
TECHNICAL MTPeWT BCCTIOW

NAVAL POSTGf»DUA*i SCHOOL

MONTEREY. CALIFORNIA 939«0

NPS55Mt75111

NAVAL POSTGRADUATE SCHOOL

Monterey, California

MANPOWER PLANNING MODELS - IV

SYNTHESIS OF CROSS-SECTIONAL AND LONGITUDINAL MODELS

by

R. C. Grinold

and

K. T. Marshall

November 1975

Approved for public release; distribution unlimited

Prepared for:
Navy Personnel R&D Center
San Diego, CA 92152

FEDDOCS
D 208.14/2:

NPS-55MT75111



NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral Isham Linder Jack R. Borsting
Superintendent Provost

This work was supported in part by the Navy Personnel R&D Center, San Diego,
Office of Naval Research and the Manpower Planning Division (MPI20) of the Marine
Corps.

Reproduction of all or part of this report is authorized.

Prepared by:



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

NPS55Mt75111
2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Manpower Planning Models - IV
Synthesis of Cross-Sectional and Longitudinal
Models

5. TYPE OF REPORT & PERIOD COVERED

Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR^*;

R. C. Grinold
K. T. Marshall

B. CONTRACT OR GRANT NUMBERf*)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93940

10. PROGRAM ELEMENT, PROJECT, TASK
AREA A WORK UNIT NUMBERS

N6822176WR60008

11. CONTROLLING OFFICE NAME AND ADDRESS

Navy Personnel R&D Center
San Diego, CA 92152

12. REPORT DATE

MovpmhPr 1 Q75
13. NUMBER OF PAGES

43
14. MONITORING AGENCY NAME A ADDRESSf/f different from Controlling Office) 15. SECURITY CLASS, (of thle report)

Unclassified

1S«. DECLASSIFl CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ebetract entered In Block 20, It different horn Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree elde If neceeeary and Identify by block number)

Manpower
Planning
Models
Flow

Markov Chains

20. ABSTRACT (Continue on reveree elde It neceeeary and Identity by block number)

This report is the fourth in a series on Manpower Planning Models. Its
main purpose is to compare the cross-sectional and longitudinal models
described in the second and third reports, point out their similarities
and differences, and present a theoretical comparison of the two types
of models.

dd ,;
F
aT73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S/N 0102-014-6601
|

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)





TABLE OF CONTENTS

Page

1. Introduction 1

2. Relations Between Cross-Sectional and Longitudinal Models 3

3. Two-Characteristic Cross-Sectional Models 9

4. Semi-Markov Flow Models 15

5. A Theoretical Comparison 26

6. Notes and Comments 40





IV. SYNTHESIS OF CROSS-SECTIONAL AND LONGITUDINAL MODELS

1. Introduction .

This chapter examines the relationships between the cross-sectional

models developed in Chapter II and the longitudinal models developed in

Chapter III. The longitudinal models allow more general flow processes to be

modelled, and any cross-sectional model is a special case of a longitudinal

model. Although the longitudinal models are more general, they normally have

much greater data requirements and thus are more difficult to implement in

cases where the model coefficients are estimated from historical data. There-

fore we seek some compromise between the basic longitudinal and cross sectional

models.

The chapter begins with a brief section demonstrating some relationships

between the two models. Sections 3 and 4 present hybrid models that use cross-

sectional data yet have some longitudinal characteristics. Section 3 describes

two characteristic models. These large cross-sectional models have a special

structure which allows for simple calculations and modest data requirements.

Section 4 considers semi-Markov models which are a straight forward extension

of the cross-sectional model. We find that the special structure of the semi-

Markov model yields some useful approximations. Finally, section 5 is devoted

to a theoretical analysis of the longitudinal model and the analysis of errors

caused by using a best approximating cross-sectional model.

In this chapter we modify our previous notational conventions. When it

simplifies the exposition we assume that the longitudinal matrices P(u) will

have index u for all u greater than or equal to zero. In previous chapters

we assumed that P(u) = for u > M. This case is still included of course,

but allowing u to range over all positive values often simplifies the limits

on summations in complicated expressions. We also use the probabilistic



interpretations of the cross-sectional and longitudinal models. With the

exception of section 5 all the arguments could be reworded in terms of fractional

flows. However, the use of the probabilistic nomenclature eases the discussion

and simplifies some of the arguments.



2. Relations Between Cross-Sectional and Longitudinal Models.

This section contains an analysis of the relations between cross-sectional

and longitudinal models. It starts with the introduction of an expanded classi-

fication scheme which connects the two models. This leads us to examine several

practical considerations in class expansion. A detailed theoretical analysis of

model comparison is given later in section 5.

In order to use the cross-sectional models described in Chapter II one must

first select a suitable manpower classification scheme. In general one selects

the simplest scheme that will answer specific interesting questions, and stay

consistent with available data. It may be helpful to expand the classification

scheme to develop a more realistic model of the flow process.

The cross-sectional data found in most organizations often contains limited

longitudinal information. For example, in a faculty promotion model such as that

described in II. 8, the data on individual faculty members probably contains,

in addition to current rank, the length of time in the organization, or length

of time in the current rank. This data often indicates how a simple classifi-

cation scheme, such as rank, can be expanded to more realistically model personnel

flows. We exploit this idea below, but first we see how a general longitudinal

model can be rearranged and thought of as a cross sectional model.

Recall from the general longitudinal model in III. 2 that the input flows

on chains 1 through K in period t are given by the K-vector g(t), and the

maximum number of periods spent in the system is M + 1. Suppose that we define

a class to be a combination of chain-type and period of entry. Then we have

K x (M + l) classes. Let the "stocks" at time t be given by the K x (M + 1)-

vector of past chain input flows [g(t), g(t-l) , . . .
,g(t-M) ] , and Q be a



K x (M + 1) square matrix with zeros except for l's on the K-th lower diagonal,

If represents a K x K zero matrix, and I a K x K identity matrix,

then for M = 3

,

Q =
10
10
10

Let f (t) be a K x (M + l)-vector whose first K elements are g(t) and the

remainder all zeros. Then

s(t + 1) = Qs(t) + f (t)

and we have a cross-sectional formulation. However, the model is simply a

reorganization of the general longitudinal model. We now look at some particular

cases of more interest.

Suppose P(0) is a given (N x k) matrix and P(u + 1) = QP(u) , where

Q is an N x N matrix. Then, for all u, P(u + 1) = Q P(0), and using

equation ( 4 ) in III. 2,

.u-lT

(1)

s(t) = P(0)g(t) +Q [ Q
U"X

P(0)g(t - u)

u=l

= Qs(t - 1) + P(0)g(t)

This is a cross-sectional model with f(t) = P(0)g(t).

A converse to this result is also true. Suppose s(t) - P(0)g(t) = Qs(t

for any values of g(t - u), u > 1. Then we must have P(u + 1) = Q i'(0).

To see this set g(t - u) = 0, except when u = k. Then s(t - k) = P(0)g(t

and s(t) = P(k)g(t - k) = Q P(0)g(t - k) . Since g(t - k) is arbitrary,

we must have P(k) = Q jP (0) . Thus we have shown the longitudinal and cross-

sectional models are identical if and only if f (t) = P(0)g(t) and P(u + 1) =

Q
U+1

P(0) for all u ;> 0.

- 1)

- k)



Problem 1 : If P(u + 1) = Q P(0), and the maximum number of periods in the

system is M + 1, what limitations does this place on the structure of Q?

Returning to the expansion of the classification scheme suppose that

we have a longitudinal model with N classes, and maximum time in system equal

to (M + 1) periods. A class is now redefined to be a combination of an original

class i and a length of completed service u. Thus there are N x (M + 1)

new classes, and the stocks in these classes are given by the vector [s.(t;u)],

for i = 1,2,...,N, and u = 0,1,2,...,M. Consider first the special case

where the number of original classes N is equal to the number of chains K.

Thus the matrices P(u) in the longitudinal model are each square.

Define q..(u) as the fraction of those in original class i with u

periods of completed service, who move to original class j in one period. Then

for each k = 1,2,...,K,

N

Pjk
(u + 1) =

.^ qji
(u)p

ik
(u)

J x=l J

or

P(u + 1) = Q(u)P(u) .

If P(u) has an inverse, then

Q(u) = P(u + l)P(u)"
1

for u = 0,1,. .,,M - 1 .

In this case, the cross-sectional model is

s(t + 1;0) = g(t + 1) ,

s(t + 1; u + 1) = Q(u)s(t;u) u = 0,1, ...,M - 1 .

Example 1 :

In the one class one chain model (K = N = 1) we have q(u) = p(u + l)/p(u)

If p(0) = 1, and p(u) is nonincreasing, then < q(u) < 1 . The numbers



q(u) are commonly called continuation rates, since q(u) gives the fraction

of people who continue in the system for at least (u + 1) periods, given that

they have been in the system u periods. u

More generally, when N ^ K, we can choose Q(u) so that Q(u)P(u)

approximates P(u+ 1). This can be accomplished if, for each j = 1,2,...,N,

we solve the quadratic minimization problem:

5 2
Minimize l v

k=l
k

where

N
V
k

=

±l±
qji

(u)p
ik

(u) " Pjk
(u + 1} '

The matrix Q(u) which solves this problem is given by

Q(u) = P(u + l)P(u)
+

,

where P(u) is the generalized inverse of P(u). However, there is no guarante

Q(u) will be nonnegative with column sums less than one.

We close this section with a practical discussion of how a model with

longitudinal features can be modified to seem more like a cross-sectional model.

It seems best to establish this point by example.

Example 2 ; Consider the three class cross-sectional faculty model in example

1 of II. 3. Given an individual enters class 1, the individual can move eventuall

to class or 2. The expected duration in class 1 is ; . If we ask for

the expected duration conditioned on moving to class (is not given tenure)

the answer is still = . The same answer will be obtained if we ask for the

expected lifetime in class 1 given eventual promotion to class 2 (is given tenure

The Markov model treats a visit to class 1 as a two-stage process, as is illustra

in Figure IV. 1.



1 - q11

Figure IV.

1

. Illustration of Markov Model in Example 2 .

At the first node, the individual either stays in class 1 or not and the

expected number of periods at class 1 is independent of the reclassification process,

Suppose we know that the lifetimes of individuals in class 1 are dependent

on their eventual status. Let T~ be the expected lifetime in class 1 given an

eventual move to class 0, and T_ be the expected lifetime in class 1 given an

eventual move to class 2. We can construct a four class cross-sectional model that

has these characteristics:

New Class

1. Nontenure who leave

2. Nontenure who move to tenure

3

.

Tenure 2

.

4. Retired 3.

Old Class

1. Nontenure

Tenure

Retired

The new system will be distinguished by a *»*

s(t) = Qs(t - 1) + f (t)

We assume that



w.

and

Q -

f
l
(t> =

tt» '1f,(t) ,

1
H21

l21
£
2
Ct

> " »1+,21
-!
f,(t) ,

T -1x

T

T -1
2

A

T
2

z=-

l22 l23

'23

This expanded model makes the distinction we desire in time spent in nontenure,

and it also tells us the fraction of professors in nontenure that eventually acquire

tenure, namely s
?
(t)/(s,(t) + §„(t)).



3. Two-Characteristic Cross-Sectional Models .

This section examines cross-sectional models with two dimensional state spaces

using the probabilistic interpretation presented in III. 9. Assumptions on per-

missible flows between states lead to a special structure, and this in turn allows

simple calculation of quantities such as projected inventories and lifetime in each

classification.

The key to the special structure is the organization of the classification

scheme. The classes (or states) are defined in terms of two characteristics,

(i,j), where the first characteristic (henceforth FC) , i, runs over the indices

1 through N. The range of the second characteristic (henceforth SC) , j, depends

on the FC. Let S be the set of all possible classes, and 5(i) = {j|(i,j)eS}

be the set of possible SC's given that the FC is i. Let \S(±)
|

be the

number of elements in the set S(±).

At time t an individual's class can be described by a random variable X(t).

The cross-sectional assumption assures us that knowledge of X(t) is sufficient

for prediction of X(t + 1), X(t + 2), etc., without knowledge of X(t - 1),

X(t - 2), etc. To obtain the special structure of the two characteristic model

we impose limitations of the allowable transitions between classes. If the current

FC is i, the only allowable moves in one period are

(i) to classes with FC still equal to i,

or (ii) to classes with FC equal to i + 1.

Example 3 ; Let the FC represent length of time in system and SC the grade of

an individual. Consider the four grade student example with grades j = 1,2,3,4,

for freshman, sophomore, junior and senior respectively. Clearly in each time

period the first characteristic increases by 1. Let the maximum time in the system

be 5 years (1 year = 1 time period) , and let the sets of classes be
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i S(±)

1 {1}

2 {1,2}

3 {2,3}

4 {3,4}

5 {4,5}

This is an example of the 'LOS/GRADE' model. Note that N = 5, and \s\ = 9.

Problem 2 : List all the chains which would be present if example 3 were re-formulated

as a longitudinal model.

Since the two-characteristic model is of the cross-sectional type it must

be defined by a transition matrix Q, where Q is square with each dimension

equal to |5|. We consider the two types of allowable flow separately.

(i) No change in FC i.

Define for each j and m in 5(i),

qmj
(i) = P[X(t + 1) = (i,m)|x(t) = (i,j)] ,

and let Q(i) be the |S(i)| by |S(i)| matrix with (m,j)-th element equal to

Vi (1) -

I

(ii) Change from FC i to FC (i + 1)

.

Define for each m in S(± + 1) and each j in 5(i)

,

P . (i) = P[X(t + 1) = (i + l,m)|X(t) = (i,j)] ,

and let P(i) be the |S(i + 1) |
x |S(i) | matrix with (m,j)-th element equal

to p (1).
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The Q matrix is given by (for N = 4)

(2) Q =

Q(D

PCD Q(2)

P(2) Q(3)

P(3) Q(4)

where the 0' s are matrices with all elements equal to zero.

Example A : Continuation of example 3.

Since the LOS must increase by 1 each year all the Q(i) matrices are zero

matrices. Thus Q has the structure

Q =

X

X

X X

X

X X

X

X X

L°

where x indicates a (possibly) non-zero element. The partitioning is included

to help the reader identify the P(i) matrices.

Example 5 : Re-f ormulation of example 3.

Suppose that the FC represents the grade of an individual in a system where

no demotions can occur and in which a person cannot advance more than one grade

per year. Let SC represent the time spent in the particular grade. This is

called the 'GRADE/TIME-IN-GRADE' model. Let the grades be 1) freshman, 2) sophomore,
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3) junior and 4) senior, and let the maximum time in each grade be 2 years

we have

i 5(1)

1 {1,2}

2 {1,2}

3 {1,2}

4 {1,2}

Thus

Note that N = 4 and \S\ = 8. Now the Q matrix has the structure,

Q =

X

X X

X

X X

X

X X

X

where again x indicates a (possibly) non-zero element.

Example 6 : Re-formulation of example 3.

Suppose that the FC represents the grade of an individual (as in example 5)

in a system with no demotions and no double or multiple promotions per period.

Let the SC represent the time in the system, or length of service (LOS). This

is called the 'GRADE/LOS' model. Let the grades be 1) freshman, 2) sophomore,

3) junior and 4) senior, and let the maximum time in the system be 5 years, with



13

i S(±)

1 {1,2}

2 {2,3}

3 {3,4}

4 {4,5}

Note that N = 4 and \s\ = 8. Now the Q matrix has the structure

Q =

o o o o'o o;o o

x
i

00 OiO

0,0 00
I x 10— i— 1— t—
i

x 0,0

i

l x

All the above examples display the special structure of Q which is depicted

in (2). Recall from Chapter II that many applications of the cross-sectional

model require calculation of the inverse (I-Q) which we called D. Although

the Q matrix in the two-characteristic model is often quite large, it is easy

to calculate D in terms of the inverses of the smaller submatrices. Define

D(i) = (I-Q(i))"
1

for each FC i. Then (for the case N = 4),

D =

D(l)

D(2)P(1)D(1) D(2)

D(3)P(2)D(2)P(1)D(1) D(3)P(2)D(2) D(3)

D(4)P(3)D(3)P(2)D(2)P(1)D(1) D(4)P(3)D(3)P(2)D(2) D(4)P(3)D(3) D(4)
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Thus D is completely determined by the matrices D(i), i = 1,...,N, and P(i),

i = 1,2,. ..,N - 1.

Computations in forecasting are considerably reduced by taking advantage of the

special structure. Let s.(t) be the vector of stocks at time t with FC i.

Thus s.(t) is a \S(±)
|

vector. Then the stocks at (t + 1) are given by

Sl (t + 1) = Q(i)s
±
(t) + PCi-Ds^Ct) + f

Qi
(t + 1), i = 2,...N ,

where f. (t) is the vector of input flows in period t with FC i. The total

stocks at (t + 1) with FC i is found by summing the elements of s, (t + 1)

.

Problem 3 : Let b . (i) be the probability that, given the current state is

(i,j), the state entered on leaving S(i) is (i + l,m). Let B(i) = [b . (i)].

Show that B(i) = P(i)D(i).

Problem 4 : Let b . (k;i) be the probability that, given the current state is
mj

(i,j), the state entered when 5(k) is entered is (k,m). Let B(k;i) = [b . (k;i)],

an |S(k)| by |<S(i)| matrix. Show that B(i) = B(i + l;i), and that for k > i+1

B(k;i) = B(k - l)B(k-2) ... B(i).
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4. Semi-Markov Flow Models .

A simple longitudinal model that retains some of a cross-sectional model's

useful properties is the semi-Markov model. This section presents the general

ideas behind such a model and indicates how some useful quantities can be calculated

or approximated without completely specifying the flow process. We use terminology

from probability theory to present the model, but the reader should recall that it

is not necessary to view the model in a probabilistic sense. Although it can be

viewed as a deterministic flow process we find the exposition easier and smoother

using Markov chain terminology.

Consider a system with N classes of manpower. When an individual enters

class i we say he commences a visit to class i. Let q (u) be the probability

that a visit to class i lasts u periods and finishes with transition to state

j. As in earlier chapters class is interpreted as outside the system,

and since a visit to any class is assumed to be at least 1 period in length,

qj
.(0) = 0.

The probabilities q..(u), i = 1,2,. ..,N, j = 0,1,2, ...» ,N, u = 1,2,...,

form the basic data of the model, and from these the following interesting

quantities can be calculated:

(i) the probability that class j will follow class i,

«ji
=

I qji
(u)

J u=l J

(ii) the expected length of a visit to class i, given j is the next

class visited,

yji
=

I uq
ji

(u)/q
jiJ u=l J J

(iii) the expected length of a visit to class i,

N

M
i

=

,io "J 1*! 1
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(iv) the probability of spending more than u periods in class i,

N

N (U) =
I I q ii

(v)
'

v=u+l j=0 J1

(v) the variance in the length of a visit to class i, given that the

next class visited is j

,

00

°ji
=

Ji
(u - V )2Vu)Al

3i •

(vi) the variance in the length of a visit to class i,

°° N
2

a
,.

=
I I (u - y . ) q . . (u) .

U=l J=0

Problem 5: Show that

P, = I h Cu) ,

u=0
and

CO

o
±
+ \i

±
- \i

±
= 2 I uh

±
(u) .

u=0

Example 7 : Consider a student enrollment model with the following 5 states:

1. Freshman

2

.

Sophomore

3

.

Juniors

4. Seniors

5. Degree winners (graduates).

Assume that the only transitions possible are from i to either (i +1) or 0,

and that no state can be held for more than three periods. The basic data are given

by (blanks indicate zeros)

:
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q01
(u)

q21
(u)

q02
(u)

q32
(u)

q03
(u)

q43
(u)

q04
(u)

q54
(u )

q05
(u)

0.15

0.65

0.10

0.70

0.15

0.75

0.05

0.90

1.00

u

2

0.10

0.10

0.05

0.10

0.05

0.05

0.05

0.01

0.04

By using (i) it is easy to calculate the 6^5 matrix of probabilities

[q. .] . These are

Notice that the elements in each column sum to 1.00,
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By using (ii) the expected values [y.,] are

\ i
1 2 3 4 5

1.40 1.44 1.25 1.00 1.00

1

2 1.13

3 1.21

4 1.06

5 1.05

From this table we see that, given a student will become a junior, the

expected time he spends as a sophomore is 1.21 periods. Given he is to leave

after being a sophomore, the expected time spent as a sophomore is 1.44 periods.

2
By using (v) the variances [o . ] are

J \ 1 2 3 4 5

0.24 0.37 0.19

1

2 0.12

3 0.26

4 0.06

5 0.05
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The semi-Markov model can be viewed as a cross-sectional model with a two-

characteristic state space (the reader should verify that the converse is not

true). Suppose that a new state is defined to be a combination of an original

state i and the number of periods spent in that state, u. Then an individual

in state (i,u) moves next either to state (j,0), with probability

qii^
U + 1 )/h£^u )» or to state (i,u + 1) (remains in the same "original state")

with probability h (u + l)/h.(u).

Example 8; Continuation of example 7.

In this student example there are 10 states with a cross-sectional model

Q matrix given by

From

To (1,0) (1,1) (2,0) (2,1) (2,2) (3,0) (3,1) (4,0) (4,1) (5,0)

Problem 6 : In terms of the GRADE/TIME-IN-GRADE model described in Section 3,

partition the matrix in example 8 to find the Q(i) and P(i) matrices, and

find the inverse matrix D = (I-Q)
-1

Interpret the result.
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The semi-Markov model can also be viewed as a longitudinal model, but in

order to do this we must identify the chains. Chain k in the longitudinal

interpretation corresponds to state k in the semi-Markov formulation. An

individual is appointed in chain k if and only if he enters the system in

state k. Recall from III. 5 that P- k (u ) is the probability that an individual

who enters on chain k in some period t will be in class i at time t + u.

By using conditional probability arguments, when k is different from i

we obtain from the semi-Markov assumptions,

Pik
(u) =0 if u = ,

u N
= I I P

±i
(u-v)q

1k
(v) if u * 1 .

v=l j=l J J

For the case i = k we have

pii
(u) " X if u = ,

u N
= h (u) +11 P-,(u-v)q (v) , if u £ 1 .

v=l j=l
13 J1

Now let H(u) be an N * N matrix with off-diagonal elements equal to zero,

and i-th diagonal element equal to h.(u).

Also let P(u) and Q(u) be N * N matrices with (j,i)-th elements equal

to p..(u) and q . . (u) respectively. Then the above equations can be written

in the matrix form

u

(3) P(u) = H(u) + I P(u - v)Q(v), u > .

v=0

Since Q(u) contains the basic data of the semi-Markov model, and since H(u)

is calculated from this data using (iv) , the longitudinal model matrices P(u)

are completely determined by solving (3)

.
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Example 9 : Continuation of example 8.

For the student example the values of p.,(u) for i = 1,2,3,4,5, and

u = 0,1, 2,..., 9 are given by (to 2 significant figures)

\. 1

i

ii 12345678 9

1 0.20

2 0.65 0.23 0.05 0.01

3 0.46 0.18 0.05 0.01

4 0.34 0.14 0.02

5 0.31 0.13 0.04 0.01

Blank entries represent zero's or numbers less than .005.

Problem 7 : Based on example 9 above.

a) Given that an individual enters as a freshman, what is the probability

of graduation.

b) Given that the entering freshman eventually graduates, what are the

mean and variance of the number of years spent as a student?

c) Given that the entering freshman drops out, what is the mean and variance

of the number of years spent as a student?

If all the basic data (the q (u)'s) are known, equation (3) shows that

the longitudinal model matrices P(u) can be calculated and all the results

of Chapter III follow. Often the detailed transition probabilities are not known,

2
and only estimates of the means and variances y and a. can be obtained,

together with the q..'s. Even with this limited data it is often possible to

obtain approximate results for the equilibrium behavior of the system.
OO OO 00

Recall that L - £ P(u), and let H = £ H(u), and Q = £ Q(u). The
u=0 u=0 u=0

equations in (3) can be written out as
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P(0) = H(0)

P(l) = H(l) + P(0)Q(1)

P(2) = H(2) + P(1)Q(1) + P(0)Q(2)

P(3) = H(3) + P(2)Q(1) + P(1)Q(2) + P(0)Q(3)

•

etc .

Summing these equations and using the above definitions we get

L = H + LQ ,

or

L = H(I-Q)"
1

.

Now H is the sum of diagonal matrices and is itself a diagonal matrix with

(i,i)-th element equal to y (see problem 5). Let D = (I-Q) . Then d.,

is the expected number of visits to state i given that the system was entered

in state k. Thus

*ik
= y

i
d
ik '

where I is the expected number of periods spent in class i, given the system

was entered on chain k. If a stationary vector g gives the chain inflows in

each period the steady state stocks will be

s = Lg .

Example 10 : Continuation of example 9.

For the data given in the student example,
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D =

1.00

0.75 1.00

0.63 0.84 1.00

0.50 0.67 0.80 1.00

0.48 .64 0.76 0.95 1.00

and

H =

1.20

1.25

1.10

1.05

1.20

0.94 1.25

0.69 0.92 1.10

0.53 0.71 0.84 1.05

0.48 0.64 0.76 0.95

1.00

L =

1.00

Problem 8 : Based on example 10.

Assume that you enter this student group as a junior,

a) how many periods do you expect to attend?

b) what is the probability that you will graduate?

Problem 9 : Show that, given you enter class k, the probability of ever reaching

class i is d._ /d, , .

lk kk

To continue with the steady state approximations consider next the case where

input flows are growing geometrically at rate (9-1). Thus g(t) = 8 g and from

equation 7 in III. 4 the stocks in period t (t large) are given by
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where

Now let 6 = 6, and define

and

s(t) = 6
t
L(e)g ,

L(9) = I
9"UP(u) .

u=0

P(S) - I 6
U
P(u) ,

u=0
00

ECS) - I 6
U
H(u) ,

u-0
oo

Q(«) - I <5

U
Q(u) •

u=0

By multiplying the u-th matrix equation in (3) by 6 and summing over u we get

P(6) = H(6) + P(6)Q(6) .

Thus P(5) = L(6)

= H(5)(I - Q(6))
_1

.

For <5 close to 1 the basic approximation formulas (Appendix 1) can be used

for the elements of H(<$) and Q(<S). From these

2

and

where

Vw "V i±a +
2 "ft>

2

h
±
(6) = [1 - 6

y±
(l + | a^)]/(l - 6) ,

a = log 6, 9 = 1/6 .

Example 11 : Continuation of example 10.

Let 6 = 1.03, so that 6 = 0.97. Then
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D(6) =

1.00

0.72 1.00

0.59 0.81 1.00

0.45 0.63 0.77 1.00

0.42 0.58 0.71 0.92 1.00

and

H(6) =

1.19

P(6) =

1.24

1.10

1.05

1.19

0.90 1.24

0.64 0.88 1.10

0.48 0.66 0.81 1.05

0.42 0.58 0.71 0.92

1.00

1.00

The actual values of P(6) are very close to these approximations.
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5. A Theoretical Comparison .

The stochastic interpretations of the longitudinal and cross-sectional

models developed in III. 5 and II. 1 are used in this section in a theoretical

comparison of the two models. Some data on student enrollment is used to

illustrate the results.

Throughout this section we assume the longitudinal model is a valid descrip-

tion of the system's law of motion. Our intention is to construct a good cross-

sectional approximation to that model and then examine the quality of the

approximation. The actual approximation is time dependent and also depends on

past inflows. Moreover, it depends on data that is usually not available in

a longitudinal model. Nevertheless, the approximation does help us to describe

the rational limits of approximating a longitudinal model with a cross-sectional

model

.

Recall that S(t) is an N-dimensional random vector, where S.(t) is a random

variable which gives the stocks in class i at time t. The expected stocks

in each class are given by the elements of s(t) = E[S(t)]. For a (possibly

nonstationary) cross-sectional model the conditional expected value of ' S(t + 1)

given both the realized values of stocks S(t) at time t and the (expected)

inflows fn (t + 1) in period t + 1, is easily derived from equation (2) in

II. 2. Let the superscript c represent the "cross-sectional model." Then

(4) E
C
[S(t + l)|s(t) = x] = Q(t)x + f

Q
(t + 1) .

Note that we use Q(t) to indicate that the transition matrix can be non-stationary

from period to period.

The basic longitudinal model gives the unconditional expected values of

S(t + 1). From equation (4) in III. 2.
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(5) E[S(t + 1)J = I P(u)gCt + 1 - u) .

u=0

To compare the longitudinal and cross-sectional models we must derive an

expression for the conditional expectation E [S(t + l)[S(t) = x] , where the

superscript I denotes "longitudinal model." In order to determine this expression

some assumptions must be made on individual behavior and some results of probability

theory exploited.

The longitudinal model stipulates that each individual in the system is subject

to a stochastic law of motion that depends only on the individual 1^ chain and

elapsed time in the system. In particular, the movement of any given individual

is independent of the movement of others.

With each individual who enters the system we associate a counting random

variable. Let

Z •'[(t - u,t) = 1 if individual j, who entered in chain k in period t - u
i,k

is in class i at time t

,

= otherwise.

Recall that g, (u) is the total number who enter in chain k in period u. Then
K.

the stock in class i at time t is the random variable

K - Zk ^-"\
s (^ * U J
CO =111 ^ (t - u,t) .

k=l u=0 j=l
X,K

The central limit theorem of probability theory states that under our assump-

tions S-(t) has approximately a normal distribution. Also the elements of the

N-vector S(t) are jointly normally distributed, and the elements of the 2N-vector

(S(t),S(t +1)) are also jointly normally distributed.

Now let b = Cov[S. (t) ,S. (t)] , where Cov indicates covariance. Also
ij i J

let c . = Cov[S,(t),S.(t + 1)]. The matrices B and C, with (i,j)-th elements
ij 3 *

equal to b and cJJ respectively, are N * N covariance matrices. From the theory of

ij ij

multivariate normal distributions we can now write, down the expression for the
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conditional expectation, namely,

(7) E*[S(t+l)|s(t)=x] = C(t)B
-1

(t)x + P(.0)g(t+1) + [s(t+l)-(C(t)B~
1
(t)s(t)+P(0)g(t+l))].

This complicated expression reduces to

E
l
[S(t + l)|s(t) = x] = s(t + 1) + C(t)B

-1
(t)[x - s(t)] ,

so that when x = s(t), the forecast reduces to s(t + 1).

Before we can compare the forecasts obtained in (4) and (7) it is necessary

to analyse the covariance matrices B(t) and C(t). First consider B(t). Using

the expression in (6) with the definition of covariance one can show that

- K
b
ii

(t) = S
i
Ct) "" E I Pik (u)gk

(t " U)
'

u=0 k=l

K
b
ii

(t) = " ^ E p ik
(u)p

ik
(u)g

k
(t " u)

'
for i * j *

J u=0 k=l J

Now let M(t) be an N x N matrix with off-diagonal elements equal to and

m (t) = s.(t). Let G(t - u) be a similar K x K matrix but with g . (t - u) =

g.(t - u). Then the matrix B(t) can be written as

CD

(8) B(t) = M(t) -
I P(u)G(t - u)P' (u) .

u=0

Recall that the prime indicates matrix transposition.

We now turn to analyzing the matrix C(t). Since c..(t) is a covariance

term between stocks in class i at time t and stocks in class j at t + 1

it is necessary to know the joint distribution of the class of an individual at

both t and t + 1.

Define

^ / \ « -l f In class i at t and entered chain k in 1

f..(u) = Prob I. , . ,

—-—
. , . . \ .

13 [in class 3 at t + 1 period t + 1 - u
J

Later in this section these joint probabilities are discussed in detail and related

to results in III. 10. Continuing with our analysis of C(t) it follows from
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this definition of f..(u) that, if f..(t + 1) is the expected flow from

class i to class j in period t + 1,

u=0 k=l J

Using (6) and the definition of covariance it can be shown that

00

(9) C(t) = F'(t + 1) -
I P (u + l)G(t - u)P(u)

,

u=0

where F(t+1) is the N x N matrix of expected flows [f (t + 1) ] . Next, recall

that q..(t) is the fraction of those individuals in class i at time t who

move to class j at t + 1. Thus

(10) q (t) = f
±j

(t + l)/s.(t) ,

or in matrix form,

(10) Q(t) = F'(t + l)M
_1

(t) .

Now clearly the stocks in class j at time t + 1 are given by the sum

of all flows into class j in period t + 1. Thus

N
s (t + 1) =

I f (t + 1) + f (t + 1) .

J i=1 J J

Using (10) and substituting for the input chain flows,

N K

s,(t + l)= I q (t)s (t) + I p (0)g
k
(t + 1) .

J i=l J k=l

In matrix form this becomes

(11) s(t + 1) = Q(t)s(t) + P(0)g(t + 1) .
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Equation (11) could have been obtained from (4) directly, but by fallacious

reasoning. Recall that our assumption is that the longitudinal model truly

describes movement through the system, whereas (4) is simply a cross-sectional

representation which approximates the true model.

By subtracting (7) from (4) and substituting (11) one finds that

(12) E°[s(t+l)|s(t)=x] - E
£ [S(t+l)|s(t)=x] = [C(t)B"

1
(t)-Q(t)](s(t)-x) .

Equation (12) gives the one-period forecasting error caused by using the

cross-section model in place of the longitudinal model. By taking expec-

tations on S(t) we see that "on the average" the expected error is zero in every

class.

In order to say more about the size of the discrepancy between the two models

it is necessary to know something about the magnitude of the entries in the matrix

[C(t)B"
1
(t) - Q(t)]. Let

00

D(t) = I P'(u + l)G(t - u)P(u)
u=0

and

H(t) = I P(u)G(t - u)P'(u) .

u=0

Then from (8) and (9) we have

B(t) - M(t) - H(t)

and

C(t) = F' (t + 1) - D(t) .

From these equations together with (10) it can be shown that

(13) C(t)B
_1

(t) - Q(t) = [Q(t)H(t) - D(t)]B
_1

(t) .
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Problem 10 :

a) Verify equation (13)

.

B) Show that if P(u + 1) = Q(t)P(u) for all u > 0, then C(t)B
-1

(t) -

Q(t) = and the two models coincide.

To investigate (13) further we consider the one class, one chain model with

constant input. In this case all matrices and vectors reduce to scalars,

g(t) = g for all t, and P(u) = p(u). Moreover

oo oo

H = g I p(u) , s = M = g I p(u) ,

u=0 u=0

oo oo

F = g I p(u) and D = g £ p(u)p(u + 1) .

u=l u=0

00

Let A =
I p(u), the expected lifetime of an individual in the system. Then

u=0

(14) QH-D-f I p(u)
2

I p(u + 1) -
I p(u + l)p(u) J p(u) .

[_u>0 u>0 u>0 u>0 J

The term in parenthesis in (14) is

I p(u)
2
(A - 1) - A I p(u)p(u + 1) = X I A(u + l)p(u) -

I p(u)
2

,

u>0 u>0 u>0 u>0

where A(u + 1) = p(u) - p(u + 1).

Interpreting p(u) as the tail distribution of a non-negative random variable,

say A for "lifetime," one can show that

(15) I p(u)[l - p(u)] =
I A(u) I p(v) ,

u>0 u^O v>u

and

(16) I [A(u) + A(u + l)]p(u) = 1 .

u>0

Using (15) and (16) in (14) gives

(17) QH - D = f I A(u)
A
u>0

I p(v) - (X)p(

v>u
']
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Let us assume now that the expected remaining lifetime of a person whose

time in the system exceeds u time periods is no more than the expected lifetime

A of a new input. We say that people have "mean residual life" bounded above

by the original mean life, and say that A has MRLA if

I Jgf < A, all u = 0,1,2,... for which p(u) > .

v>u p

Note that equality holds in this equation for the geometric distribution. Table

IV. 1 shows that in a particular case of students attending the University of

California at Berkeley, (see Table 11.15 also) this assumption is valid.

Under the MELA assumption, from (17) we see that

QH - D < .

In the stationary case [QH - D]B [s - x] is independent of t.

Since B is nonnegative, we have the following conclusions:

If we assume A has MRLA,

a) If x < s
}
the cross-sectional model under-estimates the value .of

E
£
[S(t + l)|s(t) = x],

b) If x > s, the cross-sectional model over-estimates the value of

E
£
[S(t + 1)| SCO = x].

Since S(t) has a marginal normal distribution we can say more about the

expected error in the one dimensional case. The error is a normal random variable

2 -1
with zero mean, and variance equal to (QH-D) B (where these are all scalars)

.

Thus we can say that with probability about .95 the error will lie in the interval

—1/2 —1/2
(-2B

|
QH-D |, + 2B

|
QH-D

|
) . The length of this interval increases as the

square root of g. However, s the expected value of S(t) increases as g.

Thus the interval length divided by s, or the fractional error range, decreases
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Lifetime
(semesters) Pr[A>u] = p(u)

I P(u) I p(u)/p(v)
u v>u v>u

1.000 6.959 6.96
1 0.972 5.959 6.14
2 0.905 4.987 5.52
3 0.756 4.082 5.42
4 0.684 3.326 4.86
5 0.593 2.642 4.47
6 0.562 2.049 3.65
7 0.524 1.487 2.84
8 0.498 .936 1.88
9 0.199 .465 2.34

10 0.130 .266 2.05
11 0.050 .136 2.72
12 0.036 .086 2.39
13 0.017 .050 2.94
14 0.015 .033 2.20
15 0.011 .018 1.64
16 0.007 .007 1.00

Table IV. 1. Mean Residual Life of Freshman Students Entering
U.C. Berkeley in Fall Semester, 1955.

as the square root of g. So as g increases, and hence s increases, the width

of. the confidence interval of error increases much more slowly. To illustrate

this we use the lifetime distribution from Table IV. 1, and for various cohort

sizes we show how the interval length changes. The results are given in Table

IV. 2. It is clear from this table that even though the lifetime distribution

differs considerably from a Markovian (geometric) distribution with the same

mean, the confidence intervals on the forecasting error are extremely small

relative to the expected number in the system. For comparison p(u) is drawn

in Figure IV. 1 together with a geometric distribution.
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1955 UCB students (2126)

Expected Lifetime X = 3.5 years

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Semesters (u)

Figure IV. 1, Comparison of p(u) for UCB Students with a Geometric Distribution,
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Cohort Size

g
E[S] = s

Confidence Interval
for Forecast error

1000 6,959 (-7,7)

2000 13,918 (-10,10)

3000 20,877 (-12,12)

4000 27,836 (-14,14)

Table IV. 2. 95% Confidence Intervals for Various
Cohort Sizes.

Determination of properties of the matrix in (13) for the multi-class, multi-

chain case is much more difficult than in the one-class, one-chain case. A 4-class,

4-chain numerical example is given which uses the student enrollment data from

Table III. 3, and assuming constant cohort size input.

The forecasting error given by (12) has a multivariate normal distribution

with mean and covariance matrix (QH-D) (B )
' (QH-D) ' . Using the data given

in Table III. 3 for freshmen, sophomores, junior and seniors at the University

of California, Berkeley 1955-1969, calculations were made assuming constant

cohort sizes of 3000 freshmen, 700 sophomores, 1300 juniors and 150 seniors entering

each fall semester. These figures are approximately what the Berkeley campus had

been experiencing in its fall new admissions.

Table IV. 3 gives the matrix B, whose (j,i) element is the covariance of

S.(t) and S.(t) for some t. Also included is s, the vector of expected

stocks in each class.
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^\Class i

N. Freshmen Sophomores Juniors Seniors
Class j ^n.

Freshmen 673 -454 -30 -10

Sophomores -454 1453 -380 -43

Juniors -30 -380 2137 -535

Seniors -10 -43 -535 2216

Expected
Values

3868 3324 4687 3227

Table IV. 3. Covariance Matrix B for the 4-class example

The variance of the number in each class increases as the class increases,

and all classes are negatively correlated.

Table IV. 4 gives the matrix (QH-F)b" (QH-F)
'

, which is the covariance

matrix of the forecasting error. It can be seen that these numbers are very

small compared to the size of the predicted values, as was found in the single

state case.

^\Class i
^\ Freshmen Sophomores Juniors Seniors

Class j ^^

Freshmen 6.7 2.2 -22.4 -5.4

Sophomores 2.2 1.0 -8.5 -2.7

Juniors -22.4 -8.5 82.2 29.5

Seniors -5.4 -2.7 29.5 41.8

Table IV.

4

Covariance Matrix of Forecasting Error.
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The matrix (QH-D)B is given in Table IV. 5,

^Class i

Class J\
Freshmen Sophomores Juniors Seniors

Freshmen .068 .013 .002 .001

Sophomores -.041 -.003 .003 .001

Juniors .290 -.062 -.030 .029

Seniors .040 -.046 -.125 .032

Table IV. 5. (QH-D) B
-1

for the 4-Class Example.

This is an example where (QH-D) is neither > nor £ 0, unlike the

one-class, one-chain model.

Even though movement through the system is far from that represented by a

stationary cross-section model (i.e., P(u) 4 Q for some Q) , when constant cohort

sizes are used the cross-sectional model gives essentially the same prediction as

the more complex cross-sectional model. However, the longitudinal model is primarily

formulated for forecasting under conditions of controlled input. This is often the

situation when policy changes are implemented, and under such conditions the sizes

of cohorts is successive time periods can and do vary considerably. For example,

the freshmen cohorts in the fall quarters at Berkeley in the period 1966-1969 are

shown in Table IV. 6. This was a period when total campus enrollment was controlled,

and new students entered only to fill available room.
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Date Cohort Size

Fall 1966 3,053

Fall 1967 3,303

Fall 1968 2,239

Fall 1969 1,883

Table IV.

6

. Freshmen Cohort Sizes at U.C. Berkeley

One can see that, since F(t) and s(t) are both functions of previous

cohort sizes (up to period t) , that the cross-sectional transition probabilities

will change with time, and that estimating them from cross-sectional data in two

consecutive years will not account for gross changes in cohort sizes.

We end this section with a brief discussion of the joint probabilities f..(u)

and their connection with the flow parameters p., (u) in III. 10 (longitudinal

conservation)

.

First it is easy to see that if u = 0, then f
n<

(0) = p., (0), and for i ^ 0,

f..(0) = 0. These relations follow directly from the definitions. Next, since any

k
individual who leaves the system cannot return, for j and u 2. 1 f

n
.(u) = 0.

Also, by looking at the flows into some state j in period u it follows that

N

P ik
(u) =

^
f
ii

(u)
JK i=0 1J

Similarly, by looking at flows out of some state i in period (u + 1) ,

pik
(u

> !
f
ij

<u + «

•

J=0
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Thus the {p., (u) } are the marginals of the joint probabilities (f,.(u)}. In

many applications the (f..(u)} are hard to measure and it would be advantageous

if they could be estimated from the (p., Cu)} which are relatively easy to measure.

In general the marginals do not determine the joint distributions.

Problem 11 ; The longitudinal model would have serial independence if f (u + 1) =

p., (u)p., (u + 1). Since people who leave cannot return, f (u) = for all u.

Use this to prove that we cannot have serial independence in the longitudinal model,
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6. Notes and Comments .

The material in section 3 is based on Hayne [1974] and Hayne and Marshall [1974]

This type of model makes it possible to work with a highly disaggregated manpower

classification scheme and still have some control over the interpretation and mani-

pulation of the model.

The semi-Markov model of section 4 is new. The reader may consult Ross [1970]

,

and references cited there, for a decription of semi-Markov models. Austin [1971]

and Bartholomew [1973] discuss semi-Markov models. The treatment in section 4 is

quite different. We stress approximations that can be obtained from the transition

probabilities, and the first two moments of the length of a visit.

Section 5 is based on Marshall [1973]. It reveals the underlying structure

of the longitudinal models and reinforces the theoretical notions derived in section

10 of chapter III.
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