NAVAL POSTGRADUATE SCHOOL Monterey, California

MINIMAL POINT CUBATURES OF PRECISION SEVEN FOR SYMMETRIC PLANAR REGIONS, REVISITED
Richard Franke
July 17, 1974
Technical Report For Period
October 1973-December 1973

Approved for public release; distribution unlimited
Prepared for:
Chief of Naval Research, Arlington, Virginia 22217

NAVAL POSTGRADUATE SCHOOL

 Monterey, CaliforniaRear Admiral Isham Linder Superintendent
Jack R. Borsting Provost

The work reported herein was supported in part by the Foundation Research Program of the Naval Postgraduate School with funds provided by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was report was prepared by:
L. D. KOVACH

JOMY' M. WOZENCRAFT ν
(Acting) Chairman of Mathematics
Deln of Research

SECURITY CLASSIFICATION OF THIS PAGE (Whon Dela Entered)

DISTRIBUTION STATEMENT (ot this Report)
Approved for public release ; distribution unlimited
17. DISTRIBUTION STATEMENT (of the abotract ontored in Block 20, If ditforent from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Conlinue on reveree ide ll neceesary end ldentlfy by block number)

Minimal Point cubature, Cubature, Planar region, Polynomial precision, Orthogonal polynomials, Symmetric region
20. ABSTRACT (Contlnue on revaree alde If neceesary and Identlfy by block number)

The key theorem concerning a lower bound for the number of points required by cubature formulas of precision seven for certain symmetric planar regions is extended to arbitrary symmetric planar regions, with a simplified proof.
(
(

1.0 Introduction

The purpose of this paper is to give a simplified proof of a theorem that was previously stated in a more restricted form [l]. In that paper it was shown how to construct 12 point cubature formulas having precision seven for symmetric planar regions. For fully symmetric regions and rectangular regions the construction cannot fail, and the resulting formulas use the minimum number of points. In the next section we establish 12 points as a lower bound for all symmetric (in each variable) planar regions. The existence of 12 point formulas has not been established for arbitrary symmetric regions. The notation of this paper is the same as that of [1].

2.0 Minimal Point Formulas

Let R be a symmetric (about each axis) planar region and let $w(x, y)$ be symmetric in each variable. We consider cubature formulas of the form
(1) $\int_{R} w f \simeq \sum_{k=1}^{N} A_{k} f\left(\nu_{k}\right)$

As a consequence of the characterization theorem given by Stroud [2], or [3, p.111], we have the following result, also given in [1].

Proposition 1: Let there be given a formula of type (1), with precision 7, for a region in the plane. Suppose that $N<15$. Then the points $\nu_{k}, k=1, \ldots, N$, are zeros of $15-N$ linearly independent polynomials of degree 4 , each of which is orthogonal, over R with respect to w, to all polynomials of degree ≤ 3.

Our approach, as before, is to show that for the regions under consideration, there do not exist five orthogonal polynomials of degree four with 10 common zeros, nor four with 11 common zeros.

Theorem 2: Let the cubature formula (1) have precision seven, where R and w are symmetric. Then $N \geq 12$. Proof: We first establish that no 10 point formula exists, that being the minimum possible for any region. Assume the concontrary. Then the basic orthogonal polynomials, which have the form

$$
\begin{aligned}
& p^{(4,0)}=x^{4}+a_{4} x^{2}+b_{4} y^{2}+c_{4} \\
& P^{(3,1)}=x^{3} y+a_{3} x y
\end{aligned}
$$

(2) $P^{(2,2)}=x^{2} y^{2}+a_{2} x^{2}+b_{2} y^{2}+c_{2}$

$$
\begin{aligned}
& P^{(1,3)}=x y^{3}+a_{1} x y \\
& P^{(0,4)}=y^{4}+a_{0} x^{2}+b_{0} y^{2}+c_{0}
\end{aligned}
$$

must have the ten nodes as common zeros. Inspection of $P^{(3,1)}$ and $P^{(1,3)}$ reveal that their common zeros are $(\pm \alpha, \pm \beta)$, where $\alpha^{2}=-a_{3}$ and $\beta^{2}=-a_{1}$, and the axes. However, $P^{(2,2)}$ has at most two finite zeros on each axis, hence $P^{(3,1)}, P^{(2,2)}$, and $P^{(1,3)}$ can have at most eight common zeros. Hence no ten point formula can exist.

We now show that no 11 point formula exists. If one did there would exist four linearly independent orthogonal polynomials of which the nodes would be common zeros. This would mean that all the ν_{k} lie on some nontrivial linear combination of any two of the orthogonal polynomials (2). For some μ_{1} and λ_{1} they lie on $P_{1}=\mu_{1} P^{(3,1)}+\lambda_{1} P^{(1,3)}=x y\left(\mu_{1} x^{2}+\lambda_{1} y^{2}+\mu_{1} a_{3}+\lambda_{1} a_{1}\right)$. Thus the nodes lie on the axes or the conic $Q_{2}=\mu_{1} x^{2}+\lambda_{1} y^{2}+\mu_{1} a_{3}+\lambda_{1} a_{1}$. We now consider two possibilities: (i) one of μ_{1} or λ_{1} is zero, i.e., the nodes lie on $\mathrm{P}^{(3,1)}$ or $\mathrm{P}^{(1,3)}$; (ii) $\mu_{1} \lambda_{1} \neq 0$.

Case (i): We show this cannot happen. We assume the nodes lie on $\mathrm{P}^{(3,1)}$ and the argument is dual if they lie on $P^{(1,3)}$. The nodes also lie on $P_{2}=\mu_{2} P^{(4,0)}+\lambda_{2} P^{(2,2)}$ for some μ_{2} and λ_{2}, not both zero, and on
$P_{3}=\mu_{3} P^{(0,4)}+\lambda_{3} P^{(2,2)}$ for some μ_{3} and λ_{3}, not both zero. We see that P_{2} has at most two zeros on the x axis. The remaining nodes must lie on $x^{2}+a_{3}$ and P_{2} which can have at most four finite common zeros, hence P_{1}, P_{2} and P_{3} can have at most eight finite common zeros in this case.

Case (ii): We will show in this instance that the eleven nodes must be a subset of twelve points of the form $(\pm \alpha, 0),(0, \pm \beta),\left(\pm x_{1}, \pm y_{1}\right),\left(\pm x_{2}, \pm y_{2}\right)$. We have both μ_{1} and λ_{1} nonzero. We first suppose the nodes all lie on $P^{(2,2)}$. Now, $P^{(2,2)}$ and P_{1} cannot have a common component; this is easily established by an argument on the coefficients. $P^{(2,2)}$ has at most two zeros on each axis, of the form $(\pm \alpha, 0)$ and $(0, \pm \beta)$, as claimed. If $c_{2}=0$, the zeros coalesce at the origin, but we will no longer have enough common zeros. Q_{2} and $P^{(2,2)}$ are seen to have at most eight common zeros, symmetrically located with respect to the axis, i.e., $\left(\pm x_{1}, \pm y_{1}\right),\left(\pm x_{2}, \pm y_{2}\right)$.

Now, suppose the nodes do not all lie on $\mathrm{P}^{(2,2)}$. Then they lie on each of $P_{2}=\mu_{2} P^{(4,0)}+\lambda_{2} P^{(2,2)}$, where $\mu_{2} \neq 0$ and $P_{3}=\mu_{3} P^{(0,4)}+\lambda_{3} P^{(2,2)}$, where $\mu_{3} \neq 0$. We see that P_{2} and P_{3} can have at most four common zeros on the axis. We consider Q_{2}, P_{2}, and P_{3}. If the three have a common component, we see by symmetry that Q_{2} must be a factor of both P_{2} and P_{3}. Then

$$
\begin{aligned}
& P_{2}=\left(a x^{2}+b\right) Q_{2} \\
& P_{3}=\left(c y^{2}+d\right) Q_{2}
\end{aligned}
$$

Now, P_{2} and P_{3} have $(\pm \alpha, 0)$ and $(0, \pm \beta)$ as common zeros, so $b Q_{2}(0, \pm \beta)=0$ and $\mathrm{dQ}_{2}(\pm \alpha, 0)=0$. If $\mathrm{b}=0, \mathrm{P}_{2}$ has only the origin as a zero on the axis. This would not be enough zeros. Likewise if $d=0, P_{3}$ has only the origin as a zero on the axis, which is impossible. Thus, $(\pm \alpha, 0)$ and $(0, \pm \beta)$ lie on Q_{2}. But then all the nodes lie on Q_{2}, which is impossible. Thus Q_{2} cannot be a factor of both P_{2} and P_{3}. With no loss of generality, assume Q_{2} is not a
factor of P_{2}. Then Q_{2} and P_{2} can have at most 8 common zeros, and they are of the stated form.

It now remains to be shown that no proper subset of twelve points of the form $(\pm \alpha, 0),(0, \pm \beta),\left(\pm x_{1}, \pm y_{1}\right),\left(\pm x_{2}, \pm y_{2}\right)$ can be used for a cubature formula of precision seven for the regions under consideration. Let $A^{(\alpha, 0)}$ be the weight associated with the node $(\alpha, 0)$. Consider $Q^{(\alpha, 0)}=Q_{2} \cdot x \cdot(x+\alpha)$. Now, $Q^{(\alpha, 0)}$ is zero at all the nodes except $(\alpha, 0)$, so
$\int_{R} W Q^{(\alpha, 0)}=A^{(\alpha, 0)} Q^{(\alpha, 0)}(\alpha, 0)$. Similarly, we have $\int_{R} W_{Q}^{(-\alpha, 0)}=A^{(-\alpha, 0)} Q^{(-\alpha, 0)}(-\alpha, 0)$
Now we note that because of symmetry $\int_{R} w Q^{(\alpha, 0)}=\int_{R}^{R} 2 w \alpha x^{2}, \int_{R} w Q(-\alpha, 0)$
$=-\int_{R} 2 w \alpha x^{2}$, and $Q^{(\alpha, 0)}(\alpha, 0)=-Q^{(-\alpha, 0)}(-\alpha, 0)$. Thus we have $A^{(\alpha, 0)}=A^{(-\alpha, 0)}$ and since a ten point formula cannot exist $A^{(\alpha, 0)} \neq 0$. Similar consideration of $Q^{(0, \pm \beta)}=Q_{2} \cdot y \cdot(y \neq \beta)^{2}$ yields $A^{(0, \beta)}=A^{(0,-\beta)} \neq 0$.

Now consider
$Q^{\left(x_{i}, y_{i}\right)}=\left(x^{2}-x_{j}^{2}+y^{2}-y_{j}^{2}\right) \cdot x \cdot y \cdot\left(x+x_{i}\right)\left(y+y_{i}\right)$, where $j=3-i$, for $i=1,2$. It is easily seen that $Q^{\left(x_{i}, y_{i}\right)}$ is zero at all nodes except $\left(x_{i}, y_{i}\right)$. Let $A^{\left(x_{i}, y_{i}\right)}$ be the weight associated with $\left(x_{i} y_{i}\right)$, then we have $\int_{R} W^{\left(x_{i}, y_{i}\right)}=A^{\left(x_{i}, y_{i}\right)} Q^{\left(x_{i}, y_{i}\right)}\left(x_{i}, y_{i}\right)$. Then we note that

$$
Q^{\left(-x_{i}, y_{i}\right)}\left(-x_{i}, y_{i}\right)=Q^{\left(x_{i},-y_{i}\right)}\left(x_{i},-y_{i}\right)=Q^{\left(-x_{i},-y_{i}\right)}\left(-x_{i},-y_{i}\right)=Q^{\left(x_{i}, y_{i}\right)}\left(x_{i}, y_{i}\right)
$$

and that $\quad \int_{R} W Q\left(\pm x_{i}, \pm y_{i}\right)=\int_{R} w\left(x^{2}-x_{j}{ }^{2}+y^{2}-y_{j}^{2}\right) x^{2} y^{2}$, and thus $A^{\left(x_{i}, y_{i}\right)}=A^{\left(-x_{i}, y_{i}\right)}=A^{\left(x_{i},-y_{i}\right)}=A^{\left(-x_{i},-y_{i}\right)} \neq 0$. Thus we have shown that all 12 points have nonzero weights, and thus no 11 point formula can exist. This concludes the proof of the theorem.

3.0

Conclusions
We have shown that 12 is a lower bound for the number of nodes in a cubature formula of precision seven for a symmetric planar region. As noted previously the existence of a 12 point formula for an arbitrary symmetric region has not been shown. To show that the author's construction [1] does not fail it is necessary to show that certain determinants involving the moments are not zero. This problem has been quite intractable, and it seems unlikely the approach of the author can be made to work. Some of the key inequalities used in [1] for fully symmetric regions fail to hold for arbitrary symmetric regions. A considerable effort has been expended in attempting to find a region for which the construction fails, but none has been found. As before the author believes the construction cannot fail, but is unable to prove it.

1. Richard Franke, "Minimal Point Cubatures of Precision Seven for Symmetric Planar Regions", SIAM J. Numer. Anal. 10 (1973) 849-862.
2. A. H. Stroud, "Integration Formulas and Orthogonal Polynomials II", SIAM J. Numer. Anal. $7(1970)$ 271-276.
3. A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-Ha11, Englewood Cliffs, N. J., 1971.
Defense Documentation Center 12
Cameron Station
Alexandria, Virginia 22314
Library 2
Naval Postgraduate School
Monterey, California 93940
Dean of Research Administration 2
Naval Postgraduate School
Monterey, California 93940
Professor Richard Franke 5
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940
Professor Craig Comstock 1
Department of Mathematics
Naval Postgraduate School
Monterey, California 93940
Dr. Richard Lau 1
Office of Naval Research
Pasadena, California
Professor Ladis D. Kovach 1
Acting Chairman, Department of Mathematics
Naval Postgraduate School
Monterey, California 93940
Professor R. E. Barnhill 1Department of MathematicsUniversity of Utah
Salt Lake City, Utah 84112
Professor A. H. Stroud 1Department of MathematicsTexas A \& M UniversityCollege Station, Texas 77843
Chief of Naval Research 2Attn: Mathematics ProgramArlington, Virginia 22217
U162030
