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1. Introduction .

This report is the first of a series and presents the basic concepts

of manpower flow models. The notation, conventions, and definitions that

will be used in this and subsequent reports is introduced. The three main

concepts described in this report are (i) conservation of flow, (ii) equi-

librium, and (iii) the relation between waiting times and the flow process.

The usefulness of these ideas is not limited to manpower planning and we

hope the reader will find these basic concepts useful in wide variety

of other areas.

The report concludes with a brief discussion of the possible uses

of manpower flow models and of the need for more structured models to

provide useful answers to planning questions. Subsequent reports present

models with more structure and examples of their application.

2. Manpower Classification .

Consider a manpower system which consists of N different classes

of manpower n = 1,2,...,N. To prevent undue repetitions the words, type

kind, and category are used as synonyms for class. In some applications

we shall employ more specific and descriptive names such as rank, grade,

state, or status.

The particular method of manpower classification is not important

as long as each individual in the organization can be identified as a

member of one and only class. Thus any classification scheme partitions

the members of the organization into disjoint groups whose union is the

entire organization.

The manpower classification n = 0, is special. People in class

zero are not part of the organization, and we typically consider that an



infinite pool of manpower exists outside the organization. It is conven-

ient to explicitly consider class 0, since most manpower organizations

have significant interactions with the external manpower pool.

There are a large number of ways to partition the members of any

organization. The exact partitioning rule should be related to the

eventual purpose of the manpower flow model. Several partitioning rules

are listed to stimulate the reader's imagination.

Partitioning Rules:

(i) By common institutional rule: e.g. job, rank, pay level, etc.

(ii) By common personal characteristic, e.g. age, skill, test performance,
etc.

(iii) By common past and future career patterns, e.g. length of service,
final status, initial status, total time in organization, or

entire career pattern.

Under (iii) one can have interesting classification rules which are

not immediately obvious. For example, in planning models where alternative

policies are to be tried the input of manpower to the organization can be

classified by the career path it takes before it leaves. It is not known

a priori which path a given individual will take, but such models still

have important uses in manpower planning as we shall see in later reports.

Example 1 : Students in a two year college can be classified by ranks F

and S for freshmen and sophomores. They can also be partitioned by

career pattern as follows

:

Type Career Pattern

1 FS

2 FFS

3 FSS

4 F



Type 1 students complete in two years, type 2 and 3 complete in three

years, and type 4 does not complete.

Problem 1 : Suppose for the past ten years three students of each type were

admitted to the college. How many freshmen and sophomores do we have now?

From now on, we follow the new policy shown below:

Admissions /year

Type Old Policy New Policy13 4

2 3

3 3 4

4 3 8

The new policy is to dismiss those who need to repeat the freshman

year. This makes more admissions possible. We have assumed that the

four new admissions include one in type 1, one in type 3, and two in type

4. Trace the evolution of the system under the new policy for four years.

D

An essential part of modeling manpower systems is the interaction

between different classes through time. The next section introduces the

notion of manpower flow between classifications.

3. Stocks, Flows, and the Timing Convention .

This section presents definitions of manpower stocks and flows

along with a timing convention. The definitions and conventions are to

some degree arbitrary; however, a great deal of unnecessary confusion can

be avoided if a convention is agreed upon and used throughout.

The manpower system evolves over time. New individuals join the

system and individuals in the system remain in one classification for a



time, then either move to another classification or leave the system. At

certain points in time t = 0,1,2,... we imagine that all motion in the

system stops and we count the number of individuals in each classification.

These instants at which we observe and count the people in each classification

are referred to in various ways, as time t, inventory point t, observation

time t, and accounting point t.

Definition

Let s.(t) be the number of people in classification i at

observation time t; s.(t) is the stock of class i manpower

at accounting point t. The N - vector s(t) =
[ (s.. (t) ,s_ (t) , . . .

,

sM (t))] gives the stock of the manpower system at time t.

Notice that class zero manpower has been omitted from our definition. We

shall find that the role of manpower outside the organization will differ

greatly from one application to the next.

The interval of time between observation points t - 1 and t

is defined to be period t . To be more precise, period t is the time

interval (t-l,t]; thus time t is the last instant in period t, and

time t - 1 marks the beginning of period t, although it is not included

in the period.

Definition:

Let f..(t) be the number of individuals that start period t

in classification i and finish period t in classification j.

The variable f..(t) is called the flow from i to j in
ij

period t.

*
The observation points t are not necessarily evenly spaced in time. The
index t does count the number of observation points since time zero. We
generally assume, however, that the observation points are evenly spaced
in time.



The timing conventions are depicted in Figure 1.1, below. The stock

s.(t-l) is divided into several flews. One of the flows moves to classi-

fication j during the period. The stock s.(t) is the sum of all indi-

viduals that flow into class j during the period. Note that f (t)
jj

is simply the number of individuals who start and end period t in class j

.

Clearly the flows f._.(t) must be non-negative.

The flow f (t) and f (t) are respectively the number of class i

individuals who leave the system in period t, and the number of people

who join the system in period t and are first counted in class i.

The (N+l) -component vectors f.*(t) = [f ._(t) ,f . .. (t) f .M (t) ] and1" 1U ll IN

f^.^(t) = [f„
. (t) ,f (t) , . . . ,f (t) ] are respectively the flows from class i

and to class j in period t. Finally, let f(t) be the (N+l) 2-vector

f(t) = [f0A (t),f 1
,(t),...,f^(t)].

Example 2 : Consider a two class organization over ten days and the histories

of four individuals A, B, C, D. At t = the system is taken to be empty

Individual

Observation Time

2 3 4 5 6 10

A 1

w

1 2 1 2 2 1

B 2 2 2 1 2 1 1 2

C 2 2 1 1 1 1 2 1 1 1

D 1 1 2 2 2 2 2 1 2 2

The table shows the classification of each individual at the observation

times. To be precise, we assume flow between classifications takes place

from 8:00 am - 5:00 pm each day. Class zero indicates the individual

is outside the organization. The organization has two internal states.
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With this history the stocks and flows are:

Observation Time

Stock

1 2 3 4 5 b 7 8 9 10

s
1
(t) 1 2 2 1 2 2 4 2 1

s
2
(t) 1 1 2 3 2 2 4 1 2

Period

Flow

1 2 3 4 5 6 7 8 9 10

1 1

1 1

1

1 1 1 1 1 2 1

1 1 1 2 1 I

1 1 1 4

1 2 2 1 2 1

f
oi

(t)

f
02

(t)

£
io

(t >

fn (t)

f
12

(t)

f
20

(t)

fn (t)

f
22

(t)

Blank entries represent zero flows.

Example 3 : Given the same data as example 2, suppose we inventory every

other day at 6:00 pm. The following stocks and flows are counted.

Observation Time

12 3 4 5

Stock
s
x
(t)

s
2
(t)



1

Period

2 3 4 5

f
oi

(t) 2

f
02

(t) 1 1

f
io

(t) 1

fu (t) 1 2 1

f
12

(t) 2 2

f
20

(t)

f
21

(t) 1 1 2

f
22

(t) 2

Again, blank entries represent zero flows.

Problem 2 : Find another history of four individuals that leads to the

same stocks and flows calculated in example 3. Do not use the same histories

as in example 2.

D
4. Conservation of Flow

A simple accounting relation must hold between the stocks and flows

introduced above. Every individual classified in the system (classes 1

through N) at observation time t, must be in some class at observation

times t - 1 and t + 1. Thus it is possible to evaluate s.(t), the

number of people in class i at time t, either by conditioning on their

prior class or their subsequent class. The equations are

N N

(1) I f-,(t) - s (t) = I f (IH-I) ,

j=0 J1 X
3=0 1J

f . .(t) > 0.

Equation (1) is the fundamental conservation of flow relation.



In many applications certain flows are equal to zero. When

this is the case it is more convenient to use a matrix form of the flow

conservation law. We illustrate this point by an example.

Example A: The faculty of a university is partitioned into three classes:

1-non- tenured, 2-tenured, and 3-retired. Due to institutional restrictions,

there is no flow from the tenured class to the non-tenured class; thus

f_- (t) = 0. In addition, there is no flow from the retired class to

either tenure or non-tenure; thus f_ (t) = f«_(t) = for all t. Simi-

larly, f_»(t) is zero, the flow f _(t) is likely to be zero, and there

seems to be no reason to consider the flow f
n (t).

With these points

in mind we form the 10 component flow vector

f(t) = [f
01

(t),f
02

(t),f
1()

(t),f
1;L

(t),f
12

(t),f
20

(t),f
22

(t),f
23

(t),f
30

(t),f
33

(t)]

The matrices B and A below are used to partition and sum the

flows in order to enumerate the members of the class by their class at

the observation point before (B) and after (A) time t.

1001000000
0100101000
0000000101
0011100000
0000011100
0000000011

The conservation of flow relations are:

(2) Bf(t) = s(t) = Af(t+1),

f(t) > .
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In the general case, let k = 1,2,...,K index the possible flows.

For each k there is an i(k) and j (k) which indicates that flow k

moves from class i to class j . Then b and A are N x K matrices

with •

B-={

and

ik {

1 if j (k) = t

otherwise,

1 if i(k) = i

otherwise.

With this definition equation (2) describes the conservation of flow for

any system.

Example 5 : (Continuation of example 4.) The functions i(k) and j (k)

are tabulated below

k 1 2 3 4 5 6 7 8 9 10

i(k) 1 1 1 2 2 2 3 3

j(k) 1 2 1 2 2 3 3

[J

The general flow of manpower is described by a system of equations

(3)

Af(l) = s(0)

Bf(l) + Is(l) =

- Is(l) + Af(2) =

- Bf(2) + Is(2) -

- Is(2) + Af(3) =

where I is an N x N idenity matrix, and s(t) and f(t) are non-negative vectors

These equations are network flow conservation relations. The columns

associated with f..(t) or s.(t) contain exactly one positive



11

element (+1) and one negative element (-1) . If K flow combinations

are possible, then the system of equations (3), over T time periods has

T x (K+N) variables and 2 x T x N constraints. The flow network for

the faculty system presented in example four is depicted below in Figure

1.2. Notice that time elapses during the flow phase, but that zero time

elapses during the counting phase.

Problem 3 . Construct the A and B matrices for example 2, and show

that the flows calculated in example 2 satisfy the conservation relations.

Problem A . In a hierarchy the manpower classifications are ranked so

that position i is dominated by j if j > i. If we assume f..(t) =

if j < i and j # 0, then what will be the dimension of A and B for

an N classification hierarchy?

The hierarchy is strict if f..(t) differs from zero only when

j = i, i + 1, or 0. What are the dimensions of A and B for an N

classification strict hierarchy?

D

5. Equilibrium

The notion of equilibrium is important in the study of physical

social, and economic processes and it will play a central role in our study

of manpower flow systems. We do not believe that many manpower systems

are in equilibrium. However, the simplifications that result in analyzing

an equilibrium system make for a useful approximation to the actual system

and the examination of the equilibrium consequences of any fixed (stationary)

policy is essential in uncovering the direction of change implied by the

policy and for discovering the policy's long run implications.



12

+

O
•H
U
CD

1

•U

I
CNI

CO
en

en •H
H

u
rH
3
O

>,
U
•H
en

u
cu

>
•rH

CO

ex,

B
n3

X
W

O

U
o

•u
CD

CN!

CU

u
3

•H



13

Equilibrium indicates some degree of regularity over time. It

will be useful to define some terms that describe systems over time. First,

a transitory system is one which moves from one trivial equilibrium to

another. An example is a one time operation like an election campaign

(which starts with no one in it and ends after the election with no one

in it) . A transient system is one on its way to equilibrium. The policy

governing the system is an equilibrium policy, however. The initial

conditions are such that equilibrium is not immediately obtained. We shall

consider several types of equilibrium; constant size, expanding or con-

tracting, geometric or arithmetic growth. Finally, we shall use the term

steady-state interchangeably with equilibrium.

This section will characterize the equilibria that describe a con-

stant size system. Transitions between equilibria and expanding (or

contracting) systems will be examined in a later section.

The system (3) is defined to be in equilibrium if f(t) = f for

all t. It follows that s(t) = s for all t, and that

(4) s = Bf = Af f fe 0.

The equations that characterize the possible equilibria can also be inter-

preted as network flow equations,

(5)

f > .

In general, (5) will contain 2N independent equations and N + K nonnega-

tive variables (f and s)

.

A -I f =

-B I s =

— _ J
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Example 6 : The faculty system presented in example 4, has the following

equilibrium flow equations. There are 6 equations and 13 unknown.

f
01

f
02

f
10

f
ll

f
12

f
20

f
22

f
23

f
30

f
33

S
l

S
2

S
3

-1

-1

-1 =

-1 -1

-1 -1

-1 1 =

The network corresponding to an equilibrium flow in this system is presented

below in figure 3.

Example 7 : The flows and stocks given below satisfy the conservation

equations for the faculty system

01
f
02

f
io

£n £
12

£
20

f
22

£
23

£
30

f
33

S
l

S
2

S
3

17 4 6 80 11 10 320 5 5 95 97 335 100

Problem 5 : Write out the equilibrium flow equations for the network of

problem 3. Fix s = 10, s = 5, and f = f = 1, f
Q

= f^ = 0.

Show this implies f_ n
= 2. Now solve for f^, fn , and f

?1
in

terms of f
99

« Calculate the flows for f = 0,1,2,3.

D
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6. Average Lifetime in a Class .

We define the lifetime (or term) of an individual in a manpower

class as the number of consecutive time points t = 1,2,3,... in which

the individual is counted as a member of that class. In this section we

derive a simple expression for the average lifetime in any class when the

system is in equilibrium.

Example 8 . Suppose the time point t marks the start of a month. An

individual who joins a manpower class on March 13th and leaves September

20th of the same year has a lifetime of six months in the manpower class-

ification, since the individual was counted in that class at the beginning

of April, May,..., September.

D
It follows that the lifetime of any individual in a class is a

positive integer. Let I. be the average lifetime in class i, where

the average is over the group of individuals that arrive in class i in

any period. We shall show that

(6) I. = s./(s. - f..) = 1/1 - (f../s.).
1 x 1 11 11 1

In each period there are s. - f.. new arrivals in class i. Let
l n

k = 1,2, . . . ,s.-f . . index these arrivals and let £ . . be the lifetime
l n i,k

in class i of arrival k. The average lifetime is thus

s.-f ..
l li

'i V.-f* .\
£
i,k.

l li k=l

Now for m = 1,2,... let n be the number of arrivals with lifetime equal
m

to m. it follows that

s. - f . . = T n ,

i ii u
- m

m=l
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and

oo

(7) I, = 2— I mn •

i s.-f . .
L

. m
l xi m=l

Now we exploit the assumption of equilibrium. If the system is in equilib-

rium then I. is the same in each period. The individuals in class i
i ,k.

at any inventory time t can be identified by their eventual lifetime in

class i. Let h be the number with lifetime equal to m. It followsm n

that h = n. ; i.e. , all those entering period t with lifetime equal to

1. Moreover h„ = n„ + n
?

= 2n
?

; i.e., all individuals with I ,
= 2 that

joined in periods t - 1 and t. Earlier arrivals with £., = 2 have

already departed. In general then we see that h = mn . However, h ismm m

also a partition of s. according to duration, thus

(8) ,
t

- I \- I mn .

i — i
m

m=l m=l

When (8) is substituted into (7) equation (6) results.

Problem 6 : Show that no equilibrium exists if I., is not finite.
lk.

Q

Notice from the argument above that there is another tempting way to talk

about average lifetime. Suppose at time t, we determine the durations

of the individuals in class i. There will be s. individuals, and there

will be h = mn with duration equal to m. The average duration, X .

,

mm i

over this group is clearly

v00 2.oo ) m n
1 v ^m=l m

(9) X. = — rah =
l Sj , m

l m=l ) ,
^m=l

mn
m
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Problem 7: Let M be the largest m such that n > 0. If M > 1, showm

that A . > I

.

. When M = 1 , show that \ . = I. . nIX 11 [J

We see that except in the trivial case (M = 1) , the second

method strictly overestimates average lifetime. This phenomena is known

as the inspection paradox . In the first averaging method we sample flow

into the classification; in the second method we sample the stock in the

classification. The stock necessarily contains a larger proportion of

the individuals with long lifetime in the class. This phenomenon is also

known as "length-biased sampling."

Example 9 : Consider the equilibrium flow for our three class faculty

system that was calculated in Example 7. The average lifetimes are

I = 5.7 ,

*
2
= 22.3,

Jl

3
= 20.0 .

Example 10 : Each year 1000 new students arrive at a university. The

breakdown of the 1000 entrants by duration is:

m
n
m

1 200

2 100

3 200

4 500 .

We see that 1=3. This implies that f
11

/s
;
,

= 2/3 or f = 2/3 s.,

The equilibrium flow relations are
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S
l

= f
10

+ f
ll

= f
ll

+ f
01

f
Q1

= 1000 = f
1Q

=>
S;L

= 1000 + f

=> f = 2000 and s = 3000.

Moreover, the breakdown of the stock of students by lifetime is

m h
m

1 200

2 200

3 600

4 2000 .

The average lifetime among students is ~^r (200+400+1800+8000) = 3.46.

Note also that 50% of all entrants have lifetime of 4 years while 67% of all

students have a lifetime of 4 years.

Problem 8 : Continuation of problem 5. Express the lifetime as a function

of f_
2

. Calculate for f = 0,1,2,3.

Problem 9 : You ask a consultant for a simple way to measure how long on

the average a person stays with your organization. He suggests you "randomly

select" 10% of your current personnel, determine from their records when they

entered your organization, and follow their records until they leave. Averaging

these lifetimes will give you a good estimate of the average lifetime of your

personnel. Is his advice good? If not, what do you think is wrong and what

would you do to improve it?
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7 . Arithmetic Expansion .

It is possible for the system to expand in an arithmetic manner.

Let f(t) he determined by the difference equation

(10) f(t+l) = f(t) + g = f(l) + tg,

where f(i) and g are given vectors. It follows from the general flow

equations (3) , that

Af(l) = s(0) and Bf(l) = s(l).

In general we have for t ^ 1, that

s(t) = Af(t+1) = Af(l) + Ag + (t-l)Ag = s(0) + Ag + (t-l)Ag,

s(t) = Bf(t) = Bf(l) + (t-l)Ag = s(l) + (t-l)Bg.

It follows, for t = 1, that Ag = s(l) - s(0). In addition, we must

have Ag = Bg . Thus f(l) and g must satisfy

(ID Bg = Ag = (B-A)f (1) ,

g £ 0, f(l) £ 0,

Example 11 : A solution of (11) for the three class faculty example is

given below.

01 02 10 11 12 20 22 23 30 33

f(D

g

10 4 3 19 4 1 26 4 1 8

2111111112
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Problem 10 ; Calculate f(t) and s(t) for five periods given the data

in example 11.

Problem 11 : If some element of g is negative, derive an expression for

the first time such that an element of f(t) or s(t) becomes negative.

Problem 12 : Given s(0), and the knowledge that (2) has a solution with

g ^ 0, is there a maximum growth solution of (2)?

8. Geometric Expansion and Contraction .

In contrast to the static equilibrium described by equation (4)

or the arithmetic growth determined by equations (10) and (11) we can

consider a geometric change in the system where, for some scalar 9, f(t) = 9 f.

The system is expanding if 9 > 1, contracting if 9 < 1, and of constant

size if 9=1. The basic flow equations (2) become

s(t) = 9
t
Bf = 9

t+1
Af = 9

t
s

This implies f and s must satisfy

9A -I

-B I

f > .

Example 12 : For the three class faculty model of example 4 the equilibrium

equations are



22

ffffffffffsss
01 02 10 11 12 20 22 23 30 33 1 2 3

e e e -1=0
8 8 -1=0

6 8 -1=0

(13) -1-1 1=0
-1 -1-1 1=0

-1 -1 1=0.

Note that 8=1, reduces to the constant size case and that for

8^1, the network flow interpretation of the equilibrium equations (10)

is lost. A feasible growth equilibrium for 8 = 1.05 is given by

f
01

f
02

f
10

f
ll

f
12

f
20

f
22

f
23

f
30

f
33

S
l

S
2

S
3

54 33 20 156 24 30 258 12 7 93 210 315 105

Problem 13 : Will (12) have a nontrivial (f,s) ^ 0, solution for any

> 0?

Problem 14 : Find a solution for (13) when 8 = .95 and s.. and s
?

are in the same proportion (3/2) as in example 12.

The formula (6) for average lifetime in each class does not

apply. However, it is possible to obtain an approximate expression for

average duration.

The inflow into a class in period t is 8 [s. - f..]. Assume
l 11

that in period t there are 8 n entrants with a lifetime of m periods,
m r

As before the average duration is T ,mn /(s.-f..). However, the sum
^m=l m i n

) _mn is not equal to s. when 8^1. Using the same logic as beforeLm=l m H i & &

we can determine that
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M (TO-1

5 .(t) = 9
C

j; n V 6
3

m=l ^=0

The linear Taylor expansion for s. around the value 9=1 is given

by

or

M
r
m-l .«* M m

m=l ^j=0 ; m=l m=l

M M

1 mn ~ [~^Z7\ s - + sf-r-7-] J m nL
. m ^9+1J 1 KQ+V S mm=l m=l

From this we see that

1 Wl; s,-f.. v-9+l ; ^, m
1 11 m=l

If we use (9), and substitute X.y n mn for y n m n , we obtain
i'-m=l m Lim=i m

*i-t ) L J )
when

H-9-(9-l)A^ ^s.-f ..
1 1 11

= 1 .

This equation gives a useful approximation to the lifetime I

.

, which is

simple to calculate and is in terms of the growth (or decay) rate 9.

9. Uses and Need for Structure .

To this point we have presented a rather general model of the man-

power flow process and by making special assumptions we have been able

to characterize constant size, arithmetic, and geometric equilibria and

have obtained an expression for the average lifetime in a manpower class

for the constant size equilibrium.

Manpower planning models are useful to the extent that they can

show the impact of alternate policy decisions on indicators of system
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performance. System performance is generally some function of the stocks

and flows, while manpower policy is concerned with hiring, promotion,

termination, and remuneration. To this point our model does not relate

policy and performance in any meaningful way. The conservation of flow

relations, (3), merely tell us, in the broadest sense, what stocks and

flows are permissible. In fact, as example 13 below will attest, they

admit some unrealistic possibilities.

To obtain results that link policy and performance it is necessary

to make some assumptions. Our scant results to this point follow from

the equilibrium assumption. In the reports that follow we shall describe

several assumptions about manpower flow processes and extract as much

theoretical and operational information from these assumptions as possible.

Example 13 : For the three class faculty example, the following equilibrium

stocks and flows are feasible:

f
01

f
02

f
10

f
ll

f
12

f
20

f
22

f
23

f
30

f
33

S
l

S
2

s
3

10,000 1 10,000 1 1 10,000 1 1

The reader can see, using Figure 1.2, that f _- , f
10

and s,

can be made arbitrarily large with all other flows and stocks fixed, and

equations (3) will still be satisfied.

10. Notes and Comments

Manpower flow models have been analyzed by a number of authors

in the 1950 's and 1960's, but most results have appeared in research reports

and papers. Recently a number of textbooks have appeared which cover

various aspects of manpower planning. A list of some of these is given

below. The list is not intended to be a complete bibliography, but each

text is a valuable source for further reading and references.
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