NAVAL POSTGRADUATE SCHOOL Monterey, California

FORTRAN SUBROUTINES FOR THE EVALUATION OF THE CONFLUENT HYPERGEOMETRIC FUNCTIONS

WILLIAM GRAGG BENY NETA

August 1989

Approved for public release; distribution unlimited Prepared for: Naval Postgraduate School

Monterey, CA 93943

FedDocs D 208.14/2 NPS-53-89-014

1 200

UDINY A DALARY IAVAL POLICADULTE SCHOOL IONTEREY, CALIFORNIA 93943-5008

NAVAL POSTGRADUATE SCHOOL Department of Mathematics

Rear Admiral R. W. West, JR. Superintendent Harrison Shull Provost

This report was prepared in conjunction with research funded by the Naval Postgraduate School Research Council. Reproduction of all or part of this report is authorized.

Prepared by:

Prepared by:

The full state and the state of the full state of the full					
	REPORT DOCUM	MENTATION		7 / OX L.	
REPORT SECURITY CLASSIFICATION UNCLASSIFIED		ID RESTRICTIVE MARKINGS CALLEOR VIA 33943 600			
SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION / AVAILABILITY OF REPORT			
DECLASSIFICATION / DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited			
PERFORMING ORGANIZATION REPORT NUMBER	(5)	5 MONITORING ORGANIZATION REPORT NUMBER(S)			
NPS-53-89=014		NPS-53-89-014			
NAME OF PERFORMING ORGANIZATION	60 OFFICE SYMBOL	78 NAME OF MUNITURING ORGANIZATION			
Naval Postgraduate School	(If applicable) 53	Naval Postgraduate School			
DDRESS (City, State, and ZIP Code)		7b ADDRESS (City, State, and ZIP Code)			
1onterey, CA 93943 ,		Monterey, CA 93943			
NAME OF FUNDING/SPONSORING ORGANIZATION	BD OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
Javal Postgraduate School	53	O&MN Dir	rect Funding	a	
AUDRESS (City, State, and ZIP Code)		10 SOURCE OF			
lonterey, CA 93943		PROGRAM ELEMENT NO	PROJECT NO	TASK NO.	WORK UNIT ACCESSION NO
IIILE (Include Security Classification)					
ORTRAN SUBROUTINES FOR THE EVA	LUATION OF THE	CONFLUENT HYP	PERGEOMETRI	C FUNCTION	S
PERSONAL AUTHOR(S)					
illiam Gragg and Beny Neta IYPE OF REPORT I3b TIME CO		14 DATE OF REPO		0.001 115 80	AGE COUNT
	89TO8/89	89 August		(Day) IS FA	12
SUPPLEMENTARY NOTATION					
	18 SUBJECT TERMS	Continue on revers	e il necessary a	nd identify by	block number)
FIELD GROUP SUB-GROUP	1	ypergeometric	,		
	Fortran subi	routine, recu	rrence rela	ation	-Bot return
ABSTRACT (Continue on reverse if necessary	and ideality, by black				
h this report we list the Fort	ran subroutines	for evaluati	ng the conf	luent hype	ergeometric
unctions $M(a,b;x)$ and $U(a,b;x)$. These subrout	ines use the	stable rec	currence re	elations
ven e.g. in Wimp.		,			
DISTRIBUTION / AVAILABILITY OF ABSTRACT	RPT DTIC USERS		ECURITY CLASSIF		<u> </u>
AINICLASSIFIED/IJNLIMITED SAME AS	UNCLASSIFIED 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL				
HAME OF RESPONSIBLE INDIVIDUAL 11iam Gragg and Beny No			(include Area Co -2194,2235		and 53Nd
FORM 1473, 84 MAR 83 AF	PR edition may be used u		SECURIT	Y CLASSIFICATI	ON OF THIS PAL.
	All other editions are o	obsolete	UNCLASSIF		

which we were all and the stand of the stand and the standard and the second and the second and the second states and the

Fortran Subroutines for the Evaluation of the Confluent Hypergeometric Functions

> W. Gragg and B. Neta

Naval Postgraduate School Department of Mathematics Monterey, CA 93943

Abstract

In this report we list the Fortran subroutines for evaluating the confluent hypergeometric functions M(a,b;x) and U(a,b;x). These subroutines use the stable recurrence relations given e.g. in Wimp.

Key words: confluent hypergeometric functions stable algorithm Fortran subroutine recurrence relation

Introduction

It is well known that the ordinary differential equation

$$x \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1-x) \frac{\mathrm{d}y}{\mathrm{d}x} - ay = 0$$

has a solution

$$y(x) = AM(a,1;x) + BU(a,1;x)$$

if a is <u>not</u> a negative integer.

This problem arises e.g. when solving the linearized shallow water equations with the full linear variation in depth included (see Williams, Staniforth and Neta, [1]).

The computation of the confluent hypergeometric functions is based on the Miller algorithm (see e.g. Wimp, [2]). In general, one has a second order difference equation

$$z(n) + a(n)z(n+1) + b(n)z(n+2) = 0, n \ge 0, b(n) \ne 0.$$

If b(n) = 0 for some n. in some cases one can make a change of variable $Y(n) = \lambda(n)z(n)$ which will produce an equation of the desired type. Let w(n) be a nontrivial solution and the sum of the normalizing series

$$S = \sum_{k=0}^{\infty} c(k)w(k) \neq 0$$

is known. Let N be a large integer and define $z_N(n)$. $0 \le n \le N+1$, by

$$z_{N}(n) = \begin{cases} 0 & n = N+1 \\ 1 & n = N \end{cases}$$

 $z_N(n) + a(n)z_N(n+1) + b(n)z_N(n+2) = 0$, n = N-1, ..., 1.0.

One can approximate w(n) by $w_N(n)$

$$w_N(n) = Sz_N(n)/S_N$$

where

$$S_{N} = \sum_{k=0}^{N} c(k) z_{N}(k)$$

The algorithm is said to converge if

$$w_N(n) \rightarrow w(n)$$
 as $N \rightarrow \infty$

The function M(a,b;x) satisfies the recurrence relation

$$(2n+b+2)(n+a)z(n) - (2n+b+1)\left\{(2a-b) + \frac{(2n+b)(2n+b+2)}{x}\right\}z(n+1) - (2n+b)(n+b+1-a)z(n+2) = 0.$$

The minimal solution is

$$w(n) = \frac{x^{n}(a)_{n}}{(b)_{2n}} M(a+n.2n+b;x)$$

where

$$(c)_n = \frac{\Gamma(n+c)}{\Gamma(c)}$$
.

The normalization relationship used in our subroutine is

$$S = b-1 = \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} (b-1)_{k} (b+2k-1)w(k) .$$

An obvious modification must be made if b = 1. The algorithm is not defined if b, b+1-a, a are negative integers or zero.

The function U(a,b;x) satisfies the relationship

$$(n+a)(n+a+1-b)z(n) - (n+1)[2(n+a+1)+x-b]z(n+1)$$

+ $(n+1)(n+2)z(n+2) = 0$.

The minimal solution is

$$w(n) = \frac{x^{n}(a)_{n}(a+1-b)_{n}}{n} U(a+n,b;x)$$

for $|\arg x| < \pi$. A normalization relation is

$$1 = \sum_{k=0}^{\infty} w(k)$$

In the next section we give a listing of the Fortran subroutines.

```
SUBROUTINE MILLER(N, ALPHA, BETA, X, S, SS, COEFF)
      INTEGER N
      REAL*8
               ALPHA, BETA, X, SS
               S(0:1000)
      REAL*8
      EXTERNAL COEFF
С
      USES THE J.C.P. MILLER ALGORITHM TO COMPUTE
С
      S(0:N).
С
      BEGIN
         INTEGER NN.K
         REAL*8 T.D.EPS, A, B, C
         REAL*8 OLDS(0:1000)
         EPS = 0.00000001
С
         INITIALIZE OLDS.
         DO \ 1 \ K = 0, \ 1000
             OLDS(K) = 0
         CONTINUE
   1
С
         CHOOSE INITIAL NN.
         NN = N + 2
С
         INITIALIZE K, S AND T.
   \mathbf{2}
         K = NN
         S(K+1) = 0
         S(K)
               =1
         CALL COEFF (K, ALPHA, BETA, X, A, B, C)
                 = 2 * C * S(K)
         Т
\mathbf{C}
         TAKE A BACKWARD RECURRENCE STEP AND UPDATE IT.
   3
         K = K - 1
         CALL COEFF(K.ALPHA.BETA,X.A.B.C)
         S(K) = A * S(K+1) + B * S(K+2)
С
         CHECK FOR OVERFLOW AND RESCALE IF NECESSARY.
         D = DABS(S(K))
         IF (D.GT. 1.D30) THEN
С
         BEGIN
             CALL SCALE(K.NN,S.T.D)
         END IF
         IF (K .GT. O) THEN
С
         BEGIN
             T = T + 2 \times C \times S(K)
             GO TO 3
         END IF
         \mathbf{T} = \mathbf{T} + \mathbf{C} \times \mathbf{S}(\mathbf{0})
         DO \ 4 \ K = 0, N
             S(K) = S(K)/T
   4
         CONTINUE
С
         TEMPORARY PRINT STATEMENT.
С
         PRINT*. S(0)
\mathbf{C}
         TEST FOR CONVERGENCE.
         D = 0
         DO 5 K = 0. N
   5
             D = D + S(K) * * 2
         CONTINUE
         D = DSQRT(D)
         T = 0
```

 $DO \ 6 \ K = 0, N$ T = T + (S(K) - OLDS(K)) **26 CONTINUE T = DSQRT(T)TAKE ANOTHER STEP IF NO CONVERGENCE. С IF (T .GT. EPS*D) THEN \mathbf{C} BEGIN NN = 2*NNDO 7 K = O, NOLDS(K) = S(K) $\overline{7}$ CONTINUE IF(NN .LE. 1000) GO TO 2 PRINT 999, NN, ALPHA, BETA, X, T FORMAT(' ** NO CONVERGENCE ** NN AP CP X T ', I5, 4E14.7) 999 END IF SS=S(0)RETURN END

```
SUBROUTINE COEFF(N, ALPHA, BETA, X, A, B, C)
     INTEGER N
     REAL*8 ALPHA.BETA,X.A.B.C
     COMPUTES COEFFICIENTS USED BY J.C.P. MILLER ALGORITHM FOR
С
С
     A CONFLUENT HYPERGEOMETRIC FUNCTION M(a,b:x)
С
     SEE JET WIMP, COMPUTATION WITH RECURRENCE RELATIONS,
     PITMAN 1984 PP. 61-62
С
С
     BEGIN
       INTEGER M.K
       REAL*8, T.U.V.W
       S = 2 * ALPHA - BETA
       T = N + ALPHA
       M = 2 * N
       U = M + BETA
       V = U + 1
       W = V + 1
       A = (S/W + U/X) * V/T
       B = (N + BETA - ALPHA + 1) * U/T/W
       T = 1
       IF (N.GT. O) THEN
С
       BEGIN
          S = BETA - 1
          DO 1 K = 1, N-1
             T = -T * (1 + S/K)
          CONTINUE
   1
          T = -T * (1 + S/M)
       END IF
       C = T
       RETURN
     END
     SUBROUTINE SCALE(K.N.S.T.D)
     INTEGER N.K
     REAL*8 T.D
     REAL*8 S(0:1000)
С
     BEGIN
         INTEGER J
        T = T/D
        DO 1 J = K, N
```

```
S(J) = S(J)/D
CONTINUE
```

```
1 CONTINUE
RETURN
END
```

```
SUBROUTINE COEFU(N, ALPHA, BETA, X, A, B, C)
     INTEGER N
     REAL*8 ALPHA, BETA, X, A, B, C
     COMPUTES COEFFICIENTS USED BY J.C.P. MILLER ALGORITHM FOR
С
С
     A CONFLUENT HYPERGEOMETRIC FUNCTION U(a,b;x)
С
     SEE JET WIMP, COMPUTATION WITH RECURRENCE RELATIONS,
     PITMAN 1984 PP. 63-64
С
С
     BEGIN
        INTEGER M.K
        REAL*8 S,T,U,V,W
        S = ALPHA + QFLOAT(N)
        T = S + 1.D0
        U = S * (T - BETA)
        V = QFLOAT(N + 1)
        W = V + 1.D0
        A = (2*T + X - BETA)*V/U
        B = - V * W / U
        C = 1
        RETURN
     END
```

Remark: The program that calls Miller must supply as a last parameter either COEFF (for M) or COEFU (for U).

The subroutines are available on a diskette from either author upon request. These subroutines were tested extensively for various values of a, b and x.

<u>Remark</u>: If the parameter is a negative integer, the solution of the differential equation is

$$\mathbf{y} = \mathrm{AL}_{\mathbf{n}}(\mathbf{x}) + \mathrm{B}\{\ln |\mathbf{x}| \mathrm{L}_{\mathbf{n}}(\mathbf{x}) + \sum_{m=0}^{\infty} \beta_{m} \mathbf{x}^{m}\}$$

where n = -a.

 $L_n(x)$ are Laguerre polynomials whose coefficients α_i satisfy

$$a_{i} = \frac{i - n - 1}{i^{2}} a_{i-1}$$
, $i = 2, \dots, n$,
 $a_{1} = -n$.

The coefficients $\beta_{\rm m}$ satisfy

$$\beta_{m+1} = \frac{(m-n)\beta_m + (1 - \frac{2(m-n)}{m+1} \alpha_m)}{(m+1)^2}$$
 $m = 1, \dots, n-1$

$$\beta_{\rm m} = \frac{1}{(n+1)^2} \alpha_{\rm n} \qquad \qquad {\rm m} = {\rm n}$$

$$\beta_{\mathbf{m}} = \frac{\mathbf{m} - \mathbf{n} - 1}{\mathbf{m}^2} \beta_{\mathbf{m}-1}$$
 $\mathbf{m} = \mathbf{n} + 1 \cdot \mathbf{n} + 2 \cdot \cdot \cdot$

Acknowledgement:

This research was conducted for the Office of Naval Research and was funded by the Naval Postgraduate School.

References

he

- R.T. Williams, A.N. Staniforth and B. Neta, Solution of a generalized Sturm-Liouville Problem, IMA Conference on Computational Ordinary Differential Equations, Imperial College, London, July 3-7, 1989.
- 2. J. Wimp. Computation with Recurrence Relations, Pitman Advanced Pub. Program, Boston, 1984.

DISTRIBUTION LIST

NO	. OF	COPIES
Director Defense Tech. Information Center Cameron Station Alexandria, VA 22314	2	
Director of Research Administration Code 012 Naval Postgraduate School Monterey, CA 93943	1	
Library Code 0142 Naval Postgraduate School Monterey, CA 93943	2	
Department of Mathematics Code 53 Naval Postgraduate School Monterey, CA 93943	1	
Center for Naval Analyses 4401 Ford Avenue Alexandria, VA 22302-0268	1	
Professor Beny Neta Code 53Nd Department of Mathematics Naval Postgraduate School Monterey, CA 93943	6	
Dr. C.P. Katti J. Nehru University School of Computer & Systems Sciences New Delhi 110067 India	5	
Professor Paul Nelson Texas A&M University Department of Nuclear Engineering and Mathemati College Station, TX 7 843-3133	1	
Professor H.B. Keller Department of Applied Mathematics California Institute of Technology Pasadena, CA 91125	1	

Professor W. Gragg Code 53Gr Department of Mathematics Naval Postgraduate School Monterey, CA 93943 Profesor H. Dean Victory, Jr. Texas Tech University Department of Mathematics Lubbock, TX 79409 Professor Gordon Latta Code 53Lz Department of Mathematics Naval Postgraduate School Monterey, CA 93943 Professor Arthur Schoenstadt Code 53Zh Department of Mathematics Naval Postgraduate School Monterey, CA 93943 Professor M.M. Chawla, Head Department of Mathematics III/III/B-1, IIT Campus Hauz Khas, New Delhi 110016 India Professor R.T. Williams Code 63Wu Department of Meteorology Naval Postgraduate School Monterey, CA 93943

6

1

1

1

1

1

