NAVAL POSTGRADUATE SCHOOL Monterey, California

A MOVING AVERAGE EXPONENTIAL POINT PROCESS (EMA1) by
A. J. Lawrance
and
P. A. W. Lewis

June 1975

Approved for public release; distribution unlimited.

NAVAL POSTGRADUATE SCHOOL

Monterey, California
Rear Admiral Isham Linder
Jack R. Borsting
Superintendent
Provost

The work reported herein was supported in part by the Office of Naval Research, the National Science Foundation and the United Kingdom Science Research Council.

Reproduction of all or part of this report is authorized.

Prepared by:

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
i. REPORT NUMEER 2. GOVT ACCESSION NO. NPS55Lw75061	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) A Moving Average Exponential Point Process (EMA1)	5. TYPE OF REPORT A PERIOD COVERED Technical Report 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) A. J. Lawrance P. A. W. Lewis	8. CONTRACT OR GRANT NUMEER(\%)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940	10. PROGRAMELEMENT, PROJECT, TASK AREA A WORK UNIT NUMBERS
11. Controlling office name and address	12. REPORT DATE June 1975 13. NUMBER OF PAGES
14. MONITORING AGENCY NAME \& ADDRESS(if differont from Controlling Office)	15. SECURITY CLASS. (Of thto roport) Unclassified
	15e. OECLASSIFICATION/DOWNGRADING

Approved for public release; distribution unlimited
17. DISTRIGUTION STATEMENT (of the abstract onterod In Block 20, it difforont from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse elde If neceeeary end tdentify by block number)

Linear Combinations
Poisson Process
Moving Average

Point Process
Random Sequence
Variance Time Curve

20. ABSTRACT (Contlnue on reverse elde If neceseary and Identlfy by block number)

A construction is given for a stationary sequence of random variables $\left\{X_{i}\right\}$ which have exponential marginal distributions and are random linear combinations of order one of an $1.1 . d_{\text {. }}$ exponential sequence $\left\{\varepsilon_{i}\right\}$. The joint and trivariate exponential distributions of X_{i-1}, X_{i} and X_{i+1} are studied, as well as the intensity function, point spectrum and variance time curve for the point process which has the $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ sequence for successive

LLCURITY CLASSIFICATION OF THIS PAGE(Whon Date Entorod)

times between events. Initial conditions to make the point process count stationary are given, and extensions to higher order moving averages and Gamma point processes are discussed.

A MOVING AVERAGE EXPONENTIAL POINT PROCESS (EMA1)

A. J. Lawrance
University of Birmingham
England
and
P. A. W. Lewis* ${ }^{*}$
Naval Postgraduate School
Monterey, California

ABSTRACT

A construction is given for a stationary sequence of random variables
$\left\{X_{i}\right\}$ which have exponential marginal distributions and are random linear combinations of order one of an i.i.d. exponential sequence $\left\{\varepsilon_{i}\right\}$. The joint and trivariate exponential distributions of X_{i-1}, X_{i} and X_{i+1} are studied, as well as the intensity function, point spectrum and variance time curve for the point process which has the $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ sequence for successive times between events. Initial conditions to make the point process count stationary are given, and extensions to higher order moving averages and Gamma point processes are discussed.

1. Introduction

In this paper we discuss the stationary sequence of random variablas
$\left\{X_{i}\right\}$ which are formed from an independent and identically distributed exponential sequence $\left\{\varepsilon_{i}\right\}$ according to the linear model
*Support from the Office of Naval Research (Grant NR042-284), the National Science Foundation (Grant AG476) and the United Kingdom Science Research Council is gratefully acknowledged.

$$
X_{i}=\left\{\begin{array}{ll}
\beta \varepsilon_{i} & \text { with probability } \beta ; \tag{1.1}\\
\beta \varepsilon_{i}+\varepsilon_{i+1} & \text { with probability } 1-\beta .
\end{array} \quad(0 \leq \beta \leq 1, i=0, \pm 1, \pm 2, \ldots) .\right.
$$

In fact, the $\left\{X_{i}\right\}$ form a sequence of exponential random variables, and it will be seen from (1.1) that adjacent members will be correlated. Such a type of first order moving average model arose out of the companion paper, Gaver and Lewis (1975); there the first order autoregressive model

$$
\begin{aligned}
x_{i} & =\rho X_{i-1}+\varepsilon_{i}^{\prime} \quad(i=0, \pm 1, \pm 2, \ldots), \\
& =\sum_{k=0}^{\infty} \rho^{k} \varepsilon_{i-k}^{\prime}
\end{aligned}
$$

with exponential marginal distributions for the $\left\{X_{i}\right\}$ is investigated. It is found there that the ε_{i}^{\prime} must be a mixture of a discrete component at zero and an exponential variable. The motivation behind both models (1.1) and (1.2) was three-fold: partly as an alternative to the normality theory of time series, partly as a model for correlated positive random variables with exponential marginal distributions but chiefly as a simple point process model with which to analyze non-Poisson series of events and to study the power of Poisson tests--particularly in situations where there is no obvious physically motivated model.

In the present paper we give a fairly complete picture of the model (1.1), which will be called EMA1 (exponential moving average of order 1), as a stationary point process. Distributions of the sums of the X_{i} are obtained and lead to counting properties of the process; the joint distributions of two and three adjacent intervals X_{i} are derived and appear to be new bivariate and trivariate exponential distributions. The distributions are investigated through their conditional means and variances, and computations of a conditional correlation
are given. Extensions of the model and estimation problems are briefly discussed.

In developing the properties of the process we will also point out similarities to a backward first order moving average which is defined as

$$
X_{i}=\left\{\begin{array}{ll}
\beta \varepsilon_{i} & \text { with probability } \beta, \tag{1.3}\\
\beta \varepsilon_{i}+\varepsilon_{i-1} & \text { with probability } 1-\beta .
\end{array} \quad(0 \leq \beta \leq 1 ; i=0, \pm 1, \pm 2, \ldots) .\right.
$$

Properties of the processes are very similar, but those of the forward model (1.1) have simpler derivations.

It should also be noted that the model (1.1) can be written as a very special type of linear model with random coefficients:

$$
X_{i}=\beta \varepsilon_{i}+I_{i} \varepsilon_{i+1} \quad(0 \leq \beta \leq 1, \quad i=0, \pm 1, \pm 2, \ldots),
$$

where the I_{i} are i.i.d. Bernoulli random variables which are 1 with probability $1-\beta$ and 0 with probability β. This characterization is not very helpful for the first order model; the main point is that since the random coefficient has a probability which is just the parameter β, many of the theorems for linear processes are not applicable.
2. Some Basic Aspects of the EMA1 Mode1

The simplest aspect of the EMAl model is the exponential marginal distribution of the intervals $\left\{\mathrm{X}_{\mathbf{i}}\right\}$; in point process terminology (see e.g. Lawrance, 1972) this is the synchronous distribution of intervals and refers to the distribution of the interval from an arbitrarily chosen event to the next event. For the Laplace transform of its probability density function (p.d.f.) $f_{X_{i}}(x)$, we write

$$
\begin{align*}
f_{X_{i}}^{*}(s) & =E\left\{e^{-s X_{i}}\right\} \\
& =E\left\{e^{-s \beta \varepsilon_{i}} i_{\} \beta}+E\left\{e^{-s \beta \varepsilon_{i}-s \varepsilon} i+1\right.\right. \tag{2.1}
\end{align*}(1-\beta) .
$$

using (1.1). Now the i.i.d. random variables ε_{i} have exponential distributions with parameters λ, say, and so their Laplace transform is $\lambda /(\lambda+s)$. Thus (2.1) becomes

$$
f_{X_{i}}^{*}(s)=\frac{\lambda}{\lambda+\beta s} \cdot \beta+\frac{\lambda}{\lambda+\beta s} \cdot \frac{\lambda}{\lambda+s} \cdot(1-\beta)=\frac{\lambda}{\lambda+s} .
$$

This demonstrates that the X_{i} have identical exponential distributions as asserted. The parameter λ is thus the number of events per unit time, or the rate of the point process.

The correlation between X_{i} and X_{i+1} is easily obtained on considering the product of X_{i} from (1.1) with

$$
X_{i+1}= \begin{cases}\beta \varepsilon_{i+1} & \text { with probability } \beta \\ \beta \varepsilon_{i+1}+\varepsilon_{i+2} & \text { with probability }(1-\beta) .\end{cases}
$$

Thus, again using straightforward conditioning arguments,

$$
\begin{aligned}
\left.\because X_{i} X_{i+1}\right) & =E\left(B \varepsilon_{i} \varepsilon_{i+1}\right) B^{2} \\
& +E\left(B^{2} \varepsilon_{i} \varepsilon_{i+1}+\beta \varepsilon_{i} \varepsilon_{i+2}\right) B(1-\beta) \\
& +E\left(B^{2} \varepsilon_{i} \varepsilon_{i+1}+B \varepsilon_{i+1}^{2}\right) B(1-B) \\
& +E\left(Q^{2} \varepsilon_{i} \varepsilon_{i+1}+3 \varepsilon_{i} \varepsilon_{i+2}+\varepsilon_{i+1} \varepsilon_{i+2}+B \varepsilon_{i+1}^{2}\right)(1-\beta)^{2}
\end{aligned}
$$

and simplification of this result leads to

$$
\begin{equation*}
o_{1}=\operatorname{corr}\left(X_{i}, X_{i+1}\right)=\beta(1-\beta) . \tag{2.2}
\end{equation*}
$$

By the construction of EMAl, the higher order serial correlations will be zero, and thuc the spectral density of intervals (Cox and Lewis, 1966, p. 70),

$$
f_{\perp}(\omega)=\frac{1}{\pi}\left\{1+2 \sum_{k=1}^{\infty} \rho_{k} \cos (k \omega)\right\}, \quad(0 \leq \omega \leq \pi),
$$

beco:-:

$$
\begin{equation*}
f_{\perp}(\omega)=\frac{1}{\pi}\{1+2 Q(1-\beta) \cos (\omega)\} . \quad(0 \leq \omega \leq \pi) . \tag{2.3}
\end{equation*}
$$

The result (2.2) is the greatest limitation of the EMAl model since it implies that the first order scricl comelation is non-negative and bounded by $1 / 4$; this may be compared with an ordinary MAl model assuming two-sided ε_{i} distributions of mean zero for which $\left|\rho_{1}\right| \leq 1 / 2$. In both cases it can be anticipated that the restrictions are a consequence of the linearity of the model.s.

A further simole aspect of the EMAl model is that the $\left\{X_{i}\right\}$ sequence reduces to the Poisson rrorss when $B=0$ or 1 , and this gives checks on most of our results. Wo mav also note that the moving average is taken in the fromed sense: the backward model (1.3) could equally have been treated,
although producing different but similar results. This serves to emphasize that there is no time-reversibility in the process, in the sense that $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right\}$ does not have the same joint probability distribution as $\left\{X_{-1}, \ldots, X_{-k}\right\}$ for all finite k, where $k \geq 2$.

3. Distaibutions of Sums and Counts in $\left\{X_{i}\right\}$ Sequence

In the point process theory of the model, the distribution of the sums $T_{r}=X_{1}+\ldots+X_{r}$ are very useful; if these can be obtained then the distributions $n f$ counts. both in the synchronous and asynchronous mode, can then be derived. As shown in Cox and Lewis (1966, Chapter 4) for instance, these then jead to the second order properties such as the intensity function, the (Bä゙・latt) snectrum of counts and the variance time curve. It is, therefore, a particularly attractive feature of the EMAl model that the distribution of the \bar{T}_{r} may be obtained, and we shall now give a simple derivation.

Define $\psi(s)$ as the Laplace transform of the p.d.f. of the ε_{i} distributicn: except where otherwise remarked this distribution is exponential of parameter λ a. so $\psi(s)=\lambda /(\lambda+s)$. Define the d~ible Laplace transform ($\%$ cruivalently the joint moment generating function) of T_{r} and ε_{r+1}, as

$$
\begin{equation*}
x_{i}\left(s_{1}, s_{2}\right)=E\left\{e^{-s_{1} T_{r}-s_{2} \varepsilon_{r+1}} \text { for } r=1,2, \ldots\right. \tag{3.1}
\end{equation*}
$$

Fo: : = 1, we have

$$
\begin{align*}
\psi_{i}\left(s_{1}, s_{2}\right) & =E\left\{e^{-s_{1} X_{1}-s_{2} \varepsilon_{2}}\right\}=E\left\{e^{-s_{1} B \varepsilon_{1}-s_{2} \varepsilon_{2}}\right\} B+E\left\{e^{-s_{1} B \varepsilon_{1}-\left(s_{1}+s_{2}\right) \varepsilon_{2}}\right\}(1-B) \\
& =\psi\left(B s_{1}\right)\left[B \psi\left(s_{2}\right)+(1-B) \psi\left(s_{1}+s_{2}\right)\right] \tag{3.2}
\end{align*}
$$

and we shall write

$$
\begin{equation*}
\psi\left(s_{1}, s_{2}\right)=\beta \psi\left(s_{2}\right)+(1-\beta) \psi\left(s_{1}+s_{2}\right) . \tag{3.3}
\end{equation*}
$$

This is the double Laplace transform of a joint distribution in which the fiast ariable has mass B at zero and with probability (1-B) is exponential distributed. We shall now relate $\phi_{r}\left(s_{1}, s_{2}\right)$ and $\phi_{r-1}\left(s_{1}, s_{2}\right)$. Since

$$
\begin{aligned}
T_{r} & =T_{r-1}+X_{r} \\
& = \begin{cases}T_{r-1}+\beta \varepsilon_{r} & \text { with probability } \beta \\
T_{r-1}+\beta \varepsilon_{r}+\varepsilon_{r+1} & \text { with probability } 1-\beta,\end{cases}
\end{aligned}
$$

we have

$$
\begin{align*}
\phi_{r}\left(s_{1}, s_{2}\right) & =E\left\{e^{-s_{1} T_{r-1}-s_{1} \beta \varepsilon_{r}-s_{2} \varepsilon_{r-1}}\right\} \beta+E\left\{e^{-s_{1} T_{r-1}-s_{1} \beta \varepsilon_{r}-\left(s_{1}+s_{2}\right) \varepsilon_{r+1}}\right\}(1-\beta) \\
& =\phi_{r-1}\left(s_{1}, \beta s_{1}\right) \psi\left(s_{2}\right) \beta+\phi_{r-1}\left(s_{1}, \beta s_{1}\right) \psi\left(s_{1}+s_{2}\right)(1-\beta) \\
& =\left[\beta \psi\left(s_{2}\right)+(1-\beta) \psi\left(s_{1}+s_{2}\right)\right] \phi_{r-1}\left(s_{1}, \beta s_{1}\right) . \tag{3.4}
\end{align*}
$$

Solving (3.4) gives,

$$
\begin{equation*}
\phi_{r}\left(s_{1}, s_{2}\right)=\psi\left(\beta s_{1}\right)\left[\psi\left(s_{1}, \beta s_{1}\right)\right]^{r-1} \psi\left(s_{1}, s_{2}\right) \tag{3.5}
\end{equation*}
$$

and setting $s_{2}=0$, we have for the Laplace transform of the p.d.f. of T_{r},

$$
\begin{align*}
\phi_{r}(s) & =[\beta \psi(\beta s)+(1-\beta) \psi(\beta s) \psi(s)][\beta \psi(\beta s)+(1-\beta) \psi((1+\beta) s)]^{r-1} \tag{3.6}\\
& =\frac{\lambda}{\lambda+s}\left\{\frac{\lambda(\lambda+2 \beta s)}{(\lambda+2 \beta s)\{\lambda+(1+\beta) s]}\right\}^{r-1}, \quad r \geq 1 \tag{3.7}
\end{align*}
$$

This is our required result; from (3.7) it will be observed that T_{r} is distributed like the sum of r independently distributed variables, such as in a delayed renewal process, although these are not X variables. The structure of (3.6) or (3.7) is explained by the fact that the number of intervals which are of the $\beta \varepsilon_{i}$ form or $\beta \varepsilon_{i}+\varepsilon_{i+1}$ form are binomially distributed with parameter β or $1-\beta$; further consideration of the adjacencies of the two types of intervals than leads to the terms in the binomial expansion of (3.6).

We now obtain the distribution of $\mathrm{N}_{\mathrm{t}}^{(\mathrm{f})}$, the synchronous counting process of number of events occurring in the interval ($0, t$] beginning at an arbitrary event; this is related to the distribution of T_{r} through the equivalence of the events $N_{i}(f)<r$ and $T_{r}>t$ for $r \geq 1$. Let $F_{r}(t)$ denote the distribution of T_{r}, and then since

$$
\begin{equation*}
\operatorname{Prob}\left\{N_{t}(f)=r\right\}=F_{r}(t)-F_{r+1}(t), \quad r \geq 0, \tag{3.8}
\end{equation*}
$$

with $F_{0}(t) \equiv 1$ for $t \geq 0$, we have for the p.d.f. of $N_{t}^{(f)}$,

$$
\begin{align*}
E\left\{z^{N_{t}^{(f)}}\right\} & =\psi_{f}(z ; t)=\sum_{r=0}^{\infty} z^{r}\left[F_{r}(t)-F_{r+1}(t)\right] \\
& =1+(z-1) \sum_{r=1}^{\infty} z^{r-1} F_{r}(t) \tag{3.9}
\end{align*}
$$

Inserting (3.7) in the Laplace transform of (3.9) gives

$$
\begin{equation*}
\psi_{f}^{*}(z: s)=\frac{\beta(1+B) s^{2}+[-\beta(1-\beta) z+2 \beta+1] \lambda s+\lambda^{2}}{(s+\lambda)\left[B(1+\beta) s^{2}+(1+2 \beta-2 \beta z) \lambda s+(1-z) \lambda^{2}\right]} . \tag{3.10}
\end{equation*}
$$

This result is required in Section 4 to follow.
4. The Intensity Function and Spectrum of Counts

The intensity function of a point process is the derivative with respect to t of $E\left\{N_{t}^{(f)}\right\}$ and will be denoted by $m_{f}(t)$. The (Bartlett) spectrum of counts, the Fourier transform of the covariance density of the differential counting process, then has the simple expression

$$
\begin{equation*}
g_{+}(\omega)=\frac{\lambda}{\pi}\left\{1+m_{f}^{*}(i \omega)+m_{f}^{*}(-i \omega)\right\}, \tag{4.1}
\end{equation*}
$$

where $m_{f}^{*}(s)$ is the Laplace transform of $m_{f}(t)$; this expression for $g_{+}(\omega)$ is derived in Cox and Lewis (1966, Section 4.5).

For the EMAl process, the result from (3.10) is that

$$
\begin{equation*}
m_{f}^{*}(s)=\frac{\lambda(\lambda+\beta s)\{\lambda+(1+\beta) s\}}{\beta(1+\beta) s(\lambda+s)\left\{s+\lambda /\left(\beta^{2}+\beta\right)\right\}} . \tag{4.2}
\end{equation*}
$$

In inverting the Laplace transform (4.2) it will be noted that the case $\beta^{2}+\beta=1$, i.e. $\beta \simeq 0.6185$, must be treated separately since there will then be a factor $(\lambda+s)^{2}$ in the denominator. Partial fraction expansions and their inversion then give, for $t \geq 0$,

$$
\begin{align*}
m_{f}(t) & =\lambda\left[1+\frac{\beta(1-\beta)}{\beta^{2}+\beta-1}\left\{e^{-\lambda t /\left(\beta^{2}+\beta\right)}-e^{-\lambda t}\right]\right. & & \left(\beta^{2}+\beta \neq 1\right), \tag{4.3}\\
& =\lambda\left[1+\beta^{3} \lambda t e^{-\lambda t}\right] & & \left(\beta^{2}+\beta=1\right) . \tag{4.4}
\end{align*}
$$

We see in both cases that the initial value of $\mathrm{m}_{\mathrm{f}}(\mathrm{t})$ is λ and that they both increase until maximum values are obtained at $t=\lambda^{-1}\left(\beta^{2}+\beta\right) \times \log \left[\left(\beta^{2}+\beta\right) /\right.$ $\left.\left(\beta^{2}+\beta-1\right)\right]$ and at $t=\lambda^{-1}$ respectively for (4.3) and (4.4); both functions then decrease exponentially to λ. There is no apparent reason for the $\beta^{2}+\beta=1$ case. When $\beta=0$ or 1 both functions are constant at λ, as is appropriate to the Poisson process.

The function $m_{f}(t)$ is ploted in Figure 1 for several values of β. The spectrum of counts follows easily by inserting (4.2) into (4.1), and has the expressions

$$
\begin{array}{rlrl}
g_{\perp}(\omega) & =\frac{\lambda}{\pi}\left\{1+2 \lambda^{2} \frac{\beta(1-\beta)}{\beta^{2}+\beta-1}\left[\frac{\beta^{2}+\beta}{\left(e^{2}+\beta\right)^{2} \omega^{2}+\lambda^{2}}-\frac{1}{\omega^{2}+\lambda^{2}}\right]\right\} & \left(\beta^{2}+\beta \neq 1\right) \\
& =\frac{\lambda}{\pi}\left\{1+2 \lambda^{2} \beta^{3}\left[\frac{-\omega^{2}+\lambda^{2}}{\left(\omega^{2}+\lambda^{2}\right)^{2}}\right]\right\} & & \left(\beta^{2}+\beta=1\right) . \tag{4.6}
\end{array}
$$

We observe that both these are ratios of 4th order polynomials in ω. Estimation of both $m_{f}(t)$ and $g_{\perp}(\omega)$ given an actual sequence of interevent times is considered in Cox and Lewis (1966, Chapter 5); in practice these would then be compared with our given theoretical functions which are graphed in Figure 2.

Nnte that unlike the 2 nd order joint moment functions ρ_{k} and $f_{+}(\omega)$ for intervals, the second order moment functions for counts $m_{f}(t)$ and $g_{+}(\omega)$ do discriminate between the cases where the parameter is β or (1- β). Howeror the graphs in Figure 2 indicate that the count spectra of models with B in the range ($0.25,0.75$) are fairly close to each other; therefore, the spectrum will not be entirely suitable for discriminating between different ₹ values for small sample sizes.

The variance time curve is considered in Section 7, along with the stationarv initial conditions for the process.
5. The Joint Distribution of X_{i} and X_{i+1}

We now discuss the joint distribution of X_{i} and X_{i+1} which will be a bivariate exponential distribution. Several authors have discussed bivariate exponential distributions, including Downton (1970), who makes some comparisons with those of Gumbel, Moran and Marshall-O1kin. The distribution to be discussed here does not appear to be one of the earlier ones, although it is fair to say that in common with earlier ones, it is not the 'perfect' bivariate exponential.

The double Laplace transform of the joint pdf of X_{i} and X_{i+1} is easily calculated using (1.1); the required expectation is

$$
\begin{align*}
E\left\{e^{-s_{1} X_{i}-s_{2} X_{i+1}}\right\} & =f_{X_{i}, X_{i+1}^{* *}\left(s_{1}, s_{2}\right)} \\
& =E\left\{e^{-\beta s_{1} \varepsilon_{i}-\beta s_{2} \varepsilon_{i}+1}\right\} \beta^{2}+E\left\{e^{-\beta s_{1} \varepsilon_{i}-s_{2}\left(\beta \varepsilon_{i+1}+\varepsilon_{i+2}\right)}\right\} \beta(1-\beta) \\
& +E\left\{e^{-s_{1}\left(\beta \varepsilon_{i}+\varepsilon_{i+1}\right)-\beta s_{2} \varepsilon_{i+1}}\right\} \beta(1-\beta) \\
& +E\left\{e^{-s_{1}\left(\beta \varepsilon_{i}+\varepsilon_{i+1}\right)-s_{2}\left(\beta \varepsilon_{i+1}+\varepsilon_{i+2}\right)}\right\}(1-\beta)^{2}, \tag{5.1}
\end{align*}
$$

which can be written

$$
\begin{align*}
\mathrm{f}_{\mathrm{X}_{1}, \mathrm{X}_{i+1}^{* *}\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}\right)} & =\psi\left(\beta \mathrm{s}_{1}\right)\left[\beta \psi\left(\beta \mathrm{s}_{2}\right)+(1-\beta) \psi\left(\mathrm{s}_{1}+\beta \mathrm{s}_{2}\right)\right]\left[\beta+(1-\beta) \psi\left(s_{2}\right)\right] \tag{5.2}\\
& =\frac{\lambda^{2}\left(\lambda+\beta s_{1}+\beta s_{2}\right)}{\left(\lambda+\beta s_{1}\right)\left(\lambda+s_{2}\right)\left(\lambda+s_{1}+\beta s_{2}\right)} . \tag{5.3}
\end{align*}
$$

We note that (5.3) is not symmetrical in s_{1} and s_{2}, and this is to be expected since the process is not time reversible; this is one feature which distinguishes it from earlier bivariate exponentials. The backward moving average model (1.3) corresponding to (1.1) has the joint interval distribution which is specified by (4.3) with s_{1} and s_{2} interchanged.

In explicit form of the joint distribution (5.3) can be obtained dircetly. rather than by inversion of the transform which is less informative. By the structure of the model the joint distribution of (X_{i}, X_{i+1}) is a mixture of the joint distributions of $\left(\beta \varepsilon_{i}, \beta \varepsilon_{i+1}\right),\left(\beta \varepsilon_{i}, \beta \varepsilon_{i+1} \dagger_{i+2}\right)$,
 ties $\beta^{2}, \quad B(1-B), B(1-B)$ and $(1-B)^{2}$. These joint pdf's can be listed in an obvious notation as follows:
$f_{B \varepsilon_{i}, \beta \varepsilon_{i+1}}(\mathrm{x}, \mathrm{y})=(\lambda / \beta) \mathrm{e}^{-(\lambda / \beta) \mathrm{x}}(\lambda / \beta) \mathrm{e}^{-(\lambda / \beta) \mathrm{y}}$, $(x, y>0)$
${ }^{-} \varepsilon_{i}, R \varepsilon_{i+1}^{+\varepsilon_{i+2}}(x, y)=\lambda e^{-\lambda x}(1-\beta)^{-1}\left[\lambda e^{-\lambda y}-\lambda e^{-(\lambda i \beta) y}\right]$,
$\sum_{i \varepsilon_{i}+\varepsilon_{i+1} \cdot B \varepsilon_{i+1}(x, y)=(\lambda / B) e^{-(\lambda / \beta)(x-y / B)}(\lambda / \beta) e^{-(\lambda / B) y}, ~}^{x}$

We thus sce that the joint pdf of X_{i}, X_{i+1} will be continuous in both variables but will have different analytical expressions over the regions $\beta x>y$ and $B x \leq y$; there appears to be no compact analytical form for $f_{X_{i}, X_{i+1}}$ (x, y). This is unfortunate because it makes it difficult to derive maximum likelihood estimates of the parameters λ and β in the model.

Different bivariate exponentials also can be compared through their conditional properties and so we will derive these for the present distribution. Conditional pdf's are not succinct enough, and so we concentrate on conditional moments. These may be obtained from (5.3). For instance, to obtain $E\left(X_{i} \mid X_{i-1}=t\right)$ we differentiate with respect to s_{2}, set $s_{2}=0+$, invert with respect to s_{1} and then divide by the marginal (exponential) density of X_{i-1}. The two conditional means are in this way found to be

$$
\begin{equation*}
E\left(X_{i} \mid X_{i-1}=t\right)=\lambda^{-1}\left[\beta \lambda t+\frac{1-2 \beta}{1-\beta}+\frac{\beta}{1-\beta} e^{-\lambda(1-\beta) t / \beta}\right] \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(X_{i} \mid X_{i+1}=t\right)=\lambda^{-1}\left[1+\beta-e^{-(1-\beta) \lambda t / \beta}\right] . \tag{5.6}
\end{equation*}
$$

Thus, both regressions have exponential components; this property is shared by the Marshall and Olkin bivariate distribution, although that distribution has a singular component along $X_{i}=X_{i+1}$. For the continuous distribution treated by Downton both the conditional means are linear, as are the conditional variances.

Examining these regression functions more closely we see that $E\left(X_{i} \mid X_{i+1}=t\right)$ is equal to λ^{-1} for $\beta=0$ or $\beta=1$; otherwise it increases exponentially from $\beta \lambda^{-1}$ to the constant value $(1+\beta) \lambda^{-1}$ as t increases. The transient is long for β close to 1 , but very short when β is close to 0 . Thus unlike the serial correlation coefficient ρ_{1} there is differentiation in this conditional mean between the cases where the parameter is β and the case when it has value 1 - β.

The conditional mean (5.5) is more complex. It starts at $t=0$ with value λ^{-1} and negative slope $\beta-1$. There is a unique minimum at $t=$ $-\beta$ थn $\beta /\{\lambda(1-\beta)\}$ and the function eventually increases linearly with t. Since we have for large t that

$$
E\left[X_{i} \mid X_{i-1}=t\right] \sim \lambda^{-1}\left[\frac{1-2}{1-\beta}\right]+B t
$$

the ratc of increase depends only on B, not on λ.
The conditional variances for the present bivariate exponential are also exponential functions, and their explicit forms are given by
$\operatorname{Var}\left(\tilde{X}_{i} \mid X_{i-1}=t\right)=\lambda^{-2}\left[\frac{1-2 \beta+22^{3}}{(1-\beta)^{<}}+\frac{2 \beta^{2}(1+\lambda t)}{1-\beta} e^{-(1-\beta) \lambda t / \beta}-\frac{\beta^{2}}{(1-\beta)^{2}} e^{-2(1-\beta) \lambda t / \beta}\right]$
and
$\operatorname{Var}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{X}_{i+1}=\mathrm{t}\right)=\lambda^{-2}\left[\frac{1+\beta+\beta^{2}-\beta^{3}}{1-\beta}-2\left\{\frac{\beta}{1-\beta}+\frac{\lambda t}{\beta}\right\} e^{-\lambda(1-\beta) t / \beta}-e^{-2(1-\beta) \lambda t / \beta}\right]$.

These conditional variances are quite different forms as shown in Figures 3 and 4. In practice it is clear that conditional means and variance could only be calculated for t in the more central regions of the marginal distributions. In these situations $\operatorname{Var}\left(X_{i} \mid X_{i-1}\right)$ is fairly constant, while $\operatorname{Var}\left(X_{i} \mid X_{i+1}\right)$ is reasonably linear in t. In all cases the asymptotic values are reached much quicker for the lower value of B.
6. The Conditional Correlation of X_{i-1}, X_{i+1} given X_{i}

We now wish to carry the study of dependence in the sequence of intervals $\left\{X_{i}\right\}$ a step further, in particular to trivariate distributions. The dependence in the EMA1 process has a very particular structure: X_{i} is dependent on X_{i-1} X_{i+1} but not on $X_{i-2}, X_{i+2}, X_{i-3}, X_{i+3}$, and so on. It thus appears that the joint distribution of X_{i-1}, X_{i}, X_{i+1} has some natural significance for this process, and it will be a trivariate exponential distribution; we should note however that in view of the coupling effect of the dependence, this trivariate distribution is not enough to describe completely the dependence in the sequence $\left\{X_{i}\right\}$. In particular the sequence is certainly not Markovian since the distribution of $X_{i+1} \mid X_{i}, X_{i-1}$ will depend on the value of X_{i-1}.

The process, by its structure, has the somewhat strange feature that although X_{i-1} and X_{i+1} both depend on X_{i}, the variables X_{i-1} and X_{i+1} are independent. For this reason, it is felt that the joint distribution of X_{i-1} and X_{i+1} conditional on X_{i} is of interest, and we shall give calculations of the conditional correlation of X_{i-1} and X_{i+1} given $X_{i}=t$. The other two pairwise conditional joint distributions may also of course be used, but the corresponding unconditional joint distributions show that the intervals concerned are not independent. We think of the conditional correlation, written $\operatorname{Corr}\left(X_{i-1}, X_{i+1} \mid X_{i}=t\right)$, as a descriptive function of the higher order dependence, with the thought that it may be used comparatively with other trivariate exponentials. The general properties of conditional correlations are not well understood, but Lawrance (1975) has shown that it is equal to the corresponding partial correlation only in very special cases, one of which is the trivariate normal, and the present distribution is not one of these cases.

The triple Laplace transform of the joint p.d.f. of X_{i-1}, X_{i}, X_{i+1} is calculated by a straightforward extension of the procedure used to obtain the
bivariate Laplace transform at (5.2). The result is the sum of eight expectation terms with their associated binomial probabillties, and can be cast in the form
$E\left\{e^{\left.\left.-s_{1} X_{i-1}-s_{2} X_{i}-s_{3} X_{i+1}\right\}=f_{X_{i-1}}^{* * *}, X_{i}, X_{i+1}\left(s_{1}, s_{2}, s_{3}\right), ~\right) ~}\right.$

$$
=\psi\left(\beta s_{1}\right)\left\{\beta \psi\left(\beta s_{2}\right)+(1-\beta) \psi\left(s_{1}+\beta s_{2}\right)\right\}\left\{\beta \psi\left(\beta s_{3}\right)+(1-\beta) \psi\left(s_{2}+\beta s_{3}\right)\left\{\beta+(1+\beta) \psi\left(s_{3}\right)\right\} .\right.
$$

This reduces to the appropriate bivariate distribtuions where one s is set to zero. Before passing to the conditional moments, we may note that the generalization of (6.1) to r adjacent intervals is
$E\left\{\exp \left[-\underset{i=1}{\sum} s_{i} X_{i}\right]\right\}=\psi\left(\beta s_{1}\right) \underset{j=2}{r}\left[\beta \psi\left(\beta s_{j}\right)+(1-\beta) \psi\left(s_{j-1}+s_{j}\right)\right]\left[\beta+(1-\beta) \psi\left(s_{r}\right)\right]$.

When $s_{1}=s_{2}=\cdots=s_{r}$ we recover the result for $X_{1}+X_{2}+\cdots+X_{r}$ given at (3.5).

$$
\text { We now return to } \operatorname{Corr}\left(X_{i-1}, X_{i+1} \mid X_{i}=t\right) \text { which we shall denote as } \rho_{2}(t)
$$ the conditional correlation of X_{i-1} and X_{i+1} given $X_{i}=t$. This has the explicit expression

$$
\begin{equation*}
\rho_{2}(t)=\frac{E\left(X_{i-1}, X_{i+1} \mid X_{i}=t\right)-E\left(X_{i-1} \mid X_{i}=t\right) E\left(X_{i+1} \mid X_{i}=t\right)}{\left[\operatorname{Var}\left(X_{i-1} \mid X_{i}=t\right) \operatorname{Var}\left(X_{i+1} \mid X_{i}=t\right)\right]^{1 / 2}} \tag{6.3}
\end{equation*}
$$

In view of the results (5.5)-(5.8) there only remains to calculate $E\left(X_{i-1}, X_{i+1} \mid X_{i}=t\right)$. This is obtained from (6.1) by inverting

$$
\begin{equation*}
\left(\lambda e^{-\lambda t}\right)^{-1} \frac{\partial^{2}}{\partial s_{1} \partial s_{2}}\left[f_{X_{i-1}}, X_{i}, X_{i+1}\left(s_{1}, s_{2}, s_{3}\right)\right]\left(s_{1}=s_{3}=0\right) \tag{6.4}
\end{equation*}
$$

as a function of s_{2}, to recover the variable t. After subtraction of the product of the conditional means, we have for the conditional covariance

$$
\begin{align*}
& \operatorname{Cov}\left(X_{i-1}, x_{i+1} \mid x_{i}=t\right) \\
& =-\frac{\beta^{2}}{1-\beta}+\{(1-\beta) \lambda t-\beta\} e^{-(1-\beta) \lambda t / \beta}-\frac{\beta}{1-\beta} e^{-2(1-\beta) \lambda t / \beta} \tag{6.5}
\end{align*}
$$

Hence the expression for $\rho_{2}(t)$ and the graphs given in Fig. 5. The conditional correlation is far from constant in t, although in the range ($0,2 \lambda$), within which it would be possible to estimate it in practice, the values are positive and sma11.

7. Stationary Initial Conditions

Up to this point we have dwelt on aspects of the process which involve the intervals between the events, we have emphasized that these are a correlated but stationary sequence of exponential variables. This situation is typified by the choice of an arbitrary event for the initial point of a sequence of intervals. We now consider the corresponding problem when the initial point is chosen without knowledge of the event times; this is usually called an arbitrary time and is of interest when stationarity in the counts of events is suggested (Cox and Lewis, 1966, Chapter 4), as opposed to stationarity in the intervals between events. However, for stationarity in counts of events, the initial point of the interval of the counting must be chosen in a particular probabilistic way. We shall now obtain the appropriate initial conditions, using the approach and definition discussed in Lawrance (1972) in which the process is considered at time t and t is then allowed to tend to infinity. The sequence of intervals between events beginning with the arbitrary time, usually called the asynchronous sequence, is not exponential or stationary, but the counting variable of this sequence has stationary increments, although not Poisson distributed.

At time t in the process (after a start in any convenient way) it is apparent that for the process to continue, we must specify:
(i) the time to the next event in the $\left\{\mathrm{X}_{\mathrm{i}}\right\}$ sequence, and
(ii) the random variable ε_{i+1} which is associated with the end of the X_{i} interval covering t. The first of these will be denoted by x and is just the forward recurrence time of the EMAI process, and this is bound asymptotically to be exponential, but it will be dependent on the second, denoted by e which will not be exponential, even asymptotically. It is their joint distribution as $t \rightarrow \infty$ which gives the required initial conditions.

Suppose the process starts at $t=0$ in the synchronous mode, and suppose that in $(0, t]$ there are $r-1$ events. Let the joint pdf of T_{r-1} and $\beta \varepsilon_{r}$ be $f_{T_{r-1}}, \beta \varepsilon_{r}(x, y)$. When the r th interval is of the $\beta \varepsilon_{r}$ form, then the joint pdf for $(X=w, e=z)$ is

$$
\begin{equation*}
\int_{x=0}^{t} f_{r-1}, \beta \varepsilon_{r}(x, t-x+w) d x \psi_{\varepsilon}(z), \tag{7.1}
\end{equation*}
$$

where $\psi_{\varepsilon}(z)$ is the pdf of ε_{r+1}. If the r th interval is of the $B \varepsilon_{r}+\varepsilon_{r+1}$. form, there are two similar expressions according as $z<w$ or $z>w$; these are

$$
\begin{equation*}
\int_{x=0}^{t} f_{T_{r-1}}, \beta \varepsilon_{r}(x, t-x+w-z) d x \psi_{\varepsilon}(z) \quad(z<w) \tag{7.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{x=0}^{t-(z-w)} f_{T_{r-1}, B \varepsilon_{r}}(x, t-x+w-z) d x \psi_{\varepsilon}(z) . \quad(z>w) \tag{7.3}
\end{equation*}
$$

The expressions become evident on considering the configuration of events. The joint pdf of X and e at time t may thus be written

The $\mathrm{r}=0$ and 1 terms here are really special cases, but will not contribute as $t \rightarrow \infty$ and do not need to be obtained explicitly. We shall now use the result that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} f_{\left.\chi, e^{(w, z ; t)}=\lim _{s \rightarrow 0} s f *(w, z ; s)=f_{\chi, e^{(w, z)}},{ }^{(w}\right)} \tag{7.5}
\end{equation*}
$$

to obtain the limit distribution at an arbitrary time. Now for the Laplace transform with respect to t of (7.4) we need the joint pdf of T_{r-1} and $\beta \varepsilon_{r}$, which by (3.4) is

$$
\begin{equation*}
\mathrm{f}_{\mathrm{T}_{\mathrm{r}-1}, \beta \varepsilon_{\mathrm{r}}}(\mathrm{x}, \mathrm{y})=\int_{\mathrm{u}=0}^{\mathrm{x}} \mathrm{C}_{\mathrm{r}-1}(\mathrm{x}-\mathrm{u}) \mathrm{k}(\mathrm{u}, \mathrm{y}) \mathrm{du} \tag{7.6}
\end{equation*}
$$

and in terms of Laplace and double Laplace transforms

$$
\begin{equation*}
C_{r-1}^{*}(s)=\psi(\beta s)[\psi(s, \beta s)]^{r-2}, \quad \text { and } \quad k^{* *}\left(s_{1}, s_{2}\right)=\beta \psi\left(\beta s_{2}\right)+(1-\beta) \psi\left(s_{1}+\beta s_{2}\right) \tag{7.7}
\end{equation*}
$$

Hence the Laplace transform with respect to t of the first line of (7.4) after ignoring the $r=0$ and $r=1$ terms is

$$
\begin{equation*}
\frac{\psi(\beta s)}{1-\psi(s, \beta s)} \int_{u=0}^{\infty} \int_{a=0}^{\infty} e^{-s u-s a} k(u, a+w) \text { duda } \psi_{\varepsilon}(z) \tag{7.8}
\end{equation*}
$$

Taking the limit as in (7.5) then gives

$$
\begin{equation*}
\nu \psi_{\varepsilon}(z) \int_{u=0}^{\infty} \int_{a=0}^{\infty} k(u, a+w) d u d a=v \psi_{\varepsilon}(z) \int_{a=0}^{\infty} f_{\beta_{\varepsilon}}(a+w) d a=v \Psi_{\varepsilon}(w / \beta) \psi_{\varepsilon}(z) \tag{7.9}
\end{equation*}
$$

where v is the mean of the ε distribution and $\Psi_{\varepsilon}(z)$ is its survivor function. The limits of the other terms in (7.4) can similarly be obtained, and give the final result as

$$
f_{x, e}(w, z)=\left\{\begin{array}{ll}
\nu^{-1} \Psi_{\varepsilon}(w / \beta) \psi_{\varepsilon}(z) & z, w>0 \tag{7.10}
\end{array}\right. \text { with probability }
$$

The marginal distribution of e has pdf

$$
\begin{equation*}
f_{e}(z)=\beta \psi_{\varepsilon}(z)+(1-\beta) z \psi_{\varepsilon}(z) / \nu . \tag{7.11}
\end{equation*}
$$

The marginal distribution of X is in general rather complicated, but in the EMAI case is exponential with parameter λ. From (7.11) we see that in the EMAI case the distribution of the first ε variable after an arbitrary time (e) is the weighted sum of exponential and Erlang 2 distributions. This result implies that the second asynchronous interval does not have the exponential distribution, although all the following intervals do; the non-stationarity of the asynchronous sequence of intervals is thus caused only by the second interval. The distribution for the number of events in $(0, t]$ when $t=0$ is an arbitrary time, that is in the stationary situation, may now be obtained directly. As in the synchronous case of section 3 we need the distribution of the time to the $r^{\text {th }}$ event for $r \geq 1$. The function $\phi_{1}\left(s_{1}, s_{2}\right)$ of section 3 is now the double Laplace transform of (7.10), and so

$$
\begin{equation*}
\phi_{1}\left(s_{1}, s_{2}\right)=\frac{1}{v s_{1}}\left[\psi\left(s_{2}\right)-\psi\left(B s_{1}\right)\left\{\beta \psi\left(s_{2}\right)+(1-\beta) \psi\left(s_{1}+s_{2}\right)\right\}\right] . \tag{7.12}
\end{equation*}
$$

Generally, for the double Laplace transform of the pdf of T_{r} and ε_{r+1} measured from an arbitrary event, we have as at (3.2),

$$
\begin{equation*}
\phi_{r}\left(s_{1}, s_{2}\right)=\psi\left(s_{1}, s_{2}\right)\left[\psi\left(s_{1}, \beta s_{1}\right)\right]^{r-2} \phi_{1}\left(s_{1}, \beta s_{1}\right) \quad(r \geq 2) . \tag{7.13}
\end{equation*}
$$

This leads, using (3.9) to the Laplace transform of the pgf of $N(t)$ as

$$
\begin{equation*}
\phi^{*}(z ; s)=\frac{\beta(1+\beta) s^{2}+[-\beta(1-\beta) z+2 \beta+1] \lambda s+[1+\beta(1-\beta) z(1-z)] \lambda^{2}}{(s+\lambda)\left\{\beta(1+\beta) s^{2}+(1+2 \beta-2 \beta z) \lambda s+(1-z) \lambda^{2}\right\}} . \tag{7.14}
\end{equation*}
$$

Setting $B=0$ or 1 reduces this to the Poisson process result and reminds us that the distribution of $N(t)$ here can be considered as a generalization of the Poisson distribution appropriate to counting events in a correlated exponential sequence. The customary differentiations and inversions of (7.14) give
$E\{N(t)\}=\lambda t$
and
$\operatorname{Var}\{N(t)\}=[1+2 \beta(1-\beta)] \lambda t-2 \beta(1-\beta)\left(1+\beta+\beta^{2}\right)-\frac{2 \beta(1-\beta)}{\beta^{2}+\beta-1}\left[\left(\beta^{2}+\beta\right)^{2} e^{-\lambda t /\left(\beta^{2}+\beta\right)}-e^{-\lambda t}\right]$
when $\beta^{2}+\beta \neq 1$; there is an individual expression for (7.15) when $\beta^{2}+\beta=1$. We notice that the distribution is asymptotically over dispersed as compared to the Poisson distribution. The results (7.14), (7.15) may also be obtained from general theory and the previous synchronous results, but the initial conditions have much wider applicability.

We have then been able to explicitly obtain the main probabilistic properties of the EMAI process in respect of stationary intervals and stationary counts; the process is thus unusually tractable, and this is of considerable merit as compared with many other models.

8. Conclusions and Extensions

There are several extensions to both the first order autoregressive and moving average point porcesses and sequences which will be considered subsequently:
(i) By replacing ε_{i+1} in (1.1) with $\gamma \varepsilon_{i+1}$ with probability γ and with $\gamma \varepsilon_{i+1}+\varepsilon_{i+2}$ we obtain a second order moving average process. This may be extended to any order; like the present model the serial correlations are restricted to lie between 0 and $1 / 4$.
(ii) The autoregressive and moving average structures can be combined to give what appears to be a much richer class of processes.
(iii) In Gaver and Lewis (1975) it is shown that is the X_{i} is taken to be Gamma distributed (K, λ), then the solution to (1.2) shows that ε_{i}^{\prime} has Laplace transform $\{(\rho \lambda+s) /(\lambda+s)\}^{k}$ and this is the Laplace transform of an infinitely divisible distribution. Thus autoregressive, moving average and mixed Gamma processes can be constructed. Their properties are much more complex than the corresponding exponential processes, but are tractable.

The EMAl and EMAp processes are easily simulated, as are the Gamma processes for integer k. Estimation problems remain to be considered; they are treated for the first-order autoregressive processes in Gaver and Lewis (1975). The use of the EMAl sequence and point process in cluster processes, congestion models and computer systems models will be discussed elsewhere.

Figure 2

(
Figure 4

(1)

BIBLIOGRAPHY

D.กสดtan, F. (1970). Bivariate exponential distributions of reliability theory. J. R. Statist. Sor. $\underline{B} 32,408-417$.

Cox, D. R. and Lewis, P. A. W. (1966) . The Statistical Analysis of Series of Events. Methuen, London and Wiley, New York.
istver. D. P. and Lewis, P. A. W. (1975). First order autoregressive Gamma sequences and point processes. To appear.

Lawrance, A. J. (1972). Some models for stationary series of univariate events. In Stochastic Point Processes (P. A. W. Lewis, ed.) Wiley, New York, 199-256.

Lawrance. A. J. (1975). On conditional and partial correlation. To appear.

Fïgure Captions

Figure 1. The intensity function $\mathrm{m}_{\mathrm{f}}(\mathrm{t})$ for the EMAl process. The functions is plotted for values $\beta=0.1,0.3,0.5,0.7$ and 0.9 and $\lambda=1$. The deviation from the constant, Poisson process value $\lambda=1$ is small. Unlike the serial correlations for intervals this function does discriminate between the cases β and $1-\beta$.

Figure 2. The spectrum of counts $g_{+}(w)$ for the EMA1 process. The spectrum is flat with value $1 / \pi$ for the Poisson process $(\beta=1$ or $\beta=0)$. Unlike the spectrum of intervals it does discriminate between the cases β and $1-\beta$.

Figure 3. The conditional variance of X_{i}, given $X_{i-1}=t$, for the bivariate exponential distribution $(\lambda=1)$ arising in the EMAl process.

Figure 4. The conditional variance of X_{1}, given $X_{i+1}=t$, for the bivariate exponential distribution $(\lambda=1)$ arising in the EMAl process.

Figure 5. The conditional correlation $\rho_{2}(t)$ for intervals X_{i-1} and X_{i+1}, given $X_{i}=t$, for the EMAl process. The joint distribution of X_{i-1}, X_{i}, X_{i+1} is a trivariate exponential distribution. Again there is differentiation between the cases β and (1- β).

OFFICE OF NAVAI. RIESEARCH
 STATISTICS AND PROBAB[I.ITY PROGRAM

BASIC DISTRIBUTION LIST
FOR
UNCLASSIFIED TECHNICAL REPORTS

September 1974

Copies

Copies
Director
Office of Naval Research Branch Office
536 South Clark Street
Attn: Dr. A. R. Dawe
Chicago, Illinois 60605
Office of Naval Research Branch Office
536 South Clark Street
Attn: Dr. P. Patton
Chicago, Illinois 60605

Director
Office of Naval Research Branch Office
1030 East Green Street
Attn: Dr. A. R. Laufer
Pasadena, California 911011

Office of Naval Research
Branch Office
1030 East Green Street
Attn: Dr. Richard Lau
Pasadena, California 91101 I

Office of Naval Research
San Francisco Area Office
760 Market Street
San Francisco, California 94102

Technical Library
Naval Ordnance Station
Indian Head, Maryland 206401
Dean of Research (Code 023)
Naval Postgraduate School
Monterey, California 93940

Naval Shlp lingincoring Center
Phlladelphia
Division Technical Library
Philadelphia, PA 19112
Bureau of Naval Personnel
Department of the Navy
Technical Library
Washington, D.C. 20370

Library, Code 0212
Naval Postgraduate School
Monterey, California 93940
Library
Naval Electronics Laboratory Center
San Diego, California 92152
Naval Undersea Center
Technical Library
San Diego, California 92132

Applied Mathematics Laboratory
Naval Ship Research and
Development Center
Attn: Mr. Gene H. Gleissner
Washington, D.C. 20007
Office of Chief of Naval
Operations (Op 964)
Pentagon, Room 4A538
Washington, D.C. 20350
Naval Sea Systems Command (SEA 03F)
NC No. 3, Rm. 10 SO 0
Attn: Miss B.S. Orleans
Arlington, Virginia 20360
University of Chicago
Department of Statistics
Attn: Prof. P. Meier
Chicago, Illinois 60637

Stanford University
Department of Operations Research
Attn: Prof. G. Lieberman
Stanford, California 94305

Florida State University Department of Statistics
AtLn: Prof. I.R. Savage
Tallahassee, Florida 32306
1

Florida State University
Department of Statistics
Attn: Prof. R.A. Bradley
Tallahassee, Florida 323061

Princeton University
Department of Statistics
Attn: Prof. J.W. Tukey
Princeton, New Jersey 08540
Princeton University
Department of Statistics
Attn: Prof. G.S. Watson
Princeton, New Jersey 08540
Stanford University
Department of Statistics
Attn: Prof. T.W. Anderson
Stanford, California 94305

University of California
Department of Statistics
Attn: Prof. P.J. Bickel
Berkeley, California 94720 I

Harvard University
Department of Statistics
Attn: Prof. W.G. Cochran
Cambridge, MA 02139
Columbia University
Department of Civil Engineering and Engineering Mechanics
Attn: Prof. C. Derman
New York, New York 10027 l
Columbia University
Department of Mathematics
Attn: Prof. H. Robbins
New York, New York 10027
Library (Code 55)
Naval Postgraduate School
Monterey, California 939401

New York University
Institute of Mathematical
Sciences
Attn: Prof. W.M. Hirsch
New York, New York 10453

University of North Carolina
Department of Statistics
Attn: Prof. W.L. Smith
Chapel Hill, North Carolina 27514

University of North Carolina
Department of Statistics
Attn: Prof. M.R. Leadbetter Chapel Hill, North Carolina 27514

University of California, San Diego
Department of Mathematics P.O. Box 109

Atta: Prof. M. Rosenblatt
La iolla, California 92038
University of Wisconsin
Department of Statistics
Attn: Prof. G.E.P. Box
Madison, Wisconsin 53706
State University of New York
Chaimen. Department of Siatistics
Attn: Prof. E. Parzen
Buffalo, New York 14214
University of California
Operations Research Center
College of Engineering
At亡n: Prof. R.E. Barlow
Berkeley, California 94720
Yale University
Department of Statistics

New Haven, Connecticut 06520

Purdue University
Department of Statistics
Attn: Prof. S.S. Gupta
Lafayette, Indiana 47907
Cornell University
Department of Operations Research
Attn: R.E. Bechhofer
Ithaca, New York 14850

Stanford University
Department of Mathematics
Attn: Prof. S. Karlin
Stanford, California 94305 1
Southern Methodist University
Department of Statistics
Attn: Prof. D.B. Owen
Dallas, Texas 75222
1

Daniel H. Wagner, Associates
Station Square One
Paoli, Pennsylvania 193011
Stanford University
Department of Operations Research
Attn: Prof. A.F. Veinott
Stanford, California 943051
Stanford University
Department of Operations Research
Attn: Prof. D.L. Iglehart
Stanford, California 94305 l
Stanford University
Department of Statistics
Attn: Prof. H. Solomon
Stanford, California 943051
University of North Carolina
Department of Statistics
Attn: Prof. C.R. Baker
Chapel Hill, North Carolina 1 27514

University of Washington

Department of Mathematics
Attn: Prof. Z. W. Birnbaum
Seattle, Washington 981051

Clemson UnIversity
Department of Mathematleal Sclences
Attn: Prof. K.T. Wallenius
Clemson, South Carolina 29631 1
University of California
Department of Statistics
Attn: Charles E. Antoniak
Berkeley, California 94720
University of Southern California
Electrical Sciences Division
Attn: Prof. W.C. Lindsey
Los Angeles, California 900071
Case Western Reserve University
Department of Mathematics and Statistics
Attn: Prof. S. Zacks
Cleveland, Ohio 44106
Naval Research Laboratory
Electronics Division (Code 5447)
Attn: Mr. Walton Bishop
Washington, D.C. 20375
Commandant of the Marine Corps (Code AX)
Attn: Dr. A. L. Slafkosky Scientific Advisor
Washington, D. C. 20380
Program in Logistics
The George Washington University
Attn: Dr. W.H. Marlow
707 22nd Street, N.W.
Washington, D. C. 20037
Mississippi Test Facility
East Resources Laboratory (Code GA)

1
Attn: Mr. Sidney L. Whitley
Bat St. Louis, Mississippi 39520
Naval Postgraduate School
Department of Operations Research and Administrative Sciences
Attn: Prof. P.A.W. Lewis
Monterey, California 93940

Southern Methodist University Dopartment of Statlstics
Attn: Prof. W.R. Schucany
Dallas, Texas 75222

University of Missouri
Department of Statistics
Attn: Prof. W. A. Thompson, Jr.
Columbia, Missouri $65201 \quad 1$
Rice University
Department of Mathematical Sciences
Attn: Prof. J.R. Thompson
Houston, Texas 77001
1

University of California
System Science Department
Attn: Erof. K. Yao
1
Los Angeles, California 90024
Naval Postgraduate School
Department of Mathematics
Attn: Prof. P.C.C. Wang
Monterey, California 939401
University of California
Departmant of Information
and Computer Science
Attn: Prof. E. Masry
La Jolla, California 92037
University of California
School of Engineering
Attn: Prof. N.J. Bershad
Irvine, California 92664
1
University of California
School of Engineering and
Applied Science
Attn: Prof. I. Rubin
Los Angeles, California 900241
Virginia Polytechnic Institute
Department of Statistics
Attn: Prof. R. Myers
Blacksburg, Virginia 24061

University of Michigan
Department of Industrial Engineering
Attn：Prof．R．L．Disney
Ann Arbor，Michigan 48104
1
Naval Postgraduate School
Department of Operations Research and Administrative Sciences
Attn：Prof．J．D．Esary
Monterey，California 93040 I
Polytechnic Institute of New York
Department of Electrical Engineering
Attn：Prof．M．L．Shooman
Brooklyn，New York 11201
1.

Union College
Inctitute of Industrial Administration
Attn：Prof．L．A．Aroian
Schenectady，New York 12308 I
University of New Mexico
Dennrtment of Mathematics and Stニさiとticに
Atさn：Prof．W．J．Zimmer
Alruquergue，New Mexico 871061
Carnegie－Mellon University
Denartment of Statistics
Atuin：Prof．J．B．Kadone
Pitteburgh，PA 15213
University of Wyomine
Department of Statistics
Attn：Prof．L．L．McDonald
Laramie，Wyoming 82070
Colnracio State University Defartment of Electrical Engineering
Attr：Prof．L．L．Scharf，Jr．
Fort Collins，Colorado 80521
Virrinia Pol；，technic Institute
Office Center for Public Choice
Department of Economics
Attn：Prof．M．J．Hinich
Blacksbung，Virginia 24061

Texas Tech University
College of Engineering
Attn：Prof．H．F．Martz，Jr．
Lubbock，Texas 79409
Rockwell International Corporation
Rocketdyne Division
Attn：Dr．N．R．Mann
6633 Canoga Avenue
Canoga Park，California 91304
Northwestern University
Department of Industrial Engineering and Management Sciences
Attn：Prof．W．P．Pierskalla Evanston，Illinois 60201

University of Southern California
Graduate School of Business
Administration and School of Business
Attn：Prof．W．R．Blischke 1
Los Angeles，California 90007
National Security Agency
Attn：Dr．James R．Maar
Fort Meade，Maryland 20755 I
Naval Coastal Systems Laboratory Code ET6l
Attn：Mr．C．M．Bennett
Panama City，Florida 324011
U．S．Army Research Office
Box CM，Duke Station
Attn：Dr．J．Chandra
Durham，North Carolina 27706 I
National Security Agency
Attn：Mr．Glenn F．Stahly
Fort Meade，Maryland 20755 I
Naval Electronic Systems Command （NELEX 320）
Attn：Mr．Rictard Roy
National Center No．1，Fm．Tw20
Arlington，Virginia 20360 l

Advanced Research Projects Agency (ARPA) Research Center Unit One
ATTN: LCDR R. L. Himbarger Moffett Field, CA 84035

Professor Ingram Olkin Department of Statistics Stanford University
Stanford, California 943051
Professor J. Neyman
Department of Statistics
University of California
Berkeley, California 94720
Professor William Hutchings Department of Mathematics
Whitman College
Walla Walla, Washington 99362 נ.
Professor Frank Proschan Department of Statistics The Florida State University Tallahassee, Florida 32306

Dr. Sam C. Saunders
Mathematics Department Washington State University Pullman, Washington 99163

Dr. Seymour M. Selig
Office of Naval Research
Arlington, Virginia 22217
Professor Ernest M. Schcuer
Management Science Departmen:
San Fernando State College
Northridge, Califormia 91524 1
Professor D. R. Cox
Imperial College
Exhibition Road
London SW 7, England

1

1
1

```
                            J.
```

+

In

Professor Zvi Zeigler
Israel Institute of Technology Technion
Haifa, Israel

Dr. Z. A. Lomnicki
The Stone House, Oaken Lanes Oaken, Codsall
Staffordshire, E'ngland
Professor Chin Long Chiang Division of Biostatistics University of California
Berkeley, California 94720

Professor A. W. Marshall
Department of Statistics
University of Rochester
Rochester, New York

Professor Lucien Le Cam
Department of Statistics
Üniversity of Cāiforniá
Berkeley, California 94720

Professor T. Jayachandran Code 53Jy
Naval Postgraduate School
Monterey, California 93940

Dr. B. H. Colvin
Applied Mathematics Division
National Bureau of Standards
Washington, D. C. 20234

Dr. Guil Hollingsworth
Technical Director
Naval Weapons Center
China Lake, California 93555

Professor Nozer D. Singpurwalla
Operations Research Department
George Washington University
Washington, D. C. 20006

CDR A. L. Cicolani, SPll4l
Strategic Systems Project Office
Department of the Navy
Washington, D. C. 20390

Dr. Bill Mitchell
Department of Management Sciences
California State University
Hayward, California 94542

Mr. W. L. Nicholson
Staff Scientist
Pacific Northwest Laboratories
Batelle Boulevard
Richland, Washington 99352

LCDR W. J. Hayne
COMSUBDEVCPUTWO
Submarine Base NLON
Gaston, Connecticut 06340

Mr. D. Rubinstein
National Institute of Health Bethesda, Maryland 20014

Professor Henry W. Block
Department of Operations Research anủ Statistics
Rensselaer Polytechnic Institute
Troy, New York 12181

Professor Janet Myhre
Claremont Men's College
Bauer Center, 900 Mills Avenue
Claremont, California 91711 I

Professor Amrit L. Goel
Industrial Engineering and Operations Research
Syracuse University
Syracuse, New York 13210 l
Professor D. R. Barr 1
Professor R. W. Butterworth 1
Professor D. P. Gaver 1
Professor M. B. Kline 1
Professor H. J. Larson 1
Professor K. T. Marshall l
Professor P. R. Milch l
Professor R. R. Read l
CDR R. A. Stephan 1
Professor J. D. Esary 10
Department of Operations Research and Administrative Sciences
Naval Postgraduate School
Monterey, California 93940

Copies

Professor Peter Bickel
Department of Statistics
University of California Berkeley, California 94720 1
Professor E. J. Wegman
Statistics Department
University of North Carolina Chapel Hill, North Carolina 27514 1
Professor E. L. Lehman
Department of Statistics
University of CaliforniaBerkeley, California 947201
Professor E. Parzen
Computing Science Department
SUNY (Buffalo)
4230 Ridge Lea
Amherst, New York 14226 1
Professor D. P. Gaver 1
Professor A. Andrus 1
Professcr D. A. Schrady 1
Code 55
Naval Postgraduate School
Monterey, California 93940

U174070

