K.. ,K„ whose

joint distribution is given by a survival function of the form (2.2)

have a bivariate geometric distribution in the wide sense (BVG-W)

.

Again a BVG-W distribution has geometric marginals, an appropriate



genesis, and as will be established later, is also a discrete analogue

of the Marshall-Olkin bivariate exponential distribution.

The survival function of a BVG-W distribution can be written

in a form similar to that of a BVG-N distribution by introducing

parameters 6 , 8_, 6..- that are the solutions of the equations

(2.3) e
i
9
2
9
12 " Pll

(See Figure 1)

9
1
6
12

=
P10

+ Pll

e
2
9
12

=
P01

+ Pll

Pll ' 6
l
6
2
e
i2

P
10

- 9
1
d-«

2
)8

12 Pi. " Vl2

p01
= (l-e^e^^

POO
= l - 6

1
9
12

-a
2
e
12

+ e
l92

e
12

P
.
' : " e

i
9
12

P.l ' e
2
6
l2 p.o

= x - e
2
e
i2

1

Figure 1.

Since

* P 10
+ Pll

^ + P01 + P-,1 ^ 1»* pll
S P10

+ P01
+ Pll

S P01
+ Pll

then



* 8
i
e
2
6
12 \ fi\

12
* e

i2
(6

l
+6 2-e

i
e
2
) * l -

« e
2
e
12

i.e. , , ~ must satisfy conditions which reduce to

(2.4) £
1
£ 1, £ Q

2
£ 1, £ e

12
(6

i
+e 2"e

i
e
2
) * 1 *

Conversely, if the 9's satisfy the conditions (2.4), then through

(2.3) and pQ0
= 1 - p1Q

- pQ1
- pn they define p , i,j = 0,1,

that are probabilities that add to 1. Also , 9 , 9 must

satisfy the additional conditions.

(2.5)
X 12

< 1,
2 12

< 1.

It follows that the survival function (2.2) of a BVG-W distribution

can be expressed in the equivalent form

k k max(k ,k )

(2.6) F(k
x
,k

2
) = P[K

X
> k±t K

2
> k

2
] = 6

1

-L

2

Z

12

as 6
±

a; 1, i = 1,2, s: e
12

( e
1
+e

2
"e

i
e
2
) * 1 »

1 12 < 1 and
2
e
i2

< 1
*

k
l
,k

2
= °> 1 *-" *

1 4
Example 2.1. If = = — and 9

2
= — , then the distribution

defined by the survival function (2.6) is BVG-W but not BVG-N.

Since £ 6. £ 1, i « 1,2, implies a£ 9 + 9 - £ 1,

it is apparent from (2.1) and (2.6) that a BVG-N survival function

must always be BVG-W.



By contrast with the BVG-N and BVG-W distributions, the more

familiar bivariate geometric (negative binomial) distribution des-

cribed in Mardia (1970), Section 10. A, can be viewed as arising from

a sequence of three outcome trials; success of type 1 occurring with

probability p.. , success of type 2 occurring with probability p„,

and failure occurring with probability 1 - p - p„ , with K and

K„ defined respectively to be the numbers of successes of types 1

and 2 prior to the first failure.



3. A bivariate cumulative damage process.

We can now consider the bivariate case of the problem which

motivates this paper. Suppose that on each cycle both devices are

damaged by the same amount, which is an observation on a nonnegative

random variable X, and that damages, which are independent from

cycle to cycle, accumulate additively. The first device fails when

the accumulated damage reaches Y > 0, its breaking threshold.

The second device fails when the accumulated damage reaches Y > 0,

its breaking threshold. As before, if each device is to eventually

fail, it must be that P[X > 0] > 0.

Let N ,N be the number of cycles up to and including failure

of the two devices. Then as in (1.1)

(3.1) N = min{k: X- + . . . + X. i Y }, i = 1,2,

where X.,X~,... are independent and identically distributed as X.

We will be concerned with the case in which the breaking

thresholds Y ,Y are random variables that are independent of the

damages, and in particular will suppose that Y. ,Y have a Marshall-

Olkin bivariate exponential distribution, i.e.

-X y -A y -X.
9
max(y ,y )

(3.2) G(yr y
2
) = P^ > y^ Y,, > y

2
] = e

\
±
> 0, i = 1,2, X

12
:> 0, X

±
+ x

12
>

and x
2
+ x

2
> o, yi»y2

^ °*



The survival function (3.2) includes the case in which Y ,Y are

independent and exponentially distributed.

Since N. > k ^ 1 if and only if Y > X + ... + X,,

i = 1,2, then if 1 £ k «£ k

P[N
X

> kr N
2

> k
2

] - P[Yl > h + ... + X^, Y
2

> X
x
+ ... + X^]

E G (X., + . . . + X, , X + . . . + X )

-*
1
(x

1
+...+x

k ) - x
2
(x1+ ...+Xk ) - x

12
(x1+ ...+Xk )

E e

-(X1+X2+X12
)(X1+ ...+Xk > - (A 2+X 12

)(X
k +1

+...+X
k

>

E e

-(X+X.+X.JX
k
l -(X +X )X

k
2

k
l

{E e
X 2 12

} {E e
2 12

}

Similarly, if 1 £ k £ k , then

-(X +X +X )X
k
2 -(X +X )X

k
l"

k
2

P[N
X

> kr N
2

> k
2

] = {E e
l

} {E e }

Letting

-(X +X +X )X

(3.3) e
i
6
2
6 12

= E e

-(X +X )X

»i
e
i2

= E 6

-(X +X )X

l

2
6
12

- E e
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the survival function of N.. ,N becomes

k k max(k ,k )

(3.4) F(k
l5
k
2
) = V6 2\ 2 » \^2

= 0,1>

We will show that 6 , 6 , satisfy the conditions that make

(3.4) a BVG-N survival function.

It is immediate from (3.3) that 8.^0, i = 1,2, and that

9
12

^ 0. Since X
±
+ X

±2
> 0, *

2
+ X

12
> 0, and P[X > 0] > 0,

it also follows that 0^^ < 1 and 0J < 1. We need to show

that 8. £ 1, i = 1,2, and 8.. <; 1.
l 12

—XX
Let o)(X) = E e , X ^ 0, be the Laplace transform of X,

and <|>(X) = -log w(X). Then iKO) = and ty is concave and

increasing in X . It follows that ty is subadditive, i.e.

tKX+v) ^ ^(X) + <Kv), X k 0, v :> 0.

To introduce some convenient notation let

^12
(3.5) u

12
= ^(X

1
+X

2
+X

12
), e = u)(X

1
+X

2
+X

12
) = 8

;L 2 12

"
y
l

m
1

= t|j(x
1
+x

12
) , e = u)(x

1
+x

12
) = e

1
e
12

"
y
2

y
2

= i>(X
2
+X

12
) , e = (d(X

2
+X

12
) - 6

2
6 12'

and define a.., a
?

, a,
2

by
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(3.6) a
x
+ a

2
+ a^ = y^

a
l
+ a

12
= y

l

a
2
+ a

12
- M

2

"a
l2 „ "al „

_a
2Then 6^ = e , 9

;L

= e , 6 = e . Thus N ,N have a BVG-N

distribution, i.e. s: 1 , i = 1,2, 6 £ 1, if and only if

a ^ 0, i = 1,2, and a ^ 0.

Theorem 3.1. N ,N have a BVG-N distribution .

Proof. From (3.6), a
±

= u
12

- y
2

, a
2

= y
12

- y^ a
12

= jj + y
2

- u.,^

Then o^ £ 0, since \p is increasing and y = t|j(A +A +A _) ^

ip(A +X ) = y . Similarly a ^ 0. Also a ^ 0, since ip is

subadditive, increasing and

^ + P
2

= i^(A
1
+A

12
) + <KA

2
+A

12
) ^ i|;(A

1
+A

2
+2A

12
)

* *C^2+X
12 )

= y 12*

Thus N
X
,N are BVG-N.

The balance of the paper is devoted to the multivariate version

of the problem just considered. While the definitions and approach

generalize, it will appear that Theorem 3.1 is peculiar to the bivariate

case. Figure 2 introduces a point of view towards the equations (3.6)

which will be useful.
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Figure 2.

In the figure a , a„, a.. „ define point masses on all the

vertices of a unit square except (0,0), and u, , u~, y,
9

are the

corresponding masses of the sets where the increasing Boolean functions

<j)(x
1
,x

2
) = x

x
, <ti(x

1
,x

2
) = x

2
, <j)(x

1
,x

2
) = x

x
v x

2
= x^^ + x

2
- x

1
x
2

,

x.=0 or 1, i 1,2, are equal to 1. The random variables

N ,N„ have a BVG-N distribution if and only if the point masses

are all nonnegative.
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4. Two multivariate geometric distributions

It is apparent that K ,K have the BVG-N survival function

(2.1) if and only if

(4.1)

K
±

= min(M
1
,M

12
)

K
2

= min(M
2
,M

12
)

where M , M , M are independent, positive integer valued random

k k
variables with the distributions P[M.. > k] =6., P[M > k] = Q ,

P[M
12

> k] = 6
12

, k = 0,1,... , where s* 6 s; 1, i = 1,2,

<: 6 £ 1, Q^-,2 < 1 and 6
2
6
12

< 1# If a 8 is less than 1 '

then the corresponding M has a geometric distribution. If a 8

is equal to 1, then the corresponding M can be regarded as

degenerate at infinity, or simply can be omitted from the represen-

tation (4.1) .

We will say that positive integer valued random variables

K. , . .
.
,K have a multivariate geometric distribution in the narrow

^ n w

sense (MVG-N) if K. , . .
.
,K are distributed as though

1 n

(4.2) K. = min{M : i € J), i - l,...,n,

where:

(a) The sets J are elements of a class J of nonempty

subsets of {l,...,n} having the property that

for each i 6 {l,...,n}, i 6 J for some J £ J.
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(b) The random variables M are independent and
*J

geometrically distributed, i.e. M is positive integer

valued and

P[M
a

> k] = 6j, k = 0,1,... ,

for some 0^9 < 1.

This definition is a discrete analogue of a characterization of the

Marshall-Olkin multivariate exponential distribution (See Marshall

and Olkin, 1967, Theorem 3.2 and p. 41).

Next we consider a multivariate version of the BVG-W distri-

bution. It is also apparent that K.. ,K have the BVG-W survival

function (2.2) if and only if

(4.3) P[min(Kr K
2
) > k] = p^

P[K
X

> k] = (P10+Pn )

k

P[K
2

> k] = (Pq-l+P-l^, k = 0,1,... ,

where £ p £ 1, i,j = 0,1, p1Q
+ pu < 1 and p

Q1
+ pu < 1,

and

P[min(K
1
,K

2
)>k

1
]P[K

2
>k

2
-k

1
] if 0^$^

(4.4) P[K
1
>k

1
,K

2
>k

2
]

=

P[min(K
1
,K

2
)>k

2
]P[K

1
>k

1
-k

2
3 if «: k

2
s: k^

Let I be the class of nonempty subsets of {l,...,n}, and

for each 16 1 let K min K . We will say that the joint
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distribution of positive integer valued random variables K, , . . . ,K
1 n

has geometric minimums if

(4.5) PtKj > k] =
pk,

s P] . < 1, k - 0,1,..- ,

for each I £ I

.

Given a simplex £ k . £ . . . £ k. , let I., = {i, ..... i }
i, l 1 1 n
1 n

= {l,...,n}, I = {i.,...,i }, ..., I {i }. We will say that
z z n n n

positive integer valued random variables K, , . .
.
,K have a multi-

1 n

variate geometric distribution in the vide sense (MVG-W) if

:

(a) The joint distribution of K , ...,K has geometric

minimums

.

(b) On each simplex £ k. £ ... £ k.
X
l \i

(A. 6) P[ K. > k. , ..., K, > k. ] = Ft? , P[KT > k. - k. ],
i, i, i i j=l I. i. i.

i11 nn J J3J-1
where k. =0.

x
o

This definition is also a discrete analogue of a characterization

of the Marshall-Olkin multivariate exponential distribution (See

Esary and Marshall, 1970, Application 5.1).

It is easy to see that MVG-N distributions are also MVG-W.

Example 2.1 shows that there are MVG-W distributions that are not

MVG-N. Both the MVG-N and MVG-W classes of distributions have

the following properties:
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(P,) If the joint distribution of K-.....K is in the class,
1

J V n '

then the joint distribution of any subset of K , . . . ,K is in

the class.

(P~) If the joint distribution of K, K is in the class,
i In

the joint distribution of L- , . . . ,L is in the class and
1 m

(K , . . .
,K ) and (L- , . . . ,L ) are independent, then the joint

distribution of K, , . . . ,K : L- , . . . ,L is in the class.
1 n 1 m

(P_) If the joint distribution of K, , . . . ,K is in the class,
5 In

then each K. , i = l,...,n, has a geometric distribution.

(P.) If the joint distribution of K, . . . . ,K is in the class
4

J In
and K_ = min,-T K

, , j l,...,m, where I, , . .
.
,1 are

I. i€L i 1 m
J J

nonempty subsets of l,...,n , then the joint distribution of

K , . .
.
,K is in the class

.

1 m
If the joint distribution of K , . .

.
,K has geometric mini-

mums, it will be convenient to let y -log p for each I 6 I ,

"y
I

i.e. let e = p . Since p T
< 1, then y > 0.

Theorem 4.1. Let K- . . . . ,K have a MVG-W distribution. Then
1 n

K. , . .
.
,K have a MVG-N distribution if and only if there exists an

1 n

a ^ for each J € I such that
J

y
I

" 2J:LW0 a
J

for each 16 1.
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Proof . Suppose K. , . . . ,K have a MVG-N distribution. LetIn
e

T
if j 6 J"a

j
J

e =

1 if J € I - J.

If J € J, then oij > since 6 < 1. If J € I - J, then

a = 0. Since

"
Ul

= p[n > l] = n e = e
2j:W0 aj

L1N
I

1J LL
J:I(Vt0

y
j

e

then M]. = 2
J:inJ?t0

ar
Suppose for each I 6 I, M

T
= 2

T
,p.. ,w a , where a ^ 0,

J 6 I. Let J consist of the sets J in I such that a > 0.

We have noted that y > for each I € I. If I = {i}, then

Hj.-, =2
T
,. fT a . Thus a > for some J such that i € J, i.e.

i 6 J for some J £ J. For each J 6 J construct a positive integer

valued random variable M with the geometric distribution P[M > k]

k
~a

j
= 9 , k = 0,1,..., where Q = e . Since a > 0, then 6 < 1.

Since K. , . .
.
,K have a MVG-W distribution, then on the simplex

1 n

£ k. £ . . . £ k.

1 n
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F
'

tK
i,

>k
i,

K
I

>k
i

]11 n n

exp[-y k ]exp[-y (k -k )]...exp[-y (k -k )]

1 1 2
x
2

x
l n n Vl

exPt-k
±i

2
J: i

i
nJ^a

J
]exP [

- (k
i
2

-k
i
1
) 2J:l^0a

J
]

... exp[-(k. -k. ^Sj.^j^aj]
n n-1 n

" exP [
- SJ€J k

fi ] " nJ€J
9
J
J

'

where k T = max{k. : 1. 6 JK Thus K, , . . . ,K are distributed as
J l. j In

J

if K. = min{M T : i 6 J}» 1 l,...,n, i.e. K-.....K have a
i J In

MVG-N distribution. n
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5. A multivariate cumulative damage process.

In keeping with the damage model that we have previously

described, let

(5.1) N. = min{k: X, + ... + X. ^ Y.}, i = l,...,n,
i 1 k l

where X ,X , . . . are independent and identically distributed as a

nonnegative random variable X such that P[X > 0] > 0. Assume

that (Y_ , . . . ,Y ) is independent of {X n ,X_,...} and that Y, , . . . ,YIn 12 In
have a Marshall-Olkin multivariate exponential distribution, i.e.

that Y. , . . . ,Y are distributed as if
1 n

(5.2) Y
±

= min{Sj: i £ J}, i=l,...,n,

where the sets J are elements of a class J of nonempty subsets

of {l,...,n} such that for each i, i € J for some J g J, and

the random variables S are independent with the exponential distri-

butions P[S > s] = e , X > 0, s £ 0.
J J

For each I € I, let N T = min.^T N. and Y T = min_ T Y..

Then by computations parallel to those that led to (1.3) and (3.3)

it is easy to see that for k ^ 1,

-n,x k

P[N > k] = P[Y > X + ... + X
k

] = {E e } ,

where n T = ^ T T _ T ,w X T , and that for 1 £ k. £ . . . £ k . ,T J: 101^0 J' i, i
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P[N. > k. , ... , N. > k. ]
i, i 1 l
1 i n n

pit >x
1
+ ... +Xk i >x1+ ... + Xk ]

1 i- n i
1 n

-n T X k. -n, X k. -k. -n, X k. -k.
I

i *-i
I o x o ii I i i .

i -a 1 \ 1 r-o 2 . 2 1 f _, n -, n n+1= {E e } {E e } . . .{E e }

where I = {i ,...,i } = {l,...,n}, I = {i . .
.
,i } , . .

.
,1 = {i }

1 1 „n z l n n n
-n-j-X

Letting p T =Ee , I ^ 1, the survival function of N- , . .
.
,N

1 in
becomes

(5.3) F(k1f ...,k ) = P[N. > k. , ... , N > k ]in 11 n n

k. k. -k. k. -k.

\ X
2 H X

n Vl12 n

on the simplex £ k. ^ ... ^ k . The content of the preceding
1 n

remarks is summarized by the following theorem.

Theorem 5.1. N n , . .
.
,N have a MVG-W distribution. n

1 n UJ

"y
i

"n
i
X

Now let u = -log p , I € I, i.e. e = p = E e

The following definitions and lemmas are directed towards finding

conditions on X for which the equations u = ^
T .-rn T afl)

a
T' ?»•*.€?'»

have a set of nonnegative solutions o . Then by Theorem 4.1,

N- , . . .
,N will have a MVG-N distribution.

1 n
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A coherent structure function of order n is an increasing

binary function <f>(x) = <J>(x.,...,x ) = or 1 of binary arguments~ 1 n

x. = or 1, i = l,...,n, such that <j)(0,...,0) = and

<|>(1,...,1) = 1. The coherent l ife function x(t) = x(t-,...,t ),~ l n

t. ^ 0, i = l,...,n, that corresponds to <(> is defined by

x(t) = sup{u: <J){x(u,t.),...,x(u,t )} = 1},~ In
where x(u,t) =1 if u < t, x(u,t) =0 if u ^ t (cf. Esary and

Marshall (1970b) . The dual of
<J>

is the coherent structure function

<J>
(x, , . . . ,x ) = 1 - <f)(l-x.. , . . . ,1-x ), and x is the life functionin in

that corresponds to <j) . The coherent structure function 4> <|> _ has

min(x t ) as its corresponding life function. The coherent struc-

ture function
<f>

v
<J>

= <j) + <j> - $-.<$>- has max(x ,x ) as its

corresponding life function. The dual of •J'-i^n is ^-i v <f>o and

the dual of
<f>

v
cf> is ^-i^U*

The following lemma holds for Y. , . . .
,Y with an arbitrary

1 n

joint distribution.

Lemma 5.2. For each coherent structure function <j> of order n,

let m(<j>) = P[<t>
D
(Y) £ X] . Then :

(a) m(<j>) ^ 0.

(b) <|> £
<J>

2
implies m(<fr ) £ m(<j>

2
)

(c) m(<f> v<J> ) - m(4»
1

) + m((|»
2

) - m(<J>
1

<|»

2
)
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Proof . That (a) holds is immediate since m( A
) is a probability,

To show (b) , note that

A ^ A AD AD D D
^ ^ <J>

2 * *i ^ *2 **
T
l * T

2

=» P[t°(Y) £ X] £ P[t!?(Y) £ X]
1 »w z «^

m(<fr ) £ m(<J>
2
) .

To show (c) , note that

m(*
1

V(|)

2
) = P[min{T^(Y), t°(Y)} £ X]

P[t°(Y) S X, x?(Y) £ X]
1 **» z ~

P[t°(Y) £ X] + P[T?(Y) £ X]
1 *»* Z "^

- P[max{T°(Y ), T°(Y)} £ X]
1 «-w ^ ~

= m(<J>_ + m((j>
2
) - m(A

1
(j)

2
).

Thus, (a), (b) and (c) all hold.

Each coherent structure function has a representation

<Kx) -n x. v ...vn
i€P

x.,

i p
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where P , . . . ,P are the minimal path sets of
<J>

, i.e. the minimal

subsets P of {l,...,n} such that x = 1 for all i£P implies

<j)(x) = 1. The equivalent representation for the life function

corresponding to <f> is

(5.4) x(t) = max. niin._ t..~ j=l,...,p i€P. i

The random variable X is infinitely divisible if X is

distributed as if X = X 1 + ... + X for each r = 1,2,....l,r r,r ' ' '

where X , . .
.
,X are independent and identically distributed as

x , r r , r

a random variable X . Since X is nonnegative and P[X > 0] > 0,

then X is nonnegative and P[X > 0] > 0. As before let co(X) =

—XX
E e be the Laplace transform of X, and ip (X) = - log w(X).

"XX
r 1/r

Let co (X) = E e = to(X) be the Laplace transform of X .

Then r{l - u (X) } -* i|;(X) as r -* °°.

The following lemma uses the assumption that Y
n , . . . ,Y have
1 n

a Marshall-Olkin multivariate exponential distribution to the extent

that then Y has an exponential distribution for each I £ I , i.e.

Y , . . . ,Y have exponential minimums .

Lemma 5.3. Let X be infinitely divisible . For each coherent

structure function 4> of order n, and each r = 1,2,..., define

m (40 = P[t
D
(Y) s X ]. Then

r ~ r

m(<f>) = lim rm (d>)

exists for each
<J>

, and m satisfies (a), (b) and (c) of Lemma 5.2 .
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Proof . From (5.4)

m
r

(4>) = P[t
D
(Y) £ X

r
] = P[Y

p
lX

r
I
p
iX

r ],

1 P

where P , . . . ,P are the minimal path sets of
<J>

. Then by a standard

inclusion and exclusion argument

m
rW -2^ (l-P[Y

p
>x

r
]} -2* U-P[Y >x

r
, Y >x

r
])

J jik J k

+ ... + {1-P[Y_. >X , ... , Y >X ]}— P., r P r
1 P

Sk {1-U
r (\ )} - 2J,M {H (Vlf,)}

is

+ ••• ±< 1-\<yu...up )K
i p

Since for each X, r{l - uo (X)} * ^(X) as r -*> °°, it follows that

m(<f>) , the limit of rm (4>) exists. Since for each r, m satis-

fies (a), (b) and (c) of Lemma 5.2, so does m. P

For each I 6 I, let
<f> x =\J.^-r x., where V • i x -

=

x- v ... v x . Then I is the only minimal path set of d> _

.

In I

Embedded in the proof of Lemma 5.3 is the observation that m
(<J> ) =

"n
i
X
r1-Ee = 1 - a) (n T ) and

r I
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(5.5) mCjjj.) = lim
r_>oo

rm^) = ^(n
]
.)

"n
i
X

= - log E e = u .

Theorem 5.4. If X is infinitely divisible, then N n , . . . ,N have—
_L n

a. MVG-N distribution .

Proof. By Theorem 5.1 N. , . . . ,N have a MVG-W distribution. ThenIn
by Theorem 4.1 it is sufficient to show that for each I 6 J

U
I

=
^J:IfU=0 V Where a

J ^ °' J € J '

Let m be defined as in Lemma 5.3. Since m satisfies (a),

(b) and (c) of Lemma 5.2, it follows from Lemma 3.1, Esary and Marshall

(1970a) that there exists a nonnegative function oc(x) such that

m(<j>) = 2 a(x)<j>(x)

for each coherent structure function
<f>

of order n.

t"H T

Let the i coordinate of x be 1 if i 6 J and if

i € J. Then <|>T (x
J

) = 1 if and only if IflJO. Let a -

a(x
J

) ^ 0, J € I. Then from (5.5)

y
i

= m(V = s j:ioj^
a
J'

Thus N. , . . .
,N have a MVG-N distribution.

1 n
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For the purpose of the following theorem, assume that Y ,...,Y

are independent and that Y has the exponential distribution

P[Y„ > y] = e , y £ 0, X. > 0, i.e. that Y.,...,Y have a
i

J
' J i In

special case of the Marshall-Olkin multivariate exponential distri-

bution.

Theorem 5.5 (Converse to Theorem 5.4). If N. , . . . ,N have a MVG-N— I n

distribution for each n and all A. > 0,...,A > 0, then X is
I n —

infinitely divisible.

Proof. Since N. , . . . ,N have a MVG-N distribution, it follows from
1 n

Theorem 4.1 that for each J 6 I there exists an a ^ such that
J

y
I

= 2
J:Iftf^0

a
J

for each I £ I. Let a(x) = a T where J = {i: x. = 1}, x ^ (0,...,0),~ J i ~

and define m(<{>) = 2 a(x)<j>(x) for each coherent structure function
x ~ ~

<J>
of order n. Then m satisfies conditions (a), (b) and (c) of

Lemma 5.2. Also

m (V = 2
x

a(
^\/i€I X

i
= 2

J:IOJ*3
a
J

y
x

= i^(n
x
) = *(2

i6I
A.).
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Then, with the incidental use of an inclusion-exclusion argument based

on condition (c) of Lemma 5.2, for n *: 2 (letting $ .
= 4> r •

i. $ • •

=
i 1 1 / , ij

* {ij} >
etc.),

a = m(n . , x ) - m(n._ x )
2 . . .n 1=1 l 1=2 l

= 2
i=i

m
<*i> -^.H^i^'^^.J

-2° m(4» ) + 2? m(4> ) + ... ±m(4> )
1-2 l i»J-2 ij — 2...n

i<j

= m($ ) - 2 1=2
m(<j>

li
) + ... + m(<j>

1
).

Thus

(-l)
n

a - m(4, ) - ... + 2"
m(<t, ) + m(4> )2...n l...n — i-2 li 1

1 n — i=2 1 i 1

n 2

where A f(x) = f(x+y) - f(x). Since a k 0, it follows that
j £- • • * II

(_D
n

,j/
n 1 )

( x
i

) ^ o, n = 2,3,... ,

where \\> (A) is the n derivative of ip(A) with respect to A

Thus
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,n (1) t .

(
_1}

n djLJXl ^ 0> n= 0flf# .. (
A > 0>

dX

i.e. ty (X) is a completely monotone function. It follows from

Theorem 1, p. 425, Feller (1966) that co(X) = e~^ is the Laplace

transform of an infinitely divisible random variable, i.e. that X

is infinitely divisible. rj
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