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II. CROSS-SECTIONAL MODELS

1. Introduction .

The general flow model discussed in Report No. I of this series is

useful for demonstrating the basic concepts of flow conservation and

equilibrium. However, it has very little structure and as a result has a

very large number of variables (the flows f . (t)). Without additional

constraints it admits many unrealistic flow patterns.

In this report we present some models which essentially describe

how a manpower system changes from one set of stock levels {s.(t)} at

an accounting point t to another set (s.(t+l)} at the point t + 1.

The common feature of all these models is that knowledge of historic

personnel movement prior to t is not required by the model. The only

data requirements will be the cross-sectional structure of the system at

a given time; hence the name "cross-sectional models." A strong point in

favor of such models is that most organizations keep current files on

personnel such that determining the structure of the organization at say

month-end, or year end, is easy. In almost all cases with which the

authors are familiar, the information system in an organization does not

allow for easy tracking of historical data over time.

Section 2 presents the basic fractional flow assumptions. Sections 3-7

develop the theory and properties of cross-sectional models, and section 8

presents an application to University Faculty Planning. Section 9 gives a

probabilistic interpretation of the fractional flow assumptions, and sections

10 and 11 give applications using these probabilistic interpretations; section

10 presents a university faculty retirement system, and section 11 some models



for student enrollment forecasting. Sections 12-14 discuss more advanced

theoretical concepts, and the report ends with notes and comments in

section 15.



2. Fractional Flow Assumptions .

In the fractional flow model we assume that the fraction of the

stock in class i at time (t-1) that flows to class j at time t

is a fixed number q.., independent of t and s>(t-l). Thus

(1) f
±j

(t) = q^s.Ct-1)

for all t and for i = 1,2,...,N

j = 0,1,2,.. .,N.

This assumption is often difficult to justify and is only an approxi-

mation in a great many cases. The user will have to balance the shortcomings

of the assumption against the simplicity and utility of the resulting model

for any specific application. In the examples we present in this chapter,

we shall discuss the validity and shortcomings of the fractional flow

assumption.

The flows and stocks are nonnegative, thus q.. > 0. Also, if we

•f-

sum (1) over the index j we obtain from (1.1)

s
i
(t -1)= ,tVt)=

jn "ji
3!^-"'

3=0 J 3=0 J

N
which implies J q. . = 1. The fractions q. . partition the stock of

j=0 JX J 1

manpower in class i into fractions that flow into each class j

.

From the other basic conservation relation (1.1) and (1) above we obtain

N N

(2) l(t ) = J f ( t ) -£ (t)+ I qjiSi (t-l)

i=0 J J i=l J

for j = 1,2,... ,N.

t
The notation (I.k) refers to equation (k) in report number I in this series.



Let fflCt) be the vector [f .. (t) ,f _ (t) , . . . ,f _ (t) ] of new appointments

during period t. Recall that s(t) = [s (t) ,s_ (t) , . . . ,s (t) ] . Finally

let Q be the N x N matrix [q..] for j and i between 1 and N.

In matrix notation equation (2) becomes

(2) s(t) = Qs(t-l) + f
Q
(t).

In this chapter we shall treat the N-vectors s(t) and £,-,(£) as

(Nxl) matrices which are commonly called column vectors. To avoid

possible confusion we shall write out important sets of equations explicitly.

Equation (2) is the basic fractional flow model. Given the stocks

at time t-1, the new appointments in period t and the matrix Q it

is possible to predict the stocks at time t. The model is cross sectional

since it uses the cross section data s(t-l) and is independent of all

stocks and flows prior to time t-1. The first term on the right hand

side of (2), namely Qs(t-l), is the legacy left over from appointments

made in periods before t. The second term, f (t) , is the vector of

new appointments in t. The sections that follow treat variations of the

basic model (2) and present some interesting applications of (2) in a

variety of contexts.



3. Fractional Appointments with Hindsight .

Let us define SnCt) as tne number of vacant positions at time t,

and

N
(3) X(t) =

I s.(t)

J-0
J

as the total number of positions in the system. We write s(t) for the

N-vector [s (t) ,s (t) , . . . ,s (t) ] and s*(t) for the (N + 1) -vector

f
[s

n
(t) ,s(t) ] ; the sum es(t) = ^(t) - s

n
(t) is the number of individuals

filling jobs within the organization at time t.

In this section we present an appointment policy which allows one

or more accounting points to pass before a vacancy is filled. The next

section presents an appointment policy that anticipates future vacancies.

We can distinguish the vacancies at time t by their source, since

sn^ t ^
=

Z.-=n ^-n^* First, let f
nf
.(t) be the number of vacancies at

time t-1 that are not filled during period t. The other flows are

given by (l)jthus

(4) . <t> = f (t) + I qQiSl (t-l).
1=1

The lagged fractional appointment policy is determined by a scalar

a and an N vector a = [a ,a , . . . ,a^] . For j = 1,2,...,N, we let

a. be the fraction of vacancies s_(t-l) observed at time (t-1) that

are filled by appointing individuals in class j . We say that a_ is

t
The vector e is a row vector of appropriate length with each element equal

to 1, which is used to sum the elements of a given vector. Thus es(t) =



the fraction of the vacancies that remain open during period t. The

numbers a. j = 0,1,2,...,N are independent of t and s_(t), are

nonnegative, and sum to one.

From this definition we see that the appointments, or input flows,

are given by

f
Qj

(t) = a s (t-l) j = 0,1,2 N.

Now for i = 1,2,...,N we define w. = q rt . as the fraction of those in
J 0j

class j at time (t-1) who withdraw from the system during period t.

Finally let P* be the (N+l) x (N+l) matrix

(5) p* =

l

o
w

where Q is the N x N matrix in (2)

.

P* is a stochastic matrix; each element is nonnegative and the

column sums are equal to one. The status of the manpower system at time

t is given by the N+l vector s*(t) = [s (t),s(t)] where s(t) =

[s, (t) ,s~(t) , . . . ,s (t) ] . From our definitions the lagged constant size

model is

(6) s*(t) = P*s*(t-1).

Example 1 : Consider the example of university faculty with N = 3 classes,

1 - nontenured, 2 - tenured, 3 - retired. Let the time period be one year

and assume that in one period 25% of the nontenured faculty become tenured,

25% stay nontenured and the remainder leave. Assume that 80% of the tenured

faculty stay tenured, 10% leave, and 10% retire. Assume that 80% of the



retired remain retired and 20% die (leave the system) . Let us assume that

all new hirings are into the non-tenured ranks. Then

p* =

.5 .1 .2

1 .25

.25 .8

.1 .8

Problem 1 . Find the stock levels after one year if the current levels are:

(a) (b)

vacancies 800 828

nontenured 1000 1103

tenured 2000 1379

retired 200 690

Total Positions 4000 4000

Notice that s*(t) sums to A (t) for all t, since

I!

X(t) = es*(t) = eP*s*(t-l) = es*(t-l) = X(t-l)

Thus the system remains of constant size and the N + 1 vector
s*(t)

X(t)

is nonnegative and sums to one. The notation and form of (6) suggests

an analogy to Markov chain theory. Indeed (2) and (6) are sometimes

called Markov models. It is both desirable and natural that results of

Markov chain theory be used wherever applicable, but the reader should

keep in mind that we are discussing a deterministic model and we carefully

avoid reference to probabilities. As we shall mention later, too deep an

analogy to the stochastic behavior of Markov chains can be quite misleading



4. Fractional Appointments with Foresight .

It is possible to construct a fractional appointment policy

which anticipates the vacancies that will occur in period t, and which

hires enough replacements to fill the vacated positions. With this policy

s
Q
(t) = for all t.

If s(t-l) is the manpower stock at time t - 1, then K « w.s.(t-l)

vacancies will be created in period t. Of all these vacancies a fraction

a. will be filled by appointing new individuals into class j. There are

vN
no vacancies left unfilled, thus a_ = and ) . .. a. =1. The flow of

new appointments in class j in period t is thus

(7) S M -. j Vl<t-«
J J 1=1

and using

N

(8) s.(t) =
I (q..+a.w.)s.(t-l)

for j = 1,2,. ...H.

In matrix notation, let a # w be the N x N matrix with elements

a.w.. This is the same as a matrix product if a is considered as a

(Nxl) matrix (commonly called a column vector) and w is a (1*N) Matrix

(a row vector). With this convention let P = Q + a-w . Then

(9) s(t) = Ps(t-l) .



Notice that P is a stochastic matrix (all its columns sum to 1). First,

since w and a are nonnegative, P..=q..+a.w. kO. In addition

N N

y p. .
= y q. . + w . y a - 1

/. ji .

L
,

4ji w
i .

L
-

a
j2=1 J j=l J j=l J

rN rN
since ) . , a. =1 and w — n = 1 -

) q. . . Thus (9) has the same

mathematical structure as (6). However, we have one less equation, a

different type of hiring policy, and a stochastic matrix in which the

effects of changes in a. or w. are not readily apparent.

Example 2 : (Continue Example 1) . Suppose we use the same fractional

hiring policy a, but that we anticipate vacancies. The P matrix

derived from the P* matrix in Example 1 is

P =

Since state (outside the system) does not explicitly appear in this

model it appears that certain flows take place which are not natural.

For example 20% of those in retirement appear to return to the non-tenured

ranks. This flow is of course due to new hiring.

Problem 2 : Find the stock levels after one year if the current levels

are:

.75 .1 .2

.25 .8

.1 .8

(a) (b)

nontenured 1800 1391

tenured 2000 1739

retired 200 870

Total Positions 4000 4000
D
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5. Analysis of Fractional Appointment Policies .

Both the hindsight model (6) and the foresight model (9) lead

to algebraic equations similar to the transition equations of a finite state

Markov chain. This section will examine how the results of regular Markov

chain theory (Kemeny and Snell Chapter IV) can be used in our model. We

shall concentrate on the foresight model (9) the results and algebra are

identical for the hindsight model (6).

The reader who pursues parts (b) of problems 1 and 2 will notice the

interesting fact that an equilibrium has been reached. For some value

of s(0) we obtain s(l) s(0) and therefore, s(t) = s(0) for all t.

This equilibrium can be explained using Markov chain theory.

If s(0) gives the initial stock levels then

s(l) = Ps(0),

s(2) = Ps(l) = P(Ps(0)) = P 2 s(0),

and in general

(10) s(t) = P t s(0).

Under reasonable assumptions on the matrix P equation(lO) has an

interesting structure for large t. We do not wish to go into the technical

details of these assumptions since they involve concepts used in Markov

chain theory and have little pertinence to our manpower flow models. In

all the examples discussed in this book the assumptions hold. They lead

to the fact that for some t large enough P has all positive elements,

and that

(11) P > V as t -> °°, where
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(i) every column of the matrix V is the same, say [v , v , . . .
,v 1

,

and thus

V =
v.

'J

(ii) the vector v = [v ,v , ...v ] satisfies

v = Pv

ev = 1

v-j_ > for every i = 1,2,...,N.

For large t we have, by (10), that s(t) ~ Vs(0). From (ii) we see that

Vs(0) = (v n ,vOJ . . ,v, ) A(0) , where X(0) is the system size at time zero.12 N

If the numbers (v.,....v,
7 ) could be determined, they would tell us what

1 N

the distribution of people among classes would be after some time periods

had elapsed. Although this is a limiting result as t -> °° the distribu-

tion v is often obtained approximately in only a few time periods.

Example 3 : Using the distribution of people in part (a) of Problem 1 as

s*(0), and using P* from example 1 the stock levels at various times

t are:

Time 8

Vacancies 800 740 782 791 814 828

Nontenured 1000 1050 1003 1028 1075 1103

Tenured 2000 1850 1742 1574 1422 1379

Retired 200 360 473 607 689 690

Problem 3 : Perform the calculations in Example 3 using part (a) of

Problem 2 as s(0) and P from Example 2.

D
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The reader who solves Problem 3 will realize how tedious the

calculation of s(t) is using (10), especially for t quite large. If

we let s be the limiting vector of s(t) as t becomes large, then

by using (11) it must be that s satisfies

(12) s = Ps,

If A is the total system size, then

N

(13)

3=1

Equations (12) and (13) comprise (N+l) equations in the N unknown

stock levels s. It is easy to show that the equations in (12) are

linearly dependent. Let e be a vector with all elements equal to one

(recall that whenever we use e we shall assume its dimension is compatible

in the equation in which it appears). Then (12) and (13) can be written as

(14) (I-P)s =

es = X

If one of the first N equations is ignored, the remaining N can be

solved uniquely for the steady-state stocks s. If we drop the first

equation in (14) we obtain N equations in N unknowns.

(15)

- P

- P

21

31

- PNl

1

(1-P22 )

- P 32

- PN2

(1-P
33

)

PN3

" P 2N
'

S
l

'
' ° 1

' P 3N
S
2

• • *

(1-pNN }
•

S
N -

1
L X '
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Equation (15) shows how the steady state vector of stocks depends

on the appointment policy.

Problem 4 : Write down the equivalent of equation (15) for the hindsight

model (6) .

Problem 5 : Continuation of Problem 3, with X = 4000, find the steady

state stock levels.

Problem 6 : Contrast the difficulty involved in recalculating steady state

stock levels in both the hindsight and foresight models when: (i) the

size X is changed, (ii) the appointment policy is changed. n

The cross-sectional models discussed to this point assume a system

of constant size. If vacancies are considered as a separate state, equa-

tion (6) can be used for forecasting future stock levels in the time

periods immediately ahead, given the current stock levels and the matrix

P*. If the long-run effects of a matrix P are required, then the analog

of (15) should be used. If vacancies are assumed to be filled quickly it

may be more appropriate to use an N state model. Short-range forecasts

can be made with (9) and long-range forecasts with (15) .
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6 . Stationary Appointment Policies .

Returning to equation (2) of the basic fractional flow model,

the stock level in class j at t is given by

N

s.(t) =
I q1±

8 (t-1) + f
Q

(t), i=l,2,...,N,
J i=l J J

or in matrix form s(t) = Qs(t-l) + f
Q
(t)

.

Thus given an initial stock vector s(0) , and new input vectors

f (1) ,f (2) ,. . . ,f (t) , the stock levels s(l) ,s(2) , . . . ,s(t) are easily

calculated.

In the previous section f n (t) was chosen so that the total number

of positions in the system remained constant. In this section we consider

a different form of f
n
(t) which allows for growth or decay of the system,

a. Geometric Growth .

Let f n (0) = f » the input vector in period 0, and let 6 be

some positive number. Now let the input vector in period t be

(16) f (t) = 6
t
f, t 36 0.

If 6 > 1 the new input grows geometrically, if 6 < 1 it decays

geometrically, and if 9=1 the input is constant in each time period.

Substituting (16) into (2) gives

s(t) = Qs(t-l) + 6
t
f, t 3t 1.

The question of interest here is, how do the stock levels behave over time

for various values of 8? Given a starting stock level s(0) repeated

application of this equation for increasing t gives



and in general

s(l) = Qs(0) + 9f,

s(2) = Qs(l) + 9
2 f,

= Q 2 s(0) + Q6f + 6 2 f

15

(17) s(t) = Q s(0) +
t-1

t-ini
I

Q
L_J Q-

In order to investigate the behavior of the stock levels s(t) as

t increases it is necessary to rely on some of the results of linear

algebra, and in particular some results from the theory of nonnegative

matrices. It is not our intent to reproduce this theory here, but rather

to use it as it applies to our manpower problem. The interested reader

should consult the references at the end of the report for details.

Let us assume that it is possible to leave the system eventually

from any class i. This is not to say that we must leave directly from

i, but only that if one is ever in a class i one can eventually leave

by some route. It is hard to imagine an organization where this is not

true! Define a matrix R as the matrix Q with each element divided by

0, and write R = Q/9. Then the theory tells us that there is a number

p greater than zero and less than 1 such that if 8 is greater than p

the elements of the matrix R each go to zero as t increases. We

write this as

(18) R -> as t -* °°, where

is an N x N matrix with all elements equal to zero. Also when 6 is

greater than p the inverse of (I-R) exists and is nonnegative, with
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-1 v t
(I-R) - I R .

t=0

This matrix plays an important role in our models, and we denote

it by

D(9) = (i-R)"
1

.

In particular, for 0=1 we have D(l) = D = (I-Q)

Returning now to our problem of investigating the behavior of s(t)

divide (17) by 6 and substitute R for Q/6 . Then

(19) -^- = R
t
s(0) +

e
t

t-i o

It can be shown that £._n
RJ = (I-R )D(9) when 9 > p. Using this in

equation (19) gives

(20) Slil = D ( 0)f + ^[8(0) - D(6)f].
6

This equation for the stock levels at time t is in a form which

is very useful in determining the behavior of s(t) as t increases.

Its behavior will depend on the magnitude of 6 and we consider various

cases

.

The first case considered is when 9 is greater than 1. In this

case fflCt) increases geometrically without bounds so that the organiza-

tion keeps growing. The first term on the right hand side of (20) is

constant whereas the second term varies as R . But if 9 > 1 then

9 > p since p < 1; thus R > as t -> «. It follows that

^+D(9)f,
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and that for large t we can approximate the stock levels by

(21) s(t) £5 6 D(8)f

.

This is a simple result from which stock levels can be easily calculated.

However, the main purpose of this analysis is not to determine simple

methods of computation, but rather to derive simple expressions which

give insight into how the system stock levels grow relative to each other

as the input grows. Equation (21) tells us that the fractions in each

class i stay the same eventually, and thus if s(t-l) gives the stock

levels at t - 1 then 9s(t-l) gives them at t. Each stock level is

increased by the multiplier and therefore, the distribution of total

personnel among the classes stays the same.

Example 4 : Consider a system with 2 classes with

Q =
.4 .1

.3 .7

6 = 1.05, f = [100,0],

This Q assumes 40% of those in class 1 remain in 1 in a time period,

30% move to 2, and 30% leave the system. Of those in class 2 10% move

to class 1, 70% remain in class 2 and 20% leave the system. The system

starts with an input of 100 into class 1 and none into class 2, and input

grows at a rate of 5% per year.

The matrix R is given by

R =
381 .095

286 .667

and
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D(1.05) =
1.86 .532

1.59 3.46

Thus D(9)f is [186,159], and for large t we can write

s(t) « [.539,.461]345(1.05)
t

This equation can be used to determine s(t) for large t.

However, an important use is that it tells us that eventually the system

has about 54% of its people in class 1 and 46% of its people in class 2,

and these proportions stay constant even though the total number in the

system is growing geometrically.

Figure II. 1 illustrates this example and the use of the analysis

leading to equation (20). The axes represent the numbers in each class

and the vectors s(l), s(2), etc. are plotted starting with s(0) = [0,100].

They approach a line drawn through the point (539,461) and through the

origin. Equation (20) tells us that s(t) eventually approaches this

line, independent of the value of s(0).

Problem 7 : Using Q, 9 and f of the example, plot s(t) starting

with s(0) = [200,0].

Returning to the analysis of equation (20) we now consider the case

0=1. Thus the input in period t, f(t) is simply f for all t.

Note that R = Q, R -> since p < 1, and the stock levels stay bounded

and approach the vector s = Df, independent of the starting stocks s(0).

Example 5 : (continuation of example 4) . For this example the system

stocks approach 200 in class 1 and 200 in class 2 for a total system size

of 400. The values of s(t) are plotted in Figure II. 2 starting with

s(0) = [0,100].
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Problem 8 : Calculate s(l) ,s(2) , . . . for the case s(0) = [200,0] and

plot on figure II. 2. Q

The third case to consider in equation (20) is when p < 6 < 1.

In this case the new input each year decreases geometrically at a rate

slower than p . In this case R still converges to a zero matrix and

for large t s(t) is given by (21). Thus s( t) eventually goes to

zero, but geometrically at a rate 8 and with the stocks in the same

proportions as given by D(9)f. The reader is cautioned that R varies

as 9 varies, so that decreasing the value of 8 from a number above

1 to one between p and 1 will change the proportions of the stocks in

each class in steady state.

Example 6 : (continuation of example 4) . It can be shown that p for

Q in example 1 is .779. Using a 8 of 0.9 we find

R =
.444 .111

.333 .778

D(.9) =
2.57 1.29

3.86 6.42

D(8)f = [257,386] = 643[.4,.6].

After 20 periods the stock levels are given approximately by [31,44]

which are in the ratio 4 to 6. Figure II. 3 shows the plot of s(t)

starting with s(0) = [0,100]. Notice that the stocks are going to zero

along the line through the origin and the point (40,60).

Problem 9 : Calculate s(l) ,s(2) , . . . for example 6 starting with

s(0) = [200,0] and plot on figure Ji. 3. g
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Figure II. 3: Plot of s(t) for Example 6 using 9 = .9, s(0)=[Q,10Q]
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The fourth and final case to consider in equation (20) is when

£ p. For example, suppose there is no new input each year and the system

is simply allowed to die out on its own. In this case 8 would be zero.

The case of firemen on the railroads might be an example. No new ones

are added to the system but the number in the system decreases through

natural attrition. It should be clear that if 6 is too small the

system cannot shrink at the rate 6 (the example 9=0 illustrates this)

.

The value p is important here, since if 6 < p it is p which deter-

mines the rate at which the organization shrinks. The mathematics referred

to earlier support this. If 6 ^ p then (I-R) does not exist and

equations (20) and (21) have no meaning. The number p is a lower bound

on the rate of contraction. This is because attrition or withdrawal from

the system depends only on the coefficients q. . and w. (recall

w. = 1 - £._, q..) and is independent of the appointment rate.

Returning for a moment to the theory of nonnegative matrices we

use the following result. One can find an N-dimensional vector which we

call s whose elements are nonnegative and add to one, and which satisfies

ps = Qs

.

Suppose this s is used as the initial stock vector s(0) (the

fact that its elements add to one is a convenience and is not necessary)

,

and we have no new input so that f^CO = f° r all t ^ 1. Then from

(2)

and from our choice of s

s(t) = Q
t
s

s(t) = p S,
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Figure 11.4 : Plot of s(t) for example 7 using 6=.5 and 6=0, s(0)=[0,100]
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Summing the elements on each side of the equation gives

es(t) = p ,

so if the system starts at time with n people, after t periods it

will have np people. This shows that p determines the speed at which

the system dies out. For if we take 6 positive but less than p, then

for large enough t will be very small compared to p and any new

input will have a negligible effect on the size of the system relative to

what is left in the system after natural attrition.

Example 7 : (continuation of example 4). For this example p = .779,

and the vector s is found to be [.21,. 79]. Thus if the system starts

with 100 people, 21 in class 1 and 79 in class 2, and if no new input is

added than s(t) = (.779) [21,79]. If the system starts with s(0) =

[0,100] and f = [100,0], 6 - .5, the values of s(l) ,s(2) , . . . are

plotted in Figure II. 4. The values are also plotted for the case of no

input (9=0)

.

Problem 10 : Calculate s(l) ,s(2) , . . . for example 7 starting with

s(0) = [200,0] and plot on Figure II. 4. Repeat with 6 = 0.

The case 6=0 is of interest if a system is to undergo a reduction

in size. Consider a cutback in a manpower system from a level of, say N..

people which has been maintained using a given constant appointment policy

f]_, to a lower level, say N , where this reduction must be brought about

only by natural attrition. Let us assume that the distribution between

grades is to remain the same when the new level is reached. One way to

model such a change in structure is to assume that the vector of numbers
N
2

to be enlisted in each future period is given by f„ = — f , , and that a
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N
2

vector — s of people and positions in the system have been singled out.

1

Since es = N- by assumption, we have singled out N„ positions. Attri-

tion from these will be filled by the appointment vector f and we assume

the same Q matrix holds. It is easy to show that this input vector

maintains the steady state distribution but with N people. The remaining
NrN

2
people, given by a vector — s, are not replaced as they leave. Thus

1

the behavior of the system in the transition period from the level N

to the level N_ is described by case 4 described above, 6=0, applied

to a steady state system containing (N -N.) people.

Such a splitting of the system into two groups is simply a conven-

ience which allows us to use the models developed this far. No actual

splitting need occur in practice. It is simply a convenient trick which

allows us to investigate the transient behavior of the system.

Example 8 : (continuation of example 5) . Assume we have a system with

400 people, Q matrix as in example 4 and in steady state with f -

[100,0]. The steady state stocks are [200,200] (see Figure IL2). Assume

the system is to be reduced to a total of 300, with 50% of these in each

of the two classes. We can think of a system of 300 which continues as

before with a new input vector [75,0] in each period. This will main-

tain the subsystem at [150,150] in each period. The remaining 100 are

taken to be another system, with f(t) =0, t ^ 0. Figure II. 5 gives the

stocks in each period and shows how the system approaches its new steady

state,

b. Arithmetic Growth .

Let f and g be two N-vectors (assumed nonnegative) . In this

section we assume that the input vector at t is given by
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(22) f(t) = f + gt, t * 0.

When f(t) satisfies (22)we say we have arithmetic growth,

The stocks are given by

8(1) = Qs(0) + f + g,

3(2) = Qs(l) + f + 2g,

= Q
2 s(0) + Qf + Qg + f + 2g,

and in general

t t-1 .

s(t) = Q s(0) + I jQ
J

g + I Q
J

f

3-0 j=0

t . t t-1 .

(23) = (^8(0) + t I Q
J
g -

I jQ
J g + I Q

J
f

j-0 j=0 j-0

In order to investigate the long-run behavior of the system we need to

know how each of the terms on the right-hand-side of (23) behaves.

The first term vanishes for large t since Q *" 0, and the last

term converges to Df . The third term must be investigated (which is

done below), but as we shall see it remains finite. The second term,

however, increases linearly in t for large t, since if t is large

the sum is approximately Dg.

To return to the third term, this sum can be written (without

multiplication by g)

t

I JQ
J

= Q
j=° + Q

2 + Q
2

+ Q
3 + Q

3 + Q
3

+ . .

+ Q
fc + Q

C + ... + Q
t

,
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and summing each column, using 2.._ Q =
( I-Q ) D »

gives

I JQ
J = QIU-Q^D - tQ

t+1
]D.

3=0

As t becomes large this expression approaches QD2
. Thus from (23) we

can say

limit (s(t)-tDg) = Df - QD 2
g,

t-x»

or

s(t) ~D(tg+f-QDg).

This expression tells us that in the long run the number in the

system increases linearly. The number in a given state i will be given

by the i— element of the vector [f-Qdg] plus t times the i

—

element of the vector Dg. Again the importance of the matrix D = (1-Q)

is demonstrated.

Problem 11 ; Using the Q and s(0) of problem 7, let f = [100,0] and

g = [10,10]. Find Dg and f - QDg. Plot the two lines y = (Dg) .t +

(f-QDg)., i = 1,2. Determine s(l) ,s(2) , . .
. ,s(20) , and plot each

element on the same paper as the lines.

The following problems are more advanced ones which demonstrate how

geometric growth models can be formulated as foresight or hindsight models.

Problem 12 : When 9=1, show ef = wDf. What is the interpretation of

this formula? Derive and interpret the formula in the general case 9 > p.

Problem 13 : Given s(0), 9=1, and a fractional appointment policy a,

determine (ef ) , the number of appointments per period so that in the

equilibrium system with stocks s = Qs + (ef)a we have es = es(0), i.e.,
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the total in the system in steady state is equal to the current total

in the system.

Problem 14 : Given s*(0) = [s
ft
(0) ,s(0) ] , 9=1, and a fractional appoint-

ment policy a, determine (ef ) , the number of appointments per period

so that an equilibrium system with stocks s = Qs + (ef)a, s„ = ws, has

s
Q
+ es - s

Q
(0) + es(0).

Problem 15: Show that if

P = Q + =j • [w + (e-l)e]

and s(t) - Ps(t-l), that

(i) eP = 6e

(ii) es(t) = 6 es(0)

,

,,,-n s(t)
,
Df(es(0))U ;

t (eDf)
where D = (I - Q/8)

-1

Interpret the results.

Problem 16: Show that if

p* = ef

ef

[w+(6-l)e]

(i) the columns of P* each add to 0,

(ii) (ef,Df) solves s* =
p*

s*, where D = (I-Q/6)
-1

Interpret the result if s*(t) = P*s*(t-1).
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Problem 17: Show that if

p* =

(e-D

ef

e[w+(e-i)e]

then

p*
(ef,Df) solves s* = (—) s* .

y

Interpret the result if s*(t) = P*s(t-1) and contrast with problem 16.

Problem 18 : It is shown in problems 16 and 17 that for the case of geometric

growth an equivalent hindsight model with (N+l) states can be formulated.

s*(t)
In both these cases s*(t) = P*s(t-1), and ——— -* k(ef ,Df) , for some

6

constant k. The stocks in any finite period t differ in the two

models. Show that in general it is not possible to construct a matrix P*

such that s*(t) = 6 s*(0) for all t
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7 . A Requirements Model .

In this section the fractional flow model is used to determine

the sequence of input vectors fn(t) which are needed to exactly meet a

given sequence of required stock levels s(t). In previous sections the

input flow vectors f n (t) were assumed to be given and the behavior of

the resulting stock vectors was analyzed. Now we reverse the problem.

Let the current time period have index zero, and assume stock vectors

s(0) ,s(l) , . .
.
,s(T) are given for some planning horizon T. The vectors

f (1) , . .
.
,f (T) are to be determined in order to meet these stock levels.

From equation (2) we have f
Q
(t) = s(t) - Qs(t-l), t = 1,2,...,T.

Let us assume that the only feasible input vectors are those which are

nonnegative. That is to say, requirements can be met only with appoint-

ments. Forced attrition cannot be used.

The first question to ask is, can the given sequence of stocks

s(l) , . . . ,s(T) be met with any feasible set of appointments f (1) , . .
.
,f (T) ?

The answer is yes if and only if s(t) k Qs(t-l) for each t = 1,...,T.

There are T x N inequalities which are simple to check. Suppose our

requirements are changing geometrically, so that s(t) = 6 s(0), 6 > 0.

Then it is easy to see that only the N inequalities

(24) s(0) ^ | s(0)

need be tested.

From the theory referred to in section 6, if 9 < p then (24) has

no solution. This simply says that if the requirements die out too

quickly, natural attrition is not enough to reduce the legacy sufficiently

to meet the requirements. Letting R = ^- as in section 6 we see from (24)
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that not all starting stock levels s(0) lead to feasible appointments.

Let the N-vector x be any solution of the inequalities

(25) (I-R)x ;>

x ^ 0.

Then such an x is a feasible starting stock level if requirements are

geometrically changing at rate 8. It is easy to see from (25) that any

x satisfying (25) is also a feasible starting stock level for any 8' k 8

Example 9 : Let Q be given as in example 4. Thus

Q -
.4 .1

.3 .7

The values of x satisfying (25) are plotted in Figure II. 6 for 8 = 1.05,

0.9, 0.8, and 8 = p = .779. Note that the set of feasible starting

vectors increases with 8 and in each case forms a cone. As 8 decreases

to p, this cone degenerates to a line.

Problem 19 : Show that the requirements s(t) = .9 s(0), with s(0) =

[50,60] cannot be met for any t, but the requirements s(t) = (1.05) s(0)

can be met starting at [50,60]. Find the input vectors f (1) , . .
.
,f „ (5)

in this case. D
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Growth rates
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8. A University Faculty Model .

The examples discussed so far have been of simple fictitious systems

with only two or three states. These allowed us to investigate various

implications of the cross sectional model without becoming involved in

systems with large numbers of classes. In this section we describe a

cross-sectional flow model of a University faculty using real data and

appointments.

The faculty of a university can be partitioned in many ways. For

example, they could be partitioned into classes depending on their academic

department, their status, their pay grade, their age or some combination

of these. The choice of a classification scheme must reflect the intended

use of the model. In the example treated here the basic questions were

of rank structure. In the institution in question, namely the campus

of the University of California, Berkeley, models were required which would

describe movement of faculty between ranks and which could be used to

determine the effects of various hiring and promotion policies on rank

structure and tenure/non-tenure ratios.

As part of a larger study in University Planning, Branchflower [1970]

formulated and analyzed a model of faculty flow of the type discussed in

this chapter. The data from his work is summarized in Table II. 1, which

gives the actual movement of faculty through the thirteen ranks of the

College of Engineering at Berkeley in the period 1 July 1960 to 1 July 1968,

Since the purpose of this model is to study the distribution of faculty

in the active ranks, the "retired" class was considered external to the

system.
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The numbers in Table II- 1 require some explanation. They are

aggregated figures over the eight year period. What Branchflower did was

to determine the stock levels as of 1 July in a given year (say 1960) , and

determine how many of these either stayed in the same rank, moved to some

other rank or left the active ranks by 1 July of the following year. Thus,

he determined eight matrices with numbers of actual movements in each one.

The table given here is the sum of these eight matrices. Thus, in the

period 1960 to 1968 a total of 70 faculty in rank Associate Professor step

3 moved to rank Full Professor step 1 in a one-year period. In the eight

year period only one person obtained a double promotion from Associate

Professor step 3 to Full Professor step 2. Columns 14, 15 and 16 show

the total numbers who retired, resigned and died respectively in this

period, and the final column gives the row sums. Row 14 gives the total

number of new appointments to each rank in the eight year period, with a

total of 98 new appointments in the eight year period. The Q matrix for

this system is calculated from this aggregated data and is shown in Table

II. 2. Only the non-zero entries are shown. A characteristic of this

system is immediately obvious from this Q matrix. Since no demotions

occur and since the ranks have been ordered in increasing order of seniority

Q has a lower triangular structure; that is, all q.. above the main

diagonal (all elements q.. with i > i) are zero. The dominant fractions
ji

lie on the main diagonal and the one below it, showing that one either

stays in the same rank or moves to the next highest one except for rare

double promotions. This structure for Q is found in many systems.

The reader should question the aggregation of eight years of data

to determine Q. Why eight? Why not one, three, six, etc.? No attempt
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has been made here to do any statistical studies on this data. Such a

study would be outside the scope of this book. Our only excuse for using

eight years of data is that it was available and gave reasonable numbers

in the non-zero cells so that fractions could be calculated. The inter-

ested reader can obtain more details on the original data and questions

of the stationarity of Q from Branchflower 's paper.

Suppose we take 1 July 1968 as our point t = 0. The stock levels

s(0) are given in row 14 of Table II. 3. Thus, on that date the faculty

had a total size of 210 people. Let us assume that the faculty is to

stay fixed at this size with no vacancies unfilled. Various hiring

policies can be tried using our constant size-predictive model with

N = 13 to determine the long-run effect of these policies.

First we calculate w , the vector of fractional withdrawals from

each state from Q in Table II. 2. Thus

w = (.08, .05, .05, .06, .00, .01, .02, .02, .04, .04, .01, .03, .03).

If this is appended as a row to Q the columns will each sum to one.

Suppose the hiring policy of interest is one in which all new faculty are

hired into Assistant Professor step 1. Then

a = [1,0,0,0,0,0,0,0,0,0,0,0,0],

and the matrix

P Q + a.w

is shown in Table II. 3. Using this matrix the steady state vector v of

fractions in each state is calculated, using equation (12) and multiplying
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this by the total faculty size 210 gives the numbers in each rank in the

long run. These are shown in row 17 in Table II. 3.

The results obtained might come as somewhat of a surprise to a

university administrator. In steady state, if the size of the institution

stays constant, and if the same retention and promotion structure holds

in the future, the faculty will finish up with over 41% in Full Professor

rank at overscale grade, 15% Assistant Professors, 14% Associate Professors,

and, since in this institution tenure is given to all grades of Associate

Professor and above, a faculty with 85% tenured.

Such a result may not be so disturbing if the time it takes to

reach this distribution is very long. The distribution in 1968 had 7.6%

full professors overscale, 18% assistant professors, 21% associate professors

and 82% tenured. Thus the tenure fraction is not changing much but the

average grade of faculty is increasing significantly. A calculation of

the stocks at five years (1973) and ten years (1978) is shown in Table

II. 3 in rows 15 and 16 respectively. The steady state distribution and

those at times 0, 5 and 10 are shown plotted in Figure II. 7. Also for

simplicity the percentage in each of the major groups, assistant professor,

associate professor, full professor (regular), and full prof essor over-

scale are shown in Table II. 4.

It is clear from FigureII.7 and Table II. 4 that the use of the historic

Q matrix to a system of constant size leads to a very large increase in

the highest ranks, even though all new appointments are made in the lowest

rank. Any other appointment policy would lead to an even more top heavy

structure. A look at the historical data (not given here) shows that in

periods up to 1968 this particular institution was expanding. We might
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FIGURE II. 7: DISTRIBUTIONS BETWEEN RANKS

Period Assistant Associate Full Overscale

18.1 21.4 52.9 7.6

5 14.8 19.0 49.5 16.7

10 15.7 13.8 45.3 25.2

Steady State 15.2 14.3 35.2 41.4

TABLE II. 4: PERCENTAGE DISTRIBUTIONS BY MAJOR RANK.
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ask what the distribution among ranks would be if the system could continue

to expand. Table II . 5 gives the steady state percentages in each major

rank for growth rates in new input of 5%, 3%, constant input, and a

decrease in input size of 1% per year.

It is clear from this table that a small growth rate substantially

increases the proportions in the lower ranks. The large "pile-up" in the

overscale rank which takes place with no growth is substantially reduced

with a 3% growth rate. Notice how the overscale percentage increases if

the system starts to decrease in size.

The calculations in Table II. 5 were made using equation (21) in

the following way. The input vector f had seven people entering in

state 1 and no one else in the other states. The matrix D(9) = (I-Q/6)

was calculated using Q of Table II. 2 and values of 8 equal to 1.05, 1.03,

1.00 and .99 for 5%, 3%, and -1% growth. The vector D(6)f was found

and normalized to sum to 100.
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Associate Full Overscale
Professor Professor Professor

24.1 29.5 11.0

21.5 31.9 18.4

14.3 35.2 41.4

10.3 23.9 55.3

TABLE II. 5: PERCENTAGE IN EACH MAJOR RANK FOR VARIOUS GROWTH RATES,

Growth Assistant
Rate P rofessor

+ 5% 35.4

+ 3% 28.2

15.2

- 1% 10.5
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9. Probabilistic Interpretation of the Fractional Flows .

In earlier sections q.. denotes the fraction of people in class i

at the end of one period who are counted in class j at the end of the

following period. Each individual follows his own path through the system

and these paths vary greatly from one individual to the next. These

individual paths have not been considered to this point. They have pur-

posely been suppressed, in fact, since a prime aim in the choice of our

models is to have them contain as little amount of detail as possible in

order to answer questions of interest. In later sections it will be

necessary on occasion to follow individuals from class to class as they

move through the system. Each path can be considered to be in some sense

random. By this we mean that if a person is chosen from the system and

his path examined, the successive classes of the individual and the times

when he enters the classes will not be predictable with certainty. What

we can say is that there will be a certain probability that the individual

will be in a given class at a given time, or that he entered the class at

a given time. It turns out that our earlier model will suffice if the

fractions q.. are interpreted correctly.

Consider the path that an individual takes as he moves through the

system. Let us suppose he enters in period u and is first counted at

time u in class k. Let us further suppose that t periods later he is

counted in class i. Where will he be at time (t+u+1) if at (t+u) he

is at i and he entered in k at time u? We cannot say with certainty,

but let us say that q.. is the probability that an individual who enters

in period u in class k and is in class i at (t+u) , is in class j at

(t+u+1) . Notice that we are assuming that this probability is independent
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of t, u, and k, and is the same for all individuals. This group of

strong assumptions says that the probability an individual who is in some

class i in a time period moves to class j in the next time period, is

independent of the particular time period and all previous history of the

individual. In addition we assume that all individuals in the organization

behave independently of each other. In the language of probability theory,

each individual follows a path which evolves according to the laws of a

homogeneous finite state Markov chain.

These are very strong assumptions and in many cases are unrealistic.

As we shall see they do lead to the fractional flow model of earlier

sections. However, the reader should understand that though these detailed

assumptions lead to the earlier model, that they are not required to hold

in order to justify the fractional flow model. In mathematical terms they

are sufficient to lead to the earlier model but not necessary . Here is a

case where a too detailed look at the real system, by trying to describe

individual flow patterns, can lead to confusing and unnecessary assumptions.

The art of good modelling is to go into only enough detailed structure as

is necessary for the particular application. For a retirement model des-

cribed in section 10 we need a probabilistic interpretation. For a faculty

flow problem in section 8 the probabilistic interpretation was not required.

The symbol s.(t) has been used earlier to indicate the stock

level in class j at time t. Now it must be interpreted as the expected

stock level in j at t. The upper case letter S.(t) is the random

variable which denotes the (uncertain) stock level, and E[S.(t)] = s.(t).

If the stock levels at t are given it is easy to find the expected

stock levels at (t+1) in terms of these. If there are S (t) people in
i
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class i at t, the expected number of these in j at (t+1) will be

S (t)q... This holds for all i = 1,...,N, and if we add in the new

flows into j from outside we have

:[s (t+i)|s
1
(t),...,s

N
(t)] =

I q s (t) + f (t+i)

i=l J J

Taking expectations of the stocks S (t) , . . . ,S (t) gives

s (t+1) = I q s^t) + f (t+1), j = 1,2,...,N
J i=l J J

or in matrix notation

(26) s(t+l) = Qs(t) + f
Q
(t+l).

This is the same as the basic flow equation (2) in the fractional

flow model. Thus, in terms of expected values the Markov assumptions lead

to the fractional flow model. One could postulate a number of detailed

models which would lead to equation (26) in terms of expected values. In

many applications the only variables of interest are these expected values

and many of the detailed assumptions are unimportant in calculating these.

However, if variances and covariances are to be calculated to estimate the

effects of uncertainty the reader must be much much more careful in the

choice of a model.

Many of the results in earlier sections have a probabilistic

interpretation in terms of the Markov model. For example let us look at

the matrix D = (I-Q) . First let us look at the (j,i) the element

of the matrix Q for some fixed n > 1. Call this q. . . Then from
ji

matrix multiplication we have



AS

(n) v (n-1)
qji

=

ki ±
qjk qki'

This equation shows us that q.. is the probability that an individual

is in class j a periods after being observed in class i. Now since

(I-Q)~ can be written as I Q » tne (j»i)— element of D can

n=0
be written

d.. = q.. + qf
2) + qf

3) + ... + q<
n)

+ ..., if i * j

.

Jl H
JX

H
J1

H
J1

Hjl J

(27) and

a..— l+q..+q.. +q,. + . . . + q . , +... .n H n n ^n

Suppose an individual enters the system in class i. How many

periods can he be expected to spend in class i? He spends the first one

there since he entered in this state (by our accounting assumptions) . He

spends the n— period in i with probability q , Thus, the second

equation in (27) gives the total expected time an individual spends in i

(that is, expected number of periods) if he enters in i. For j ^ i he

cannot be in j the first period. Thus, the first equation in (27) holds

in this case. The matrix D gives us the expected durations an individual

who enters in a given state spends in each of the states.

Problem 20 : Show that eD is an N-vector which gives the expected number

of periods an individual spends in the system if he enters in a given state.

D
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10. A Retirement System Model .

The theory of cross-sectional manpower flow is used in this section

as the basis of a model of a retirement system. This retirement system

model allows a decision maker to investigate various retirement policies.

Concepts developed in section 9 are used, and an early retirement scheme

is investigated as an illustrative example.

The retirement model relates the manpower flow process to the

financial parameters that describe the retirement system. First we calculate

the expected present value of the annuity that an individual will receive

discounted to the time of retirement. Then we calculate the present value

at retirement of all contributions to the individual's retirement fund,

and match this with the annuity.

In this section time period t is assumed to be the period in which

retirement takes place, and periods are assumed to be of one year duration

for convenience. If an individual entered the system in period (t-k) it

is assumed his length of service is k (note that it is actually between

(k and k + 1) . A person who enters in period t (and is then counted

at time t) has length of service zero. We shall say that a person who

is in class i and has length of service k is in state (i,k).

Let a.(k,t) be the annuity paid an individual who retires in

period t while in state (i,k), and let m.(i,k) be the probability

that this individual will receive exactly j annuity payments in retire-

ment. Note that T°-=n m.(i,k) = 1 for all states (i,k) and let \i

±^

2
and a., be the mean and variance of this distribution respectively. If

lk
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the value of future annuity payments is discounted to the retirement period

t using a discount factor B, and the retired individual receives exactly

j payments, then the value of his payments at retirement is

a.(k,t)(l+B+8 2+...+8 J l
) = a.(k,t)

(1
7
B
Q

) -

1 1 i —

p

Now unconditioning on j, the. expected value at retirement of all payments

to a person who retires from state (i,k) is

oo

(28) [1 -
I 3

Jmj(i,k)]a.(k,t)/(l-B).
j=0

If there is any variance in the lifetime of an individual after

retirement we would expect this to affect the total of all annuities paid

out if the discount factor 8 is not equal to 1.

Problem 2 1: Using (28) show that if the discount factor 8 is 1 (no dis-

counting of future monies) then the total expected value of all payments

is simply the value of a single payment times the average number of pay-

ments; it is independent of the variance of the distribution m.(i;k).

Explain this result. [j

It is realistic to assume that 8 is less than, but close to, one,

By using a Taylor series expansion of (28) about the point 8=1. and

ignoring terms in (1-8) > j - 2, the total expected present worth at

retirement of annuity payments can be shown to be well approximated by

Let v.(k,t) be the expected value of the retirement fund in

period t of a person who retires from state (i,k). By equating fund
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size to payments we see that the annuity he can be paid is given by

v.(k.t)
(30) a.(k,t) =

ik 2 lk lk lk

The quantity v.(k,t) is of course made up of contributions to

the fund during the person's time in the organization. It will depend on

his previous salaries, which in turn will depend on the individual's

detailed movement between states. It is this quantity v^k.t) which we

now investigate, and we shall need the cross-sectional flow model with

its probabilistic interpretation.

Let c.(k,u) be the contribution to the retirement fund (employer

plus employee) in period u for an individual in state (i,k) in that

period. If we consider a sample history of a person and assume that the

fund earns interest at rate a, then we can trace the growth of the

retirement fund over time.

First we see that v.(0,u) = c.(0,u), the contributions for a

person in period u who entered in that period in class i. Using con-

ditional probability arguments we find an expression for the expected

present value of the fund.

Given that a person is now (period t) in state (j,k) and was

in state (i,k-l) in t - 1, then the expected value of the fund is

(31)
c.(k,t) + (l+a)v.(k-l,t-l).

Let p (k) be the probability that an individual who is now in state

(j,k) was in state (i ,k-l) in the previous period. Note that for

'Care must be taken here. It may not be possible to be in some state (j,k),

depending on how people enter the system and how promotions are made. In

this case we would be conditioning on events which occur with probability

zero. This technical difficulty can easily be overcome in a number of ways.

For simplification in exposition we assume that all states (j,k) for which

v.(k,t) is defined can be obtained with positive probability.
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N

k > 1, I p . .
(k) = 1, and we are assuming these probabilities are

i=l 1J

independent of the period. We return to this problem later. Now uncon-

ditioning (31).

N

v (k,t) = c (k,t) + (1+a) I v.(k-l,t-l)p. .(k),
J J i=1

ij

or, using vector/matrix notation,

(32) v(k,t) = c(k,t) + (l-K*)v(k-l,t-l)P(k), k > 1.

Here, v(k,t) and c(k,t) are N-component row vectors, and P(k) is

an N x N stochastic matrix (each column sums to 1).

By successive substitution (32) is solved for v(k,t), and we

obtain

k
. j

(33) v(k,t) =
I (1+n) 2 c(k-j,t-j) n P(k-i+l) , k > 0,

j=0 i=l

where an empty product is taken to be I, the identity matrix, and

3

n P(k-i+l) = P(k-j+l).P(k-j+2).---.P(k), j > 1.

i=l

Equation (33) gives the expected value of the fund for all states

(i,k) in terms of the contribution vectors c(0, t-k) ,c(l , t-k+1) , . .
.

,

c(k,t), the interest rate a, and the matrices P(i), i = l,2,...,k.

It remains to investigate these matrices, which are of course related to

the underlying cross-sectional flow model (which we have not used to this

point)

.

Consider an individual who entered the system in period t-k

and who is in class j at time t. Let p..(t,k) be the probability

that this individual was in class i at t - 1. We wish to discover
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what assumptions are necessary so that p..(t,k) will be independent of

t, so that p..(k) is well defined.

Define Z(t) as the person's class at time t, and E as the

period of entry, both random variables. Then

p (t,k) = P[Z(t-l) = i|Z(t) = j , E = t-k].
J

From conditional probability arguments,

, 0/ x„ f, i ^
P^ 2 ^) = -ilz(t-l) = i,E = t-k]P[Z(t-l) = i|E = t-k]

(34)P
±j

Ct,kJ -
P[Z(t) = j|E = t-k]

From the Markov property of our fractional flow model

(35) P[Z(t) = j|Z(t-l) = i,E = t-k] = q
j±

,

independent of k and t. Now define

z. (t,k) = P[Z(t) = ± | E = t-k]

.

Now z.(t,0) = P[a person who enters in t does so in class i].

Therefore, if f (t) is the flow from outside the organization into

class i in period t, and £
n
(t) is the N-vector of these flows,

(36) z
i
(t,0) = f

oi
(t)/ef

Q
(t),

since ef (t) is the total new input in period t. By a straightforward

conditioning argument

N

:

±
(t,k) =

I q z.(t-l,k-l),
1=1

j:

or in vector notation

(37) z(t,k) = Qz(t-l.k-l) = Q
k
z(t-k,0)
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From this equation we see that z(t,k) is independent of t if

and only if z(t-k,0) is independent of t. For this to be true we can

see from (36) that the f raction appointed into any class i should be the

same for all periods. This does not say that we have to appoint the same

number into i in each period. Indeed this can vary from period to

period; but the fraction must stay constant.

We now assume that for any period u

a
i

= f
oi

(u)/ef
Q
(u), i = 1,2, ...,N,

and let a be the N dimensional column appointment vector. Then from

(37)

(38) z(t,k) = Q a.

Using this with (35) in (34) we obtain

(39) P
1
.(k) = p..(t,k) = q..z.(t-l,k-l)/z.(t,k).

Equations (39) and (38) show that the matrix P(k) depends only

on Q and a, and (39) can be written in matrix form.

For any vector x = (x ,x , ...,x ), let [x] represent the
1 L N DG

N x N matrix whose diagonal elements are the same as the corresponding

elements of the vector, and all off-diagonal elements are zero. Thus

...
L

Z i

'
v \ °

- - - - xMN

[x]
DG

x

Note that from our assumptions z.(t,k) > for all j and k
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Also let Q' denote the transpose of Q.

Using (38) and (39) we see that

P(k) = [Q
k_1

a]
DG

Q'[Q
ka]^, k = 1,2

This representation of P(k) clearly shows its dependence on Q

and a. This can now be used in (33) to show that

(40) V (k,t) = I (14<x)
j c(k-j,t-j)[Q

k J
a]

np
[Q'] J

[[Q
k
a] nr ]

X
.

j-0
DG DG

Equation (40) now gives the expected value of the fund for each

state (i,k) in terms of the interest rate a, the contributions

c(0, t-k) , . . . ,c (k, t) , the appointment vector a and the transition

matrix Q.

Problem 2 2 • Assume that all new admissions are made into class 1. Thus

a is the column vector [1,0,...,0]. Use equation (40) to show that for

this case

v.(k) -
I (l+a)J I c Ck-j.t-jX^^qg-^/q^.

1
j-0 l-l

and interpret this result.
[]

In many institutions contributions are related to salary. Let us

assume that a fraction 5 of an individual's salary is placed in his

retirement fund each period, and let s.(t) be the salary of an individ-

ual in class i at t, independent of his length of service k. Let us

further assume that salaries have been growing at rate y per year.

The inverse of [Q a] exists if all diagonal terms are positive. This

is true if all states '(.j,k) can be hold wi Lh positive probability.
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Then the contribution in period t - j of a person who was then in class

i would have been

6s.(t)
c . (k-j , t- j )

= r .

d+Y)
J

If s(t) is a row vector of current salaries by class, then (40) becomes

k i

(41) v(k,t)-« I {^) s(t)[Q
k- j

a]
DG

[Q'] J
[[Q

k
a]

DG ]

_1

Problem 23 . Interpret (41) when the salaries have been increasing at the

same rate as the interest rate on the retirement fund. p

Equation (41) can now be used to calculate v.(k,t) and this used

in equation (30) to calculate the annuity a.(k,t). We illustrate the model

in analyzing alternative retirement and appointment schemes for a univer-

sity faculty.

A university faculty model is formulated in which faculty can be

in any one of the following 15 classes:

Class Description

1 Nontenure
2 Tenure - Age 30 to 34

3 Tenure - Age 35 to 39

4 Tenure - Age 40 to 44

5 Tenure - Age 45 to 49

6 Tenure - Age 50 to 54

7 Tenure - Age 55 to 58, Low salary
8 Tenure - Age 59 to 61, Low salary
9 Tenure - Age 62 to 64, Low salary

10 Tenure - Age 55 to 58, Medium salary
11 Tenure - Age 59 to 61, Medium salary
12 Tenure - Age 62 to 64, Medium salary
13 Tenure - Age 55 to 58, High salary
14 Tenure - Age 59 to 61, High salary
15 Tenure - Age 6 2 to 64, High salary.
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Table II. 6 gives the basic fractional flows between the 15 classes

of faculty. We call this QQ
. Table II. 7 gives the fractional flows

after an early retirement scheme has been emplemented. We can this 0-

.

Table II. 8 contains three different appointment vectors and a vector s

of current salaries. The appointment vector a is the one used before

early retirement, a. is the one used after early retirement, and a„ is

the case where all appointments are made into non-tenure. It was assumed

that salaries had been growing at 4% per year and the interest rate on the

fund was 6% per year. The fund was incremented with 16% of the salary level

each year.

Equation (41) was solved for 3 cases, and the results for classes

9 (tenured low salary, age 62-64) and 15 (tenured high salary, age 62-64)

for the expected fund values are given in tables II. 9 and 11.10 Table 11.11

shows the steady state stock levels for cases 1 and 2. These we calculated

using the "hindsight" model of section 3 and a total system size of 413

faculty. For case 1 the calculations were made using 0~ and a . For

case 2 Q and a were used, and for case 3 CL and a were used.

All other parameters were kept the same in the three cases.

Notice that with the implementation of the early retirement scheme

the expected fund size is almost unchanged, even though there are large

differences in the diagonal elements of Q~ and 0, for classes 7 through

15. However, the steady state distribution of faculty has changed con-

siderably, with a higher percentage of younger faculty. The slight decrease

in retirement fund size (about 1%) may be tolerable when viewed in light

of the improvement in the distribution of faculty.
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Class i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
V

1 .78

"

2 .043 .70

3 .02 .28 .77

4 .007 .19 .76

5

^~

.20 .79
i

6 .18 .80

7 .06 .78

8 .19 .77

9 .20 .88
I

10 .06 .77

11 .21 .74

12 .23 .84

1.3 .06 .74

14 .23 .68

15 .30 .70

Table II. 6: Fractional Flows Q in a Faculty Early Retirement Model
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Class

\ Class 1

j\ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 .78 i

|

2 .43 .7 i

1

3 .02 .28 .77

I

4 .007 .19 .76
i

5 .20 .79

6 .18 .8

1
i_

7 .06
I

.69
j

8 .19 .54

9 .2 .42

10 .06 .71

11 .21 .57

12 .23 .47

13 .06 .73

14 .23 .64

15 .30 .62

Table II. 7: Fractional Flows Q in a Faculty Early Retirement Model
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-

Length of Service

(years)

Present Value of

Case 1 Case 2

Fund

Case 3

20 94,579 92,114 86,787

25 117,895 115,341 111,524

30 143,897 141,085 138,387

35 172,578 169,378 167,584

40 204,029 200,34 7 199,337

Table II. 9: Retirement Fund for Faculty in Class 15 at Retirement

Length of Service

(years)

Present Value of

Case 1 Case 2

Fund

Case 3

20 77,313 77,569 74,015

25 99,799 99,634 96,203

30 124,306 123,913 120,564

35 151,166 150,648 147,319

40 180,671 180,047 176,705

Table .11.10: Retirement Fund for Faculty in Class 9 at Retirement
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Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Vacancies

Case 1 110 19 38 39 42 40 11 9 15 10 8 12 10 10 10 30

Case 2 120 21 43 43 46 43 9 3 1 9 4 2 11 9 7 34

Table 11.11: Steady State Stocks Without and With Early Retirement.
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Case 3 is added for illustration. It shows that if a policy

change were made to appoint only non- tenured faculty, this would change

the expected value of the retirement fund even if no changes were made

in the fractional flows. It is interesting to see that for the cases

studied the expected value of the fund decreases if appointments are

made only into non-tenure.

Figure II. 8 shows a plot of the fund value for classes 9 and 15

for increasing length of service at retirement.

In conclusion, this section has related some financial variables

to a cross-sectional manpower flow model and indicated how to calculate

some relevant expected values such as the value of a retirement fund.

The spirit of the model is more important than the particular formulas

and examples presented here. It can be possible with a cross-sectional

flow model to study financial questions related to manpower policy. The

particular model, classification scheme, and variables under study, will

depend on the policies to be investigated and on the questions you wish

to answer about the system.
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11- Student Enrollment Forecasting Models .

Of the many areas of application of the fractional flow model, the

authors have gained considerable experience from its use in student

enrollment forecasting of university undergraduates. Let us consider the

classes of students to be freshmen, sophomores, juniors and seniors; thus

we have a four-class model. The time periods are taken to be semesters.

We shall find that a number of problems arise in the application of a

simple fractional flow model. These will be discussed as they arise.

The model will then be used to predict student attendance patterns, and

will be checked against a set of independent data on such attendance

patterns

.

The first problem encountered is that the natural accounting and

enrollment period in a university student model is either the semester

or quarter. For simplicity we use the semester here. The reader should

have no trouble in extending the results to a quarter system.

The fractional flows between classes from the fall semester to the

spring semester differ considerably from those between classes from the

spring semester to fall semester. If little or no new input of students

takes place in the spring, and one is only interested in forecasts for

the fall, the detailed flows in intermediate semesters could be ignored.

However, in the institution we studied (the Berkeley campus of the Univer-

sity of California) significant new input occurs each spring. Table TI.12

shows the new input into the four classes from the Fall of 1962 to Fall

of 1966. Table II. 13 shows the fractional flows Q and Q* between classes,

from Fall to Spring and Spring to Fall respectively.
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(1) (2) (3) (4)

Semester Freshmen Sophomores Juniors Seniors Total

Fall 1962 3525 678 141 6 184 5803

Spring 1963 328 187 324 42 881

Fall 1963 3620 738 1569 199 6126

Spring 3 964 346 209 408 45 1008

Fall 1964 3427 602 144 2 202 5673

Spring 1965 256 180 452 49 937

Fall 1965 2579 390 1042 125 4136

Spring 1966 291 210 476 66 1043

Fall 1966 3053 733 1418 205 5409

Table 11.12; New Admissions, University of California, Berkeley

Q =

(1) (2) (3)

(1)
" .926

(2) .001 .857

(3) .031 .902

(4) .005

(4)

789

j* =

(1) (2) (3)

(1) ".103

(2) .699 .115

(3) .792 .158

(4) .749

(4)

312

Table 11.13: The Fractional Flows for Fall /Spring and Spring/Fall
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Let time t = be the start of a fall semester (end of a spring

semester; the summer period is ignored), and let the current enrollments

be given by the 4-dimensional vector s(0). Then in the spring enrollments

will be

s(l) = Qs(0) + f(l),

where f(l) is the vector of new admissions in the spring. Now

s(2) = Q*s(l) + f(2)

= Q*Qs(0) + Q*f(l) + f(2) •

If we let Q*Q = Q, then the enrollments in successive fall quarters

are given by

(42) s (n) = Qs(n-2) + Q*f(n-1) + f(n), n even.

The reader should now see how the basic model (equation 2) can be modi-

fied for cyclic situations.

Problem 2 4. Show that the stocks in successive spring semesters are given

by

s(n) - Qs(n-2) + Qf(n-l) + f(n), n = 3,5,...,

where Q = QQ*

.

Problem 2 5. Determine Q and Q for the data in Table 11.13

Problem 2 6. Determine the forecasting formula for successive fall quarters

assuming (1) three quarters operation, (2) year-round operations in 4

quarters. ri

A second problem was found when the university data was analyzed.

A significant number of students have breaks in their attendance (in
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addition to the obvious summer periods) between initial entrance and

graduation, campus transfer, or drop-out. It seems that students often

take a semester off and return at a later date to finish their degree

program. However, how is one to distinguish between a student who has

left permenently, and one who is on a temporary 'vacation'? Indeed, the

student himself may not know which state he is in! Records are kept which

distinguish "continuing" from "returning" students once they are re-

admitted. It was found that this data could be used to estimate the

fractional flows to and from a 'vacation' state. Thus a 5-state model

is postulated to more realistically model the students' attendance pat-

terns. For details the reader should consult Marshall, Oliver and

Suslow [1970].

Table II. 14 shows the fractional flows between classes, where state

5 represents the 'vacation' state. Notice that of those on vacation in

a fall semester .632 stay on vacation in the spring; but of those on

vacation in the spring only .342 stay on vacation the following fall.

This shows that students prefer to return to their studies in the fall

each year, a not unexpected observation.

One could now use either the 4-state or 5-state models in equation

(42) to forecast student enrollments, and more will be said about this

later in this section. At this point we use the model to investigate

attandance patterns, and check the results against an independent set of

data. The attendance patterns of all students who entered the Berkeley

campus for the first time in the fall semester of 1955 were studied, as

were those of the similar group who entered for the first time in 1970

(for details see Suslow, et al [1968]). A group with a common
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Q =

913 .040

00] .831 .074

.031 .852 .155

.005 .757 .099

012 .026 .050 .032 .632

)* =

067 .084

699 .039 .145

.792 .059 .234

.749 .207 .193

036 .076 .100 .104 .342

Table 11.14: Fractional Flows for the 5-state Model

characteristic such as entrance date and state at entry is called a

'cohort.

'

Table II. 15 gives the numbers and fractions of students in both the

1955 and 1960 cohorts who attended a given semester after entrance. The

fractions are plotted in Figure II. 9.

A striking feature of this data is its stability over time.

Attendance on any given semester after entrance varies little from the

1955 to 1960 group. Changes in University probation policy for freshmen

and sophomore students appears to explain the small discrepancy in the

third and fourth semesters (see Suslow, et al [1968]).
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Semester

after

Entrance

195 5 Entering Group 1960 Entering Group

Specific
semester

Number
of

students

Fraction
attending

given
semester

Specific
semester

Number
of

students

Frac t i on

a t tending
given

semester

1st F 1955 2,067 .972 F 1960 3,228 .9 78

2nd S 1956 1,924 .905 S 1961 3,002 .910

3rd F 1956 1,585 .756 F 1961 2,331 .706

4 th S 1957 1,455 .684 S 1962 2,104 .637

5 th F 1957 1,260 .59 3 F 1962 1,891 .573

6 th S 1958 1,194 .562 S 1963 1,799 .54 5

7 th F 1958 1,114 .524 F 1963 1,753 .531

8 th S 1959 1,058 .498 S 1964 1,690 .512

9th F 1959 424 .199 F 1964 693 .210

10th S 1960 276 .130 S 1965 461 .139

11th F I960 107 .050 F 1965 182 .055

12 th S 1961 77 .036

13th F 1961 37 .017

14 th S 1962 34 .015

15th F 1962 25 .011

16 th S 1963 15 .007
— - - - -^

Table 11-15: Number of Students Attending any Given Semester.

An important point to note is that the behaviour of a cohort appears

to be independent of its size, a feature which may prove very useful when

major changes from today's admission policies are considered. The cohorts

of 2126 and 3290 students have essentially the same attendance character-

istics .

Table II. 16 gives the numbers and fractions of students in each

cohort who attended without interruption at least the given number of

semesters. The fractions are plotted as the lower curve in Figure 11.10-

This curve has essentially the same shape as that in Figure II. 9

with a sharp break point at the eighth semester and an increased tendency

lor a student to leave the system after one or two years. We again have

close agreement between the 1955 and 1960 data.
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Table IT.16 gives the fractions of students from each cohort which

spent at least a given number of semesters in the system. This includes

semesters in attendance and semesters on vacation.

These results are plotted as the upper curve in Figure 11.10. Both

curves in Figure II. 10 would coincide if students had no vacations but the

large difference between the two curves (15% by the 8th semester) shows

that a significant proportion of students interrupt their consecutive

attendance patterns by vacations.

Returning now to our fractional flow model, we first calculate

the fraction of students attending the n— semester after entrance in

st
a fall semester as a freshman. For the 1— semester after entrance

(that is, the entering semester) we take it to be 1. For the second semes-

ter the first column of gives the fractions of these freshmen in each

state. Summing over the four attending states gives the fraction in

attendance.

Problem 2 7: Show that for n even, the fraction attending the n— semes-

ter after attendance is given by summing the first four elements of the
n n-1

first column of * , and for n odd, Q l
.

Table 11.18 shows the calculated probability of attendance in each

semester for the four state model and this is plotted in Figure II -11 • Th>3

calculated distribution agrees well with that of the 1955 and 1960 fresh-

men cohorts. However, since there are no vacation states, attendance,

consecutive attendance and elapsed time are the same in this model and

we naturally get poor agreement with the cohort data for consecutive

attendance and elapsed time.



72

Number of 1955 Entering Group 1960 Entering Group
Consecutive
Semesters

(2,126 students) (3,298 s tudents)

Completed Number of

Students
Fraction

Number of

Students
Fraction

1 2,067 .972 3,228 .978

2 1,923 .904 2,994 .907

3 1,554 .730 2,301 .697

4 1,373 .645 2,018 .611

5 1,112 .523 1,679 .509

6 1,027 .483 1,554 .471

7 883 .415 1,371 .415

8 819 .385 1,291 .391

9 222 .104 363 .110

10 112 .052 181 .054

11 15 .007 33 .010

Table II. 16: Students Completing Each Consecutive Semester

With no Interruptions in Attendance

Number of Semesters
in the System

1955 Data 1960 Data

1 .976 .984

2 .929 .926

3 .804 .769

4 .752 .718

5 .655 .660

6 .625 .634

7 .565 .589

8 .528 .556

9 .207 .234

10 .129 .155

11 .033 .053

12 .019 .000

Table 11.17 : Fraction Completing at Least a Given

Number of Semesters.
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Semester Fraction in Fractions from
n Attendance 1970 Data

1 1.000 .978
2 .926 .910
3 .743 .706
4 .664 .637
5 .593 .573
6 .534 .545

7 .475 .531
8 .395 .512

9 .213 .210
10 .173 .139

11 .073 .055

12 .059 -

Table 11.18: Fraction in Attendance for the 4 State Model

Semester Attending n Consecutive At least n

n Semester n Semesters Semesters

1 1.000 1.000 1.000

2 .914 .914 .926

3 .709 .700 .746

4 .628 .607 .669

5 .541 .501 .601

6 .483 .428 .546

7 .414 .339 .482

8 .350 .263 .407

9 .178 .088 .232

10 .160 .067 .201

11 .097 .017 .126

12 .089 .013 .111

Table II- 19: Calculated Fractions for the 5 State Model
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Table 11.19 gives the calculated distributions of attendance,

consecutive attendance and elapsed time for the single vacation state

moHel, The distribution of attendance is plotted in Figure 11.12 for

comparison with the cohort data.

The results for the fraction in attendance do not agree as closely

as those obtained with the four state model. The major discrepancy occurs

in semesters seven and eight. Very good agreement is found in the first

five semesters. This characteristic is found in the distributions of

consecutive attendance and elapsed time also, although in these two distri-

butions the five state model naturally gives an improvement over the four

state.

The consistently poor agreement near the break at semester eight

requires explanation. Remember that we are comparing fractions calculated

from a cross-sectional model, with fractions observed from longitudinal

studies on students. The cross-sectional data includes students who enter

in all classes, and a feature of the model is the assumption that a student

who enters as, say, a junior, behaves in the same way as a student who

entered as a freshman when he becomes a junior. Thus the cross-sectional

data includes numerous different cohorts superimposed at one time, and

it is difficult (if not impossible) to identify to which cohort a student

belongs using the available data.

One of the main purposes for our including this example of student fore-

casting is to motivate the types of models presented and analyzed in report

number III. Perhaps by keeping a little more data on an individual in addition

to his current class, such as how long he has been in the system and what was

his class at entry, his longitudinal behavior patterns can be used as the

basis for a model. As we shall see, the longitudinals models tend
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to better represent actual movement of individuals through a system,

but the price paid is in larger amounts of less frequently available

types of data.

To end this section we include enrollment predictions for the

years 1962-1966 for the Berkeley campus by Freshmen, Sophomores, Juniors,

and Seniors, using the four and five state models. Actual enrollments

are given for comparison. In the predictions, new inputs were taken as

fixed and known and only the continuing portions were calculated. The

results are given in Table 11.20.

In order to attempt to measure the suitability of each model in

a simple manner two types of error are defined and computed for each

model. We first compute the absolute error by taking the absolute value

of the difference between the actual enrollment and the predicted value

for a given state and year and summing over the states. These are given

in Table 11.21. Secondly, we find the mean square error for each year

group in the usual manner for the four states. These are given in Table

11.22.

In terms of absolute error, the five state model appears to be

superior to the four state model over short prediction periods. Our

results show that for longer periods the four state model gives better

results

.

In terms of absolute error the five state model seems to be consis-

tently better, although there is little difference in them at five years.

If enrollment predictions are required over one or two years in the

future, it seems that the five state model is the most desirable one.
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1961 1962 1963 1964 1965 1966

FRESHMEN

SOPHOMORES

JUNIORS

SENIORS

TOTAL

4 STATE

5 STATE

ACTUAL

4 STATE

5 STATE

ACTUAL

4 STATE

5 STATE

ACTUAL

4 STATE

5 STATE

ACTUAL

4 STATE

5 STATE

ACTUAL

3843

39 30

3914

3972

4042

4032

4106

3865

3861

4186

2986

2997

3307

3388

34 28

3633

3778

3790

3748

3649

3899

3866

3846

3875

3855

3468

3479

3480

3349

3245

3289

3126

4180

4809

4743

4762

5049

4927

4806

5026

49 30

5429

4619

4529

5311

4689

4660

5624

394 3

4311

4289

4210

4859

4772

4789

5053

4899

4585

5220

5080

4581

5078

4949

4 364

16840

16694

16593

17849

17597

17547

17819

17545

17668

16304

16086

16548

16400

16326

J6747

Table 11.20: Enrollment Forecasts and Actual Enrollments, 1962-1966
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MODEL 1962 1963 1964 1965 1966

4 STATE

5 STATE

247

101

302

50

151

123

244

462

347

421

Table 11.21: Calculated Absolute Prediction Errors.

MODEL 1962 1963 1964 1965 1966

4 STATE

5 STATE

92

70

133

72

403

388

501

493

603

5 79

Table II. 22: Calculated Mean Squared Error,
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12. A Vacancy Model .

In previous sections we have considered stocks of manpower in

various classes but have not specifically concerned ourselves with posi-

tions which people fill. In this section we consider an organization

where both positions and people are accounted for.

Let x.(t) be the number of class i positions available at time t,

and let s.(t) be the number of people in class i. The number of vacancies

in class i at time t is given by v.(t) = x.(t) - s.(t).

We assume the flow of positions is governed by the simple equation

(43) x(t+l) = x(t) + y(t+l),

where y.(t+l) is the number (perhaps negative) of new class i position

that are made available in period t + 1. If y.(t+l) is positive,

positions are added. If negative they are removed.

The flow of manpower in period t + 1 is determined in large

part by the vector of vacancies v(t) that exist at time t.

We assume that all of the v.(t) vacancies in class i are filled

during period t. Moreover, we assume that a fraction r.. ^ of these
ji

vacancies are filled by individuals from class j for j = 1,2,...,N ,

and a. ^ is the fraction of vacancies filled by new appointments.

The fractional flow assumption is

(44) f
ji

(t+1) = r
ji

v
i
(t) £or j * i

f (tfl) - V± (t).

Since we assume all vacancies are filled we have
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IN

A J1
+ a. = 1.

1

The inflow of people into rank i in period t will be

IN

V
i
(t) =

( ^ ^

j

V
i
(t) + a

i
V
i
(t)

3=1

The outflow of people from class i to other classes will be:

I Vj^ + f
io

(t+1)

J=l

When these relations are combined we find

N

s
±
(tfl) - s

±
(t) + v.(t) -

I r v (t) - f. (t+l).

j-1

Let h.(t+l) = f.„(t+l), the flow out of the system from i in t + 1
i iO

and R the matrix of elements r... Then

(45) s(t+l) = x(t) - Rv(t) - h(t+l).

Subtracting (45) from (44) we obtain

(46) v(t+l) = Rv(t) + h(t+l) + y(t+l).

Equation(46) determines the flow of vacancies in the organization. Although

it is possible to have y.(t+l) £ 0, we assume that v.(t) ^ for all

i and t. Thus we can obtain from (46) an explicit lower bound on y(t+l)

,

the change in positions in t + 1;
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y(t+l) £ -(Rv(t)+h(t+l)).

Positions cannot be removed faster than this without causing negative

elements in the vacancy vector.

The equilibrium solution of the system given by (46) is easily seen

to be

(47) v = (I-R)
-1

h, y =

s = x - V.

From (47) we can calculate the equilibrium flows: f.. = r..v. for i ^ i

,

ij ij J

and f.. = s + v. . Thus the average lifetime an individual spends in

class i is given by

i
s

•

I = I = -i
i 1 - f ../s. v.

'

XI 1 1

The model above operates with hindsight. We observe the vacancies

at time t, and act during period (t+l)to fill the time t vacancies.

These actions in turn create new vacancies at time t + 1. An alternate

foresight model is possible which eliminates vacancies by planning ahead.

Although the assumption of being unable to eliminate vacancies is unreal-

istic, the model that we obtain is mathematically simpler, and the

policies are more forward looking.

Let z.(t+l) be the number of class i positions filled during period

t + 1 (recall that period t + 1 is the interval (t,t+l]). It follows

that

< 48 > z.(t+l) = I f . .
(t+1).
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Let r.. for j = 1,2,...,N (j^i) be the fraction of these positions

that are filled by people from rank j, and let a. be the fraction that

are filled by new appointments. Set r =0. We require that all posi-

tions are filled. Thus

N

7 r. . + a. = 1.

Vacant positions in class i during period t + 1 are created by

departures h.(t+l), addition of new positions y.(t+l), and by flow of

individuals in class i to fill other positions. The total number of

vacancies created is

N

(49) h.(t+l) + y.(t+l) + I r..z.(t+l).
3- i

j=1
ij J

If all vacancies are filled by time t + 1, then (48) and (49)

must be equal. In matrix notation we have

(50) z(t+l) = h(t+l) + y(t+l) + Rz(t+1).

Equation (50) can be solved for z in terms of h and y,

z(t+l) = (I-R)
_1

(h(t+l)+y(t+l)).

In the steady state we obtain

(51) z = (I-R)"^, y = 0, s = x.

From this we can compute new appointments f„, = z a , and internal

flows f = r z.. Specification of s. allows us to compute f =
ij lj j 1 ±x

s. - z and the average lifetime in class i for an individual is
l l
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1

Problem 28 : Show that the equilibrium vacancy model is equivalent to an

equilibrium Markov model with

1 . .
= r . .v./s . for i ^ i .

Ji ij j l J »

q.. = (
l .-l)l l

. , f . = v.a.,
li l l ' l li

Example 10: Consider a six class organization where classes 1, 2, 3 are in

the bottom stratum, classes 4 and 5 are in the middle stratum and class 6

the top stratum. Let us assume

1

2

R = 3

4

5

6

1 2 3 4 5 6

—
.2 .1 .15 .1

.15 .1 .2

.05 .1 .25

.4

.05

.5 .4

.3

a = .8 .7 .8 .2 .15 .3

h = 17 9 13 4 5 1

s = 400 470 375 85 90 10

Notice from R that one can move up in strata but not down.

Of the vacancies created in class 4, for example, 15% are filled

from class 1, 25% from class 3, 40% from class 5 and 20% by new people.

Nine people leave the system from class 2 each period, 13 from 3, 17 from 1,

etc. The system has 400 people in 1, 470 in 2, 375 in 3, etc.



First we calculate (I-R) which is

86

1.040 .220 .126 .311 .310 .210

.160 1.050 .120 .183 .323 .170

.680 .166 1.020 .371 .266 .228

1.250 .025 .687

.500 1.250 .575

1.000

From equations (47) and (51) we see that the vectors v (steady

state vacancies) and z (steady state positions filled) are equal and

both are given by the vector

(18.1,15.3,18.1,8.8,8.9,1.0) .

The average lifetime of an individual in each class is given by the

vector

(22.1,30.7,20.7,9.6,10.2,10.0).
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13. More General Fractional Appointment Policies .

In this section we consider the fractional flow model

(52) s(t+l) = (Q+A)s(t).

We assume A k 0, and e(Q4-A) = e. In this model the appointment policy

is

(53) f(t+l) = As(t),

which is a linear function of the current stocks of manpower. By assuming

A S: 0, we have insured that f(t) ^ 0. Also the system will stay of

constant size since

es(t+l) = e(Q+A)s(t) = es(t).

It is apparent that w must equal eA. We can interpret a../w.

as the fraction of departures in class j that are replaced by appoint-

ments in class i. This type of appointment policy is clearly more

flexible than the policy presented in section 4 where a.. = a.w. for
ij i J

all i and j .

The equilibrium version of equation (52) is

(54)
s = (Q+A)s, f = As.

The question arises, is it possible to obtain equilibrium solutions

of (54) that are not possible when we restrict a.. to the form a,-w.;
ij i J

with ) a.i 1? The answer is no as we now show.
J=l J

Let s and f be any equilibrium solution of (54); then let

(55) a = As/ ws,
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Clearly ea = eAs/ws = 1

and
As

(Q+a.w)s = Qs H ws = s.
ws

As
However, if we use the fractional appointment policy a = — for s(0) ^ s,

ws

then the path to equilibrium using this appointment policy will in general

differ from the path taken using appointment policy A.

Problem 29 : Suppose we require (Q+A) ^ 0, and e(Q+A) = e; but allow

elements of A to be negative. Examine and interpret this model.

Example 11 : Consider a university faculty consisting of the following 15

classes of manpower.

Class Description

1 Nontenure
2 Tenure - Age 30 to 34

3 Tenure - Age 35 to 39

4 Tenure - Age 40 to 44

5 Tenure - Age 45 to 49

6 Tenure - Age 50 to 54

7 Tenure - Age 55 to 58, Low Salary
8 Tenure - Age 59 to 61, Low Salary
9 Tenure - Age 62 to 64, Low Salary

10 Tenure - Age 55 to 58, Medium Salary

11 Tenure - Age 59 to 61, Medium Salary

12 Tenure - Age 62 to 64, Medium Salary

13 Tenure - Age 55 to 58, High Salary

14 Tenure - Age 59 to 61, High Salary

15 Tenure - Age 62 to 64, High Salary

The transition matrix is given in Table II .23and shows the estimated

fractional flows when an early retirement system has been instituted.

We have broken the departure class (0) into three separate classes,

early retirement (16) , normal retirement (17) , and others (18)

.

The departure fraction w. is the sum of the last three numbers

in column i. Before, the early retirement program was instituted the

fractional appointment vector a was given by
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Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

column

a .8 .028 .044 .044 .036 .01 .01 .028

Under the early retirement policy, all new appointments that arise

from early retirements will be filled by nontenure appointments.

For each class i let r . = q. , . be the fraction that retire early,
l 16 ,i

and let w. be the fraction that left the system before the early

retirement plan w. = q . + q .. In other words we assume that
i 1 / , i 18 , i

w. = r . + w.

.

1X1
Now define b. =

{ } and the matrix A by
otherwise

(56) a. . = b.r . + a.w.
ij i J i 3

A portion of the appointment matrix is presented below along with the

equilibrium solution of (54) with X = 413 (total faculty in system)

.

Equilibrium Solution

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s 141 23 47 47 50 46 9 3 2 9 5 2 12 9 8

The non zero elements of the first and ninth columns of A are

shown.

rows

1 2 3 4 5 6 13 14

1 0.12 .0042 .0066 .0066 .0054 .0015 .0015 .0042

9 .556 .0034 .0053 .0053 .0043 .0012 .0012 .0034

Note that column 9 is not proportional to column 1,
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The equivalent simple appointment policy is given by a = As/ws.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a 0.83 .024 .037 .037 .03 .008 .008 .024

From an initial value of s(0), given below, we projected s(t)

for five periods using first the appointment policy A (56) , then using

a above. The values of s (t) are shown below

Period

12 3 4 5

Policy A 137 144 146 147 146 145

Policy a 137 143 145 146 145 144
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14* Evolution of Fixed Size Systems .

This section examines the fractional flow model

(57) s(t) = Q s(t-l) + f(t), f(t) * t > 1

given s(0) 2 0, s(0)e = A.

We make four assumptions about this system:

(i) QiO

(ii) w = e-eQ>0

(iii) (I-Q) has a nonnegative inverse,

(iv) s(t)e = A for all t.

Items (i) and (ii) simply identify a fractional flow model. Assumption (iii)

is equivalent to Q > 0. Thus the legacy of any initial stock levels s(0)

becomes negligible in the distant future. The final assumption (iv) , of

constant size, places a limitation on the appointment vector f(t). Summing

the vectors in (57)

,

es(t) = eQs(t-l) + ef(t) = es(t-l) - ws(t-l) + ef(t).

Thus to preserve constant size

(58) ef(t) = ws(t-l).

Equation (58) simply says the number of new appointments in t must equal

the number of departures in (t-1)

.

We can normalize the problem by defining

z(t) = s(t)/A, h(t) = f(t)/A •
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Then (57) and (58) become

(59) z(t) = Qz(t-l) + h(t),

eh(t) = wz(t-l)

,

h(t) * , t = 1,2,...,

z(0) given, ez(0) = 1, z(0) k 0.

Define

(60) S = {z|ez 1, s k 01 .

S is the set of all distributions of manpower in the N classes. The

constraints in (59) require that z(t) e S for all t, using S we can

write (59) in an alternate manner; given any sequence (z(t), h(t)} that

satisfies (59) define a(t) as

z(t-l) if wz(t-l) = 0,1

(61) a(t) =

h(t)
otherwise.

wz(t-l)

Notice that a(t) S for all t * 1, and that

(62) z(t) = (Q + a(t)-w) z(t-l)

or

z(t) = P[a(t)] z(t-l) ,

where P[a(t)] is the stochastic matrix Q + a(t)-w with elements

P..[a(t)] q + a.(t)w.. Alternately, z(0) e s and a sequence

a(t) e S, til, determines a solution z(t) e S of (62); by defining

h(t) = a(t) 'wz(t-l) , we can then construct a solution of (59).
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Problem 30 : Given the system

s'ct) = Qs(t-l) + f(t), f(t) >

s~(t)e = 6
t
A t = 1,2,.. .,

and st0)e - As(0) > 0. How and under what conditions can we convert this

into the form of (59), and still satisfy requirements (i) - (iv)?

D
Let z be a distribution of manpower at any time. An interesting

set of points to examine, is all points in S that can be reached from z

in a single time period. We define this set to be

(63) R(z) = {y|y * Qz, y e S} .

R(z) is the set of all points that can be reached from z in one period.

To determine the set of points that can be reached in two periods, we must

generalize our notion of R. Let A be any nonempty subset of S, and

define

(64) R(A) = {y|y > Qz , z e A, y e S} .

R(A) is the set of all points that can be reached in one step from some

point in A. It follows that

(65) R(A) = U R(z) .

z e A

Now define

(66) R°(A) = A

R
X
(A) = R(A)

R
fc

(A) = R[R
(t_1)

(A)], t > 2
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It follows that R (A) is the set of all points that can be reached in t

periods starting from some z e A. When A consists of a single point

z, then we write R (z)

.

The analysis that follows is motivated by the following problem:

given an initial distribution z(0) can we reach a desired distribution y

in a finite number of steps? Moreover, when we reach y is it possible to

remain at y or return to y? The easy question, can we remain at y, will

be treated first. We can only give a partial answer to the questions, can we

move from z(0) to y, and can we return to y. We give an operational

characterization of the set E of maintainable or equilibrium distributions.

If y e E, then it is possible to remain at y.

We also describe a set L of limiting distributions. If y is in

the interior of L then, for any z(0), it is possible to move to y in

a finite number of steps, and it is obviously possible to return to y from

y in a finite number of steps. However, given any y it is difficult to

determine if y e L. Thus, the characterization of L is not as operational

as the characterizations of the set E.

Example 11 : Given Q, z(0), y below

Q =

8

1 .95

.02

z(0) =

33 l

34 y =

33

it is not possible to reach y from z(0), since z»(t) > for all t.
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Clearly, it is possible to remain at y if and only if y e R(y) , or

y e {z|z k Qy, z e S}.

This will be true if and only if y £ Qy. Let us define the equilibrium

set E as the set of distributions that can be repeated

(67) E = {y|y e R(y) , y e S} = {y|y £ Qy, y e s} .

It follows that y e R (y) for all t, thus it is possible to remain at y

indefinitely. There is another way to describe the set E. Recall that

D = (I-Q) . Then

(68) E = {y|y = Dh, y e S, h > 0} .

To see this, note that if y = Dh and h > 0, then (I-Q)y = h > and

y e E. Also, if y e E, then define h = (I-Q)y £ 0, and note that y = Dh.

For y e E, define h(y) = (I-Q)y, a(y) = (I-Q)y/wy, and P[a(y)] =

Q + a(y)«w. Then we obtain

(69) P[a(y)]y = y .

If h(y) > 0, then for any initial distribution z(0) we obtain

(70) P
t
[a(y)] z(0) > y .

Problem 31: Prove

(i) If y e E, then wy >

(ii) There is a y e E, such that y > Qy.

(iii) If y > Qy, then P[a(y)] is a regular Markov matrix.
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Problem 32 : Construct an example where y e E, but y > Qy is not

true, and P [a(y)] z(0) does not converge (or come close to y) . n

We now turn to the long range behavior of the system (59) . Let

A and B be subsets of S. If A => B, then R(A) => R(B) . This is

reasonable, since it tells us that if you can go to y from z e B, then

you can certainly reach y from z e B <= A. Notice that R(E) ^ E. This

is true because y e E implies y e R(y). Now consider the inclusions

(i) R(E) ^ E

(ii) S = E

(iii) S 3 R(S)

and repeatedly apply R. We obtain

(71) S ^ R
t
(S) 3 R

t+1
(S) = R

t+1
(E) = R

t
(E) = E for all t * 0.

Since R (S) is a contracting sequence of sets we can define

00

(72) L = n R
t
(S) .

t =

It is evident that L is nonempty since L => E, and it is not too difficult

to show that R(L) = L.

Problem 33 : Prove R(L) = L. „

This result can be carried one step further when we make the

additional assumption that w > 0.

Theorem : If w > 0, then L is the unique closed set that satisfies

R(B) = B. Moreover, if A. is any closed subset of S, then R (A) * L

geometrically.
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The theorem is proved in Grinold and Stanford [1973] . Notice that the

set L has several remarkable properties. First, if z(0) e L, then

z(t) e L for all t. Once the system enters L it cannot leave.

Consider the problem of moving from z(0) e S to y. If y is in

the interior of L, then there is a t* such that for t > t* y e R (z(0)).

In particular if we take z(0) = y, then one can return in a finite number

of steps to any y in the interior of L. Thus any z(0) e S can reach y

in a finite number of steps. In contrast, suppose y i L. Take z(0) £ E,

then for each t

y i L 3 R^E) :> R^zCO))

It is not possible to reach y from z(0). Moreover, if y (f L, then

t «n
the system cannot return to y. A return would imply y e R (y) for

n = 1,2,... . However, R
* n

(y) * L, and y t L. This contradiction shows

we cannot return to any y I L.

In general it is not possible to obtain a characterization of L.

The question, "is y in L" cannot be precisely answered. However,

E c L is explicitly known. If a z e L is found such that y e R (z)

for some t, then y e L.

Example 12 : When n = 3, it is possible to depict the set E.

Suppose

Q =

lll

l21 '22

l

32
i

33
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and w > 0. For Q in this form it is straightforward to show that

1

(qn-H,
1
)

q.

d =

l21

(q21
-fw

1
)(q

32
4w

2
) (q

32
4w

2
)

q21 q32 l32

(q21
+w

1
)(q

32
^

2
)w

3
(q

32
-^

2
)w

3
w
3

t_ -J

Now let y(k) be the point in E which corresponds to the stationary policy

of making all appointments into class k, k = 1,2,3,. The three points

y(D» y(2) , and y(3) form the extreme points of the set E and are given

by (using (68))

yd) =

q32
4v

2
)w

3
/K

1

q21
w
3
/K

1

q21 q32
/K

1

y2
= w

3
/K

2
y
3

=

q32
/K

2
L

where K- (q32
+w

2
) w

3
+ ^32^3^ q21'

and K
2

=
q32

+ W3'

Using the values of Q inexamplell, K.. = 0.017, K = 0.12 and the

extreme points of E are

y(D =

0.294

0.588

0.118

y(2) = 0.833

0.167

y(3) =

1.0

The sets S, E, R(z) and R (z) for z = [*8,-l,'l] are illustrated in Figure

11.13.
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(0,1,0)

yd)

X(0,0,0)
\

1(1,0,0)

(0,0,1)
Yi

Figure 11.13 Illustration of Sets S, E, R(z) and R (z) for the 3-class

System in Example 11 .
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15. Notes and Comments .

The fractional flow model has been discussed in numerous papers

in the literature, but almost all discussions have been in the context of

a Markov chain. An extensive bibliography can be found in Bartholomew [1973],

pages 381-402.

The hindsight and foresight models discussed in sections 3 and 4

correspond to "closed" systems as defined in Bartholomew [1973] with

(N+l) and N states respectively. The matrix theory referred to in

section 6 can be found in numerous places including Debreu and Herstein

[1953 ]. Section 8 is essentially taken from Branchflower [1970]. The reader

interested in pursuing the probabilistic interpretation should consult

Bartholomew [1973] and Kemeny and Snell [I960].

The data and some of the ideas in section 10 are taken from

Hopkins [1974]. The early retirement scheme suggested in this section has

been used on a trial basis at Stanford University. Section 11 is based

on a report by Marshall, Oliver and Suslow [1970], and in some sense shows

the limitations of the cross-sectional model. A close look at the data

in this section is the motivation for the longitudinal models discussed

in the next report. The vacancy model in section 12 was formulated by

White [1970]. These models have been used to forecast flow in several

strict hierarchies.

Sections 13 and 14 are more advanced and are intended for those

readers more familiar with matrix theory and Markov chain theory. Section

13 owes a great deal to privateconversations with Robert Stanford. Section

14 considers the questionof long-run evolution, which has been investigated

by Bartholomew [1969]. Armacost [1970], Toole [1971], Davies [1973] and

Grinold and Stanford [1973].
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Included in the bibliography are examples which demonstrate the

many applications of cross-sectional models in manpower. Young and Almond

Rowland and Sovereign, and Vroom and MacCrimmon have applied the model to

the distribution of staff and management in an organization. Blumen

Kogan and McCarthy have applied it to Labor Mobility. Thonstad has used

it as the basis of models for national education and manpower planning as

did Armitage, Smith and Alper. Clough and McReynolds, and Marshall, Oliver

and Suslow have applied it to student enrollment forecasting in higher

education. Charnes, Copper and Niehaus use it as a basis of their models

for planning the civilian manpower in the U.S. Department of the Navy.

The report by the Naval Personnel Research Lab [1973] gives a summary

of numerous manpower planning models used in the U.S. Armed Forces (with

emphasis on the Navy). The basis of many of these models, though often

not explicitly stated, is the cross-sectional model with its fractional

flow assumptions. Finally, the proceedings of two NATO conferences on

Manpower Planning are available in Smith [1971] and Wilson [1969]

.
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