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A MOVING AVERAGE EXPONENTIAL POINT PROCESS (EMA1)

A. J. Lawrance
University of Birmingham

England

and

P. A. W. Lewis
Naval Postgraduate School
Monterey, California

ABSTRACT

A construction is given for a stationary sequence of random variables

{X.} which have exponential marginal distributions and are random linear

combinations of order one of an i.i.d. exponential sequence {e.}. The joint

and trivariate exponential distributions of X. , , X. and X... are studied,
i-l i l+l

as well as the intensity function, point spectrum and variance time curve for

the point process which has the {X.} sequence for successive times between

events. Initial conditions to make the point process count stationary are

given, and extensions to higher order moving averages and Gamma point processes

are discussed.

1. Introduction

In this paper we discuss the stationary sequence of random variables

{X.} which are formed from an independent and identically distributed

exponential sequence {e.} according to the linear model

*
Support from the Office of Naval Research (Grant NR042-284) , the National

Science Foundation (Grant AG476) and the United Kingdom Science Research
Council is gratefully acknowledged.



!e . with probability 3;
1

(O£0£l,i=O,±l,±2,...). (1.1)

.th probability 1-3.
'1_

)
I Be. + z wil
v l l+l

In fact, the {X.} form a sequence of exponential random variables, and it will

be seen from (1.1) that adjacent members will be correlated. Such a type of

first order moving average model arose out of the companion paper, Gaver and

Lewis (1975); there the first order autoregressive model

X
i

= pX
i-l

+ E
i

(i = 0,±1,±2,...), (1.2)

00

" ^ P i-k
k=0

X *

with exponential marginal distributions for the {X.} is investigated. It is

found there that the e! must be a mixture of a discrete component at zero and

an exponential variable. The motivation behind both models (1.1) and (1.2)

was three-fold: partly as an alternative to the normality theory of time

series, partly as a model for correlated positive random variables with expo-

nential marginal distributions but chiefly as a simple point process model with

which to analyze non-Poisson series of events and to study the power of Poisson

tests—particularly in situations where there is no obvious physically motivated

model.

In the present paper we give a fairly complete picture of the model (1.1),

which will be called EMA1 (exponential moving average of order 1), as a station-

ary point process. Distributions of the sums of the X. are obtained and lead

to counting properties of the process; the joint distributions of two and three

adjacent intervals X. are derived and appear to be new bivariate and trivar-

iate exponential distributions. The distributions are investigated through

their conditional means and variances, and computations of a conditional correlation



are given. Extensions of the model and estimation problems are briefly

discussed.

In developing the properties of the process we will also point out

similarities to a backward first order moving average which is defined as

[Be. + E. . wii
V 1 l-l

Be. with probability B,

(O£0£l;l-O t ±l,±2,...) . (1.3)

th probability 1 - B.

Properties of the processes are very similar, but those of the forward

model (1.1) have simpler derivations.

It should also be noted that the model (1.1) can be written as a very

special type of linear model with random coefficients:

X. = Be. + I.e (O^B^l, i = 0,±1,±2,...)

,

where the I. are i.i.d. Bernoulli random variables which are 1 with
l

probability 1-B and with probability B. This characterization is not

very helpful for the first order model; the main point is that since the

random coefficient has a probability which is just the parameter B, many

of the theorems for linear processes are not applicable.



2. Some Basic Aspects of the EMA1 Model

The simplest aspect of the EMA1 model is the exponential marginal

distribution of the intervals (X.}; in point process terminology (see e.g.

Lawrance, 1972) this is the synchronous distribution of intervals and refers

to the distribution of the interval from an arbitrarily chosen event to the

next event. For the Laplace transform of its probability density function

(p.d.f.) f (x) , we write
A •

1

* -sX.

f
x

(s) = E{e
X

}

i

-s$e. -s8e.-se
= E{e

1
)B+ E(e

X X i
}(l-B) (2.1)

using (1.1). Now the i.i.d. random variables e. have exponential distributions

with parameters X, say, and so their Laplace transform is X/(A+s). Thus

(2.1) becomes

f
x.<

s) -d5r B + x3T»s-<1-,) -&
i

This demonstrates that the X. have identical exponential distributions as

asserted. The parameter X is thus the number of events per unit time, or

the rate of the point process.

The correlation between X. and X. M is easily obtained on consid-
l l+l

ering the product of X. from (1.1) with

x
i+i

[$e with probability 6,

'3e.
+1

+ e. +2
with probability (1-3)

Thus, again using straightforward conditioning arguments,



CX.X.,.) = FJBe.r )B 2

UB^.e.^e.e.
+2

)B(l-B)

Ef6 2 e.e. J_.
4-Be2 )B(l-6)

E(^ e
. Ei^ £

. ei+2^. +ie . +2+Bc
2
1+1

)(l-B)2,

and simplification of this result leads to

±
= corr(X

i
,X.

+1 ) = B(l-B). (2.2)

By the construction of EMA1, the higher order serial correlations will be zero,

and thus the spectral density of intervals (Cox and Lewis, 1966, p. 70),

fM (ta) - — {1*2 I o cos(kaj)}, (O^u^tt)
,

71

k=l
k

becon ~

f.(u) - - {1 + 2S(l-8)cos(0))}. (O^oxtt). (2.3)

The result (2.2) is the greatest limitation of the EMA1 model since it implies

that the first order serial correlation is non-negative and bounded by 1/4;

this may be compared with an ordinary MAI model assuming two-sided e . dis-

tributions of mean zero for which |p
1

|
£ 1/2. In both cases it can be

anticipated that the restrictions are a consequence of the linearity of the

models

.

A further simple aspect of the EMA1 model is that the {X.} sequence
l

reduces tc the Poisscr process when B = or 1, and this gives checks on

most of our results. We mav also note that the moving average is taken in the

forward sense ; t:he backward model (1.3) could equally have been treated,



although producing different but similar results. This serves to emphasize

that there is no time-reversibility in the process, in the sense that

{X
n

, . . .
,X } does not have the same joint probability distribution as

{X , , . . . ,X , } for all finite k, where k > 2

.

-1 -k —



3. Distributions of Sumr; and Counts jr. (x } Sequence

In the point process theory of the model, the distribution of the sums

T = X,-4-. . .+X are very useful; if these can be obtained then the distribu-
r 1 r

tions of counts, both in the synchronous and asynchronous mode, can then be

derived. \s shown in Cox and Lewis (1966, Chapter 4) for instance, these

then .lead to the second order properties such as the intensity function, the

(Bartlett) soectrum of counts and the variance time curve. It is, therefore,

a particularly attractive feature of the EMA1 model that the distribution of

the T may be obtained, and we shall now give a simple derivation.

Define i>(s) as the Laplace transform of the p.d.f. of the e. distri-
i

bution: except where otherwise remarked this distribution is exponential of

parameter X ar ' so il^(s) = X/(A+s). Define the rouble Laplace transform

I equivalently the joint moment generating function) of T and e
.

-,
> as

-s T -s_e
4

T
.(s

1
,s ) = E(e

L r l r L
} for r = 1,2,... . (3.1)

For : = 1, we have

-s X -s e -s Be -s e -s Be -(s +s )e

i.(s.,sj= E(e
L X A 2

} = E{e
L l l 2

}8 + E(e
X 1 L l 2

}(1-B)
1 z

= t!;(BSi )[BHi(s 2
) + (l-B)^( Sl+s 2

)] (3.2)

and we shall write

JH'sr s
2

) = BiJj(s
2

) + (1-B)i|;(s +s ). (3.3)

This is the double Laolaco transform of a joint distribution in which the

first iriable has mass B at zero and with probability (1-B) is exponen-

tial distributed. We shall now relate <}> (s ,s ) and cj> .(s
1
,s„). Since



T = T . + X
r r-1 r

T , + Be with probability 3
r-1 r

T , + Be + e , , with probability 1-3,
r-1 r r+1

we have

-S..T , -s.pe -s_e -s.T ,-s.Be -(s.+s )e

r
(8r 8

2
) - E(e

lr"! !
r 2r - 1

}3 + E{e
X r"1

*
r X 2 r+1

}(l-3)

= 4>

r_ 1
(s

1
,3s

1
)iJ;(s

2
)3 + 4.

r_ 1
(s

1
,3s

1
)^(s

1
+s

2
)(l-B)

= [B*(a
2
) + (l-3)«(s

1
+s

2
)]«

r_1
(8

1
,3s

1
). (3.4)

Solving (3.4) gives,

4>

r
(s

1
,s

2
) = *(B8

1
)[«(s 1> Bs1

)]
r"1

*(slt a2),
(3.5)

and setting s = 0, we have for the Laplace transform of the p.d.f. of T ,

*
r
(s) = [3<K3s) + (1-B)iKBsWs)][BiKBs) + (1-B)i|»((l+B)s) ]

r_1
(3.6)

X(A+23s)
X+s (a+23s){X+(l+3)s] } , r * 1, (3.7)

This is our required result; from (3.7) it will be observed that T is dis-

tributed like the sum of r independently distributed variables, such as in

a delayed renewal process, although these are not X variables. The structure

of (3.6) or (3.7) is explained by the fact that the number of intervals which

are of the 3e. form or Be. + e.,-, form are binomially distributed with
1 x 1+1

parameter B or 1-3; further consideration of the adjacencies of the two

types of intervals than leads to the terms in the binomial expansion of (3.6) .



We now obtain the distribution of N , the synchronous counting process

of number of events occurring in the interval (0,t] beginning at an arbitrary

event; this is related to the distribution of T through the equivalence of

the events N < r and T > t for r i 1. Let F (t) denote the distri-
t r r

burin- of T , and then since
r

Prob{N[
f)

= r} = F
r
(t) - F^Ct), r ^ 0, (3.8)

with F (t) = 1 for t 2> 0, we have for the p.d.f. of N ,

N °°

E{z
t

} m * ( Z ;t) - I z
r
[F

r
(t) - F (t)]

r=0

oo

- 1 + (z-1) I z
r_1

F (t). (3.9)
r=l

r

Inserting (3.7) in the Laplace transform of (3.9) gives

* , m B(l+B)s 2 + [-B(l-B)z-*-2B+l]As + X 2 .

"f
;

(s-"-X)l6(l+B)s ;: + (l+2B-2Bz)As + (l-z)A 2
]

U--"^

This result is required in Section A to follow.



4. The Intensity Function and Spectrum of Counts

The intensity function of a point process is the derivative with

respect to t of E{N } and will be denoted by m (t) . The (Bartlett)

spectrum of counts, the Fourier transform of the covariance density of the

differential counting process, then has the simple expression

8+(w) = ^ {1 + m*(iu>) + m*(-iu))}, (4.1)

where m (s) is the Laplace transform of m
f (t); this expression for g,(w)

is derived in Cox and Lewis (1966, Section 4.5).

For the EMA1 process, the result from (3.10) is that

m*(*\ - X(A+gs){A+(l+g)sj[
(L on

f
vs;

' 8(l+B)s(X+s){s+X/(8 z+B)}
' K ]

In inverting the Laplace transform (4.2) it will be noted that the

case 3+3=1, i.e. 3 - 0.6185, must be treated separately since there

will then be a factor (X+s) 2 in the denominator. Partial fraction expansions

and their inversion then give, for t ^ 0,

m
f
(t) = ^ +f^ {e"

Xt/(e2+B)
- e~

Xt
] (B*W1). (4.3)

= Atl + 3
3Xte"

Xt
] (3

2+3=l). (4.4)

We see in both cases that the initial value of m (t) is X and that they

both increase until maximum values are obtained at t = X (B
2^) x log[(3 2+3)/

(3
2+3~l) ] and at t = X respectively for (4.3) and (4.4); both functions

then decrease exponentially to X. There is no apparent reason for the

3+3=1 case. When 8=0 or 1 both functions are constant at X, as

is appropriate to the Poisson process.

10



The function m (t) is plotted in Figure 1 for several values of 8.

The spectrum of count? follows easilv by inserting (4.2) into (4.1), and has

the expressions

( \ Mt± -m? 6(1-6) f g
2+B 1

~
\\ , fl2xcin ( , ,,

gj>) - - ^1 -f 2A 2 ^^'
L(e„6)y^2 " T^TtJ) (6

2+6*l) (4.5)

(6
2+6=l). (4.6)

We observe that both these are ratios of 4th order polynomials in u). Esti-

mation of both m (t) and g^(w) given an actual sequence of interevent times

is considered in Cox and Lewis (1966, Chapter 5); in practice these would then

be compared with our given theoretical functions which are graphed in Figure 2.

Note that unlike the 2nd order -joint moment functions p, and f
,
(w)— k +

for intervals, the second order moment functions for counts m
J.(t) and g, (co)
t +

do discriminate between the cases where the parameter is 3 or (1-6)

.

tiowp ,,n.r the graphs in Figure 2 indicate that the count spectra of models with

6 in the ranee (0.25. 0.75) are fairly close to each other; therefore, the

spectrum will not be entirely suitable for discriminating between different

6 values for small sample sizes.

The variance time curve is considered in Section 7, along with the

stationary initial conditions for the process.

11



5. The Joint Distribution of X. and X. inx 1+1

We now discuss the joint distribution of X. and X. in which willJ 1 l+l

be a bivariate exponential distribution. Several authors have discussed bivar-

iate exponential distributions, including Downton (1970), who makes some compari-

sons with those of Gumbel, Moran and Marshall-Olkin . The distribution to be

discussed here does not appear to be one of the earlier ones, although it is

fair to say that in common with earlier ones, it is not the 'perfect' bivariate

exponential.

The double Laplace transform of the joint pdf of X. and X is

easily calculated using (1.1); the required expectation is

„.
"SlVS

2
X
i+l, **

E{e } = £
x.,x. <

sr s 2>
1 1+1
-3s..e.-3s „e -Bs.e.-s (Be +E )

=E{e lx 2l+1
}3

2 +E{e lx 2 1+1 1+2
}3(l-3)

-s- (3e.+£. .-J-as-e..,
+E{e 1 i i+l 2 i+l

}B(1_g)

-s (3e.+e )-s (Be +e )

+E{e 1 i i+l 2 i+l i+2
}(1_e)

2
} (5#1)

which can be written

f
X X

(s
1
,s

2
) = ij;(3s

1
)[3'P(3s

2
)+(l-3)^(s

1
+3s

2
)][3+(l-3)^(s

2
)] (5.2)

i' i+l

X 2 (X+3s
1
+3s

2
)

(X+3s
1
)(X+s

2
)(X+s

1
+3s

2
)

* (5.3)

We note that (5.3) is not symmetrical in s and s_, and this is to be

expected since the process is not time reversible; this is one feature which

distinguishes it from earlier bivariate exponentials. The backward moving

average model (1.3) corresponding to (1.1) has the joint interval distribution

which is specified by (4.3) with s and s interchanged.

12



An explicit form of the joint distribution (5.3) can be obtained

directly, rather than by inversion of the transform which is less

informative. By the structure of the model the joint distribution of (X..X.,,)
i l+l

is a mixture of the joint distributions of (Be .
,8e ) ,

(Be . ,Be +e )

,

(Be . -*«..- ,Be ._._) and (Be .-K Be +e ) with the corresponding probabili-
1 l+l l+l l l+l l+l i+2 & r

ties B
2

, 8(1-6), 6(1-8) and (1-6) 2
. These joint pdf's can be listed in

an obvious notation as follows:

f _ (x,y) = (X/8)e-
(>/S)x

(A/6)e-
(A/6)^ (x,y>0)

fcs£ . ,fcse
i i+1

f
flp PF +F (x,y) - Xe-

Xx
(l-B)-

1
[Xe-

Xy
-Xe-

(X/B)y
], (x,y>0)

ec . , tie . _+e . _
i i-1-! i+2

Be. -•-£.,., Be...
i i+I i+I

(x.y) - a/8)e-<
X/B)(*-y/6

>(X/B>e-
(X/B)y

, (6x>y>0)

Ce
i i+l

,t5e
i+l'

e
i+2

(x.y) = <

2e
-(X/6)x

[e
X(l-6)y/8 2

_e
-Xy

]/(1_ 6+62)) (gx>y>0)

J
A2[e

-X(l-6)x_
e
-(X/6)x

]e
-Xy

/(1_ e+62) (y>6x>0). (5.4)

We thus see that the joint pdf of X. ,X.
.

, will be continuous in both variables
l i+I

but will have different analytical expressions over the regions Qx > y and

Bx <_ v ; there appears to be no compact analytical form for f (x,y) .

x.,x.
+1

This is unfortunate because it makes it difficult to derive maximum likelihood

estimates of the parameters \ and B in the model.

13



Different bivariate exponentials also can be compared through

their conditional properties and so we will derive these for the present

distribution. Conditional pdf's are not succinct enough, and so we

concentrate on conditional moments. These may be obtained from (5.3). For

instance, to obtain E(X. |X._=t) we differentiate with respect to s~, set

s_ = 0+, invert with respect to s and then divide by the marginal (exponen-

tial) density of X. The two conditional means are in this way found to be

E(X.|X
i_ 1

=t) = X'h^t + ^| +^ e
-X(1-e)t/B

] (5.5)

and

E(X.|x.
+1

=t) = X"
1
[l+B-e"

(1_e)Xt/B
]. (5.6)

Thus, both regressions have exponential components; this property is shared by

the Marshall and Olkin bivariate distribution, although that distribution has

a singular component along X. = X . For the continuous distribution treated

by Downton both the conditional means are linear, as are the conditional

variances

.

Examining these regression functions more closely we see that E(X. |X =t)

is equal to A ' for 3=0 or 3=1; otherwise it increases exponentially

from 3X to the constant value (1+3)X " as t increases. The transient

is long for 3 close to 1, but very short when 3 is close to 0. Thus unlike

the serial correlation coefficient p, there is differentiation in this condi-

tional mean between the cases where the parameter is 3 and the case when it

has value 1-3.

The conditional mean (5.5) is more complex. It starts at t = with

value X ' and negative slope B - 1. There is a unique minimum at t =

-3 in 3/{X(l-3)} and the function eventually increases linearly with t. Since

we have for large t that

14



E[xJ x
i-l

=t:] ~ x
-1

Bt,

the rate of increase depends onlv on 8, not on X.

The conditional variances for the present bivariate exponential are

also exponential functions, and their explicit forms are given by

VarfX. X. = t) = A
1

' l-l

-2 1-2^2^
, 2B 2 (1+At) -(l-6)At/S

(1-6)^ l-B "(1-6)
-2(l-B)Xt/(

(5.7)

and

Var(X. X. , =t) = A
l ' l-fl

-2 l+S-!-B
2-8 3

1-f
_2/-A_ + At) -x(i-B)t

(1-8 B i

/B -2(1-6)A
- e

t/B
]. (5.8)

These conditional variances are quite different forms as shown in Figures 3

and A. In practice it is clear that conditional means and variance could only

be calculated for t in the more central regions of the marginal distributions

In these situations Var (X. X. ., ) is fairly constant, while Var(X. X #11 )
i' i-l i' l+l

is reasonably linear in t. In all cases the asymptotic values are reached

much quicker for the lower value of S.

15



6. The Conditional Correlation of X , X given X
±

We now wish to carry the study of dependence in the sequence of intervals

{X.} a step further, in particular to trivariate distributions. The dependence

in the EMA1 process has a very particular structure: X. is dependent on X. .. and

X but not on X._ , X , X._3> X , and so on. It thus appears that the

-joint distribution of X. ., X., X. in has some natural significance for this
J l-l 1 l+l

process, and it will be a trivariate exponential distribution; we should note

however that in view of the coupling effect of the dependence, this trivariate

distribution is not enough to describe completely the dependence in the sequence

{X.}. In particular the sequence is certainly not Markovian since the distri-

bution of X. in |x.,X. n will depend on the value of X. ., .

l+l ' l l-l l-l

The process, by its structure, has the somewhat strange feature that

although X. n and X. in both depend on X., the variables X. .. and X., n6 l-l l+l r l l-l l+l

are independent. For this reason, it is felt that the joint distribution of

X. , and X.,- conditional on X. is of interest, and we shall give calcula-
l-l l+l l

tions of the conditional correlation of X. n and X.., given X. = t. The
l-l l+l & l

other two pairwise conditional joint distributions may also of course be used,

but the corresponding unconditional joint distributions show that the intervals

concerned are not independent. We think of the conditional correlation, written

Corr(X , X. |x. = t) , as a descriptive function of the higher order dependence,

with the thought that it may be used comparatively with other trivariate

exponentials. The general properties of conditional correlations are not well

understood, but Lawrance (1975) has shown that it is equal to the corresponding

partial correlation only in very special cases, one of which is the trivariate

normal, and the present distribution is not one of these cases.

The triple Laplace transform of the joint p.d.f. of X. , , X., X... isJ r i-1 l l+l

calculated by a straightforward extension of the procedure used to obtain the
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bivariate Laplace transform at (5.2). The result is the sum of eight expecta-

tion terms with their associated binomial probabilities, and can be cast in

the form

r

" S
l
X
i-l~

S
2
X
i"

S
3
X
i+l^ *** , ,Ele

A
\ = f (s s s )X._r X.,X.

+1
1 2 3

=iKBs ) (£^(es
2

) + (1-6) iK S;L
+6s

2
)} {3^(6s

3
) + (1-6) iKs

2
+6s

3
) *3 +U+B) iKs )}

(6.1)

This reduces to the appropriate bivariate distribtuions where one s is set to

zero. Before passing to the conditional moments, we may note that the

generalization of (6.1) to r adjacent intervals is

r r

E(exp[- Z s.X.]}= iKBs ) n IBK3s )+(l-B) iKs. ,+ s.)]Ig+(l-3) iKs)].
i=l

x
j=2 2 J J

(6.2)

When s, = s„ = ••• - s we recover the result for X. + X„ + • •
• + X

1 2 r 1 2 r

given at (3.5).

We now return to CorrfX. , X |x. = t) which we shall denote as P~(t)
i— 1 i+1 i L

the conditional correlation of X. , and X.,, given X. = t. This has the
l-l l+l l

explicit expression

E(X.
1
,X,,.|x.=t) - E(X. . |x.=t) E(X, ,_ |X,=t)

,. 1-1 1+1
' 1 1-1

' 1 1+1
' 1 ,, ,v

P ?
(t) = zrjz . (6.3)

[Var(X._
1
JX.=t) Var(X.

+1
|x.=t)]

i^

In view of the results (5.5)-(5.S), there only remains to calculate

E(X. ,, X ]X.=t). This is obtained from (6.1) by inverting
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2
(x;At)_1 3i^ If

x
1_rx i'

x
i+i

(Sl,S2 ' S3)3(s
i
=s

3
=0) '

(6 ' 4)

as a function of s„, to recover the variable t. After subtraction of the

product of the conditional means, we have for the conditional covariance

Cov(x
i-i-

x
i+il

x
i
=t >

. - -^ + (tt-B)Xt -B> e-
(1"e)Xt/B - JL .-2d-B)^t/B •

(6 . 5)
1-P 1-P

Hence the expression for p 9
(t) and the graphs given in Fig. 5. The conditional

correlation is far from constant in t, although in the range (0,2X), within

which it would be possible to estimate it in practice, the values are positive

and small.
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7 . Stationary Initial Conditions

Up to this point we have dwelt on aspects of the process which involve

the intervals between the events, we have emphasized that these are a corre-

lated but stationary sequence of exponential variables. This situation is

typified by the choice of an arbitrary event for the initial point of a

sequence of intervals. We now consider the corresponding problem when the

initial point is chosen without knowledge of the event times; this is usually

called an arbitrary time and is of interest when stationarity in the counts

of events is suggested (Cox and Lewis, 1966, Chapter 4), as opposed to

stationarity in the intervals between events. However, for stationarity in

counts of events, the initial point of the interval of the counting must be

chosen in a particular probabilistic way. We shall now obtain the appropriate

initial conditions, using the approach and definition discussed in Lawrance

(1972) in which the process is considered at time t and t is then allowed

to tend to infinity. The sequence of intervals between events beginning with

the arbitrary time, usually called the asynchronous sequence, is not exponen-

tial or stationary, but the counting variable of this sequence has stationary

increments, although not Poisson distributed.

At time t in the process (after a start in any convenient way) it is

apparent that for the process to continue, we must specify:

(i) the time to the next event in the {X.} sequence, and

(ii) the random variable e.., which is associated with the end of the
l+l

X. interval covering t. The first of these will be denoted by x anc* is

just the forward recurrence time of the EMAI process, and this is bound asymp-

totically to be exponential, but it will be dependent on the second, denoted

by e which will not be exponential, even asymptotically. It is their joint

distribution as t -> °° which gives the required initial conditions.
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Suppose the process starts at t = in the synchronous mode, and

suppose that in (0,t] there are r-1 events. Let the joint pdf of T

and 3e be f„, Q (x,y). When the r— interval is of the Be form,
r T ,pe r

r-1 r

then the joint pdf for (x = w, e = z) is

ft

fT Rc (x,t-x+w)dx *_ (z) ,

x=0 r-1 r

(7.1)

where i> (z) is the pdf of e . If the r— interval is of the Be + c
e . r+1 r r+1

form, there are two similar expressions according as z < w or z > w; these

are

f Rc (x,t-x+w-z)dx i|> (z) (z<w)
x=0 r-1 r

(7.2)

uid

t-(z-w)
f

fi
(x,t-x+w-z)dx ij> (z)

x=0 r-1 r

(z > w) (7.3)

The expressions become evident on considering the configuration of events

The joint pdf of x and e at time t may thus be written

00 , t

1 f „ (x,t-x+w)dx ty (z) with probability
r=0 J x=0 r-l

,P£
r

£

f (w,z;t) =
X,e

oo -t

1
=0 J x=0 r-1'

oo
ft

1

r=

00 ft-(z-w)

(x, t-x+w-z)dx \\> (z)
>e e
r

oo
r t

(z<w) (7 4)

I
with

|
probability

] 1 — 8 .

f„ Q (x,t-x+w-z)dx ty (z) (z>w)
r=0 J x=0 r-1 r

The r = and 1 terms here are really special cases, but will not contrib-

ute as t -* °° and do not need to be obtained explicitly. We shall now use

the result that

lim f (w,z;t) = lim sf*(w,z;s) = f (w,z)

t-*»
X ' e

s-*0
X,e

(7.5)
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to obtain the limit distribution at an arbitrary time. Now for the Laplace

transform with respect to t of (7.4) we need the joint pdf of T _ and

3c , which by (3.4) is

f (x,y) = C , (x-u)k(u,y)du,
r-1 r J u=0

(7.6)

and in terms of Laplace and double Laplace transforms

C*_
1
(s) = ^(3s)[^(s,3s)]

r 2
, and k**( S;L ,s 2

) = W (Bs
2

) + (1-3)^ ( Sl+Ss 2
) . (7.7)

Hence the Laplace transform with respect to t of the first line of (7.4)

after ignoring the r = and r = 1 terms is

H3s)
l-iKs,3s)

u=0 a=0
e ' k(u,a+w)duda ty (z) (7.8)

Taking the limit as in (7.5) then gives

v^
£
(z)

u=0 a=0
k(u,a+w)duda = vty (z) f (a+w)da = v^(w/3)4^(z) > (7.9)

a=0 M e
r

where v is the mean of the e distribution and ¥ (z) is its survivor
e

function. The limits of the other terms in (7.4) can similarly be obtained,

and give the final result as

v
-1

y (w/3H (z)
e e

-1

X»e

v "

^
e
(z)

;,w > with probability
3

f (w,z) = < v "
4* {(w-z)/3>^ (z) < z < w

( wi

< w < z

th probability
1-3

(7.10)
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The marginal distribution of e has pdf

f
e
(z) = B^(z) + (l-B)zi|»

e
(z)/v. (7.11)

The marginal distribution of x is in general rather complicated, but in the

EMAI case is exponential with parameter X. From (7.11) we see that in the

EMAI case the distribution of the first e variable after an arbitrary time

(e) is the weighted sum of exponential and Erlang 2 distributions. This result

implies that the second asynchronous interval does not have the exponential

distribution, although all the following intervals do; the non-stationarity of

the asynchronous sequence of intervals is thus caused only by the second interval

The distribution for the number of events in (0,t] when t = is

an arbitrary time, that is in the stationary situation, may now be obtained

directly. As in the synchronous case of section 3 we need the distribution

t"L|

of the time to the r— event for r ^ 1. The function <}>

1
(s ,s ) of section

3 is now the double Laplace transform of (7.10), and so

*1 (S
1' S

2
)

= vs"^^ -'Kl3 s
1
Mf^(s

2
)+ (l-6)i|;(s

1
+s

2
)}]. (7.12)

Generally, for the double Laplace transform of the pdf of T and e

measured from an arbitrary event, we have as at (3.2),

*r
(s

l'
S
2
)

= <K sr s
2
H<Ks

1
,es

1
)]

r~
<J,

1
(s

1
,6s

1
) (r£2). (7.13)

This leads, using (3.9) to the Laplace transform of the pgf of N(t) as

* v S(l+3)s 2 + [-g(l-(B)z+ 28+ l]Xs+ [1+ B(l-B)z(l-z)]A 2

9 KZ ' S) (s+A){B(l+B)s z + (l+2B-28z)As+ (l-z)X z
} '

K ''^ }
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Setting 6=0 or 1 reduces this to the Poisson process result and reminds

us that the distribution of N(t) here can be considered as a generalization

of the Poisson distribution appropriate to counting events in a correlated

exponential sequence. The customary differentiations and inversions of (7.14)

give

E{N(t)} = At

and

Var{N(t)} = [l+26(l-6)]At-26(l-6)(l+3+B 2
) - l^il'V [(6

2+3) 2e~
At/(B +3) -e

"Xt
] (7.15)

P TP-l

when 3
2 + 3 ^ 1; there is an individual expression for (7.15) when 6+6=1.

We notice that the distribution is asymptotically over dispersed as compared

to the Poisson distribution. The results (7.14), (7.15) may also be obtained

from general theory and the previous synchronous results, but the initial

conditions have much wider applicability.

We have then been able to explicitly obtain the main probabilistic prop-

erties of the EMA1 process in respect of stationary intervals and stationary

counts; the process is thus unusually tractable, and this is of considerable

merit as compared with many other models.
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8. Conclusions and Extensions

There are several extensions to both the first order autoregressive

and moving average point porcesses and sequences which will be considered

subsequently:

(i) By replacing e in (1.1) with Ye.,., with probability Y

and with Y£.,, + e -,i we obtain a second order moving average
l+l i+2

process. This may be extended to any order; like the present

model the serial correlations are restricted to lie between

and 1/4.

(ii) The autoregressive and moving average structures can be combined

to give what appears to be a much richer class of processes,

(iii) In Gaver and Lewis (1975) it is shown that is the X. is taken

to be Gamma distributed (K,\) , then the solution to (1.2) shows

that e! has Laplace transform { (pX+s)/ (X+s) } and this is the

Laplace transform of an infinitely divisible distribution. Thus

autoregressive, moving average and mixed Gamma processes can be

constructed. Their properties are much more complex than the

corresponding exponential processes, but are tractable.

The EMA1 and EMAp processes are easily simulated, as are the Gamma

processes for integer k. Estimation problems remain to be considered; they

are treated for the first-order autoregressive processes in Gaver and Lewis

(1975). The use of the EMA1 sequence and point process in cluster processes,

congestion models and computer systems models will be discussed elsewhere.
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Figure Captions

Figure 1. The intensity function m (t) for the EMA1 process. The functions

is plotted for values 3 = 0.1, 0.3, 0.5, 0.7 and 0.9 and A = 1. The

deviation from the constant, Poisson process value A = 1 is small. Unlike

the serial correlations for intervals this function does discriminate between

the cases 3 and 1-3.

Figure 2. The spectrum of counts g,(w) for the EMA1 process. The spectrum

is flat with value 1/tt for the Poisson process (3=1 or 3 = 0). Unlike

the spectrum of intervals it does discriminate between the cases 3 and 1-6.

Figure 3. The conditional variance of X., given X = t, for the bivariate

exponential distribution (A = 1) arising in the EMA1 process.

Figure 4. The conditional variance of X , given X. _ = t, for the bivariate

exponential distribution (A = 1) arising in the EMA1 process.

Figure 5. The conditional correlation p~(t) for intervals X. , and X.,,,
2 l-l i+I

given X. = t, for the EMA1 process. The joint distribution of X. . , X.,
1 l-l i

X is a trivariate exponential distribution. Again there is differentiation

between the cases 3 and (1-3)

.
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