# NAVAL POSTGRADUATE SCHOOL Monterey, California 



MULTIVARIATE GEOMETRIC DISTRIBUTIONS
GENERATED BY A CUMULATIVE DAMAGE PROCESS
by
J. D. Esary
and
A. W. Marshall

March 1973
Approved for public release; distribution unlimited.

$$
\begin{aligned}
& \text { Fx d } 1 / \cdot! \\
& \text { L-208 + }
\end{aligned}
$$

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral M. B. Freeman
M. U. Clauser

Superintendent
Provost


#### Abstract

Two (narrow and wide) multivariate geometric analogues of the Marshall-O1kin multivariate exponential distribution are derived from the following cumulative damage model. A set of devices is exposed to a common damage process. Damage occurs in discrete cycles. On each cycle the amount of damage is an independent observation on a nonnegative random variable. Damages accumulate additively. Each device has its own random breaking threshold. A device fails when the accumulated damage exceeds its threshold. Thresholds are independent of damages, and have a MarshallOlkin multivariate exponential distribution. The joint distribution of the random numbers of cycles up to and including failure of the devices has the wide multivariate geometric distribution. It has the narrow multivariate geometric distribution if the damage variable is infinitely divisible.

Research jointly supported by the Office of Naval Research, Project Order 2-0251, 18 April 1972 (NR 042-300) and the Naval Postgraduate School Foundation Research Program, and the National Science Foundation, NSF GP30707X1.


## 1. Introduction

Suppose that we have a device for which exposure to failure occurs in discrete cycles, that on each cycle the device is damaged by an amount which is an observation on a nonnegative random variable $X$, and that damages, which are independent from cycle to cycle, accumulate additively. The device fails when the accumulated damage reaches $Y$ > 0, its breaking threshold.

Let N be the number of cycles up to and including failure of the device. Then

$$
\begin{equation*}
N=\min \left\{k: X_{1}+\ldots+X_{k} \geq Y\right\} \tag{1.1}
\end{equation*}
$$

where $X_{1}, X_{2}, \ldots$ are independent and identically distributed as $X$. If the component is to eventually fail, it must be that $\mathrm{P}[\mathrm{X}>0]>0$. Suppose now that the breaking threshold $Y$ is a random variable, independent of the damages $X_{1}, X_{2}, \ldots$, and with the exponential survival function

$$
\begin{equation*}
\bar{G}(y)=P[Y>y]=e^{-\lambda y}, \quad \lambda>0, \quad y \geq 0 \tag{1.2}
\end{equation*}
$$

Since $N>k \geq 1$ if and only if $Y>X_{1}+\ldots+X_{k}$, then

$$
\begin{aligned}
P[N>k] & =P\left[Y>X_{1}+\ldots+X_{k}\right]=E \bar{G}\left(X_{1}+\ldots+X_{k}\right) \\
& =E e^{-\lambda\left(X_{1}+\ldots+X_{k}\right)}=\Pi_{j=1}^{k} E e^{-\lambda X_{j}} \\
& =\left\{E e^{-\lambda X_{1}}\right\}^{k}, \quad k=1,2, \ldots .
\end{aligned}
$$

Thus since $N$ has the positive integers as its values, $N$ has the geometric survival function

$$
\begin{equation*}
\bar{F}(k)=P[N>k]=\theta^{k}, \quad 0 \leq \theta<1, \quad k=0,1, \ldots, \tag{1.3}
\end{equation*}
$$

with $\theta=E \mathrm{e}^{-\lambda \mathrm{X}}$. That $\theta<1$ follows from $\lambda>0$ and $\mathrm{P}[\mathrm{X}>0]>0$.
This paper is devoted to the properties of multivariate geometric distributions that can be generated by the process outlined above--subjecting a set of devices with different breaking thresholds to a common sequence of additive damages. The results are a step in the systematic study of the discrete multivariate life distributions that can be derived from cumulative damage models, and relate to the study of the continuous multivariate life distributions that can be derived from compound Poisson processes. A discussion of the general problem setting, univariate results, and a bibliography can be found in Esary, Marshall, and Proschan (1970).
2. Two bivariate geometric distributions

To place a discussion of bivariate geometric distributions in a context similar to that with which we began suppose that we have two devices for which exposure to failure occurs in discrete cycles, and are concerned with the foint distribution of $K_{1}$ and $K_{2}$, the numbers of cycles up to and including failure of the devices.

One could assume that in each cycle there is a shock to the first device which it survives with probability $\theta_{1}$, a shock to the second device which it survives with probability $\theta_{2}$, and a shock to both devices which both survive with probability $\theta_{12}$ and neither survives with probability $1^{-\theta} 12^{\prime}$, and that the events of surviving the three kinds of shocks are independent of each other and from cycle to cycle. If each device is to eventually fail, it must be that $\theta_{1} \theta_{12}<1$ and $\theta_{2} \theta_{12}<1$. Then the joint survival function of $K_{1}, K_{2}$ is

$$
\begin{align*}
\overline{\mathrm{F}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)= & P\left[\mathrm{~K}_{1}>\mathrm{k}_{1}, \mathrm{~K}_{2}>\mathrm{k}_{2}\right]=\theta_{1} \mathrm{k}_{\theta_{2}}^{k_{2}}{ }_{\theta_{12}}^{\max \left(k_{1}, k_{2}\right)}  \tag{2.1}\\
& 0 \leq \theta_{i} \leq 1, \quad i=1,2, \quad 0 \leq \theta_{12} \leq 1, \\
& \theta_{1} \theta_{12}<1 \text { and } \theta_{2} \theta_{12}<1, \quad k_{1}, k_{2}=0,1, \ldots .
\end{align*}
$$

We will say that positive integer valued random variables $K_{1}, K_{2}$ whose joint distribution is given by a survival function of the form (2.1) have a bivariate geometric distribution in the narrow sense (BVG-N). A BVG-N distribution has geometric marginals, an intuitive genesis similar to that for the univariate geometric, and is a discrete analogue
of the bivariate exponential distribution introduced by Marshall and 01kin (1967).

A wider class of bivariate geometric distributions can be generated if one assumes that on each cycle there is a shock to both devices with probabilities $p_{11}$ that both devices survive, $p_{10}$ that the first device survives and the second device does not survive, $\mathrm{p}_{01}$ that the first device does not survive and the second device survives, and $P_{00}$ that both devices do not survive, and that the events of surviving the shocks are independent from cycle to cycle. If each device is to eventually fail, it must be that $p_{10}+p_{11}<1$ and $p_{01}+p_{11}<1$. Then the joint survival function of $K_{1}, K_{2}$ is
(2.2) $\overline{\mathrm{F}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)=\mathrm{P}\left[\mathrm{K}_{1}>\mathrm{k}_{1}, \mathrm{~K}_{2}>\mathrm{k}_{2}\right]=\mathrm{P}_{11}^{\mathrm{k}_{1}}\left(\mathrm{p}_{01}+\mathrm{p}_{11}\right)^{\mathrm{k}_{2}-\mathrm{k}_{1}}$ if $\mathrm{k}_{1} \leq \mathrm{k}_{2}$,

$$
\begin{gathered}
p_{11}^{k_{2}}\left(p_{10}+p_{11}\right)^{k_{1}-k_{2}} \text { if } k_{2} \leq k_{1}, \\
0 \leq p_{i j} \leq 1, \quad i, j=0,1, \quad \sum_{i, j=0}^{1} p_{i j}=1, \\
p_{10}+p_{11}<1 \text { and } p_{01}+p_{11}<1, \quad k_{1}, k_{2}=0,1, \ldots .
\end{gathered}
$$

We will say that positive integer valued random variables $K_{1}, K_{2}$ whose joint distribution is given by a survival function of the form (2.2) have a bivariate geometric distribution in the wide sense (BVG-W). Again a BVG-W distribution has geometric marginals, an appropriate
genesis, and as will be established later, is also a discrete analogue of the Marshall-01kin bivariate exponential distribution.

The survival function of a BVG-W distribution can be written in a form similar to that of a BVG-N distribution by introducing parameters $\theta_{1}, \theta_{2}, \theta_{12}$ that are the solutions of the equations (2.3)

$$
\begin{aligned}
{ }_{1}{ }^{\theta}{ }_{2} \theta_{12} & =p_{11} \\
\theta_{1} \theta_{12} & =p_{10}+p_{11} \\
\theta_{2} \theta_{12} & =p_{01}+p_{11}
\end{aligned}
$$

(See Figure 1).

| $\mathrm{P}_{11}=\theta_{1} \theta_{2} \theta_{12}$ | $\mathrm{P}_{10}=\theta_{1}\left(1-\theta_{2}\right) \theta_{12}$ | $\mathrm{P}_{1 .}=\theta_{1} \theta_{12}$ |
| :---: | :---: | :---: |
| $\mathrm{P}_{01}=\left(1-\theta_{1}\right) \theta_{2} \theta_{12}$ | $\mathrm{P}_{00}=1-\theta_{1} \theta_{12}$ <br> $-\theta_{2} \theta_{12}+\theta_{1} \theta_{2} \theta_{12}$ | $\mathrm{P}_{0 .}=1-\theta_{1} \theta_{12}$ |
| $\mathrm{P}_{.1}=\theta_{2} \theta_{12}$ | $\mathrm{P}_{.0}=1-\theta_{2} \theta_{12}$ | 1 |

## Figure 1.

Since

$$
0 \leq p_{11} \leq p_{10}+p_{11} \leq p_{10}+p_{01}+p_{11} \leq 1
$$

then

$$
0 \leq \theta_{1} \theta_{2} \theta_{12} \leq \theta_{1} \theta_{12} \leq \theta_{2} \theta_{12}\left(\theta_{1}+\theta_{2}-\theta_{1} \theta_{2}\right) \leq 1,
$$

i.e. $\theta_{1}, \theta_{2}, \theta_{12}$ must satisfy conditions which reduce to

$$
\begin{equation*}
0 \leq \theta_{1} \leq 1, \quad 0 \leq \theta_{2} \leq 1, \quad 0 \leq \theta_{12}\left(\theta_{1}+\theta_{2}-\theta_{1} \theta_{2}\right) \leq 1 \tag{2.4}
\end{equation*}
$$

Conversely, if the $\theta$ 's satisfy the conditions (2.4), then through (2.3) and $p_{00}=1-p_{10}-p_{01}-p_{11}$ they define $p_{i j}, i, j=0,1$, that are probabilities that add to 1 . Also $\theta_{1}, \theta_{2}, \theta_{12}$ must satisfy the additional conditions.

$$
\begin{equation*}
\theta_{1} \theta_{12}<1, \quad \theta_{2} \theta_{12}<1 \tag{2.5}
\end{equation*}
$$

It follows that the survival function (2.2) of a BVG-W distribution can be expressed in the equivalent form
(2.6) $\bar{F}\left(k_{1}, k_{2}\right)=P\left[K_{1}>k_{1}, K_{2}>k_{2}\right]=\theta_{1}{ }_{1} \theta_{2}{ }_{2}{ }_{2} \max \left(k_{1}, k_{2}\right)$,

$$
\begin{aligned}
& 0 \leq \theta_{i} \leq 1, \quad i=1,2, \quad 0 \leq \theta_{12}\left(\theta_{1}+\theta_{2}-\theta_{1} \theta_{2}\right) \leq 1, \\
& \theta_{1} \theta_{12}<1 \text { and } \theta_{2} \theta_{12}<1, \quad k_{1}, k_{2}=0,1, \ldots .
\end{aligned}
$$

Example 2.1. If $\theta_{1}=\theta_{2}=\frac{1}{2}$ and $\theta_{12}=\frac{4}{3}$, then the distribution defined by the survival function (2.6) is BVG-W but not BVG-N.

$$
\text { Since } 0 \leq \theta_{i} \leq 1, \quad i=1,2, \quad \text { implies } 0 \leq \theta_{1}+\theta_{2}-\theta_{1} \theta_{2} \leq 1 \text {, }
$$

it is apparent from (2.1) and (2.6) that a BVG-N survival function must always be BVG-W.

[^0]3. A bivariate cumulative damage process.

We can now consider the bivariate case of the problem which motivates this paper. Suppose that on each cycle both devices are damaged by the same amount, which is an observation on a nonnegative random variable $X$, and that damages, which are independent from cycle to cycle, accumulate additively. The first device fails when the accumulated damage reaches $Y_{1}>0$, its breaking threshold. The second device fails when the accumulated damage reaches $\mathrm{Y}_{2}>0$, its breaking threshold. As before, if each device is to eventually fail, it must be that $P[X>0]>0$.

Let $N_{1}, N_{2}$ be the number of cycles up to and including failure of the two devices. Then as in (1.1)

$$
\begin{equation*}
N_{i}=\min \left\{k: X_{1}+\ldots+X_{k} \geq Y_{i}\right\}, \quad i=1,2, \tag{3.1}
\end{equation*}
$$

where $X_{1}, X_{2}, \ldots$ are independent and identically distributed as $X$.
We will be concerned with the case in which the breaking thresholds $Y_{1}, Y_{2}$ are random variables that are independent of the damages, and in particular will suppose that $\mathrm{Y}_{1}, \mathrm{Y}_{2}$ have a MarshallOlkin bivariate exponential distribution, i.e.
(3.2) $\bar{G}\left(y_{1}, y_{2}\right)=P\left[Y_{1}>y_{1}, Y_{2}>y_{2}\right]=e^{-\lambda} y_{1} y_{1}-\lambda y_{2}-\lambda 12^{\max \left(y_{1}, y_{2}\right)}$,

$$
\lambda_{i} \geq 0, \quad i=1,2, \quad \lambda_{12} \geq 0, \quad \lambda_{1}+\lambda_{12}>0
$$

and $\lambda_{2}+\lambda_{12}>0, y_{1}, y_{2} \geq 0$.

The survival function (3.2) includes the case in which $Y_{1}, Y_{2}$ are independent and exponentially distributed.

Since $N_{i}>k \geq 1$ if and only if $Y_{i}>X_{1}+\ldots+X_{k}$, $i=1,2$, then if $1 \leqslant k_{1} \leqslant k_{2}$

$$
\begin{aligned}
& P\left[N_{1}>k_{1}, N_{2}>k_{2}\right]=P\left[Y_{1}>X_{1}+\ldots+X_{k_{1}}, Y_{2}>X_{1}+\ldots+X_{k_{2}}\right] \\
&= E \bar{G}\left(X_{1}+\ldots+X_{k_{1}}, X_{1}+\ldots+X_{k_{2}}\right) \\
&= E e^{-\lambda_{1}\left(X_{1}+\ldots+X_{k_{1}}\right)-\lambda_{2}\left(X_{1}+\ldots+X_{k_{2}}\right)-\lambda_{12}\left(X_{1}+\ldots+X_{k_{2}}\right)} \\
& \quad=E e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{12}\right)\left(X_{1}+\ldots+X_{k_{1}}\right)-\left(\lambda_{2}+\lambda_{12}\right)\left(X_{k_{1}+1}+\ldots+X_{k_{2}}\right)}
\end{aligned}
$$

Similarly, if $1 \leq k_{2} \leq k_{1}$, then

$$
P\left[N_{1}>k_{1}, N_{2}>k_{2}\right]=\left\{E e^{\left.-\left(\lambda_{1}+\lambda_{2}+\lambda_{12}\right) X^{k_{2}}\right\}\left\{E e^{\left.-\left(\lambda_{1}+\lambda_{12}\right) X^{k_{1}-k_{2}}\right\}}\right\} . . . . .}\right.
$$

## Letting

$$
\begin{align*}
\theta_{1} \theta_{2} \theta_{12} & =E e^{-\left(\lambda_{1}+\lambda_{2}+\lambda_{12}\right) x}  \tag{3.3}\\
\theta_{1} \theta_{12} & =E e^{-\left(\lambda_{1}+\lambda_{12}\right) X} \\
\theta_{2} \theta_{12} & =E e^{-\left(\lambda_{2}+\lambda_{12}\right) X}
\end{align*}
$$

the survival function of $N_{1}, N_{2}$ becomes
(3.4) $\overline{\mathrm{F}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right)=\theta_{1}^{\mathrm{k}_{1}}{ }_{2}^{\mathrm{k}_{2}{ }_{\theta}^{\max \left(k_{1}, k_{2}\right)}, \quad k_{1}, k_{2}=0,1, \ldots . . . ~}$

We will show that $\theta_{1}, \theta_{2}, \theta_{12}$ satisfy the conditions that make (3.4) a BVG-N survival function.

It is immediate from (3.3) that $\theta_{i} \geq 0, i=1,2$, and that $\theta_{12} \geq 0$. Since $\lambda_{1}+\lambda_{12}>0, \lambda_{2}+\lambda_{12}>0$, and $\mathrm{P}[\mathrm{X}>0]>0$, it also follows that ${ }^{\theta}{ }_{1} \theta_{12}<1$ and ${ }_{2}{ }^{\theta} \theta_{12}<1$. We need to show that $\theta_{i} \leq 1, i=1,2$, and $\theta_{12} \leq 1$.

Let $\omega(\lambda)=E e^{-\lambda X}, \lambda \geq 0$, be the Laplace transform of $X$, and $\psi(\lambda)=-\log \omega(\lambda)$. Then $\psi(0)=0$ and $\psi$ is concave and increasing in $\lambda$. It follows that $\psi$ is subadditive, i.e. $\psi(\lambda+v) \geq \psi(\lambda)+\psi(\nu), \quad \lambda \geq 0, \quad v \geq 0$.

To introduce some convenient notation let
(3.5) $\mu_{12}=\psi\left(\lambda_{1}+\lambda_{2}+\lambda_{12}\right), \quad e^{-\mu_{12}}=\omega\left(\lambda_{1}+\lambda_{2}+\lambda_{12}\right)=\theta_{1} \theta_{2} \theta_{12}$

$$
\begin{array}{ll}
\mu_{1}=\psi\left(\lambda_{1}+\lambda_{12}\right) \quad, \quad e^{-\mu_{1}}=\omega\left(\lambda_{1}+\lambda_{12}\right) & =\theta_{1} \theta_{12} \\
\mu_{2}=\psi\left(\lambda_{2}+\lambda_{12}\right) \quad, \quad e^{-\mu_{2}}=\omega\left(\lambda_{2}+\lambda_{12}\right) \quad=\theta_{2} \theta_{12},
\end{array}
$$

and define $\alpha_{1}, \alpha_{2}, \alpha_{12}$ by

$$
\begin{align*}
\alpha_{1}+\alpha_{2}+\alpha_{12} & =\mu_{12}  \tag{3.6}\\
\alpha_{1}+\alpha_{12} & =\mu_{1} \\
\alpha_{2}+\alpha_{12} & =\mu_{2}
\end{align*}
$$

Then $\theta_{12}=e^{-\alpha} 12, \quad \theta_{1}=e^{-\alpha}, \quad \theta_{2}=e^{-\alpha} 2$. Thus $N_{1}, N_{2}$ have a BVG-N distribution, i.e. $\theta_{i} \leq 1, i=1,2, \theta_{12} \leq 1$, if and only if $\alpha_{i} \geq 0, \quad i=1,2, \quad$ and $\quad \alpha_{12} \geq 0$.

Theorem 3.1. $N_{1}, N_{2}$ have a $B V G-N$ distribution.

Proof. From (3.6), $\alpha_{1}=\mu_{12}-\mu_{2}, \quad \alpha_{2}=\mu_{12}-\mu_{1}, \quad \alpha_{12}=\mu_{1}+\mu_{2}-\mu_{12}$. Then $\alpha_{1} \geq 0$, since $\psi$ is increasing and $\mu_{12}=\psi\left(\lambda_{1}+\lambda_{2}+\lambda_{12}\right) \geq$ $\psi\left(\lambda_{2}+\lambda_{12}\right)=\mu_{2}$. Similarly $\alpha_{2} \geq 0$. Also $\alpha_{12} \geq 0$, since $\psi$ is subadditive, increasing and

$$
\begin{gathered}
\mu_{1}+\mu_{2}=\psi\left(\lambda_{1}+\lambda_{12}\right)+\psi\left(\lambda_{2}+\lambda_{12}\right) \geq \psi\left(\lambda_{1}+\lambda_{2}+2 \lambda_{12}\right) \\
\geq \psi\left(\lambda_{1}+\lambda_{2}+\lambda_{12}\right)=\mu_{12} .
\end{gathered}
$$

Thus $\mathrm{N}_{1}, \mathrm{~N}_{2}$ are $\mathrm{BVG}-\mathrm{N}$.

The balance of the paper is devoted to the multivariate version of the problem just considered. While the definitions and approach generalize, it will appear that Theorem 3.1 is peculiar to the bivariate case. Figure 2 introduces a point of view towards the equations (3.6) which will be useful.


Figure 2.

In the figure $\alpha_{1}, \alpha_{2}, \alpha_{12}$ define point masses on all the vertices of a unit square except $(0,0)$, and $\mu_{1}, \mu_{2}, \mu_{12}$ are the corresponding masses of the sets where the increasing Boolean functions $\phi\left(x_{1}, x_{2}\right)=x_{1}, \quad \phi\left(x_{1}, x_{2}\right)=x_{2}, \quad \phi\left(x_{1}, x_{2}\right)=x_{1} \vee x_{2}=x_{1}+x_{2}-x_{1} x_{2}$, $x_{1}=0$ or 1 , $i=1,2$, are equal to 1 . The random variables $N_{1}, N_{2}$ have a BVG-N distribution if and only if the point masses are all nonnegative.
4. Two multivariate geometric distributions

It is apparent that $K_{1}, K_{2}$ have the BVG-N survival function (2.1) if and only if

$$
\begin{equation*}
\mathrm{K}_{1}=\min \left(\mathrm{M}_{1}, \mathrm{M}_{12}\right) \tag{4.1}
\end{equation*}
$$

$$
\mathrm{K}_{2}=\min \left(\mathrm{M}_{2}, \mathrm{M}_{12}\right)
$$

where $M_{1}, M_{2}, M_{12}$ are independent, positive integer valued random variables with the distributions $P\left[M_{1}>k\right]=\theta_{1}^{k}, P\left[M_{2}>k\right]=\theta_{2}^{k}$, $P\left[M_{12}>k\right]=\theta_{12}^{k}, \quad k=0,1, \ldots$, where $0 \leq \theta_{i} \leq 1, \quad i=1,2$, $0 \leq \theta_{12} \leq 1, \quad \theta_{1} \theta_{12}<1$ and $\theta_{2} \theta_{12}<1$. If a $\theta$ is less than 1 , then the corresponding $M$ has a geometric distribution. If a $\theta$ is equal to 1 , then the corresponding $M$ can be regarded as degenerate at infinity, or simply can be omitted from the representation (4.1).

We will say that positive integer valued random variables $\mathrm{K}_{1}, \ldots, \mathrm{~K}_{\mathrm{n}}$ have a multivariate geometric distribution in the narrow sense (MVG-N) if $K_{1}, \ldots, K_{n}$ are distributed as though (4.2)

$$
K_{i}=\min \left\{M_{J}: i \in J\right\}, \quad i=1, \ldots, n,
$$

where:
(a) The sets $J$ are elements of a class $J$ of nonempty subsets of $\{1, \ldots, n\}$ having the property that

$$
\text { for each } i \in\{1, \ldots, n\} \text {, } i \in J \text { for some } J \in J \text {. }
$$

(b) The random variables $M_{J}$ are independent and geometrically distributed, i.e. $M_{J}$ is positive integer valued and

$$
\begin{aligned}
& \qquad P\left[M_{J}>k\right]=\theta_{J}^{k}, \quad k=0,1, \ldots, \\
& \text { for some } 0 \leq \theta_{J}<1 .
\end{aligned}
$$

This definition is a discrete analogue of a characterization of the Marshall-O1kin multivariate exponential distribution (See Marshall and Olkin, 1967, Theorem 3.2 and p. 41).

Next we consider a multivariate version of the BVG-W distribution. It is also apparent that $K_{1}, K_{2}$ have the BVG-W survival function (2.2) if and only if

$$
\begin{align*}
& P\left[\min \left(K_{1}, K_{2}\right)>k\right]=p_{11}^{k}  \tag{4.3}\\
& \mathrm{P}\left[\mathrm{~K}_{1}>\mathrm{k}\right]=\left(\mathrm{p}_{10}+\mathrm{p}_{11}\right)^{\mathrm{k}} \\
& P\left[K_{2}>k\right]=\left(p_{01}+p_{11}\right)^{k}, \quad k=0,1, \ldots,
\end{align*}
$$

where $0 \leq p_{i j} \leq 1, \quad i, j=0,1, \quad p_{10}+p_{11}<1$ and $p_{01}+p_{11}<1$, and
(4.4) $P\left[K_{1}>k_{1}, K_{2}>k_{2}\right]=\begin{array}{ll}P\left[\min \left(K_{1}, K_{2}\right)>k_{1}\right] P\left[K_{2}>k_{2}-k_{1}\right] \text { if } 0 \leq k_{1} \leq k_{2} \\ P\left[\min \left(K_{1}, K_{2}\right)>k_{2}\right] P\left[K_{1}>k_{1}-k_{2}\right] \text { if } 0 \leq k_{2} \leq k_{1} .\end{array}$

Let $I$ be the class of nonempty subsets of $\{1, \ldots, n\}$, and for each $I \in I$ let $K_{I}=\min _{i \in I} K_{i}$. We will say that the joint
distribution of positive integer valued random variables $K_{1}, \ldots, K_{n}$ has geometric minimums if

$$
\begin{equation*}
P\left[K_{I}>k\right]=\rho_{I}^{k}, \quad 0 \leq \rho_{I}<1, \quad k=0,1, \ldots, \tag{4.5}
\end{equation*}
$$

for each $I \in I$.
Given a simplex $0 \leq k_{i_{1}} \leq \ldots \leq k_{i_{n}}$, let $I_{1}=\left\{i_{1}, \ldots, i_{n}\right\}$ $=\{1, \ldots, n\}, I_{2}=\left\{i_{2}, \ldots, i_{n}\right\}, \ldots, I_{n}=\left\{i_{n}\right\}$. We will say that positive integer valued random variables $K_{1}, \ldots, K_{n}$ have a multivariate geometric distribution in the wide sense (MVG-W) if:
(a) The joint distribution of $K_{1}, \ldots, K_{n}$ has geometric minimums.
(b) On each simplex $0 \leq k_{i_{1}} \leq \ldots \leq k_{i_{n}}$
(4.6) $P\left[K_{i_{1}}>k_{i_{1}}, \ldots, K_{i_{n}}>k_{i_{n}}\right]=\Pi_{j=1}^{n} P\left[K_{I_{j}}>k_{i_{j}}-k_{i_{j-1}}\right]$,
where $k_{i_{0}}=0$.
This definition is also a discrete analogue of a characterization of the Marshall-Olkin multivariate exponential distribution (See Esary and Marshall, 1970, Application 5.1).

It is easy to see that MVG-N distributions are also MVG-W. Example 2.1 shows that there are MVG-W distributions that are not MVG-N. Both the MVG-N and MVG-W classes of distributions have the following properties:
$\left(P_{1}\right)$ If the joint distribution of $K_{1}, \ldots, K_{n}$ is in the class, then the joint distribution of any subset of $K_{1}, \ldots, K_{n}$ is in the class.
$\left(P_{2}\right)$ If the joint distribution of $K_{1}, \ldots, K_{n}$ is in the class, the joint distribution of $L_{1}, \ldots, L_{m}$ is in the class and $\left(K_{1}, \ldots, K_{n}\right)$ and $\left(L_{1}, \ldots, L_{m}\right)$ are independent, then the joint distribution of $K_{1}, \ldots, K_{n} ; L_{1}, \ldots, L_{m}$ is in the class. $\left(P_{3}\right)$ If the joint distribution of $K_{1}, \ldots, K_{n}$ is in the class, then each $K_{i}, i=1, \ldots, n$, has a geometric distribution. $\left(P_{4}\right)$ If the joint distribution of $K_{1}, \ldots, K_{n}$ is in the class and $K_{I_{j}}=m n_{i \in I_{j}} K_{i}, j=1, \ldots, m$, where $I_{1}, \ldots, I_{m}$ are nonempty subsets of $1, \ldots, n$, then the joint distribution of $K_{I_{1}}, \ldots, K_{I_{m}}$ is in the class.

If the joint distribution of $K_{1}, \ldots, K_{n}$ has geometric minimums, it will be convenient to let $\mu_{I}=-\log \rho_{I}$ for each $I \in I$, i.e. let $e^{-\mu}=\rho_{I}$. Since $\rho_{I}<I$, then $\mu_{I}>0$.

Theorem 4.1. Let $K_{1}, \ldots, K_{n}$ have a MVG-W distribution. Then $K_{1}, \ldots, K_{n}$ have a MVG-N distribution if and only if there exists an $\alpha_{J} \geq 0$ for each $J \in I$ such that

$$
\mu_{\mathrm{I}}=\Sigma_{\mathrm{J}: I \mathrm{INJ}_{\mathrm{J}} \neq \emptyset} \alpha_{\mathrm{J}}
$$

for each $I \in I$.

Proof. Suppose $K_{1}, \ldots, K_{n}$ have a MVG-N distribution. Let

$$
\begin{aligned}
& \mathrm{e}^{-\alpha_{J}}={ }^{\theta_{J}} \text { if } J \in J \\
& 1 \text { if } J \in I-J .
\end{aligned}
$$

If $J \in J$, then $\alpha_{J}>0$ since $\theta_{J}<1$. If $J \in I-J$, then $\alpha_{J}=0$. Since

$$
e^{-\mu_{I}}=P\left[N_{I}>1\right]=\Pi_{J: I \cap J \neq \emptyset} \theta_{J}=e^{-\Sigma_{J}: I \cap J \neq \emptyset \alpha_{J}},
$$

then $\mu_{I}=\Sigma_{J: I \cap J \neq \emptyset}{ }^{\alpha_{J}}$.
Suppose for each $I \in I, \mu_{I}=\Sigma_{I: I \cap J \neq \emptyset} \alpha_{J}$, where $\alpha_{J} \geq 0$, $J \in I$. Let $J$ consist of the sets $J$ in $I$ such that $\alpha_{J}>0$. We have noted that $\mu_{I}>0$ for each $I \in I$. If $I=\{i\}$, then $\mu_{\{i\}}=\Sigma_{J: i \in J} \alpha_{J}$. Thus $\alpha_{J}>0$ for some $J$ such that $i \in J$, ie. $i \in J$ for some $J \in J$. For each $J \in J$ construct a positive integer valued random variable $M_{J}$ with the geometric distribution $P\left[M_{J}>k\right]$ $=\theta_{J}^{k}, k=0,1, \ldots$, where $\theta_{J}=e^{-\alpha_{J}}$. Since $\alpha_{J}>0$, then $\theta_{J}<1$. Since $K_{1}, \ldots, K_{n}$ have a MVG-W distribution, then on the simplex $0 \leq k_{i_{1}} \leq \ldots \leq k_{i_{n}}$

$$
\begin{aligned}
& P\left[K_{i_{1}}>k_{i_{1}}, \ldots, K_{I_{n}}>k_{i_{n}}\right] \\
& =\exp \left[-\mu_{I_{1}} k_{i_{1}}\right] \exp \left[-\mu_{I_{2}}\left(k_{i_{2}}-k_{i_{1}}\right)\right] \ldots \exp \left[-\mu_{I_{n}}\left(k_{i_{n}}-k_{i_{n-1}}\right)\right] \\
& =\exp \left[-k_{i_{1}} \Sigma_{J: I_{1} \cap J \neq \emptyset}^{\left.\alpha_{J}\right]} \exp \left[-\left(k_{i_{2}}-k_{i_{1}}\right) \Sigma_{\left.J: I_{2} \cap J \neq \emptyset_{J} \alpha_{J}\right]}\right.\right. \\
& \ldots \exp \left[-\left(k_{i_{n}}-k_{i_{n-1}}\right) \Sigma_{\left.J: I_{n} \cap J \neq \emptyset_{J} \alpha_{J}\right]}\right. \\
& =\exp \left[-\Sigma_{J \in J} k_{j} \alpha_{j}\right]=\Pi_{J \in J} \theta_{J} k_{J},
\end{aligned}
$$

where $k_{J}=\max \left\{k_{i_{j}}: i_{j} \in J\right\}$. Thus $K_{1}, \ldots, K_{n}$ are distributed as if $K_{i}=\min \left\{M_{J}: i \in J\right\}, i=1, \ldots, n$, i.e. $K_{1}, \ldots, K_{n}$ have a MVG-N distribution.
5. A multivariate cumulative damage process.

In keeping with the damage model that we have previously
described, let
(5.1)

$$
N_{i}=\min \left\{k: X_{1}+\ldots+X_{k} \geq Y_{i}\right\}, \quad i=1, \ldots, n
$$

where $X_{1}, X_{2}, \ldots$ are independent and identically distributed as a nonnegative random variable $X$ such that $P[X>0]>0$. Assume that $\left(Y_{1}, \ldots, Y_{n}\right)$ is independent of $\left\{X_{1}, X_{2}, \ldots\right\}$ and that $Y_{1}, \ldots, Y_{n}$ have a Marshall-01kin multivariate exponential distribution, i.e.
that $Y_{1}, \ldots, Y_{n}$ are distributed as if

$$
\begin{equation*}
Y_{i}=\min \left\{S_{J}: i \in J\right\}, \quad i=1, \ldots, n, \tag{5.2}
\end{equation*}
$$

where the sets $J$ are elements of a class $J$ of nonempty subsets of $\{1, \ldots, n\}$ such that for each $i$, $i \in J$ for some $J \in J$, and the random variables $S_{-\lambda_{J}}$ are independent with the exponential distributions $P\left[S_{J}>s\right]=e^{J}, \quad \lambda_{J}>0, \quad s \geq 0$ 。

$$
\text { For each } I \in I, \text { let } N_{I}=\min _{i \in I} N_{i} \text { and } Y_{I}=\min _{i \in I} Y_{i} \text {. }
$$

Then by computations paralle1 to those that 1 ed to (1.3) and (3.3) it is easy to see that for $k \geq 1$,

$$
P\left[N_{I}>k\right]=P\left[Y_{I}>X_{1}+\ldots+X_{k}\right]=\left\{E e^{-n_{I} X}\right\}
$$

where $\eta_{I}=\Sigma_{J: I \cap J \neq \emptyset} \lambda_{J}$, and that for $1 \leq k_{i_{1}} \leq \ldots \leq k_{i_{n}}$,

$$
\begin{aligned}
P\left[N_{i_{1}}\right. & \left.>k_{i_{1}}, \ldots, N_{i_{n}}>k_{i_{n}}\right] \\
& =P\left[Y_{i_{1}}>X_{1}+\ldots+X_{k_{i_{1}}}, \ldots, Y_{i_{n}}>X_{1}+\ldots+x_{k_{i}}\right] \\
& =\left\{E e^{-n} I_{1}\right\}^{X k_{i_{1}}}\left\{E e^{-n_{I_{2}}}\right\}^{X k_{i_{2}}}{ }^{-k_{i_{1}}} \ldots\left\{E e^{-\eta_{I_{n}} X_{i} k_{n}-k_{i_{n+1}}},\right.
\end{aligned}
$$

where $I_{1}=\left\{i_{1}, \ldots, i_{n}\right\}=\{1, \ldots, n\}, I_{2}=\left\{i_{2}, \ldots, i_{n}\right\}, \ldots, I_{n}=\left\{i_{n}\right\}$.
Letting $\rho_{I}=E e^{-n_{I} X^{n}}, I \in I$, the survival function of $N_{1}, \ldots, N_{n}$ becomes

$$
\begin{align*}
& \bar{F}\left(k_{1}, \ldots, k_{n}\right)=P\left[N_{1}>k_{1}, \ldots, N_{n}>k_{n}\right]  \tag{5.3}\\
&=\rho_{I_{1}}{ }^{k_{i_{1}}} \rho_{I_{2}} k_{i_{2}}-k_{i_{1}} \ldots \rho_{I_{n}} k_{i_{n}}-k_{i_{n-1}}
\end{align*}
$$

on the simplex $0 \leq k_{i_{1}} \leq \ldots \leq k_{i_{n}}$. The content of the preceding remarks is summarized by the following theorem.

Theorem 5.1. $N_{1}, \ldots, N_{n}$ have a MVG-W distribution.

$$
\text { Now let } \mu_{I}=-\log \rho_{I}, \quad I \in I \text {, i.e. } e^{-\mu_{I}}=\rho_{I}=E e^{-\eta_{I} X} \text {. }
$$

The following definitions and lemmas are directed towards finding conditions on $X$ for which the equations $\mu_{I}=\Sigma_{J: I \cap J \neq \emptyset} \alpha_{J}, I, J \in I$, have a set of nonnegative solutions $\alpha_{J}$. Then by Theorem 4.1, $N_{1}, \ldots, N_{n}$ will have a MVG-N distribution.

A coherent structure function of order $n$ is an increasing binary function $\phi(\underset{\sim}{x})=\phi\left(x_{1}, \ldots, x_{n}\right)=0$ or 1 of binary arguments $x_{i}=0$ or $1, i=1, \ldots, n$, such that $\phi(0, \ldots, 0)=0$ and $\phi(1, \ldots, 1)=1$. The coherent life function $\tau(\underset{\sim}{t})=\tau\left(t_{1}, \ldots, t_{n}\right)$, $t_{i} \geq 0, \quad i=1, \ldots, n$, that corresponds to $\phi$ is defined by

$$
\tau(\underset{\sim}{t})=\sup \left\{u: \phi\left\{x\left(u, t_{1}\right), \ldots, x\left(u, t_{n}\right)\right\}=1\right\},
$$

where $x(u, t)=1$ if $u<t, x(u, t)=0$ if $u \geq t \quad$ (cf. Esary and Marshall (1970b). The dual of $\phi$ is the coherent structure function $\phi^{D}\left(x_{1}, \ldots, x_{n}\right)=1-\phi\left(1-x_{1}, \ldots, 1-x_{n}\right)$, and $\tau^{D}$ is the life function that corresponds to $\phi^{\mathrm{D}}$. The coherent structure function $\phi_{1} \phi_{2}$ has $\min \left(\tau_{1}, \tau_{2}\right)$ as its corresponding life function. The coherent structure function $\phi_{1} \vee \phi_{2}=\phi_{1}+\phi_{2}-\phi_{1} \phi_{2}$ has $\max \left(\tau_{1}, \tau_{2}\right)$ as its corresponding life function. The dual of $\phi_{1} \phi_{2}$ is $\phi_{1}^{D} \vee \phi_{2}^{D}$ and the dual of $\phi_{1} \vee \phi_{2}$ is $\phi_{1}^{D} \phi_{2}^{D}$.

The following lemma holds for $Y_{1}, \ldots, Y_{n}$ with an arbitrary joint distribution.

Lemma 5.2. For each coherent structure function $\phi$ of order $n$, 1et $m(\phi)=P\left[\phi^{D}(\underset{\sim}{Y}) \leq X\right]$. Then:
(a) $m(\phi) \geq 0$.
(b) $\phi_{1} \leqslant \phi_{2}$ implies $m\left(\phi_{1}\right) \leq m\left(\phi_{2}\right)$.
(c) $m\left(\phi_{1} \vee \phi_{2}\right)=m\left(\phi_{1}\right)+m\left(\phi_{2}\right)-m\left(\phi_{1} \phi_{2}\right)$.

Proof. That (a) holds is immediate since $m(\phi)$ is a probability. To show (b), note that

$$
\begin{aligned}
\phi_{1} \leq \phi_{2} & \Rightarrow \phi_{1}^{D} \geq \phi_{2}^{D} \Rightarrow \tau_{1}^{D} \geq \tau_{2}^{D} \\
& \left.\Rightarrow P\left[\tau_{1}^{D} \underset{\sim}{\mathcal{Y}}\right) \leq X\right] \leq P\left[\tau_{2}^{D}(\underset{\sim}{Y}) \leq X\right] \\
& \Rightarrow m\left(\phi_{1}\right) \leq m\left(\phi_{2}\right) .
\end{aligned}
$$

To show (c), note that

$$
\begin{aligned}
m\left(\phi_{1} \vee \phi_{2}\right)= & P\left[\min \left(\tau_{1}^{D}(\underset{\sim}{Y}), \tau_{2}^{D}(\underset{\sim}{Y})\right\} \leq X\right] \\
= & P\left[\tau_{1}^{D}(\underset{\sim}{Y}) \leq X, \tau_{2}^{D}(\underset{\sim}{Y}) \leq X\right] \\
= & P\left[\tau_{1}^{D}(\underset{\sim}{Y}) \leq X\right]+P\left[\tau_{2}^{D}(\underset{\sim}{Y}) \leq X\right] \\
& -P\left[\max \left\{\tau_{1}^{D}(\underset{\sim}{Y}), \tau_{2}^{D}(\underset{\sim}{Y})\right\} \leq X\right] \\
& \\
& m\left(\phi_{1}+m\left(\phi_{2}\right)-m\left(\phi_{1} \phi_{2}\right) .\right.
\end{aligned}
$$

Thus, (a), (b) and (c) all hold.

Each coherent structure function has a representation

$$
\phi(\underset{\sim}{x})=\Pi_{i \in P_{1}} x_{i} v \ldots v \Pi_{i \in P_{p}} x_{i},
$$

where $P_{1}, \ldots, P_{p}$ are the minimal path sets of $\phi$, i.e. the minimal subsets $P$ of $\{1, \ldots, n\}$ such that $x_{i}=1$ for all $1 \in P$ implies $\phi(\underset{\sim}{x})=1$. The equivalent representation for the life function corresponding to $\phi$ is

$$
\begin{equation*}
\tau\left(\underset{\sim}{t)}=\max _{j=1, \ldots, P} \min _{i \in P_{j}} t_{i} .\right. \tag{5.4}
\end{equation*}
$$

The random variable $X$ is infinitely divisible if $X$ is distributed as if $X=X_{1, r}+\ldots+X_{r, r}$ for each $r=1,2, \ldots$, where $X_{1, r}, \ldots, X_{r, r}$ are independent and identically distributed as a random variable $X_{r}$. Since $X$ is nonnegative and $P[X>0]>0$, then $X_{r}$ is nonnegative and $P\left[X_{r}>0\right]>0$. As before let $\omega(\lambda)=$ $E e^{-\lambda X}$ be the Laplace transform of $X$, and $\psi(\lambda)=-\log \omega(\lambda)$. Let $\omega_{r}(\lambda)=E e^{-\lambda X_{r}}=\omega(\lambda)^{1 / r}$ be the Laplace transform of $X_{r}$. Then $r\left\{1-\omega_{r}(\lambda)\right\} \rightarrow \psi(\lambda)$ as $r \rightarrow \infty$.

The following lemma uses the assumption that $Y_{1}, \ldots, Y_{n}$ have a Marshall-O1kin multivariate exponential distribution to the extent that then $Y_{I}$ has an exponential distribution for each $I \in I$, i.e. $Y_{1}, \ldots, Y_{n}$ have exponential minimums.

Lemma 5.3. Let $X$ be infinitely divisible. For each coherent structure function $\phi$ of order $n$, and each $r=1,2, \ldots$ define $m_{r}(\phi)=P\left[\tau^{D}(\underset{\sim}{Y}) \leq X_{r}\right]$ Then

$$
m(\phi)=\lim _{r \rightarrow \infty} r m_{r}(\phi)
$$

exists for each $\phi$, and $m$ satisfies (a), (b) and (c) of Lemma 5.2.

Proof. From (5.4)

$$
m_{r}(\phi)=P\left[\tau^{D}(\underset{\sim}{Y}) \leq X_{r}\right]=P\left[Y_{P_{1}} \leq X_{r}, \ldots, Y_{P_{p}} \leq X_{r}\right],
$$

where $P_{1}, \ldots, P_{p}$ are the minimal path sets of $\phi^{D}$. Then by a standard inclusion and exclusion argument

$$
\begin{aligned}
& m_{r}(\phi)=\sum_{j=1}^{P}\left\{1-P\left[Y_{P_{j}}>X_{r}\right]\right\}-\sum_{j, k=1}^{P}\left\{1-P\left[Y_{P_{j}}>X_{r}, Y_{P_{k}}>X_{r}\right]\right\} \\
& \left.+\ldots \pm\left\{1-P_{\left[Y_{P_{1}}\right.}>X_{r}, \ldots, Y_{P_{p}}>X_{r}\right]\right\} \\
& =\sum_{j=1}^{p}\left\{1-\omega_{r}\left(n_{P_{j}}\right)\right\}-\sum_{j, k=1}^{p}\left\{1-\omega_{r}\left(\eta_{P_{j}} U_{k}\right)\right\} \\
& +\ldots \pm\left\{1-\omega_{r}\left(\eta_{P_{1}} \cup \ldots \mathcal{P}_{p}\right)\right\} .
\end{aligned}
$$

Since for each $\lambda, \quad r\left\{1-\omega_{r}(\lambda)\right\} \rightarrow \psi(\lambda)$ as $r \rightarrow \infty$, it follows that $m(\phi)$, the limit of $\mathrm{rm}_{\mathrm{r}}(\phi)$ exists. Since for each $r, \mathrm{~m}_{\mathrm{r}}$ satisties (a), (b) and (c) of Lemma 5.2 , so does $m$.

For each $I \in I$, let $\phi_{I}=V_{i \in I} x_{i}$, where $V_{i=1}^{n} x_{i}=$ $x_{1} \vee \ldots \vee x_{n}$. Then $I$ is the only minimal path set of $\phi_{I}^{D}$. Embedded in the proof of Lemma 5.3 is the observation that $m_{r}\left(\phi_{I}\right)=$ $1-E e^{-\eta_{I} X_{r}}=1-\omega_{r}\left(\eta_{I}\right)$ and

$$
\begin{align*}
m\left(\phi_{I}\right) & =\lim _{r \rightarrow \infty} r m_{r}\left(\phi_{I}\right)=\psi\left(n_{I}\right)  \tag{5.5}\\
& =-10 g E e^{-n_{I} X}=\mu_{I} .
\end{align*}
$$

Theorem 5.4. If $X$ is infinitely divisible, then $N_{1}, \ldots, N_{n}$ have a MVG-N distribution.

Proof. By Theorem 5.1 $N_{1}, \ldots, N_{n}$ have a MVG-W distribution. Then by Theorem 4.1 it is sufficient to show that for each $I \in J$ $\mu_{I}=\sum_{J: I \cap J=\emptyset} \alpha_{J}$, where $\alpha_{J} \geq 0, \quad J \in J$.

Let $m$ be defined as in Lemma 5.3. Since $m$ satisfies (a), (b) and (c) of Lemma 5.2, it follows from Lemma 3.1, Esary and Marsha11 (1970a) that there exists a nonnegative function $\alpha(\underset{\sim}{x})$ such that

$$
m(\phi)=\Sigma_{\underset{\sim}{x}} \alpha(\underset{\sim}{x}) \phi(\underset{\sim}{x})
$$

for each coherent structure function $\phi$ of order $n$.
Let the $i^{\text {th }}$ coordinate of $\underset{\sim}{\underset{\sim}{x}}$ be 1 if $i \in J$ and 0 if $i \in J$. Then $\phi_{I}(\underset{\sim}{x})=1$ if and only if $I \cap J \neq \emptyset$. Let $\alpha_{J}=$ $\alpha(\underset{\sim}{x}) \geq 0, \quad J \in I$. Then from (5.5)

$$
\mu_{\mathrm{I}}=m\left(\phi_{\mathrm{I}}\right)=\Sigma_{\mathrm{J}: I \Omega J \neq \emptyset}^{\alpha_{J}} .
$$

Thus $N_{1}, \ldots, N_{n}$ have a MVG-N distribution.

For the purpose of the following theorem, assume that $Y_{1}, \ldots, Y_{n}$ are independent and that $Y_{i}$ has the exponential distribution $P\left[Y_{i}>y\right]=e^{-\lambda_{i} y}, y \geq 0, \lambda_{i}>0$, i.e. that $Y_{1}, \ldots, Y_{n}$ have a special case of the Marshall-01kin multivariate exponential distribution.

Theorem 5.5 (Converse to Theorem 5.4). If $N_{1}, \ldots, N_{n}$ have a MVG-N distribution for each $n$ and all $\lambda_{1}>0, \ldots, \lambda_{n}>0$, then $X$ is infinitely divisible.

Proof. Since $N_{1}, \ldots, N_{n}$ have a MVG-N distribution, it follows from Theorem 4.1 that for each $J \in I$ there exists an $\alpha_{J} \geq 0$ such that

$$
\mu_{I}=\Sigma_{J: I \cap J \neq \emptyset} \alpha_{J}
$$

for each $I \in I$. Let $\alpha \underset{\sim}{x})=\alpha_{J}$ where $J=\left\{i: x_{i}=1\right\}, \underset{\sim}{x} \neq(0, \ldots, 0)$, and define $m(\phi)=\sum_{\underset{\sim}{x}} \alpha(\underset{\sim}{x}) \phi(\underset{\sim}{x})$ for each coherent structure function $\phi$ of order $n$. Then $m$ satisfies conditions (a), (b) and (c) of Lemma 5.2. Also

$$
\begin{aligned}
m\left(\phi_{I}\right) & =\sum_{\underset{\sim}{x}} \underset{\sim}{\alpha(x)} V_{i \in I} x_{i}=\Sigma_{J: I \cap J \neq \emptyset} \alpha_{J} \\
& =\mu_{I}=\psi\left(n_{I}\right)=\psi\left(\mathbb{\Sigma}_{i \in I} \lambda_{i}\right) .
\end{aligned}
$$

Then, with the incidental use of an inclusion-exclusion argument based on condition (c) of Lemma 5.2, for $n \geq 2$ (letting $\phi_{i}=\phi_{\{i\}}, \phi_{i j}=$ $\phi_{\{i j\}}$, etc.),

$$
\begin{aligned}
& -\alpha_{2 \ldots n}=m\left(\prod_{i=1}^{n} x_{i}\right)-m\left(\prod_{i=2}^{n} x_{i}\right) \\
& \quad=\sum_{i=1}^{n} m\left(\phi_{i}\right)-\sum_{\substack{i, j=1 \\
i<j}}^{n} m\left(\phi_{i j}\right)+\ldots \pm m\left(\phi_{1 \ldots n}\right) \\
& \quad-\sum_{i=2}^{n} m\left(\phi_{i}\right)+\sum_{\substack{i, j=2 \\
i<j}}^{n} m\left(\phi_{i j}\right)+\ldots \pm m\left(\phi_{2 \ldots n}\right) \\
& \quad=m\left(\phi_{1}\right)-\sum_{l=2}^{n} m\left(\phi_{1 i}\right)+\ldots \pm m\left(\phi_{1 \ldots n}\right) .
\end{aligned}
$$

## Thus

$$
\begin{aligned}
& (-1)^{n} \alpha_{2 \ldots n}=m\left(\phi_{1 \ldots n}\right)-\cdots \pm \sum_{1=2}^{n} m\left(\phi_{1 i}\right) \mp m\left(\phi_{1}\right) \\
& \quad=\psi_{1}\left(\lambda_{1}+\ldots+\lambda_{n}\right)-\cdots \pm \Sigma_{i=2}^{n} \psi\left(\lambda_{1}+\lambda_{i}\right) \mp \psi\left(\lambda_{1}\right) \\
& \quad=\Delta_{\lambda_{n}} \ldots \Delta_{\lambda_{2}} \psi\left(\lambda_{1}\right),
\end{aligned}
$$

where $\Delta_{y} f(x)=f(x+y)-f(x)$. Since $\alpha_{2 \ldots n} \geq 0$, it follows that

$$
(-1)^{\mathrm{n}} \psi^{(\mathrm{n}-1)}\left(\lambda_{1}\right) \geq 0, \quad \mathrm{n}=2,3, \ldots,
$$

where $\psi^{(n)}(\lambda)$ is the $n^{\text {th }}$ derivative of $\psi(\lambda)$ with respect to $\lambda$. Thus

$$
(-1)^{n} \frac{d^{n} \psi^{(1)}(\lambda)}{d \lambda^{n}} \geq 0, \quad n=0,1, \ldots, \quad \lambda>0,
$$

i.e. $\psi^{(1)}(\lambda)$ is a completely monotone function. It follows from Theorem 1, p. 425, Feller (1966) that $\omega(\lambda)=e^{-\psi}$ is the Laplace transform of an infinitely divisible random variable, i.e. that $X$ is infinitely divisible.

Acknowledgment.
The authors thank P. A. W. Lewis for his helpful comments on the manuscript.

## REFERENCES

[1] Esary, J. D. and Marshall, A. W. (1970a). Multivariate distributions with exponential minimums. Naval Postgraduate School Report NPS55EY70091A.
[2] Esary, J. D. and Marshall, A. W. (1970b). Coherent life functions. SIAM J. Appl. Math. 18, 810-814.
[3] Esary, J. D., Marsha11, A. W. and Proschan, F. (1970). Shock models and wear processes. Florida State University Statistics Report M194.
[4] Feller, W. (1966). An Introduction to Probability Theory and its Applications, Vol. II, Wiley, New York.
[5] Mardia, K. V. (1970). Families of Bivariate Distributions. Hafner, Darien, Connecticut.
[6] Marshall, A. W. and Olkin, I. (1967). A multivariate exponential distribution. J. Amer. Statist. Assoc. 62, 30-44.
No. CopiesDefense Documentation Center (DDC)12Cameron Station
Alexandria, Virginia ..... 22314
Library (Code 0212) ..... 2Naval Postgraduate SchoolMonterey, California 93940
Library (Code 55) ..... 2Department of Operations Researchand Administrative Sciences
Naval Postgraduate School
Monterey, California 93940
Dean of Research ..... 2Code 023Naval Postgraduate SchoolMonterey, California 93940
Dr. Nancy R. Mann ..... 1Research DivisionRocketdyne, Division of North American Aviation, Inc.6633 Canoga AvenueCanoga Park, California 91304
Professor Ingram Olkin ..... 1Department of StatisticsStanford UniversityStanford, California 94305
Professor J. Neyman ..... 1Department of StatisticsUniversity of CaliforniaBerkeley, California 94720
Professor William L. Hutchings ..... 1Department of MathematicsWhitman CollegeWalla Walla, Washington 99362
Professor Frank Proschan ..... 1Department of StatisticsThe Florida State UniversityTallahassee, Florida 32306
Dr. Sam C. Saunders ..... 1
Mathematics Department Washington State University Pullman, Washington 99163
Dr. Seymour M. Selig ..... 1
Office of Naval Research
Arlington, Virginia 22217
Professor Z. W. Birnbaum ..... 1Department of MathematicsUniversity of Washington
Seattle, Washington ..... 98105
Professor R. E. Barlow ..... 1Department of Industrial Engineeringand Operations Research
University of California
Berkeley, California 94720
Professor Ernest M. Scheuer1
Management Science Department
San Fernando State College
Northridge, California 91324
Professor D. R. Cox ..... 1Imperial CollegeExhibition RoadLondon SW 7, England
Professor Zvi Ziegler ..... 1
Israel Institute of Technology, Technion
Haifa, Israel
Professor Samuel Karlin ..... 1
Mathematics Department
Weizmann Institute of Science
Rehovot, Israel
Professor Chin Long Chiang ..... 1
Division of Biostatistics
University of California
Berkeley, California 94720
Professor G. J. Liebermann1
Department of Operations Research
Stanford University
Stanford, California 94305
Professor A. W. Marshall ..... 10
Department of StatisticsUniversity of RochesterRochester, New York 14627
Professor J. D. Esary10Department of Operations Researchand Administrative Sciences
Naval Postgraduate School
Monterey, California 93940
Professor Lucien Le Cam ..... 1Centre de recherches mathématiquesUniversite de MontrealCase postale 6128, Montreal 101, Canada
Department of Operations Researchand Administrative Sciences
Naval Postgraduate School
Monterey, California 93940
Professor D. P. Gaver 55Gv ..... 1
Professor P. A. W. Lewis 55Lw ..... 1
Professor K. T. Marshall 55Mt ..... 1
Professor R. W. Butterworth ..... 55Bd ..... 1
Professor D. R. Barr 55Bn ..... 1
CDR R. A. Stephan 55Xd1
Dr. Bruce J. McDonald ..... 1Office of Naval ResearchArlington, Virginia 22217
Dr. B. H. Colvin ..... 1Applied Mathematics DivisionNational Bureau of StandardsWashington, D. C. 20234
Dr. Guil Hollingsworth ..... 1Technical DirectorNaval Air Development CenterWarminster, Pennsylvania 18974

## DOCUMENT CONTROL DATA - R \& D


Naval Postgraduate School
Monterey, California 93940
2a. FEFORT SECURITY CLASSIFICATIOA
2b. GROUP

2b. GROUP

3 REPORT TITLE
Multivariate Geometric Distributions Generated by a Cumulative Damage Process
4. OESCRIPTIVENOTES (Type of report and inclustve dales)

Technical Report - March 1973
AUTHOR(S) (First name, middle initial, lasiname)
James D. Esary
Albert W. Marshall

10. OISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

12. SPONSORING MILITARY ACTIVITY

Two (narrow and wide) multivariate geometric analogues of the Marshall-Olkin multivariate exponential distribution are derived from the following cumulative damage model. A set of devices is exposed to a common damage process. Damage occurs in discrete cycles. On each cycle the amount of damage is an independent observation on a nonnegative random variable. Damages accumulate additively. Each device has its own random breaking threshold. A device fails when the accumulated damage exceeds its threshold. Thresholds are independent of damages, and have a MarshallOlkin multivariate exponential distribution. The joint distribution of the random numbers of cycles up to and including failure of the devices has the wide multivariate geometric distribution. It has the narrow multivariate geometric distribution if the damage variable is infinitely divisible.



[^0]:    By contrast with the BVG-N and BVG-W distributions, the more familiar bivariate geometric (negative binomial) distribution described in Mardia (1970), Section 10.4 , can be viewed as arising from a sequence of three outcome trials; success of type 1 occurring with probability $\mathrm{P}_{1}$, success of type 2 occurring with probability $\mathrm{P}_{2}$, and failure occurring with probability $1-p_{1}-p_{2}$, with $K_{1}$ and $K_{2}$ defined respectively to be the numbers of successes of types 1 and 2 prior to the first failure.

