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1.0 Introduction

The purpose of this paper is to give a simplified proof of a theorem that

was previously stated in a more restricted form [1]. In that paper it was shown

how to construct 12 point cubature formulas having precision seven for symmetric

planar regions. For fully symmetric regions and rectangular regions the con-

struction cannot fail, and the resulting formulas use the minimum number of

points. In the next section we establish 12 points as a lower bound for all

symmetric (in each variable) planar regions. The existence of 12 point formulas

has not been established for arbitrary symmetric regions. The notation of this

paper is the same as that of [1].

2.0 Minimal Point Formulas

Let R be a symmetric (about each axis) planar region and let w(x,y) be

symmetric in each variable. We consider cubature formulas of the form

k-i
/ wf a

2Lj \ f <\>

As a consequence of the characterization theorem given by Stroud [2], or [3, p. Ill],

we have the following result, also given in [1].

Proposition 1 : Let there be given a formula of type (1), with precision 7, for

a region in the plane. Suppose that N < 15 . Then the points v , k=l,...,N,

are zeros of 15 - N linearly independent polynomials of degree 4 , each of

which is orthogonal, over R with respect to w , to all polynomials of degree

1 3 •

Our approach, as before, is to show that for the regions under consideration,

there do not exist five orthogonal polynomials of degree four with 10 common zeros,

nor four with 11 common zeros.



Theorem 2 : Let the cubature formula (1) have precision seven, where R and

w are symmetric. Then N _> 12 . Proof: We first establish that no 10 point

formula exists, that being the minimum possible for any region. Assume the con-

contrary. Then the basic orthogonal polynomials, which have the form

P
(4 > 0) = x

4
+ a

;
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2
+ b,y
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(3 1) (i 3)
must have the ten nodes as common zeros. Inspection of P and P

2 2
reveal that their common zeros are (±a,±£) , where a = -a_ and 6 = -a.. ,

(2 2)
and the axes. However, P ' has at most two finite zeros on each axis,

(3 1) (2 2) (1 3)
hence P ' , P , and P J can have at most eight common zeros.

Hence no ten point formula can exist.

We now show that no 11 point formula exists. If one did there would exist

four linearly independent orthogonal polynomials of which the nodes would be

common zeros. This would mean that all the v, lie on some nontrivial linear
k

combination of any two of the orthogonal polynomials (2) . For some y
1

and X

they lie on ¥
±

= u^ 3,1
^ + X^1,3

^ = xyCy^x
2
+ Ay 2

+ u a + X^ ) . Thus

2 2
the nodes lie on the axes or the conic Q = y x + X y + y a 4 X a . We now

consider two possibilities: (i) one of y or X is zero, i.e., the nodes

lie on P
(3,1)

or p
(1>3)

; (ii) y^ * .

(3 1)Case (i): We show this cannot happen. We assume the nodes lie on P ,

(1 3)and the argument is dual if they lie on P . The nodes also lie on

?2 = ^o^ + ^o^ f° r some y_ and X , not both zero, and on



P = y P ' + X P ' for some y_ and A , not both zero. We see that

P has at most two zeros on the x axis. The remaining nodes must lie on

2
x + a_ and P which can have at most four finite common zeros, hence

P , P and P can have at most eight finite common zeros in this case.

Case (ii): We will show in this instance that the eleven nodes must be a

subset of twelve points of the form (±a, 0) , (0,±8) , (±x , ±y ) , (±x , ±y~)

We have both y.. and X nonzero. We first suppose the nodes all lie on

(2 2) (2 2)
P '

. Now, P ' and P
1

cannot have a common component; this is easily

(2 2)
established by an argument on the coefficients. P ' has at most two zeros

on each axis, of the form (±a, 0) and (0, ±8) , as claimed. If c_ = , the

zeros coalesce at the origin, but we will no longer have enough common zeros.

(2 2)
Q 9

and P ' are seen to have at most eight common zeros, symmetrically

located with respect to the axis, i.e., (±x
1

, ±y-,) , (±x 9 > ±y
9
) •

(2 2)
Now, suppose the nodes do not all lie on P ' . Then they lie on each

of P
2

- p
2
P
(4 - 0) + X

2
P
(2 ' 2 >

, where u, * and ^ - v/°>» + x/ 2 ' 2)
,

where y * . We see that P and P_ can have at most four common zeros

on the axis. We consider Q , P , and P . If the three have a common com-

ponent, we see by symmetry that Q must be a factor of both ~9 and P

Then

P
2

= (ax
2
+ b)Q

2

P
3

= (cy
2
+ d)Q

2
.

Now , P and P have (±a, 0) and (0, ±6) as common zeros, so bQ (0
}
±B) =

and dQ (±a, 0) = . If b = , V has only the origin as a zero on the axis.

This would not be enough zeros. Likewise if d = , P has only the origin as

a zero on the axis, which is impossible. Thus, (±a^ 0) and (0
s
±8) lie on Q .

But then all the nodes lie on Q , which is impossible. Thus Q 9
cannot be a

factor of both P and P . With no loss of generality, assume Q is not a



factor of P
9

. Then Q and P can have at most 8 common zeros, and

they are of the stated form.

It now remains to be shown that no proper subset of twelve points of the

form (±a,0) , (0,±$) , (±x , ±y ) , (±x , ±y_) can be used for a cubature

formula of precision seven for the regions under consideration. Let A '

be the weight associated with the node (a,0) . Consider Q ' = Q 'x'Cx + a).

Now, Q ' is zero at all the nodes except (a,0) , so

/ n (a,0) A
(a,0Wa,0) c - -i i u / Tin (-a,0) . (-a,0) n (-a,0)wQ v

' ' = A Q (a 0) * Similarly, we have / wQ = A 'Q (-a,0)

Now we note that because of symmetry / wQ ' = / 2wax , / wQ '

•4 A A
= -Awax2

, and Q
(a
'^, )= V'^a.O) . Thus we have A

(a
' 0) - A

(
-a

' 0)

and since a ten point formula cannot exist A ' * . Similar consideration

of Q
( °' ±6)

= Q
2

• y • (y , B)
2

yields A
(0 ' B)

= A (°'-B>
, .

Now consider

^X
i ,yi 2 2 2 2

Q =(x-x. +y-y.)*x*y*(x+x.)(y+y.) , where j = 3 - i ,

(x.'y.)
for i = 1,2 . It is easily seen that Q is zero at all nodes except

(x^y.)
(x.,y.) . Let A be the weight associated with (x.y.) , then we have

/(x ,y ) (x ,y ) (x ,y )

wQ = A Q /v „ \ . Then we note thatUi'V

(-x^y.) (^,-y.) (-x^-y.) Cx.,y.)

Q (-x, s y.) " Q (x
±
>-v

± ) = Q (-x.,-y .)
= Q Cx,,y.)11 x x 11 11

/•
(±x.,±y.) r

/ wQ = / w(x - x.

./r 7r J

2 2 2 2 2
and that / wQ = / w(x" - x_, +y -y.)xy , and thus

(x.,y.) (-x.,y.) (x.,-y.) (~x.,-y.)ii ii ii ii
A =A =A =A *0. Thus we have shown that

all 12 points have nonzero weights, and thus no 11 point formula can exist. This

concludes the proof of the theorem.



3.0 Conclusions

We have shown that 12 is a lower bound for the number of nodes in a

cubature formula of precision seven for a symmetric planar region. As noted

previously the existence of a 12 point formula for an arbitrary symmetric

region has not been shown. To show that the author's construction [1] does

not fail it is necessary to show that certain determinants involving the mo-

ments are not zero. This problem has been quite intractable, and it seems unlikely

the approach of the author can be made to work. Some of the key inequalities

used in [1] for fully symmetric regions fail to hold for arbitrary symmetric

regions. A considerable effort has been expended in attempting to find a region

for which the construction fails, but none has been found. As before the author

believes the construction cannot fail, but is unable to prove it.
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