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MODELING AND ESTIMATING SYSTEM AVAILABILITY

PART I. INTRODUCTION

The availability of an equipment, or system of components,

such as an electric power generator or boiler, a nuclear reactor,

or a reactor safety system, is defined as the probability that the

system is "up", or able to perform its intended mission. Since

equipments sometimes fail, system availability can be increased by

scheduling inspections and allowing for preventive maintenance,

and, when needed, corrective repairs, Also, the availability of a

system is enhanced by the introduction of redundancy, i.e., by the

use of parallel equipment.

The purpose of this report is to discuss the definition and

measurement of availability from a statistical viewpoint. The

statistical approach to problems of equipment reliability and

availability begins by representing the individual component times

between failures, and the subsequent down or repair times, by

statistical variables having probability distributions. Aspects of

this mathematical modeling step are described in Part II. There it

is pointed out, for example, that long-run availability of individually

maintained units depends only upon the mean or average time to

failure, and the mean repair time of that, or similar, equipments.

Part III of this report considers the problem of the probable

variability of availability from component to component, and its

consequent effect upon system availability. For example, the mean



time between failures (MTBF) of a component of a particular type

will vary because of manufacturing, environmental, and maintenance

differences. There will be differences in the component availability

as a consequence. If the variability of the MTBF, and also the

mean time to repair (MTTR) of a component is represented by probability

distributions, as applied in the Reactor Safety Report, WASH-1400,

then statistical variability of the system availability is also

implied. The problem considered in Part III is that of approximating

the probability distributions of the availability of a system of,

perhaps, many different components, given the probability distributions

of individual component MTBF and MTTR. Having such a probability

dis^r- bution it is possible to place a probability level on a

projective system of components (a reactor safety system, for

:.nstar:e) meeting a required availability.

In Part IV, it is shown how failure and repair data, amassed

from experience with individual components, can be utilized to make

statistical inferences about the true, but unknown, availability of

t^e component. It is also shown how such data, available for each

of many different components that make up a system, can be employed

to infer system availability. The method used, called the jackknife ,

tends to be insensitive to the mathematical form of the underlying

probability distribution of the times to failure and times to

epair observed. This property is useful in practice since the

'.a-.ter distributions are unlikely to be known at all precisely. An

.xample of the application of the jackknife technique to some

actual failure and repair data obtained from the Humboldt Bay and



Yankee ^s presented in Part IV, Sec. 4.4. The confidence limits

for the long-run availability of these two nuclear plants are

calculated. The jackknife confidence limits are shown to resemble

comparable limits obtained by two other methods, but actually to be

sliqhtly narrower than the latter.

The, methodology of Parts III and IV are aimed at solving

similar, but not identical problems. That of Part III addresses

the problem of assessing the availability of a system of components

before any data on the particular components is available » This is
—i—

done on the basis of judgment or experience with similar components

in and from different environments. The procedures of Part IV

assess the availability of a particular system that is. in operation,

and whose components have been in operation, or under test, long

enough to furnish some actual failure and repair data.

>
-



PART II. ANALYTICAL MODELS FOR AVAILABILITY
l

'> j -. • •

> ' .'

2. 1 General
"7 r~

In this section several mathematical models are presented

for the availability of a complex, repairable, and possibly redundant

system. Relevant availability models are reviewed, and methods are

suggested for obtaining numerical results from them, once having

specified the probabilistic properties of components, such as the

probability structure of the failure and repair processes. Suggestions

are also made for obtaining time-dependent availability information

from d^ta on component failure and repair times.

2.2 Availability: One Element
... MM , l | , ,

1
rt

I
I

Consider the time history of an item (e.g., a reactor

safety system, an entire reactor, or a component of one of the

above) that is in one of two states at any time: available, or

unavailable. For short, say that the unit is "up" when available,

and otherwise is "down". Suppose that the up time intervals, or

times to failure, {u., i=l,2,..}, are a sequence of independent

statistical variables, each having the distribution function F(x);

also suppose that the down time intervals (D. i-1,2,..) are likewise

independently distributed with distribution function G(y) .

Furthermore, if both {u.} and {D.} are statistically independent,

then the random sequence (or stochastic process ) X(t) that takes

on the value unity when the system is up, and zero when down, is

called an alternating renewal process (see Cox [31). Finally, A(t),



the availability of the system at time t is defined to be

A(t) = Probability the system is up at time t

= P{X(t) = 1|X(0) } ,

where X(0) refers to its condition at some initial time point,

denoted by t=0 . Explicit mathematical formulas for A(t) will

be derived and discussed; these naturally involve properties of the

up time and down time distribution functions, F and G .

Note 1: Availability at time t depends upon initial conditions:

whether the system is up_ at time t=0, perhaps immediately following

repair, or down, immediately preceding repair. Thus, it is proper

to define availability at time t, given the item state at t=0.

For instance, the probability that the system is up at time t,

given its initial state, written

A(t|X(0)) = P{X(t) = 1|X(0)

}

is of interest: X(0) = 1 signifies that the item is up at t = 0.

Under reasonable conditions A(t|X(0)) will tend to a constant,

A(oo) = A , as time increases. The latter steady-state availability

is independent of the initial conditions. This measure of system

effectiveness will be of principal concern in this report.



Note 2: Availability as described here, refers to the probability

of item operability at one point in time , t. It may also be

desirable to calculate an interval availability

A(t,A) * P{x(t') = 1 for all time t' between t and t+A}.

For instance, A is the time required for the item to complete its

mission (which may be variable, and hence be modelled as a random

variable)

.

Note 3: It may well be that there is interest in system avail-
i

ability at demand , and that demands, e.g., nuclear reactor accidents

or earthquakes, etc., occur at variable times and can be treated as

a random variable. For instance, let T be the random time at

which a demand, or need, for the safety device occurs, therefore

the demand availability is the mean value of the quantity A(T)

.

It is sometimes easier to calculate this latter, more seemingly

complex quantity than it is to calculate simple point availability.

Note 4: An i 4„em is in only one of two states in the present setup:

available, or unavailable. We make no use of a concept of reduced

operability at this stage, although such may indeed occur.



2.2.0 A Mathematical Model: General Independent Up and Down Times

Assume that {U.} are mutually independent and identically

distributed with distribution function (d.f.) F(x), and that

{D.} have similar properties with d.f. G(y). Assume also that

the up and down times are mutually independent (a model without

this latter assumption has been suggested and discussed by Gaver [2])

2.2.1 Derivation of A(t )

Suppose that initially the system is just beginning an up

time, and the availability at time t is to be calculated. Denote

by C = U, + D,, the time to complete exactly one failure-repair

cycle. The time C has distribution function

I
.z

F*G = / F(z-y)dG(y) = P(C<z}

,

(2-2-1)

'o

where * denotes the conventional convulation operation. The

system is up at time t if either, (i) it is up at time t,

never having failed, an event with probability P[U,>_t] = l-F(t),

or (ii) it has failed, been repaired, before t, and is up again

at t. Expressed mathematically, this says that (we put A (t)

for availability, given it is up initially)

+
/

A
u
(t " :Ay(t) = 1-F(t)+/ A

u
(t-z) d(F*G ) dz (2-2-2)

dz



an integral equation for A (t) , given that the system was up

initially. If the item is initially down the equation changes, but

A (t) is easily expressed in terms of A
y
(t):

Jo

t

This expression simply says that the item is up at time t if it

begins a down time at t which lasts until time z; then,

starting in an up condition; as in (2-2-2) , it is up at time t

with probability A„(t-z); integrating over z gives (2-2-3),

2.2.2 Solution for A (t )

In general, a usable closed-form solution to the integral

equations (2-2-2 and 3) is not available. One exception is notable,

namely that in which up and down times are exponentially distributed.

That is

F(x) = 1-e
~ Xx

,

G(y) = l-e~ Py (2-2-4)

Equations (2-2-2) and (2-2-3) yield the fomulas

Vt> - e- U+w)t+^tl-e' (X+,l)t
], (2-2-5)

and A
D
(t) -^ [l-e- (X + |j)t

]
(2-2-6)



Note 1: If initially the item is up, then there is a decrease of

availability until a steady-state value -y^—- is reached. Likewise,

if the item is initially down , then the availability increases to

j--— . In both cases, the steady-state values are the same, and the

approach is governed by the "time constant" X+y.

Note 2: The steady-state availability is of the form

llm V*> "" Vt> " X^ =
E[u!Ie(d ]

'

(2 - 2 " 7)

Thus, in the long run, the system availability is the average

length of an up period divided by the average "cycle length", where

"cycle" is defined to be an up period plus the following down

period. The validity of equation (2-2-7) does not depend upon the

properties of the distribution of U and D.

To find the general solution to equations (2-2-2) and

(2-2-3) the Laplace transform technique may be used. If one takes

Laplace tranforms in (2-2-2) , the transform of the availability is

found to be

a t«\ - I- * - f (s) , (2-2-8)
U
ls;

s 1-f (s)g(s)

see Reference [2].



where A^s) =
J°° e"

StA
(J

( t ) dt (2-2-9)

f(s) = f°°e"
SXdF(x),

J

g(s) = f°° e"
SydG(y) .

J

In principle, the transform (2-2-8) provides the time-dependent

solution desired. The inversion of the transformed equation (2-2-8)

is sometimes difficult. Several "practical" remarks are in order.

Note 1: If f(s) and g(s) are both rational functions of s,

e.g., if g(s) and f(s) are Erlang:

dF -kXx
(kXx) (2-2-10)

d^
: e (K-l) !

kx '

f(s) = /J x k
^ X+s >

o r k a positive integer, and

dG -jwy (jpy).
3
" 1 (2-2-11)

d7 ' e Cj-ln ^'

g( S ) = (—H_ ) i

V y+s '
-r

3

10



again for j a positive integer, then explicit, but messy, mathematical

inversion can be accomplished. Numerical results can be obtained

by writing a FORTRAN program and even, very possibly, by use of a

programable hand-held calculator. Since almost any distribution

function can be well-represented by a distribution having rational

Laplace transform, the above procedure can be carried out in practice.

Note 2: Computer programs have been developed for numerically

inverting Laplace transforms, c.f. Gaver [1], and application of

one of these is also practically possible. One must have the

Laplace transforms of the component distribution functions of F

and G in order to achieve the final result. In practice, again,

one may well have observations from the latter: u,,u
2
,...,u , and

d, ,d
2
,...,d (n = m, or n ^ m for the sample sizes need not be

the same). Now one can:

a) fit a plausible analytic form, e.g., a member of the gamma

family, to F and G:

f(s) =
(~W~_) '

(2-2-12)

9<*> <^rA

11



and then apply a transform inversion routine. The parameter

fits can be determined by maximum likelihood, or by the moment

matching method, i.e., by equating the theoretical distribution's

mean, variance, etc., to the corresponding mean and variance

of the sample data, later solving for the distribution's

parameters.

b) utilize the empirical Laplace transform, defined as

, n -su.
f (s) = i

I e
x

n
i=l

(2-2-13)

, n -sd.
g(s) = i

I e
x

n
i=l

and then apply a transform inversion routine to (2-2-8).

The actual operating characteristics of the above approaches--

and variations thereof—remain to be evaluated. Very likely an

experimental sampling or Monte Carlo approach will be required to

shed light on their performance.

12



2. 3 Availability: Several Elements

2.3.1 Steady State System Availability ; Independent Elements .

System availability depends upon the availability of its

subsystems and upon the operational logic. Suppose a system is

composed of N elements where it is assumed that the up and down

times (i.e./ time-to-failure and repair time) of each element

are statistically independent, then the system availability can be

calculated from the element availability. Because of the independence

assumption, this particular model may not be applicable to the

common failure mode situation or to the situation of repairing of

elements involving a waiting-queue (insufficient repairmen)

.

Let A. denote the steady-state availability of i— element, then

as in Eq. (2-2-7)

,

E[Ui]
A
i

' EfU
i
]+E[D

i
)

(2-3-1)

and the unavailability of the i— element, A. , is given by

A. = 1-A.

.

l l

The availability of several types of systems is derived below:

System Type 1 . N Unit Redundant

If N elements are arranged in parallel, i.e., redundantly,

so that the system operates if, and only if, at least one operates,

13



then system unavailability is on the basis of element independence,

N
A = A

x
• A

2
...A

N
= Jk A

L
(2-3-2)

or, equivalently, availability is

A = 1 - (1-A
X

) d-A
2

) ... d-Aj^) = 1-A (2-3-3)

System Type 2 . M out of N Unit Redundant

If N items are arranged in a system so that if at least

M operates (1 <_ M <_ N) , the system operates, then system availability

car* be computed (again using the independence assumption) as follows:

(a) Compute the probability that each set of exactly M units

operates (the remaining set of N - M does not operate)

.

/ N \ NlThere are I 1=
, /.. r . such sets. Add these individual

v m ' ml (N-m)

I

probabilities.

(b) Add the probabilities of (a) for m = M,M+1,...N. This

is the required result.

As an illustration, consider the two out of three system;

here M = 2 , N = 3. The results of steps (a) and (b) are as

follows:

(a) m = 2 : A, A
2

A^ + A, A~ A~ + A, A
2

A~

m = 3: A
1
A
2
A
3

(2-3-4)

(b) A = system availability

14



A recursive scheme to calculate system availability is

now described.

Procedure

(1) Enumerate the elements, the i— being called Element i,

i = 1,2, ... ,N.

(2) Define

(a) a(j,k) = Probability that exactly j out of the first

k elements are up (0 <_ j <_ k) .

(b) A(M,N) = Availability of a M out of N system

N
= 2 a(j,N) (2-3-5)

j=M

(c) Compute a(j,k) for j <_ k <_ N

a(j,k) = a(j, k-l)A, + a(j-l, k-l)A, (2-3-6)

to obtain a(j,k), M < j < N;

and where

A(0,1) = a(0,l) = A
x

A(l,l) = a(l.l) = A
x

(2-3-7)

15



and also
M

A(M,M) = a(M,M) = n A. (2-3-8
i=l

X

(d) Compute

N

A(M,N) = 2 a (3/N)

j=M

This is the required availability.

In order to explain the recursive formula (2-3-6) notice

that j out of the first k elements are available if either j

out of the first k-1 are available and the k— is unavailable,

or if j-1 out of the first k-1 are available, and the k— is

available.

A return to the previous example illustrates the technique.

First,

a(l,2) = a(l,l) A
2

+ a(0,l) A
2

= A
x
A
2

+ A^ A
2

(2-3-9

Next, using (2-3-8) and also (2-3-9),

a(2,3) = a(2,2) A
3

+ a(l,2) A
3

= h
1
A
2
A
3

+ (h
1
A
2

+ k
1
A
2

) A
3

(2-3-1

Since, a(3,3) = A, A
2

A^ according to (2-3-8), this added to (2-3-10)

delivers the required result, by (2-3-5)

.

16



System Type 3 . M out of N Unit Redundant, Identically

Available Units.

This is the same system logic as immediately above. But

since the units are believed to have equal availabilities, the

binomial distribution can be used to calculate system availability

from component availability:

M
A - I

i=M

N
i

_ i
, t _ . N-iA

Q
(1-A ) (2-3-11)

Here A denotes the i tn individual system availability. The

Equation (2-3-11) has been extensively tabled, and so is convenient

to use, if appropriate.

2.3.2 More Complex Models ; Transients , Dependence

In order to deal with more complex models of system

availability it is useful to use Markov process models; (see Gaver

and Thompson [4] or Karlin [5] for an introduction). Only a brief

discussion will be given here, and that in terms of examples.

Example 1. Single Unit

Consider a single system element or unit, with failure

rate at time t being X (t) , and repair rate y(t). The time

dependence of these rates may be used to represent reliability

growth: X (t) may well decrease with time because initial difficulties

are found and removed, and \i (t) may increase because of greater

familiarity with the system on the part of those responsible for

its ">:.intenance.

17



Let p
n
(t) be tne probability that the unit is up at

time t, and P,(t) = l-P
Q
(t) be the probability that it is down

for repair. Then the probability that the unit is up at time t +

h can be written as follows:

P
Q
(t+h) = P

Q
(t) [l-x(t)h] + P^tJyUJh + R(t,h) (2-3-12)

In other words, Equation (2-3-12) states that the unit is up at

t+h (h 0) if (i) it is up at t (probability P
Q
(t)) and does not

fail during the time from t to t+h with probability approximately

1-X(t)h , or (ii) it is down at t with probability P, (t) and is

repaired between t and t+h (probability y(t)h). Other possibilities

have the probability R(t,h) , which according to the Markov assumption

is small compared to h (literally, the limit of R(t,h)/h as h

tends to zero is zero) . Note that neither the time since last

failure, nor the time that repair has been going on, influences the

probability of state change. This is the "Markov property".

Now subtract p
Q
(t) from both sides of Equation (2-3-12),

and divide by h; let h tend to zero. We have then the following

differential equation,

dP n^= -X(t)P (t) + ii(t) P
x

(t) (2-3-13)

= - [X(t) + ii(t)] P
Q
(t) + |i"(t)

The solution may be expressed as

P (t ) = p (o) e"
r(t)

+ / e
"r(t " z)

m(z) dz
J
Q

18



where r(t) = J [\(x) + w(x)]dx , and P
Q
(0) is the probability

that the system is up at time t=0 . If X (t) = A, y (t) = \i are

constants, then

P (t) = P (o) e
- (A^ }t

+ ^ [l-e-
U+y)t

] (2-3-15)

so that if the system is up initially P n (0) = 1 ,
u

while if it is down for repair initially p n^ = ® '

It may be observed that the expressions (2-3-16) and (2-3-17)

describe the effect of initial conditions on availability at time t,

as described in Section 2.2.2. As time t-*"
00 in either expression,

P
Q
(t) — which is equal to A(t), the probability that the unit

is available — approaches A, the steady-state expression (2-2-3)

,

by virtue of the fact that E[U] = A
-1

, and E[D] = y"" 1
.

Example 2. Three Units

If there are several units, then the system state must

describe which are up. For instance,

P (t) = ProbabilitY Units 1/ 2, 3 are up at t

19



p
i r> n(t) = Probability Unit 1 is Down, Units 2 and
1 , U , u

3 are Up at t.

P, , , (t) = Probability Units 1, 2, 3 are Down at t.
i/i/i

There are, in all, eight states: (0,0,0), (1,0,0), (0,1,0),

(0,0,1), (1,1,0), 1,0,1), (0,1,1), (1,1,1), and their associated

probabilities, for which differential equations may be written.

Thus by the same argument as utilized to derive equations (2-3-13)

,

the system of equations, (the parameters can be time-dependent)

,

are given below:

/ P
000

(t) = - (X
l
+X

2
+X

3
)P

000 (t) +
^l

P
100 (t) + ^2P 010

(t)

dt

+ U
3
P
001

(t) (2-3-18)

~ p
ioo

(t) = -(vi
1
+x

2
+x

3
) p

100 (t) + x
x

p
Q00

(t) + U2 Puo (t)

! + P 3
p
10 l

(t) (2-3-19)

a

dt
Pni (t) = - (ii

1+M 2
+p

3
) Pm (t) + X

1
Pon (t) + X

2
P
1Q1

(t)

+ X
3

P
110 (t) (2-3-20)

For the setup above it turns out that, since all units are

independent, the solution can be expressed as products of solution

c single-unit problems, i.e., using equations (2-3-15) to (2-3-18)

s appropriate.

20



The differential equation approach can be used to model

systems in which component availabilities are not independent,

perhaps because of limited repair capability. Suppose, for instance,

that there is only one repairman, and that he assigns priority to

units 1, 2, 3 in that order if the elements are down. In other

words, if the repairman is repairing Unit 2, and if Unit 1 fails,

he immediately changes to Unit 1. In this case, equation (2-3-18)

remains the same but equation (2-3-19) becomes

_d

dt
P
100

(t) " -(V X
2
+X

3
} P

100
(t) + X

l
P
000 (t) ' (2-3-21)

and

_d
dt

P
110

(t) = -(p1+ A
3

) P
n(J

(t) + X
1

P
Q10

(t) + X
2

P
1Q0

(t)

but

_d

dt
P
010

(t) = -<VVi 2 +
A
3 )

P
01Q

(t) + X
2

P
000

(t)

+ V
1

P
110 < fc )

(2-3-22)

and, finally,

if
P
lll

(t) = -^1 P
lll

(t) + X
l

P
011

(t) + X
2

P 101 (t)

+ A
3

PU0 (t) (2-3-23)
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The long-run or steady-state probabilities are derived by equating

the derivatives to zero, and solving the resulting system of

linear equations/ subject to the condition that the sum of the

probabilities equals one. It is recommended that a computer

routine be used for this, as the explicit solution is very messy.

The time-dependent or transient solution may also be obtained by

numerically integrating the differential equations; a Runge-Kutta

method will work well.

Finally, the availability can be calculated in an obvious

way from the probabilities as obtained. For instance if the system

logic requires that at least one be operative , then

hit) = 1- Pni (t) (2-3-

while, if two out of three operative is required, then

*<*> = P
000

(t) + P
100

(t) + P
010

(t
>

+ p
ooi

(t> < 2 " 3 -

more complex setups, including common mode failures, may be treated

similarly.
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PART III. APPROXIMATE CONFIDENCE

LIMITS FOR SYSTEM AVAILABILITY

3.1. General

The steady state system availability of a complex

system depends upon the availabilities of its components and the

system operational logic. Denote the system availability, A ,
s

A
s

= <MAi» A2'" • • ' An > ' (3-1-1)

where A. is the steady state availability of the i— component

and the function <j> is a system logic function , which describes

system availability in terms of component availability.

Furthermore, under broad circumstances, and as a first

approximation

,

l E[U
i
]+E[D

i
]

where E[U.] represents the expected up time or time to failure

and E[D.] is the expected down time of the i— subsystem.

Now judgments about, and experience with, the component avail-

abilities, A., will differ, and so it may be natural and useful

to represent this variability by probability distributions (somewhat

in the spirit of Bayesian statistics, see DeGroot [2]). In fact,

the Reactor Safety Report, WASH-1400 has adopted this notion;

specifically, it assumes the logarithmic-normal distribution to
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describe the variability of E[U.], and E[D.], or equivalently

V ±
- (E[U.]) and X. = (EtD.])" 1

, respectively. That is, the

availabilities of similar components of type i vary randomly;

therefore

,

y

A
i - rfhr (3 - 1 " 3)

% i Oj j.

2

is a statistical variable, where £n X . is Normal (m, ,a, )
OjI A , A

.

2

*1 ~< -^

and £n u is Normal (m ,o* ) . Consequently the availability
*i y

i
y
i

of a system constructed of such elements is also a random variable.

The problem is to assign a probability number to the event that

the availability of a system exceeds a given lower bound, given

the distributions of component failure and repair rates. Equivalently,

one can specify a lower bound, <* , such that system availability A
g

,

exceeds it with a specified probability.

Under the assumptions made, the problem cannot be

solved in a neat, closed- form, manner. This part of the report

proposes an approximation method which provides a satisfactory

approximation (as indicated by a Monte Carlo simulation study)

.

However, further investigations are recommended. The method is

known as Linearizing System Availability Log-Odds (abbreviated

LALOD)

.
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3.2. Linearizing Availability Log-Odds: Rationale

3.2.1 Single Component System.

Consider first a system consisting of a single component,

and express its availability in the following equivalent forms:

A = A = V— = 1
.

s a + y t a
1 +

y

=
[AnX-Any] (3-2-1)

1 + e

The parameters a and y are realizations of random variables

A and U . Let L be the LALOD variable and
% \» s

L e s ln\ - Any (3-2-2)

In the WASH-1400 case where X and y are log-normally distributed

L would be a normally distributed ramdom variable with mean

m = m^ - m and variance a 2 = a£ + a* Furthermore, the LALOD

variable, L , can be expressed as a function of system availability,

r
1-A

s iL
s

= *n I ; (3-2-3)

thus, the distribution function of A is given by
<\,S

P A
s

> c
s |

. P L
s

< ^n \
1
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*C o"
f
4 n[(l-a

g
)a

s

X
\ - J (3-2-4)

s s

1 b.
s

= y/l* J e~2

where £ has a standard normal distribution (with mean zero and

variance unity) and

b
s

= a"
1 IW(l-o s ) a^V ml (3-2-5)

To construct the one-sided probability limit of A for a given

level of significance/ a , equation (3-2-5) can be used to deter-

mine an a value since b can be found from the standard—

s

s

normal probability table for that given value of a.

Note 1: The distribution function and the probability limit

derived for the system availability A is exact under the
'V s

assumption that £n(A/u) is a normal random variable.
% a,

NOTE 2: The assumption that £n(X/y) is Normal is not the only—————

-

*V> r\j

possibility: under some circumstances another transformation may be

more suitable. In fact, a transformation to another basic distribution,

other than the Normal, may be indicated by data. In any case,

the odds transformation is still helpful numerically. This
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particular transformation has been systematically explored by Cox

in a data-analytical context, see Cox [1] . The same arguments

that make it appealing in that context tend to recommend it for

the present purposes.

Note 3 ; The log-odds transformation in equation (3-2-3) has

range -»<L <», corresponding to the domain < A < 1:
s s

A = corresponds to L = oo, and A = 1 corresponds to
s s s

L = -°°. It is immaterial whether L be defined as shown, or
s s

as the log of the inverted ratio. In any case, L ranges over
s

the natural region of definition of the normal distribution, and

will be more nearly normally distributed than will A itself.
s

3.2.2. Multiple Unit System

Now consider a system consisting of several units

arranged in a redundant manner. The general procedure of LALOD

transformation is outlined below:

LALOD Procedure

(1) Form the system availability in terms of component availa-

bilities :

A
s

= <J»(A
1
,...,Am ).

(2) Form the log-odds availability, L ,
s

L
s

= in
1-A

A.
s J

= in
1 - $ (A, , A , . . . ,A )n

<J>
(A, , A« , ... ,A J

(3-2-6)
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(3) Compute the center of the log-odds distribution

a
s

= (J)(a
1
,a

2
,...a

m ) (3-2-7)

where

a
i

"
m

1 + e

(3-2-8)

m. = m, - m = E [ Sx\ A.] - E[*n V.].
i X.

^i ^ x ^

(4) Compute the linearized approximation to the variance of log

odds availability by use of the formula

? r; T7 ^ —-— a- (1-a.) o. (3-2-9)

(5) Express the system log odds availability as

in
1-a

s J
s s

(3-2-10)

where e is Normal (0,1). Thus, by using equation (3-2-4), the

following approximation is obtained for the probability that the

availability fo a system exceeds a lower bound a :
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P I A • u
j

. s -s
I I

e < Un
1 " 2 S

L -S J

- in
1 - a

1 r
S ~^ 2

aL
. . f e du

V2tt -«>

"I
I

s I

(3-2-11:

b c = a
_1

An
S S mm

From equation (3-2-11) one can easily determine desired probability

limits. To determine a such that-s,p

HA
s

> a S/p } = p f (3-2-12)

simply compute

a + d-a ) e s P
(3-2-13)

where £ is the p— quantile of the unit normal;

p = _±- | du,
\/J7 -

(

(3-2-14)

available from tables of the Normal distribution.

Note 1: The a of Equation (3-2-7) is precisely the mean or expected

value of the log-odds availability for a single unit. The transformation

t-encls to symmetrize A ; A approximates the mean or center of the

L distribution when a system involves more than one unit,
s

in



Note 2: Derivation of Equation (3-2-9) can be accomplished by

first writing the differential

dL
m

1 9 4> dA.

<f>U-4>) i = l BAj^

1-A.
l

and then differentiating in ——- = Z. to express the local
i

variation of L near its center as
s

(3-2-15

dL
a (1-a )s s

2 -^a.
i^l

9a
i *

(1-a,) o.e. (3-2-16)

Squaring and taking expectations results in the variance equation (3-2-9)

The same basic procedure can be extended to handle correlations between

units.

To demonstrate the application of LALOD approximation,

an example is given below:

Example; Two-Component Redundant System

Consider a system which consists of two parallel redundant

units; the operation logic is assumed to be one-out-of-two. Thus,

the system unavailability or availability is given by

or

A
s ~ A

1
A
2

A
s

= 1 - (1-A
X

) (1-A
2

) = <{)(A
1
,A

2
)

(3-2-17)

(3-2-18)

31



Thus step (1) gives

L
s

= £n

A
1
A
2

3 -A
l
A2j

(3-2-19)

Step (2) yields

» ! - [ X + e
"ml]

- 1
[l + e"

m
2]

-m2l ~1

from which the center of L is found to be
s

E [L
s ] « £n (l+e'

1"!)" 1 (Ue'^)" 1

X - d+e'"
1!)" 1

(l+e"
m2)- 1

= m
1

+ m
2

- ln[l + e
+m l + e

m
2].

If X. << y. , as is likely, then m. is negative and in

magnitude around -3 to -6. Hence the center of the L
s

distribution is likely to be near m. + itu .

Next, step (3) approximates Var[L ] by
s

a 2 =
(1-a^)

[aW + a
2
a
2

] '

(3-2-20)

(3-2-21)

which can be expressed in terms of m. . Once again if X .
<< p .

then, for even moderately negative m
. , a 2 ^ a? + ai
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In passing, note that the general n-component sytem is

equally easy to approximate in the manner described. For this

_ n
a = Jl a

.

s
i=l

x

E [L ] = in
s J

rl-a
s

-,

(3-2-22)

(3-2-23)

o 2 =
n

,, - ,2 2 a.
a*

(1-a ) 11
s 1=:1

(3-2-24)

3.3. Some Simulation Validations

Monte Carlo simulation is used to validate the adequacy

of the proposed LALDO approximation. To do so, realizations of

component availabilities are obtained as follows,

A
i

= (3-3-1)

1 + e

m.+e. o.ill

where m. and 0, are given, and where e. represents a random

normal number with mean zero and standard deviation unity. The

system availability is then calculated according to the system

logic function <$> at the values of A. . Identify each realization

h- so obtained and use equation (3-2-13) to obtain a . Finally,
1 —s , p J

corpare the fraction of say, n = 1000 repetitions that fall
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above * with the approximated probability p . If the fraction
—S/P

agrees with p to within sampling error, the approximation method

is, therefore, desirable.

Several such sampling validations are performed. The

results as shown in Table 3.1 are in good agreement.

A detailed explanation of the simulation runs follows. Recall

that if the statistical variable X has the log normal distribution,

i.e., Jin X ^ N(m,a 2
), then

E [x] = e
m+ ° 2/ 2 (3 " 3 - 2

tt Tiri 2m+a 2
r a 2

. tVar |_XJ = e [e -1J

and the coefficient of variation

C(X) = Var [X] * (E[x])
2

= e
a -1

,-3
For the first case in the table (3-1), a choice of m.. = Jin (10 /2)

and o 2 = Jln4 for the population from which Component I was

selected (the mean failure rate from that population is 10 (days)

,

with coefficient of variation of 3) . Component II was selected

_3
at random from a population having mean failure rate 0.5 x 10

In all cases, the repair time was assumed to be exactly one day

in duration, merely to simplify the sampling experiment. Next,

the lower limit on system availability a (p) was computed,

using equation (3-2-13) with the above parameters and a particular

value of p . A total of 1000 redundant systems were then simulated,
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and the fraction whose availability exceed a (p) was obtained.

It is these fractions that appear in the body of the table; for

instance, in the first case 0.503 corresponds to p = 0.5, 0.790

to p = 0.80, and 0.959 to p = 0.95.

The computer program utilized to produce the quoted

results will also simulate more complex redundant systems.

3 . 4 Conclusions

The LALOD procedure for constructing probability (Bayes

prior) limits on system availability is computational simple.

Based on the simulation results to date, the method appears to be

valid. Further validation experiments, and analytical investigations

of the method, would seem to be indicated.

Two related general areas for further investigation are

the following:

(a) The robustness or insensitivity of the LALOD method to

the specific assumption of the log normal for unit

parameter priors. There are indications that the

procedure may be relatively insensitive, particularly

when used to evaluate rather complicated redundant systems,

by virtue of central limit theorem effects.

(b) The possibility of combining the LALOD prior approach

with data to form a posterior, in the strict Bayesian

sense. Perhaps better, another method for "borrowing

strength" from experience with other units in other

locations can be devised. Also, the approximate

normality of the system log odds may be exploited to

yield a useful sequential procedure for assessing

system availability.
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SAMPLE VALIDATIONS

Table 3.1

Two-Unit Redundant System
(1000 repetitions per case)

Cases p = 0.5 p = 0.80 p = 0.95

,-3
nu = Jln(10 /2) , o| = Jin 4

,-3
m
2

= JlndO /4) , a| - a|

E[X,] = 10~ 3
, E[\ ] = 10" 3

/2
O.' 'V

CV[X ] = CV[X 9 ] = 3

0.503 0.790 0.959

m
-1

, = 2-n(10~
x
/v/ 2) , o

2

±
= Jin 2

-3
m 4n(10 J

/4) , a
2

2
= Jin 4

E[X ] = lo"
1

, E[X ] = 10" 3
/2% 1 <\> z

CV[X, ] = 1, CV[X ] = 3

0.531 0.835 0.962

m. = £n(10"
1
//2) , a| = Jin 2

m
2

= £n(10" 3
//2) , a* = Jin 2

E[X.] = 10
1

, E[X ] = 10" 3

CV[X,] = 1, CV[X 9 ] = 1

0.483 0.805 0.955

Note: For simplicity only, E [u .
] = 1 and a 2 throughout

the above. Also,

of variation.

2 -

i
2

X .

1

, and CV(.) stands for coefficient
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PART IV. AVAILABILITY ESTIMATION BY

USE OF THE JACKKNIFE

4.1. General

Consider now the problem of estimating the availability

of a single equipment from data on its up and down times:

u, , u~,... u , and d, , d~, . . . d , respectively. By virtue of
x z n 1 z n

equation (2-2-7) , namely,

E[U.]
A
i E[U.] + E[D

i
]

(4-1-1:

one could estimate A. as follows:
l

A = u

u + d
(4-1-2]

where as usual the bars denote averages:

u =
n

2 u

n i=l

4-1-3

n

However, because u and d are only approximations to the true

means the resulting approximations for A can be quite poor.

In practice it will be of interest to estimate the

availability of a single equipment, e.g., a power plant, or a

redundant combination of equipments, such as a safety device, by
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using observed time-to-failure and down time data. Also, an

assessment of the stability of the estimates, perhaps in the form

of confidence limits, will be desirable. Such a program can, in

principle, be carried out by (i) postulating distributional forms

for the up or failure times, U, and down or repair times, D,

(ii) fitting the parameters of the latter distributions according

to satisfactory statistical procedures, such as maximum likelihood

or, possibly, Bayesian techniques, and (iii) substituting the

parameter estimates into the availability formulas, such as

equation (4-1-2) . In order to find confidence limits, a linearization

technique that relies on the asymptotic normality of maximum

likelihood estimates may be employed.

This paper presents a procedure alternative to the

above; it has been called the jackknife by J.W. Tukey. For

further discussion see Mosteller and Tukey [L2] , also Cox and

Hinkley [4J , and Gray and Schucany [1£] ; a review has recently

been furnished by R.G. Miller [1_1] . In brief, the jackknife

method has the capacity to reduce the bias of estimates of such

quantities as system availability, and also to furnish confidence

limits that behave in a satisfactory manner—economically enclose

the true availaiblity-despite the fact that underlying distributions

are unknown. Demonstration of these properties can be carried

out mathematically when sample sizes are large, but in realistic

situations the jackknife technique must be validated by Monte Carlo

simulation. A number of such simulation results are presented in

this paper, and comparison with alternative methods are given.
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4.2. A Jackknife Procedure for a Single Unit.

Jackknifed estimates and confidence limits are constructed

by successively leaving out parts of the available data to construct

pseudovalues. These are then averaged, and the stability of the

average assessed by Student's -t in order to obtain confidence

limits. The procedure is given as below:

(1) Transform first (see Mosteller and Tukey [12]) estimated
2-2-7:

A
£n = Jin u - In 3";

1-A
(4-2-1)

(2)

jackknifing will be carried out using the

statistic in u - In d~ = z .

Recompute z repeatedly, leaving out successively the

sample pairs (u^d.^ , (u2# d2 ) ,... (u. ,d .),,.. (u
n
,d_)

-D
= Jin

1-1

_i=l

u. +
i

n
V u

i=j+l

- Jin

j-l

2 d.

i=l

n

£ d

i=J+l
X
J

(4-2-2

j — 1 t 2

,

. . . n.

(3) Compute the pseudovalues as follows:

z. = nz - (n-l)z . j=l, 2

,

. . . ,n; (4-2-3)
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recall that z = z ,, is the result of computing

the quantity to be jackknifed, leaving out none

of the data.

(4) Compute the mean and variance of the pseudovalues

:

1 2z = - y z

.

n ^ 3 (4-2-4)
j-l

2 In _ 2

"«
=

i^T *
(z

>

" zl

3=1

(5) The jackknifed point estimate of the availability is

now
z

A
jk " 77T (4-2-5)

1+e

(6) "Symmetric" two-sided confidence limits at confidence

level (l-a)100% are derived as follows:

2
r s z

5 + t
l-o/2

(n-1) n/~
= H

« H-2-6)

2

n

a
where t, ,_(n-l) is the (1-^)100% quantile of

L-QX/ 2. Z

Student's- t with n-1 degrees of freedom. Then

L H

_£ 1 A < _f (4-2-7)

l+e Lct
i +e

Ha
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with confidence approximately (1-a) 100%. Note that

the confidence limits are nearly symmetric around

£n(E[U]/E[D] ) , and not around A.

(7) One-sided confidence limits at confidence level (1-a) 100%

are derived as follows

ft
z + t. (n-1) /

S
z = H (4-2-8)

1-a . / — aV n

N n
L
a

so a one-sided upper confidence limit is

A <
e
H

ot (4-2-9)

l+e
H o

and a lower confidence limit is

A > e a
L
a (4-2-10)

l+eH a

both at confidence level (1-a) 100%
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4.3. Validation by Simulation.

The jackknife procedure may be validated, in an empirical

sense, by sampling experiments or computer simulation in the

following manner. First, an artificial batch or sample of data

is obtained by drawing random numbers from postulated distributions

for U, and for D. For example, {u. } and {d.} are independently

sampled from the exponential distributions with means y = 100,

and X~ = 1, respectively. Second, the jackknife point estimate

((4-2-2) above) and confidence limits ((4-2-3) above) are computed.

Since the values of E[U] and E[D] are known, so is the theoretical

value of A, The jackknife confidence intervals can be checked

for coverage: if L < A < H then the particular interval
a — — a

covers, while otherwise (if A < L or H < A) it does not
a a

cover. Finally, the above procedure can be repeated many times

(say 1000) and the fraction of the repetitions which contain the

true value of A are recorded. This fraction of the coverage

should desirably be close to (1 - a) . Also, the average length,

and variance of length, of the confidence intervals obtained in

repeated sampling can be recorded. The jackknife confidence

limits procedure can be said to be robust of validity if the

actual coverage is close to the nominal coverage, 1 - a, for a

wide range of distributions for U and D. The procedure can

be said to be robust of efficiency if the confidence limits tend

to be short, i.e., if there is evidence that E[H ]
- E[L ] is

a a

comparable to the length of confidence intervals obtained when

the underlying distributional families for U and D are known,
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and the most efficient procedures for estimation pertinent to

these families, are used. Without the evidence available from a

very large data base, choice of specific distributional forms for

U and D must be based on judgment. The following example sit-

uations seem to reflect the types of distributional behaviors

that may occur.

(A). U is exponentially distributed, E[U] = x~ .

D is exponentially distributed, E[D] = u .

Successive times to failure and repair times

are independent. Note: This is the widely seen

Markov model, is mathematically convenient, and

may well be reasonably accurate under many

circumstances

.

(B) . U is exponentially distributed. D is gamma

distributed with shape parameter, k, greater

than unity: E[D] = u , Var[D] « (/Jc u)""
2

.

Note: the gamma family with k > 1 qualitatively

represents data that is more tightly grouped

around its mean than is true of exponentially

distributed data. The logarithmic-normal

distribution also has the above general property,

and has been used to represent repair times;

see Gray and Schucany f9].
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(C) . U is exponentially distributed, E[U] = X .

D is gamma, with k integer (>1); U and

the subsequent D positively correlated.

Note: Situations in which repair times

following longer-than-average times to failure

are themselves longer-than-average can be

imagined. A class of models is discussed in

Gaver [6] . The present simulation is a

simplified version of such a structure.

(D) . U is represented by a long-tailed h-distribution,

see Gaver and Lavenburg [7] , and Rogers and

Tukey [13]

:

= li^JH
2

xe
hX

h>0

where X is exponentially distributed with

unit mean. The distribution of U possesses

exponential-like characteristics near zero,

but exhibits relatively more extremely large

times to failure than does the exponential.

D is exponential; E[D] = u

The above alternatives are by no means exhaustive, but

do tend to represent qualitatively likely alternative data behaviors

As the following tabulations indicate, the jackknife appears to
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perform creditably when data comes from any one of the models

described. In particular, the validity of the jackknife is

notable when a long-tailed (type D) distribution governs the

times to failure.

In case (A) of Tables 4.1 and 4.2, the ratio —
D

is proportional to the F distribution of classical statistics,

with degrees of freedom in numerator (denominator) equal to twice

the number of up time (down time) observations. This fact allows

exact confidence intervals to be established in case (A) — and

in case (A) alone — for any sample size. The jackknife coverage

and confidence interval width compares favorably to the exact "F"

method in case (A) , and seems correspondingly more valid and

efficient in the other cases considered. This is particularly

true for the long-tailed distributions of type (D) ; here the "F"

method considerably undercovers.

4.4. Numerical Applications

In order to illustrate the behavior of the jackknifed

estimation procedure, consider system time to failure and time to

repair data for two nuclear plants, as quoted by Tietjens and

Waller [14], The data are tabulated in Table 4.3.

For each set of data, the Jackknife pseudovalues are

obtained by successively leaving out up and down time pairs,

using equation (4-2-3) . The two-sided confidence limits

equation (4-2-7) are computed.
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Table 4.3

(u.) and {d.} of Humboldt Bay11 J

and Yankee Reactor [14]

Humboldt Bay Yankee Nuclear

Up Times (years) Down Times (years) Up Times Down Times

0.523 0.060 0.063 0.027

0.175 0.038 0.055 0.038

0.537 0.074 0.296 0.014

1.019 0.197 0.170 0.036

0.121 0.016 0.822 0.345

0.827 0.088 0.948 0.197

0.271 0.016 0.715 0.096

0.499 0.066 0.923 0.255

0.940 0.058 0.899 0.090

0.466 0.099 0.332 0.033

0.742 0.060 0.304 0.049

0.189 0.058 0.658 0.107

0.422 0.016 0.523 0.019

0.389 0.222 0.712 0.148

1.000 0.118 0.485 0.022

0.003 0.047 0.397 0.030

0.855 0.085 0.145 0.101

1.077 0.153 0.912 0.019

0.244 0.260
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These confidence limits are compared to the limits

obtained by Tietjens and Waller [14]. It is noticed in Table 4.4

that the jackknifed intervals fall within the F-statistic intervals,

and also within the simulation intervals. As will appear from

the simulation results of the following section, the jackknife

procedure gives more uniformly valid confidence intervals than

does the F procedure when the underlying distributions are not

known. This robustness is a point in favor of the jackknife,

from a practical viewpoint, for sampling experiments have confirmed

its validity.

Table 4.4

Two-Sided 95% Confidence Limits
on Plant Availability

Lower Limit Upper Limit

Yankee Simulat. (Tietjens-
Waller)

0.710 0.909

Nuclear: Jackknife 0.762 0.887

(n=19) F 0.729 0.906

Humboldt Simulat. (Tietjens-
Waller)

0.779 0.923

Bay Jackknife 0.829 0.905

(n=18) F 0.778 0.930
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4.5. Jackknifing System Availability

The topic of this section is the estimation of the

availability of a system of several (two or more) equipments from

time to failure and repair data. Again the jackknife technique

is emphasized. Variations of this method are described and are

again evaluated by means of simulation.

4.5.1 Two specific, simple, systems will be considered here

for illustration.

System Type 1 . Two Component Redundant.

Two subsystems are arranged in parallel, so that in

order for the entire system to fail, both must be down simultaneously.

If A. is the availability of the i (i = 1,2) then the

system unavailability is

A = (1-A^ d-A
2

) = A
x
A
2

/ ^J \ /
E[D

2
]

\
(4-4-1)

\ E[U
1
]+E[D

1
] /

\e[U
2
]+E[D

2 ]^

under the assumption that the two systems fail and are repaired

independently. If there are K such subsystems, then of course

K E^]
A =

.^EfU.l+EfDj
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System Type 2 . Two-Out-of-Three Voting.

Suppose three subsystems are arranged to vote : when a

demand is made for the system then if at least two out of three

subsystems are available, the system is itself available. The

system availability in terms of subsystem availability is given

as below

A = A
l
A
2
A
3

+ A
l
A
2
A
3

+ A
l
A
2
A
3

+ A
l
A
2
A
3

(4-4-2)

4.5.2 Some Jackknife Procedures

If a system consists of subsystems which are assumed to

be identical and independent then data on times to failure and

times to repair can be pooled. The jackknife procedure discussed

in Section 4.4 requires only a modest adaptation.

(A) Jackknifing System Type 1; Identical Subsystems .

Since subsystems behave identically, by assumption

E[D] = EfDJ = E[D
2
], E[U] = Ell^] = E[U

2 ]

A
j

=
eTuT+eTdT (4-4-3)

and thus

X " A*

E[D]
eTuT (4-4-4)
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This suggests the following procedure

(1) Transform:

'V,

i
a" 2

in — =£nd-£nu=-z (4-4-5)
*" A *

(2) Jackknife z, in the manner described in Sec. 4.1, pooling

all up time and down time data. The previously reported sampling

experiments for one equipment indicate the validity of the intervals

so obtained; two-sided confidence limits are of this form:

2 / ;2

i \ < a < / ±—\ (4-4-6)

l + e
H

<>

J y l + e
La

and other limits are found in an analogous manner.

(B) Jackknifing System Type 1; Different Subsystems .

It is often unrealistic to assume that redundant sub-

systems have identical parameters. In this case

E[D
X

] \ / E[D
2

] \

L

l 2 \E[D
1
]+E[U

1
] / \ETL

:

A = A, A. - | sre i ^ t „ , ] Ur D2]+e[u
2 ) j

'
(4 " 4 " 7)

and a logarithmic transformation is suggested:

Jin A = in A, + i A
2

;

it is this function that will be jackknifed. Let u, . denote

the i~ time to failure of equipment k (k=l,2; i-1,2... n^)

,
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and let d, . be the corresponding down time. Here are two

jackknife procedures.

Procedure 1 .

(1) Compute the pseudovalues z, ., for each subsystem's data as
K / J

described by equation (4-2-3)

.

(2) Compute the pseudovalues

Vj = ln
*krj

= " *n(1+e K ' j); t^ 1 ' 2* j = l,2 f ... / n
]c

(4-4-8)

(3) The means and variances of £, . are given by
K/ j

1
k

n

Mk = — £ £k,j
n
k

j
= 1

(4-4-9)

k 3=1

(4-4-10

and r n. n.
2

? ,
"1

n "2
M- J M, , S =

"I

Vv=4 J
I 1

,t
i.:f

M
i
,2+

j
y*2rM2>

2

3 = 1

(4) Two-sided (l-a)100% confidence intervals of UnA are

computed using Student's t:

(4-4-11

H
a " M + tl-a/2 (n

l
+n 2- 2) ' S (4-4-12!

L = M -
a

tl-a/2 (n
l
+n 2- 2) ' S
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(5) Translated into confidence limits on A, the limits become

H
a
(A) = e

H
a ; and L

a ( A >
= eLa (4-4-13)

respectively; these limits are analogous to those of equation (4-2-2)

Note 1: Procedure 1 directly assesses the variability of the

individual estimates of A. and A
?

in terms of functions of

the original pseudovalues.

Note 2: The procedure is essentially equivalent to the statistical

independent-t test applied to the jackknifed data.

Procedure 2 .

An alternative approach is to compute the jackknife

estimate of the (un) availability of each subsystem, and then to

assess and combine the variabilities of these estimates.

(1) Compute the pseudovalues z, . and the sample mean, m, ,K , J K

and sample variance s, of each subsystem's data.

(2) Calculate the logs of the jackknife point estimates,

M
k

= in VJK = - ^ [l + e
k

j
;

k-1,2 (4-4-14)

M = M. + M
2
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(3) Compute the variance of the jackknife point estimates by

using the asymptotic "linearization" or "small errors" approach [5],

Var in AK,JK

^k \
2

s
2

-e-=— I
k k =l,2 (4-4-15)

1+e / k

and the variance of point estimate AJK is

S
2 m Z Var fin A

Rf JK
|

(4-4-16)

k=l ^ J

(4) Construct the confidence limits of system unavailability in

the same manner as equations (4-4-12) and (4-4-13) .

(C) Jackknifing System Type 2; Different Subsystems .

The availability of a two-out-of-three voting system

when components differ is given by equation (4-4-2) . Suppose

that up and down time data are known for the components, this

section describes a jackknife procedure for applying confidence

limits to the system availability. The method given here relies

upon the linearization technique used as the basis for Procedure 2

of (B) .

Procedure:

(1) Form the pseudovalues for the jackknife estimates of

jin(E[u
k
]/E[D

k
]) z^ ., k=l,2,3; j = l,2,... n

k
. (4-4-17)
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2) Compute

n
k

1 vz
k

= — E z. (4-4-18;

k D = l

n
k

s
2 = 2 (z, .-z)

2 k=l,2,3 .

k
n -1 -i k ' jn
k

L 3*1

|3) Compute the jackknife point estimate of system availability

^JK A
l , JK

A
2 , J K

A
3

,

JK+A1 , JK
A
2 , JK

A
3 , JK

+A
1 , JK

A
2 , JKA 3 , JK*A1 , JKA 2 , JK

A
3 , JK

(4-4-19)

ind its log-odds transform

[4) Compute the estimated variance of A
JK ?

2 1 r r , .. r ,2 r . r ,2s 2

i?

7^ i T2
" lA2,JKA3,JK+A2,JKA3,JK J tAl,JKAl,JK J -^ +

tAJK
AJK ; n

l

2- - 2 -2s
lAl,JKA3,JK+Al,JKA3,JK J lA2,JKA2,JK ] -^ * (4-4-21)

n
2

- 2 -2s
[A1,JKA2,JK+A1,JKA2,JK ] [A3,JKA3,JK ] ~ '"

n
3

:he latter is derived by linearizing equations (4-4-18) and (4-4-19)

ind combining.
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(5) Two-sided (l-a)100% confidence limits for in y^ are

H
a

= £
JK

+ tl-a/2 (n
l
+n

2
+n 3- 3) ' S

^

L
a = *JK " tl-a/2 (n

l
+n

2
+n 3" 3) ' S

il
;

(4-4-22)

two-sided confidence limits on A are given by equation (4-2-8)

.

4 . 6 Validation by Simulation .

Sampling experiments designed to validate the procedures

described do so in a satisfactory manner for the cases considered.

The following tables illustrate the situation. Note that there

is no "exact" finite-sample procedure analogous to use of the "F"

statistic available for the single-unit situations when distributions

are assumed to be exponential. Further sampling experiments,

unreported here, also show that the nominal coverage is very

nearly achieved in all cases.
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