
 NAVAL POSTGRADUATE SCH00L Monterey, California

FORTRAN SUBROUTINES FOR THE EVALUATION OF THE CONFLUENT HYPERGEOMETRIC FUNCTIONS

WILLIAM GRAGG
BENY NETA

August 1989

```
Approved for public release; distribution unlimited Prepared for:
Naval Postgraduate School
Monterey, CA 93943
```


NaVAL POSTGRADUATE SCHOOL

Department of Mathematics

Rear Admiral R. W. West, JR.
Harrison Shull
Superintendent
Provost

This report was prepared in conjunction with research funded by the Naval Postgraduate School Research Council. Reproduction of all or part of this report is authorized.

Prepared by:
Prepared by:

lille fincluade Securily (lassilicasion)
ORTRAN SUBROUTINES FOR THE EVALUATION OF THE CONFLUENT HYPERGEOMETRIC FUNCTIONS
PERSONAL AUIHOR(S)
illiam Gragg and Beny Neta

IYPE OF REPORI	13b TIME COVERED	14 DAIE OF REPORT (rear Monit. Day)	IS Page count
echnical Report	FROM 2/89 TO $8 / 89$	89 August 14	12

SUPPLEMIENIARY NOIAIION

COSAII COUES		
FIELD	GROUP	SUB GROUP

18 SUBIECT IEKMS (Continue on reverse il necessary and adentify by block number) confluent hypergeometric functions, stable algorithm Fortran subroutine, recurrence relation
absiraci (Continue on reverse il necessary and identity by block number)
this report we list the Fortran subroutines for evaluating the confluent hypergeometric nnctions $M(a, b ; x)$ and $U(a, b ; x)$. These subroutines use the stable recurrence relations -ven e.g. in Wimp.

Fortran Subroutines for the Evaluation of the Confluent Hypergeometric Functions
W. Gragg
and
B. Neta

Naval Postgraduate School
Department of Mathematics Monterey. CA 93943

In this report we 1 ist the Fortran subroutines for evaluating the confluent hypergeometric functions $M(a, b ; x)$ and $U(a, b ; x)$. These subroutines use the stable recurrence relations given e.g. in Wimp.

Key words:
confluent hypergeometric functions stable algorithm
Fortran subroutine
recurrence relation

Introduction

It is well known that the ordinary differential equation

$$
x \frac{d^{2} y}{d x^{2}}+(1-x) \frac{d y}{d x}-a y=0
$$

has a solution

$$
y(x)=A M(a, 1 ; x)+\operatorname{BU}(a, 1 ; x)
$$

if a is not a negative integer.
This problem arises e.g. when solving the linearized shallow water equations with the full linear variation in depth included (see Williams, Staniforth and Neta, [1]).

The computation of the confluent hypergeometric functions is based on the Miller algorithm (see e. ε. Wimp. [2]). In general, one has a second order difference equation

$$
z(n)+a(n) z(n+1)+b(n) z(n+2)=0, \quad n \geq 0, \quad b(n) \neq 0
$$

If $b(n)=0$ for some n. in some cases one can make a change of variable $Y(n)=\lambda(n) z(n)$ which will produce an equation of the desired type. Let $w(n)$ be a nontrivial solution and the sum of the n rmalizing series

$$
S=\sum_{k=0}^{\infty} c(k) w(k) \neq 0
$$

is known. Let N be a large integer and define $z_{N}(n)$. $0 \leq n \leq$ $\mathrm{N}+1$, by

$$
z_{N}(n)= \begin{cases}0 & n=N+1 \\ 1 & n=N\end{cases}
$$

$$
z_{N}(n)+a(n) z_{N}(n+1)+b(n) z_{N}(n+2)=0, \quad n=N-1 . \ldots 1.0 .
$$

One can approximate $w(n)$ by $w_{N}(n)$

$$
w_{N}(n)=S z_{N}(n) / S_{N}
$$

where

$$
S_{N}=\sum_{k=0}^{N} c(k) z_{N}(k)
$$

The algorithm is said to converge if

$$
w_{N}(n) \quad-w^{\prime}(n) \text { as } N \cdots \infty .
$$

The function $\mathrm{M}(\mathrm{a} \cdot \mathrm{b}: x)$ satisfies the recustence rolation

$$
\begin{aligned}
(2 n+b+2)(n+a) z(n) & -(2 n+b+1)\left\{(2 a-b)+\frac{(2 n+b)(2 n+b+2)}{x}\right\} z(n+1) \\
& -(2 n+b)(n+b+1-a) z(n+2)=0
\end{aligned}
$$

The minimal solution is

$$
w(n)=\frac{x^{n}(a)_{n}}{(b)_{2 n}} n(a+n \cdot 2 n+b: x)
$$

where

$$
(c)_{n}=\frac{\Gamma(n+c)}{\Gamma(c)}
$$

The normalization relationship used in our subroutine is

$$
S=b-1=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}(b-1)_{k}(b+2 k-1) w(k)
$$

An obvious modification must be made if $b=1$. The algorithm
 The function $U(a, b ; x)$ satisfies the relationship

$$
\begin{aligned}
(n+a)(n+a+1-b) z(n) & -(n+1)[2(n+a+1)+x-b] z(n+1) \\
& +(n+1)(n+2) z(n+2)=0
\end{aligned}
$$

The minimal solution $i=$

$$
w(n)=\frac{x^{n}(a)_{n}(a+1-b)_{n}}{n} U(a+n, b ; x)
$$

for $|\arg x|<\pi$. A normalization relation is

$$
1=\sum_{k=0}^{\infty} w(k)
$$

In the next section we give a listing of the Fortran subroutines.

SUBROUTINE MILLER (N.ALPHA, BETA.X.S.SS.COEFF)
INTEGER N
REAL* 8 ALPHA. BETA, $X, S S$
REAL* 8 ($0: 1000$)
EXTERNAL COEFF
C USES THE J.C.P. MILLER ALGORITHM TO COMPUTE
C $\quad \mathrm{S}(\mathrm{O}: \mathrm{N})$.
C BEGIN
INTEGER NN.K
REAL* 8 T.D.EPS.A, B.C
REAL* 8 OLDS (0:1000)
$\mathrm{EPS}=0.000000001$
C INITIALIZE OLDS.
DO $1 \mathrm{~K}=0,1000$
OLDS (K) $=0$
1 CONTINUE
C CHOOSE INITIAL NN.
$\mathrm{NN}=\mathrm{N}+2$
C INITIALIZE K, S AND T.
2 K = NN
$S(K+1)=0$
S (K) $=1$
CALL COEFF (K.ALPHA, BETA, X, A, B.C)
$\mathrm{T} \quad=2 * \mathrm{C} * \mathrm{~S}(\mathrm{~K})$
C TAKE A BACKWARD RECURRENCE STEP AND UPDATE IT.
$3 K=K-1$
CALL COEFF (K.ALPHA.BETA, X.A.B.C)
$S(K)=A * S(K+1)+B * S(K+2)$
C CHECK FOR OVERFLOW AND RESCALE IF NECESSARY.
$\mathrm{D}=\operatorname{DABS}(\mathrm{S}(\mathrm{K}))$
IF (D . GT. 1.D30) THEN
BEGIN
CALL SCALE(K.NN.S.T.D)
END IF
IF (K . GT. O) THEN
BEGIN $\mathrm{T}=\mathrm{T}+2 \times \mathrm{C} * \mathrm{~S}($ K $)$ GO TO 3
END IF
$T=T+C * S(O)$
DO 4 K = O. N
$S(K)=S($ K $) / \top$
4 CONTINLE
TEMPORARY PRINT STATEMENT.
PRINT*. S (O)
TEST FOR CONVERGENCE.
$\mathrm{D}=0$
DO 5 K = 0. 人
$\mathrm{D}=\mathrm{D}+\mathrm{S}(\mathrm{K}) * * 2$
CONTINUE
$\mathrm{D}=\mathrm{DSQRT}(\mathrm{D})$
$\mathrm{T}=0$

```
            DO 6 K = 0, N
                            T}=\textrm{T}+(\textrm{S}(\textrm{K})-0LDS(K))**
                    CONTINUE
            T = DSQRT (T)
            TAKE ANOTHER STEP IF NO CONVERGENCE.
            IF (T .GT . EPS*D) THEN
            BEGIN
                NN}=2*N
                DO T K = O, N
                OLDS(K)=S(K)
                CONT INUE
                IF(NN .LE. 1OOO) GO TO 2
            PRINT 999,NN,ALPHA,BETA,X,T
            FORMAT ('** NO CONVERGENCE ** NN AP CP X T ', I5,4E14.7)
            END IF
            SS=S(O)
            RETURN
END
```

REAL*\& ALPIIA. BETA, X.A.B.C
COMPUTES COEFFICIENTS USED BY J.C.P. MILLER ALGORITIM FOR
A CONFLUENT HYPERGEOMETRIC FUNCTION M(a,b:x)
SEE JET WIMP. COMPUTATION WITH RECURRENCE RELATIONS.
PITMAN 1984 PP. 61-62
BEGIN
INTEGER M.K
REAL*8.T.U.V.W
$S=2 *$ ALPHA - BETA
$\mathrm{T}=\mathrm{N}+$ ALPHA
$M=2 * N$
$\mathrm{U}=\mathrm{M}+$ BETA
$\mathrm{V}=\mathrm{U}+1$
$\mathbf{W}=\mathbf{V}+1$
$\mathrm{A}=(\mathrm{S} / \mathrm{h}+\mathrm{U} / \mathrm{X}) * V / T$
$B=(N+B E T A-A L P H A+1) * U / T / W$
$\mathrm{T}=1$
IF ($\mathrm{N} . \mathrm{GT}$. O) THEN
BEGIN
$S=$ BETA -1
DO $1 \mathrm{~K}=1, \mathrm{~N}-1$
$T=-T *(1+S / K)$
CONTINUE
$T=-T *(1+S / M)$
END IF
$\mathrm{C}=\mathrm{T}$
RETURN
END
SUBROUTINE SCALE(K.N.S.T.D)
I NTEGER N.K
REAL* 8 T.D
REAL* \mathcal{S} (0:1000)
BEGIN
INTEGER J
$\mathrm{T}=\mathrm{T} / \mathrm{D}$
D0 1 J $=\mathrm{K} . \mathrm{N}$
$S(J)=S(J) / D$
CONTINLE
RETURN
END

SUBROUTINE COEFU(N,ALPHA, BETA, X, A, B, C) INTEGER N
REAL* 8 ALPHA, BETA, X, A, B.C
C COMPUTES COEFFICIENTS USED BY J.C.P. MILLER ALGORITHM FOR
C A CONFLUENT HYPERGEOMETRIC FUNCTION U(a,b;x)
C SEE JET WIMP, COMPUTATION WITH RECURRENCE RELATIONS,
C PITMAN 1984 PP. 63-64
C BEGIN
INTEGER M.K
REAL* 8 S,T,U,V,W
$\mathrm{S}=\mathrm{ALPHA}+$ QFLOAT (N)
$T=S+1 . D O$
$\mathrm{U}=\mathrm{S} *(\mathrm{~T}-\mathrm{BETA})$
$\mathrm{V}=\mathrm{QFLOAT}(\mathrm{N}+1)$
$W=V+1 . D O$
$\mathrm{A}=(2 * \mathrm{~T}+\mathrm{X}-\mathrm{BETA}) * \mathrm{~V} / \mathrm{U}$
$\mathrm{B}=-\mathrm{V} * \mathrm{~W} / \mathrm{U}$
$\mathrm{C}=1$
RETURN
END

Remark: The program that calls Miller must supply as a last parameter either COEFF (for M) or COEFU (for U).

The subroutines are available on a diskette from either author upon request. These subroutines were tested extensively for various values of $a . b$ and x.

Remark: If the parameter is a negative integer, the solution of the differential equation is

$$
y=A L_{n}(x)+B\left\{\ln |x| L_{n}(x)+\sum_{m=0}^{\infty} \beta_{m} x^{m}\right\}
$$

where $\mathrm{n}=-\mathrm{a}$.
$L_{n}(x)$ are Laguerre polynomials whose coefficients α_{i} satisfy

$$
\begin{aligned}
& \alpha_{i}=\frac{i-n-1}{i^{2}} a_{i-1} . \quad i=2 . \ldots n . \\
& a_{1}=-n .
\end{aligned}
$$

The coefficients β_{m} satisfy

$$
\begin{array}{ll}
\beta_{m+1}=\frac{(m-n) \beta_{m}+\left(1-\frac{2(m-n)}{m+1} a_{m}\right)}{(m+1)^{2}} & m=1 \ldots n-1 \\
\beta_{m}=\frac{1}{(n+1)^{2}} a_{n} & m=n \\
\beta_{m} \cdot \frac{m-n-1}{m^{2}} \beta_{m-1} & m=n+1 . n+2 \ldots
\end{array}
$$

This research was conducted for the Office of Naval Research and was funded by the Naval Postgraduate School.

References

1. R.T. Williams. A.N. Staniforth and B. Neta, Solution of a generalized Sturm-Liouville Problem, IMA Conference on Computational Ordinary Differential Equations, Imperial College, London, July 3-7, 1989.
2. J. Wimp. Computation with Recurrence Relations. Pitman Advanced Pub. Program, Boston, 1984.

Director
Defense Tech. Information Center
Cameron Station
Alexandria. V'A
22314
Director of Research Administration
Code 012
Naval Postgraduate School
Monterey. CA 93943
Library 2
Code 0142
Naval Postgraduate School
Monterey. CA 93943
Department of Mathematics
Code 53
Naval Postgraduate School
Monterev. CA 93943
Center for Naval Analyses 1 4401 Ford Avenue
Alexandria. V'A 22302-0268

Professor Beny Neta
Code 53 Nd
Department of Hathematics
Naval Postgraduate School
Monterey. CA 93943
Dr. C.P. Katti
5
J. Nehru Universit!

School of Computer \& Systems Sciences
New Delhi 1100 G 7
India

Professor Paul Nelson
Texas Adll Universit?
Department of Nuclear Engineering and Mathematic: College Station. TX 7 \& $43-313.3$

Professor H.B. Kieller
Department of Applied Hathematic=
Cal ifornia Institute of Technologi
Pasadena. CA 91125

Professor W. Gragg
Code 53 Gr
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943
Profesor H. Dean Victory, Jr.
Texas Tech University
Department of Mathematics
Lubbock, TX 79409

Professor Gordon Latta
1
Code 53Lz
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943

Professor Arthur Schoenstadt
Code 53Zh
Department of Mathematics Naval Postgraduate School Monterey, CA 93943

Professor M.M. Chawla. Head
Department of Mathematics III/III/B-1, IIT Campus Hauz Khas, New Delhi 110016 India

Professor R.T. Williams
Code G3wu
Department of Meteorology
Naval Postgraduate School
Monterey. CA 93943

32768003331539

