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i. introduction

This paper is concerned with the statistical assessment of dependency

beyond autocorrelation in the context of nonlinear time series models. The

central theme is that residuals from models fitted according to

inapplicable linearity assumptions can also profitably be used for further

analysis beyond linearity. A well known property of linear time series

residuals is that they are uncorrelated; in the context of linear models

they should also be independent, apart from the effects of parameter

estimation with short series. However, in the context of nonlinear models

it is not often recognised that uncorrelated residuals also hold

information concerning higher order dependence in the data. Developments

of such a higher order residual analysis will be explored here, in

particular for two types of nonlinear autoregressive model which have the

usual linear Yule-Walker autoregressive correlation structure. Some higher

order dependency correlations will be obtained. In a companion paper, the

suggestion of reversed residuals will be made, and the analysis given in

this paper will be extended to encompass these reversed residuals.

2. AUTOREGRESSION AND LINEAR AUTOREGRESSIVE RESIDUALS

2.1 Autoregression for Nonlinear Models

The standard form of autoregression needs widening for use with

nonlinear models; we consider first the standard form which is explicitly

autoregressive in a linear additive way and then several weaker variants.

A stationary time series {Xt } of mean ju is assumed. Under the linear

autoregressive model, of order p, the {Xt) satisfy the equation

Xt-^a1(Xt_ 1-^)+a2(Xt_2-/x)+...+ap(Xt_p-M)+et , t=0, ±1, ±2, . . . (2.1)

where the et are independent and identically distributed and n,a1# a2 , . . . ,ap

are fixed parameters. A more general definition of autoregression of order

p, could be the linear conditional expectation requirement that
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E(Xt-ll\Xt -lt Xt-2 Xt_p )

= a1(Xt_ 1-M)+a2(Xt_2-M)+...+ap(Xt-p-M)/ t=0,±l,±2 (2.2)

The definition (2.1) implies (2.2) but not vice-versa. Thus this

definition could apply to models which are not of the linear form (2.1),

either because the e^ are dependent, but still with

E( €-t |Xt-i,JCt_2/ . . . ,Xt_p)=0, or because the model has some other structure

altogether. For instance, there are the random coefficient models of

Nicholls and Quinn (1982), the exponential distribution random coefficient

models of Lawrance and Lewis (1981,1984), the discrete distribution random

coefficient models of Jacobs and Lewis(1983), and the gamma-beta random

coeffxcient models of Lewis (1981).

Random coefficient autoregressive models of order p take the general

form

Xt = At < 1 > Xt_ 1+At ( 2 )xt_2+...+At<P>Xt_p+Bt , t=0,±l,±2 (2.3)

where the vector of coefficients {A-j-(
1 K&t^ 2 ), . . . ,At-(P),B-t} is a stationary

vector sequence of independent random variables, and sometimes in addition,

Et is independent of the random coefficients at time t. It is easy to see

that such models satisfy the linear conditional expectation definition of

pth order autoregression, but are nonlinear. A first order case of the

type (2.3) will be used to illustrate the proposed method of residual

analysis of autoregressive nonlinearity.

A further and weaker definition of autoregression is the requirement

that the autocovariances of the {X^}, denoted by {y^}, just satisfy

Yule-Walker linear difference equations of the form,

Vr=aiyr-l+a2yr-2+ • •

•

+apyr-p» yr=V-r > r^1 » 2 > • •
•

(2.4)

for suitable constants ai,<X2, . . . ,otp; this will be referred to as

Yule -Walker autoregression. It is true for processes which satisfy (2.1)

and (2.2), as may be verified in the usual manner by multiplying X^ by X^-r

and taking expectations. The reverse is not true, (2.4) does not imply

(2.1) or (2.2). A case in which (2.4) holds but in which (2.1) and (2,2)
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do not, is the product autoregression model of McKenzie (1982), where, with

p=l, E(XtlXt-i) is a fractional power of x^-i; this model will also be used

in Section 4.3 as an ilustration of the proposed residual methods.

A variety of other models can satisfy the Yule-Walker definition of

autoregression, and yet not satisfy the linear conditional expectation

definition. Amongst these are first order Markov chains under fairly

general conditons, and others such as the semi-Markov generated processes

discussed in Cox and Lewis (Chapter 7, 1966) and Lewis (1980). Notice that

we do not define nonlinear autoregressive models in a constructive way.

The class is so wide as to make this impossible; one such class has been

studied by Jones (1978). Rather, we require that the autocorrelations

should satisfy linear equations, similar in structure to those satisfied by

the autocorrelation of linear autoregressive models. In view of this, our

suggested analysis extends, rather than superceeds, conventional methods.

2.2 Definition and Discussion of Linear Autoregressive Residuals

For the analysis of time series data involving models satisfying (2.1),

or (2.2) or minimally (2.3), the use of linear autoregressive residuals of

order p, defined as

Rt < P > - ( Xt-u )-<xx ( Xt-irll )-<x2 ( Xt-2-M )" • • • -«p( Xt-p-M ) (2.5)

is suggested. This suggestion is based on the following theorem, which is

a generalization of a result given in Lawrance and Lewis ( 1984, Section

7.2) for p=2.

Theorem. Let the stationary process (Xt> satisfy the Yule-Walker type

equations (2.4). Then the linear autoregressive residuals {Rt* p )} defined

at (2.5) are uncorrelated (although not necessarily independent).

Proof. The autocovariances of the residuals (2.5) are



- 5 -

Cov[Rt < P > , Rt+r ( P }
] = Cov[ ( Xt-ji ) , Rt+r( P > ]-a!Cov[ ( Xt-i-M ) , Rt+r( P

}

]" • • •

-apCovtCXt-p-M-J^Rt+^P^ (2.6)

= Cov[(Xt-/i),Rt+r(P)]-a1Cov[(Xt-M),Rt+r+l(P) ]-- • •

-apCov[(Xt-M),Rt+r+p
(P)] - (2.7)

Equation (2.7) follows because the {X^} process is stationary and

consequently the {R^P^} process is stationary. The covariances in (2.7)

need only be considered for positive lag since the autocovariance is an

even function of r. Then the crosscovariances on the right-hand side of

(2.7) are all of the same type and given by

Cov[(Xt-/i) / Rt+r(P) ] = Cov[(xt-M),{(xt+r-M )-<*!( xt+r_i-M). .
. -<xp (

X

t+r-p-/x ) } ]

= yr_aiyr-l-- •
--apYr-p r=l, 2, .... (2.8)

Now by the Yule-Walker equations (2.4), the expression (2.8) is zero. Thus

using (2.8) in (2.7)

Cov[Rt(P>,Rt+r(P)] = r=±l,±2,..., (2.9)

as was to be proven. The proof is immediate for the linear autoregressive

model (2.1), since Rt^P^ = «f an<^ €t an<* Rt+r^ P ^ are DY definition

independent

.

Note that the linear autoregressive residuals {Rt^P)} will generally

still be dependent though uncorrelated in nonlinear modelling of the {X^};

with the linear autoregressive model (2.1) the {Rt^P^} will not only be

uncorrelated but also independent. It is this difference which uill be

exploited to explore nonlinearity in pth order nonlinear autoregressive

processes. The dependency attributable to parameter estimation is taken to

be small in the large scale applications we have in mind; indeed, nonlinear

modelling of short series of data may well be hard to justify.

The quantities R^P) are autoregressive residuals in the sense that

r^(P) is the residual of X^ after subtracting off ji^P), its best linear

least squares predictor in terms of Xt-i,X^-_2, . . . ,Xt-p, given by

jtt< P > = ^+ax ( Xt-i-ji )+a2 ( Xt_ 2-M )+ . . . +ap( Xt-p-ji )

.

( 2 . 10 )

Thus the residuals (R^P^) give the basic way of taking out the linear
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correlation component in models with pth order autoregression minimally of

the 'Yule-Walker' form (2.4). Note too that if the process is

autoregressive in this sense, linear autoregression on terms beyond X^-p-M/

for example (Xt_p_x-/i), will yield ap+k=0, k=l,2,...; this is a property of

the linear component being taken out so as to minimize the expected mean

square of the residual Rt(P+K ).

A further point worth noting about the residuals Rt/ P ^ concerns their

crosscovariances with the X^'s. In the proof of the theorem it is seen

that Cov[Xt-H,Rt+r^ P *l = ° for r = 1,2,... . However, the other half of

these crosscovariances is non-zero.

Example: The nonGaussian linear AR( l ) model

Taking (2.1) with p=l,and p instead of a^, the crosscorrelation of X^-^ and

Rt-r(P) in the AR(1) model is given by

c:orr(xt-/x,Rt_ r ) = (1-p2 )
1/2 pr for r=l,2,3,...; (2.11)

the superscript has been dropped from Rt-r* as ** wiH b6 i-n similar future

use. Note further, that in this case Rt+r is independent of X^ for

r=l,2,... . Further use of (2.11) will be made in Sections 3 and 5.

For the use of {Rt^ p M in data analysis, the order p of the linear

aspect of the autoregression needs to have been chosen; any of the

available standard methods may still be used. In addition, of course, the

jt,ai,a2, . . . ,<Xp need to be estimated; there are at least two convenient

possibilities: (1) the assumption of a linear autoregressive model like

(2.1) and the use of least squares estimation, and (2) a non-model based

approach to estimation employing the first p Yule-Walker type equations

(2.4). The latter is suggested here; however, Tjostheim and Paulsen (1983)

recommend (1) when dealing with modest sized samples from linear models, on

account of serious estimation bias with the Yule-Walker estimates. Since

the use envisaged here is primarily with nonlinear models and substantial

sets of data, the superiority of ( 1 ) over ( 2 ) is not established or
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crucial

.

3. ASSESSMENT OF HIGHER ORDER DEPENDENCE

Since the linear autoregressive residuals {R^P^} of (2.5) have zero

covariances when (2.4) holds, but for nonlinear processes need not be

independent, a residual analysis of this nonlinearity can be based on an

assessment of their higher order dependence. To consider what form this

might take, we note that the use of {X^ 2 } has been suggested by Granger and

Andersen (1978, p. 63) for bilinear models, for which many of the simple

cases have zero autocorrelations themselves. The corresponding initial

suggestion here is, as was briefly illustrated in Lawrance and Lewis

(1984), to use the residuals {(Rt^^) 2
}- Displays can then easily be made

of the associated autocorrelation functions, scatter plots, periodograms,

cumulative periodograms, etc, using standard (second order) time series

software

.

However, the autocorrelations of {(Rt^^) 2
} are fourth order quantities

in the original series {X^}, which is a double jump from the second order

autocorrelations of the series {X-j-}. Such quantities will be very

difficult to handle theoretically with most types of nonlinear model.

The crosscorrelation function of {Rt^^} and {(Rt^^ 2
) is essentially 3rd

order, but by involving the variance of {(Rt^^) 2
}* also needs some fourth

order join I moments of {X^-} up to lag p. The necessary calculations of all

these quantities for two nonlinear models will be given in Section 4.

The behaviour of the crosscorrelation function of R^P) and {(R^P^) 2
}

may be judged against the fact that the {R^P^} are Independent for the

linear autoregressive model of order p, and hence it will be zero except at

lag zero. For the random coefficient autoregressive processes considered

in Section 4, the suggested crosscorrelation function will be shown to

posess a useful cut-off property; this generalizes the NEAR( 2 ) result given
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in Lawrance and Lewis (1984).

Two rather simpler crosscorrelation quantities can be proposed from

consideration of the zero covariance result of (2.8), and the additional

fact that when the pth order linear autoregressive model holds, Xt and

Rt+r(P) (r=l,2,...) will be independent, and not just uncorrelated.

Working in terms of {X^} adjusted for its mean \i, which is better

computationally and often nicer theoretically, the following may be

considered

Corr[(Xt-/0
2 ,Rt+r(P) ]' for r=0,±l, ±2, . .

.

(3.1)

Corr[Xt-/x,(Rt+r(p) )
2
]' for r=0±l, ±2, . .

.
. (3.2)

These autocorrelations are not equivalent in the aspects of higher order

dependency of tho {X^} process which they assess. To see this, note that

the covariance corresponding to (3.1) involvon only third order joint

moments of the form E[(Xt-*i) 2(Xt+r-i-M)]/ i=0,+l, . . .
, ±p while the

covariance corresponding to (3.2) involves additional joint moments of the

form E[Xt-^.)(Xt+r~^)( xt+r-i)]' i=0, ±1, . . .
, ±p. Further, the denominator of

(3.2), by needing var{(R^^P^

)

2
}/ is more complicated in the higher order

moments it involves relative to the denominator of (3.1) which needs

var{Rt(P)}. However, both correlations, and particularly (3.1), are more

tractable than the autocorrelations of {(Rt^ p )) 2 } or the crosscorrelations

of {Rt<P>} and {(Rt ( f> >)2 }.

Example (Continued from (2.11)): The nondaunnian linear AR(1) model.

As an illustration of the use of (3.1) and (3.2), for the linear AR(1)

model, ((2.1) with p=l and p instead of a^ ) there are the results

r=-l,-2,...
Corr[(Xt->i),(Rt_r )2] =

_-n \2OorrCCXt-fO^Rt-r] =

skew( X ) —^ii ,( 1-P 3 )pr , r=0 , 1 , . .

.

var(R2 )

r=-l,-2, . .

.

(3.4)
lskew(X)

[Var{(x_^ )2}]i7T ^J P . r-0,1,...

Note the faster geometric decrease in (3.4) relative to (3.3); (3.4)

contains more higher moment information. The other halves of both these
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crosscorrelation functions are of course zero. Behaviour of this type for

these functions - zero for r<0 and geometric decay for r>0 - would suggest

linear models with skewed marginal distributions or nonlinear models.

Discussion of parallel results for two types of nonliruMr modol are given

in section 4.

The urn* of squaring in the construction of these higher order

dependency measures is recognized as being pragmatic and somewhat arbitary;

it does however lead to expressions involving selected types of simpler

higher order cross moments. The end use of the higher order dependency

measures can either he exploratory for a given data set, to ascertain

Whether there is appreciable nonlinearity present, or constructively, to

provide evidence for fitting suitable types of nonlinear model which can

match the observed higher order dependency.

Earlier discussion of higher order dependence in nonc'aussian linear

models is given by Rosenblatt ( m80 ) in terms of the bispectrum; aspects of

nonlinearity and higher order spectra are briefly considered in Rosenblatt

(1979).
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4. HIGHER ORDER DEPENDENCY FOR TWO TYPES OF NONLINEAR MODEL

In this section we obtain properties of the measures of higher order

dependency discussed in the previous section, for two specific types of

nonlinear models. The models considered are autoregressive in the

Yule-Walker sense of (2.4), but not in the linear sense of (2.1).

4.1 Random Coefficient Autoregressive Models

As already remarked in Section 1, a generalization of the linear

autoregressive model (2.1) is to let the coefficients ai,<X2,...ap be random

variables. One general class of such models has been discussed by Nicholls

and Quinn (1982) who cite Andell (1976) and articles in the economic

literature. Other classes of models with random coefficients include the

discrete distribution models of Jacobs and Lewis (1983) and the exponential

models of Lawrance and Lewis (1981,1984). The class of random coefficient

autoregressive processes to be of interest here is given by

Xt « At < 1 )xt_1+At ( 2 )xt_2+...+At(P)xt_p+Bt t=0,±l,±2 , (4.1)

where {A^ 1
),Afc(

2 K . . • ,Afc(P>,B.fc} is a stationary vector sequence of

independent random variables with E(At(3))=<Xj for j=l, . . . ,p. The

components of the vectors are not necessarily independent. For example the

discrete distribution models of Jacobs and Lewis (1983) can be written in

this form, and have dependent coefficients, as do the exponential models of

Lawrance and Lewis (1981, 1984). It is easily verified that the process

(4.1) satisfies conditional expectation autoregression (2.2) and thus also

the weaker Yule-Walker definition (2.4); it will also clearly be

stationary. Note also that the standard linear autoregressive model (2.1)

is a special case of (4.1) in which the random coefficients are actually

constant.

We now give a characteristic result for this type of process when

higher order dependency is measured by Corr[Rt<P),(Xt4.r-M)
2

] or

Corr[Rt<P>,(Rt4.r(P>)
2
], assuming that the Rt(P>'s are uncorrected

.
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Theorem . With the random coefficient model (4.1),

Corr[Rt<P>,(Xt _r-ji)
2

] and Corr[Rt(P>,(Rt_r<P) )
2

] are equal to zero for

Proof : Using the definitions (2.5) and (4.1),

Rt<P> = (Xt-^)-a1(Xt_ 1-M)-...-ap(Xt_p-M)

= <At(1)-«l>Xt-l + ( At <
2 >-a2 )Xt_2 + ... + ( At ( P >-ap )Xt_p

+ Bt-(l-a 1 ...-ap )ji . (4.2)

On multiplying (4.2) by (Rt_r(P))
2 and taking expectations, thus obtaining

Cov[Rt(P),(Rt._r(P) )
2
]/ we have a sum of p terms given by

P
Z E{(At(3)-aj)Xt_j(Rt_r(P))

2
} (4.3)

3=1

and a last term involving Bt which is clearly zero. Now A^ 3 )-ou is

independent of both the Xt-j and (Rt-r^P^)
2

, for r=l,2,..., which may

nevertheless be themselves dependent. Thus the jth term in (4.3) becomes

E(A(i)-aj)E{Xt_j(Rt_r(P))
2

} = for r-1,2,...,

since E(A(J))=a-j. This completes the proof which clearly includes the

first cross correlation mentioned in the theorem. The proof highlights the

fact that it is the independence of the vector of coefficients

{Afc( *), . . . ,At(P),Bt} on previous X-^'s uhich creates the effect in this type

of model.

The results of the theorem can be used to help validate random coef-

ficient autoregressive models; also useful in this respect are the non-

zero higher order residual crosscorrelations, eg for positive r

Corr[Rt^P^,(Rt+r^^ )
2

3 • These have been obtained for the second order

autoregressive exponential process studied in Tjawrance and Lewis (1984);

similar results for any first order random coefficient model of the type

(4.1) are given in the next subsection.

It is worth noting that with G^-r defined as any reasonable function of

(Xfc_r ,Xt_r_i/ . . . ), a similar argument to that given in the proof shows that

Corr[Rt ( P ) ,Gt_r ]-0, r=l,2,... . (4.4)
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A result of this type is not, however, sufficient to establish, for

instance, that Rt<P> and Rt_r<P> are independent; they are dependent.

The random coefficient autoregressive structure of (4.1) is not a

necessary condition for the results of this section to hold; this may be

illustrated by noting that Corr[Rt(P>,(Xt_r-M)
2

] is zero when

C12(rVaE{(Xt-M)(Xt_r-ji)
2

} satisfy the equations

Ci2(r)=aiC12(r-l)+a2c12< r-2 >+ - • •+«pCi2(*"P>» r=l,2,... . (4.5)

The similarity of these equations to standard Yule-Walker equations (2.4)

will be apparent. Thus any process with this property will have

Corr[Rt^P^/(Xt-r_R)
2

] equal to zero for non-negative r.

4.2 Higher Order Dependency fcr First Order Random Coefficient
Autoregressive Models

The model to be considered is the first order (p=l) case of (4.1), now

to be denoted as

Xt^AtXt-i+Bt, t=0,±l,±2, ... , (4.6)

in which At and &t are independent within and between each t; we also write

a=E(At ), M=E(Xt )=(l-ar 1E(Bt ).

Many basic mathematical and probabilistic properties of this equation have

been studied by Vervaat ( 1979 ) . Interest here is restricted mainly to the

residual crosscovariances of (Rt 2 ,Rt-r) an<* [(Xt~/i)2 ,Rt_r ] where R^ is the

first order residual given by

Rt=Xt-^-a( Xt_ !-/! )

.

(4.7)

It has been established in Section 4.1 that Cov( Rj- , Rt-r
2 )=Cov( R^2 , Rt+r )=°

for r=l,2,..., and so now Cov(Rt2 ,Rt-r ) for r=0,l,2,... is obtained

explicitly.

The calculation begins by writing the required covariance as

Cov( Rt2 , Rt_r )=e { [ ( Xt-ji )-a( Xt-i-/i ) ]
2

[ ( Xt-r-M )-a( Xt^^-n ) ]

}

=C21< r )-ac21 ( r+1 )-2a{CL11 ( r )-aC1L1 ( r+1 )

}

+a2 {C21(r-l)-aC21(r)} (4.8)

where, as defined just before (4.5),
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C2 i(r)=E{(Xt-ji)
2(Xt_r-*0), C111(r)=E{(Xt-|i)(Xt_ 1-/i)(Xt_r-^)}.

The higher order triple moment C i:L1(r) is easily seen to be equivalently

given by aC2i(r-l), in the present instance, and hence (4.8) becomes,

Cov(Rt
2 ,Rt_r )=C2l(r)-ac2 i(r+l)-a

2 {C2i(r-l)-aC2i(r)}, r=l,2, . . . (4.9)

For r-0, with M3=E[Xt-M-) 3
]/ there is the seperate result

E( Rt
3 )=( l+2a3 )/x3-3aC21 ( 1 )

.

( 4 . 10

)

The calculation of C2i(r) is effected by writing the defining equation

(4.6) in the form

Xt-M+/x=At ( Xt-x-zx )+( MAt+Bt )

.

Squaring both sides, multiplying by Xt-r-*i, and taking expectations then

gives

C21 ( r )+2/iC( r )=a2C21 ( r-1 )+2( /xa2+E( AtBt ) )C( r-1

)

(4.11)

where

C(r)3Cov(Xt ,Xt-r )=ara2 , a2=var(Xt ), a2zE(At
2

).

Further simplifications of (4.11) using C(r)=ara2 gives the recursive

equation

C21(r)=a2C21(r-l)+b3a
r- 1

, r=l,2 (4.12)
where

b3=2a2 { jivar( At )+Cov( At , Bt ) }

.

Equation (4.12) has explicit solution

C21(r)=a2
r^3+b3(a2

r-ar )/(a2-a), r«0,l, ... . (4.13)

Going back to (4.9) for Cov(Rt 2 ,Rt-r ) and using (4.12), we have finally

Cov( Rt2 ,

R

t_r )=( a2 +a
3a2 -aa2

2-a2 )C21 ( r-1

)

+( l-a2+a3-aa2 )b3a
r_1

, r=l,2,... . (4.14)

Thus, (4.14) and (4.13) constitute the explicit solution for the

crosscovariances of the residuals (Rt2 ,Rt-r)' notice that when At is the

constant a, the case of the standard first order linear model, these

crosscovariances are correctly zero. The NEAR(1) model of Lawrance and

Lewis (1981) specializes (4.6), by having independence within each (At,Bt)

and particular forms for At and Bt.

If the covariances (4.14) are to be converted to correlations, then

var(Rt) and Var(Rt z
) nust be obtained. This requires the following



- 14 -

calculation,

Var(Rt 2 ) = E(Rt
4

) - [E(Rt
2
)]

2 (4.15)

where

E(Rt 2
) = (1 - a2 )a2 = Var(Rt ), (4.16)

E(Rt
4

) - (l+a*)/i4 - 4aC31(l) + 6a2C22(l) - 4a 3C13 (l), (4.17)

with

Ji4=E[ ( Xt-M )
4

] , Ctj ( 1 )=E[Xt-/i )
i

( Xt_!-M )3 ] , ( i , j )=( 3 , 1 ) , ( 3 , 2 ) , ( 1 , 3 ) . ( 4 . 18 )

The joint moments in (4.17) were obtained in terms of the first four

moments about the mean of X^, the first three moments about zero of At and

the first two moments about zero of B^. These are not reproduced here.

The explicit result for (4.15) was checked numerically against a slightly

different method of computations while being used to obtain the

illustrations given in Figure 1 and 2 for NEAR(l) models.

It was remarked in Section 3, following (3.2) that the

crosscorrelations of (X^-M) 2 a^nd Rt+r^* can also be useful in assessing

higher order dependence. Tn the present case of first order autoregression

there are the results,

Cov[(Xt-ji)
2

, Rt_r ] = C2 i(r) - a C21(r+1), (4.19)

Var(Rt ) = (l-a2 )a2 , Var[(Xt-ji)
2
)] = E(Xt-ji)* - a*. (4.20)

These formula can all be applied to the NEAR( 1 ) model quite simply,

noting that in this case

E(At
r

) = o/3r , E(Btr ) = rl[p+(l-p)br ]

(4.21)
b = (l-a)0, p = (l-/3)/[l-(l-a)/3].

Figures 1 and 2 give the results of computations of Corr[Rt 2 ,Rt-r] and

Corr[(Xt;-M-)2 /Rt-r] for tne NEAR( 1 ) model. The top left frame of Figure 1 is

the linear KAR(l) case for which all cross-correlations apart from lag zero

are zero; the other three cases in Figure 1 each have zero

crosscorrelations at negative lags, in agreement with the theoretical

results in Section 4.1, but have some non-zero values at the zero and

positive lags. It is evident that the lag zero cross correlations contain
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NEAR(1) RESIDUAL CROSSCORRELATIONS (R(T)*2.R(T-R))
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Figure 1. Four computation of the crosscorrelatlons for various lags,

between the linear autoregresslve residual, Rt^K and {Rt (p) }
z for the

NEAR(l) process ulth p( 1 ;=a/3 held constant at 0.75; In effect the remaining

free parameter Is being varied through Its allowable range.

much of the discriminating information between the four cases; this will be

so for first order autoregresslve models in which much of the higher order

dependency is at lag one, and the lag zero cross correlation involves both

third and fourth order aspects of the lag one dependency. For further

information on the TEAR<1) and PREAR<1) cases see Lawrance and Lewis

(1981).

Figure 2 gives Corr[(Xt-j0
2 ,Rt_r ] for the same four cases used in

Figure 1. The negative lags are again zero for all cases, and hence this
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property does not discriminate the linear from the nonlinear cases. Rather

it is the strength of the crosscorrelations at positive lags which performs

this task, albeit less clearly than the crosscorrelations of the residuals

and squared residuals.

NEAR(1) RESIDUAL CROSSCORRELATIONS ((X(T)-MU)*2,R(T-R))
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Figure 2. Four computations of the crosscorrelations, for various lags

between the linear autoregressive residual, R^P) , and (XfU) z for the

NEAR(l) process uith p( 1 )=o@ held constant at 0.75; in effect the remaining

free parameter is being varied through its allowable range.
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4.3 Higher Order Dependency for the Product Autoregression Model

Another form of nonlinear autoregressive model, called PAR(l), was

introduced by McKenzie (1982); the basic idea of its construction is to

consider the exponentiation of the standard AR(l) equation. Then its

additive structure becomes multiplicative, and the general form of the

PAR(l) product autoregressive model model is

Xt=(Xt-i)^Bt, t=0,±l,±2,..., (4.22)

where p is the dependency parameter, (Xp<l, and {B^} is an independent and

identically distributed innovation sequence. McKenzie studies the model

when Bt is chosen so that {Xfc} has a gamma marginal distribution, and

obtains several basic results; for instance, that p still represents the

lag one autocorrelation and that the autocorrelations in general satisfy

the Yule-Walker first order equations ((2.4) with p=l). It is apparent,

however, that the linear conditional expectation definition of

autoregression (equation (2.4)) is not satisfied because of the power form

implied by (4.22).

As with the first order random coefficient models in Section 4.2, we

consider the first order residual Rt, given by (4.7), and will likewise

determine Cov( R^2 , R-t-r ) f°r r=0,±l,±2, . . . , noting that for this model these

correlations are non-zero for all lags. We will use the general expression

(4.8) in terms of the third order central moments C2 i(r) and C^n(r), but

this time there is no simple relation between them, and both are needed for

all lags. Also, calculation of C2i(r) and CA11(r) must be in terms of

their uncentered components, since these are the quantities which can

immediately be determined from the PAR(1) equation (4.22). The required

uncentered moments will be written as

e2=E(Xt
2

), e3-E(Xt
3

)

e21(r)=E(Xt
2Xt_r ), e111(r)=E(XtXt_1Xt_r ) (4.23)

for r-0,*l,±2, . . . , and there is need to note the special cases,
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e2i(0)=e3 ' e lll(0)se2i(l), em(l)=e2i(-l)-

All these quantities will be calculated.

First, it is necessary to note the following relations between the

centred and uncentred moments

,

C21(r)=e21(r)-^
3-2*iC(r)-M<r2 (all r)

Clll(0)=C2 l(l), C111(1)=C21(-1) (4.24)

Cin( r )=em ( r )-*i3-^( C( r )+C{r-l )+C( 1 ) } , ( r*0, 1 )

.

The calculations of e2i(r) and em(r) need to be treated separately

for positive and negative lags, but follow in the same general manner and

will be illustrated by that for e2i(r) for positive lags. By iterating the

PAR< 1 ) equation (4.22) r steps backward,

r-1
Xt = Xt_rP(r) n Bt_iP(i>

i=0

where p(r )spr,r=0,l, . . . . Squaring this equation, multiplying it by Xt_r

and taking expectations, gives
r-1

e2i(r)=E{Xt_r
2P( r >+1

} nEJBt-i2^ 1 )}. (4.25)
i=0

To obtain the expectations in the repeated product, taking the 2p(i)th

power of (4.22), leads to

E{Xt2p< i >}=E{Xt_ 1
2PP( i )}E{Bt

2P( i )},

and hence dropping the unnecessary suffix t, to the result

E{B2p(i) }=E{x2p(i) }/E{x2p(i+l) }>

Now (4.25) can be expressed purely in moments of X, as

e2i<r)=E{X
2P( r >+1 }E(X2 )/E{X2P( r >}. (4.26)

To proceed further, invoke a gamma marginal distribution for X with density

f(x)=e^3_1e-ex/r(/3), e,/3>o, x>o ; (4.27)

this has mean /3/e, variance /3/e2 , third central moment 2/3/e3 , and there is

the kth moment result E( Xk )=r( |3+k )/©kr( /3 ) . From (4.26) and similar

expressions we then have
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* ,<r-\ f/3(/3+l)(0+2pr )/e3 , r=l,2
62l(r) ~ U0fpl*l>«HP l*l+l>/e3. r=-l,-2,... (4 - 28)

6lll(r) " U/9+pl r ')(/94-p+plrl+l)/e3
# r=-l,-2,...

(4>29>

with e21(0), eni(O) and e
1^ 11(l) being given by the special cases of

(4.23). Use of (4.24) gives finally the required expressions

[2/3p
r/e3 r=0,l

C2l(r) " Up»*l+p2lrl )/e3, r=-l,-2,... (4 ' 30)

r /r\ f/3(p
r+pr+1 )/e3 , r=2,3 , AO ,*Cm(r) -

l /3{(1+3)p|r|+l+p2|r|+l_flp
|r|-l }/e3 r=1/2 ,... < 4 ' 31 >

All these may be used in (4.8) to obtain the desired Cov(Rt 2 ,Rt_r ) for

r=0,±l,±2, . . . ; also the simpler covariance or correlation of (X^-M) 2 and

Rt-r is easily available from (4.19) and (4.31).

Conversion of these covariances to correlations requires Var(Rt 2
) as at

( 4 . 15 ) ; the required intermediate results are

M4 = 9 3 3/©*,

C31(l) = 30(0+2)p, C13(l) = /3{3/3+(l+p)(2+p)}p,

C22(l) - 2+2/3p+2/3( /3+2 )p
2

. (4.32)

These then give the explicit expression

Var(Rt 2
) = {( 9/3-1 )/3

2 - 4/3(/3+6)p2 + 12/3p 3

+ /3(9/3
2-/3+16)p*-12/3p s-4/3p6 }/e* (4.33)

Together with Var(Rt) which is simply (l-p2 )/3/e2 , Cov(Rt 2 ,Rt-r ) can ^
converted into Corr(Rt 2 /Rt-r )•

Figures 3 and 4 illustrate the residual and squared residual cross

correlation for the PAR( 1 ) model. Figure 3 shows how these residual cross

correlations vary over the range of p values from p=0 to p=0.9 for an

exponential marginal distribution. At p=0, the PAR(l) is an TDD process

and the residuals are trivially independent, resulting in the only non-zero

crosscorrelation at lag zero. As the p value increases the dependence

spreads out, most strongly at lag minus one and positive lags. An

interesting feature is the lag zero crosscorrelation which changes from
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being strongly positive at p=0 to approximately zero at p=0.75, to

moderately negative at p=0.

PAR(1) RESIDUAL CROSSCORRELATiONS (R(T)*2.R(T-R))
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o
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° SqA-T^. BHO.Q.9Q0. T^HA.I.Q
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LAC(R) L»C<«)

-10 '0

LA«»)

Figure 3. Computations of the residual crosscorrelations , Corr(Rf, z ,R^. r )

for the PAR(l) model. Since /3=i the marginal distribution is exponential.

The lag one serial correlation is increased from p(l)=0.0 (upper left) to

p(l)=0.9 (loner right).

Figure 4 gives four different gamma cases of the PAR( 1 ) residual cross

correlations, all with p=0.75. The gamma shape parameter takes the

values 0.5, l.o, 2.5 and 10.0; these cases indicate that changes in the

gamma parameter cause only modest changes in detail of the cross

correlations.
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PAR(1) RESIDUAL CROSSCORRELATIONS (R(T)*2.R(T-R))
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Figure 4. Computations of the residual crosscorrelatlons , Corr(R-^ z ,R-^.r )

for the PAR(l) model. The p for each case of 0.75, and the figures

Illustrate the effect on the residual crosscorrelatlons of changing the

Index (3 of the gamma distribution through 0.5, 1.0, 2.5 and 10.0.

5 . CONCLUSIONS

A methodology for analyzing higher order dependence in nonlinear time

series with pth order autoregressive correlation structure has been

proposed. It utilizes standard uncorrelated linear autoregressive

residuals, and the crosscorrelation function of these residuals and their

squares. The behaviour of this crosscorrelation function has been utilized

for two rather different types of nonlinear model: random coefficient
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autoregression and multiplicative autoregression: the behaviour has been

shown to allow discrimination between models in the same class with the

same marginal and autocorrelation structures.

The residuals crosscorrelation function provides a partial analysis of

third order information in the time series; it does not attempt to capture

all third order information, which is the aim of such techniques as

bispectral analysis and which will often be intractable with nonlinear

models. Being based on standard linear residuals, the analysis extends

rather than replaces conventional residual analysis.

Developments of the analysis which focus on the directionality implicit

in many time series are being investigated; reversed residuals assume a

reversed directionality and allow exploration of the consequences of such

an asssumption.
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