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ABSTRACT

A fairly common failure model in a wide variety of contexts is a

cumulative damage process, in which shocks occur randomly in time and
associated with each shock there is a random amount of damage which adds
to previously incurred damage until a breaking threshold is reached. The
multivariate life distributions that are induced when several "components,"
each with its own breaking threshold, are exposed to the same cumulative
damage process are of interest in their own right, and are important
examples in the general study of multivariate life distributions.

This paper is a summary of some results about the very special, but
central, case in which the cumulative damage process is a compound Poisson
process. It is focused on the multivariate life distributions that arise
when the component breaking thresholds are random and have a Marshall-Olkin
multivariate exponential distribution. There are two relevant multivariate
life distributions that can be derived, an intermediate distribution for

the number of shocks (cycles) to failure and the final distribution for

the actual times to failure. The results have application to the life

distribution of a coherent system whose components are exposed to the

damage process

.
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texts is a cumulative damage process, in which shocks occur randomly in

time and associated with each shock there is a random amount of damage

which adds to previously incurred damage until a breaking threshold is

reached. The multivariate life distributions that are induced when

several "components," each with its own breaking threshold, are ex-

posed to the same cumulative damage process are of interest in their

own right, and are important examples in the general study of multi-

variate life distributions.

This paper is a summary of some results about the very special,

but central, case in which the cumulative damage process is a compound

Poisson process. It is focused on the multivariate life distributions

that arise when the component breaking thresholds are random and have a
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have application to the life distribution of a coherent system whose

components are exposed to the damage process.

1. Introduction . The broad aspects of a simple "failure" model,

which has been of interest in the reliability and many other settings,

are summarized in Figure 1.
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Figure 1

In the model a sequence of shocks occurs randomly in time. The

i— shock, i = 1,2,..., causes a random amount of damage X. which

adds to previously incurred damage until a possibly random breaking

threshold Y is reached. The number of cycles (shocks) to failure is

(1.1) N = min {k: X +...+X^ > Y>,



i.e. N > k » x +. ..+X < Y, k = 1,2,... . The time to failure is

(1.2) T = inf {t: K(t) > N},

where K(t) is the random number of shocks that occur in the time in-

terval [0,t], i.e. T > t » K(t) < N.

A basic case of the model arises when the process (K(t) , t^O}

for the incidence of shocks, the sequence of damages X ,X , ..., and

the breaking threshold Y are independent, and:

(a) (K(t) i t ^ 0} is a Poisson process.

(b) X ,X , ... are independent observations on a prototype
damage variable X which is nonnegative and not degen-
erate at zero.

(c) Y has an exponential distribution.

In this case N has a geometric distribution, since

(1.3) P[N>k] = P[Y >X +...+X, ] = Ee l

1 •" V
1 k

-Xx k
= {Ee } , k = 0,1, . . . ,

-Xy
where P[Y>y]=e ,X>0,y^0, is the survival function for Y,

and vacuous sums are taken to be zero. Then

(1.4) P[N>k] =
k

, k = 0,1,... ,

-XX
where 9 = E e . Since X is nonnegative and not degenerate at

zero, and X > 0, then £ 6 < 1. Further, T has an exponential dis-

tribution, since



, . . k -ut
(1.5) P[T>t] = P[N>K(t)] = Ik=Q

6
K U

k!

_ e
-(i-e )ut(

t i 0#

where u > is the rate for the Poisson process {K(t) , t^O}.

Since u > and 9 < 1, then (1-6) u > 0.

A simplest multivariate generalization of the model would be to

consider n "components," with different breaking thresholds Y ,...

. ..,Y , which experience a common sequence of shocks and are damaged

alike by any particular shock. The other elements of the model can be

kept intact so that N., the number of cycles to failure for the i

—

component, is related to Y. by (1.1), and T., the time to failure

for the i— component, is related to N. by (1.2) . Distributional as-

sumptions analogous to the basic case would require that the process

for the incidence of shocks, the sequence of damages, and the vector of

breaking thresholds be independent. Assumptions (a) and (b) can remain

unaltered, and (c) can be replaced with the assumption that Y , . . . ,Y
1 n

are independent with possibly different exponential distributions.

This paper is a summary and synthesis of some results obtained

from an investigation of the multivariate generalization described

above. The main purpose is to trace an analogy to the chain of impli-

cations

Y exponential =» N geometric =* T exponential



that holds for the univariate model. For this purpose it appears that

the appropriate replacement for assumption (c) is not that Y , . . . ,Y
1 n

are independent and exponential, but rather that Y,,...,Y have the
1 n

multivariate exponential distribution introduced by Marshall and Olkin

[6] . The investigation grew from work on the univariate model in the

case that Y has an IHRA distribution (Esary, Marshall, and Proschan

[5], Theorem 5.2). The relationship involves the life distribution at-

tributable to a coherent system whose components are exposed to the

multivariate damage process.

2. Distributions with exponential or geometric minimums . A set of

nonnegative random variables T , . . . ,T (or Y, , . . . ,Y ) has a joint
1 n 1 n

distribution with exponential minimums if min. T. has an exponen-
lei i

tial distribution for each nonempty I <= {l,...,n}. A set of positive

integer valued random variables N, ,...,N has a joint distribution
1 n

with geometric minimums if min. N. has a geometric -distribution for

each nonempty I c {l,...,n}. It is automatic that the univariate mar-

ginals of joint distributions with exponential (geometric) minimums are

exponential (geometric) . In addition, these classes of distributions

have other properties (Esary and Marshall [3], Section 2) that justify

regarding them as very comprehensive classes of multivariate exponen-

tial (geometric) distributions. Here, the reason for considering them

is to note for subsequent reference how they are propogated through the

multivariate damage process.

Theorem 2.1. Y, , . . . ,Y have exponential minimums =» N , . . . ,N
1 n J- n



have geometric minimums =» T , ...,T have exponential minimums .

Proof . Let I be a nonempty subset of {l,...,n}. To show the

first implication note that N. > k « Y. > X„ + +X, , iel. Then
i ilk

(2.1) min. _ N. > k « min. _ Y. > X +...+X ,iel 1 iel l 1 k

and since min. Y. is exponential, it follows from (1.3) and (1.4)

that min. N. is geometric. To show the second implication note

that T. > t « N. > K(t), iel. Then
i l

(2.2) min. „ T. > t « min. „ N. > K(t)

,

iel l iel l

and since min. ,. N. is geometric, it follows from (1.5) that
iel l

min. „ T. is exponential. D
xel i

3. A multivariate exponential distribution and its discrete ana-

logues. Nonnegative random variables T, ,...,T (or Y, , . . . ,Y ) have—* 1 n 1 n

the multivariate exponential distribution considered by Marshall and

Olkin [6] if

(3.1) T. = min
{jeJ:

.

ej}
Sj , i- 1 n,

where J is a class of nonempty subsets of {l,...,n} such that each

i e {l,...,n} is an element of at least one of the sets J e J, and

the S , JeJ, are independent, exponentially distributed random vari-
J

ables. The requirement on the class J insures that the joint distri-

bution of T, , . . . ,T is proper. For convenience the term multivariate
1 n

exponential distribution (MVE) will mean a distribution in this class.

By contrast with joint distributions with exponential minimums, multi-



variate exponential distributions are highly structured, and stand much

closer to the joint distributions for which T , ...,T are independent
1 n

and exponential ( [3] , Section 2).

The class of multivariate exponential distributions has several

characterizations. One of these([3], Section 5.1), which is of special

interest here, is that T , . . . ,T have a multivariate exponential dis-
1 n

tribution if, and only if:

(3.2)

(a) T, ,...,T have exponential minimums.
1 n

(b) On each simplex < t. £ t. < ... < t.— X
l

X
2

*I*l >t:
i W =TrA P[min

i e i.
T
i *W ,

] '

3 D 3-1

where I, = {i_,...,i }, I. = {i,,,— ,i K— , I = {i )11 n22 n nn
depend on the simplex , and t. =0.

By analogy with definition (3.1) positive integer valued random

variables N , . . . ,N can be said to have a multivariate geometric dis-
1 n

tribution in the narrow sense (MVG-N) if

(3.3) N. = min, 7 . , M , i = l,...,n,

where the class J has the same property as in (3.1) , and the M , JeJ,

are independent, geometrically distributed random variables. By analo-

gy with the characterization (3.2), N, , . . . ,N can be said to have aIn
multivariate geometric distribution in the wide sense (MVG-W) if:

(a) N ,...,N have geometric minimums.
1 n



(3.4)

(b) On each simplex < k. < k. i ... i k,
i, i i12 n

P[N, >k.,...,N >k ] = 1

" n
_ P[min. „ N. > k. -k. ],

1 1 n n m d=1 iel. l i. i. ,

D J D-l

where I.,..., I are as in (3.2,b) , and k. = 0.
1 n x

o

It is easy to see that the class of MVG-N distributions is con-

tained in the class of MVG-W distributions. That the two definitions

produce distinct classes of distributions is shown in Esary and

Marshall [4] , Example 2.1.

These classes of distributions are also preserved when propogated

through the multivariate damage process, provided the weaker multivari-

ate geometric concept is employed.

Theorem 3.1. Y,,... fY MVE => N, , . . . ,N MVG-W => T,,...,TIn In In
MVE.

Proof. In the proof MVE distributions are described by the char-

acterization (3.2). Then since Y, ,...,Y have exponential minimums,
1 n

it follows from Theorem 2.1 that N, ,...,N satisfy (3. A, a) and that
1 n

T, ,...,T satisfy (3. 2, a). Thus it remains to show that N, , . . . ,NIn In
satisfy (3.4,b) and that T, , . . . ,T satisfy (3.2,b).

1 n

To show the first implication note from (3.2) that on the simplex

(3.5) P[Y >y Y
n

> yJ = TL2n
e11 n n j—l



where I = {l,...,n}, I = {2, . . . ,n} , . . . , I = {n}, and X is the
-1- * • n I

.

3

parameter in the exponential distribution for min. Y . Then recall
lei . 1

]

that N
±

> k
±

» Y
i

> X
1
+...+X

k
, i = l,...,n. Thus on a simplex,

i

which without loss of generality can be assumed to be < k < k

< ... < k ,

n

P[N >k,...,N >k ] = P[Y. >X. + ...+X, ,...,Y >X, + ...+X, ]J-J- nn 11 k, nl k
1 n

= E

-X (X+...+X ) -X (X
k 1+ ...+x >

e
1 l

e
2 1 2

• • • t-

k , +1 k i
n n-1 n

J

-A X k, -X. X k -k

Ee Ee
2 1

-X_ X k -k
r I

Ee
n n-1

". n
. P[min. T N. > k.-k. .] .

1 ' t=1 lei . i i i-l

Thus N_

,

,N satisfy (3.4,b) .

1 n

To show the second implication note from (3.4) that on the simplex

< k
n

< k„ < ... < k12 n

(3.6) P[N. >k_,...,N >k ] = T]".
11

. 8.11 n n ]=l

k.-k. ,

3 3-1

where 9 is the parameter in the geometric distribution for

min. _ N.. Then recall that T. > t. « N. > K(t.), i = l,...,n.id .1 1111
3

Thus on a simplex, which without loss of generality can be assumed to



10

be <; t, ^ t. <, .

.

. < t ,
x 2. n

P[T >t ,...,T >t ] = P[N >K(t_),...,N >K(t )]11 nn 11 nn

n OO r-t OO n 00

^•k =0^k =k."* ^k =k ,

1 2 1 n n-1

r k k -k_ k -k
fl

1
fi

2 1 n n-1
6
I

1
V ••* e

i12 n

(ot ) e {u(t -t )} e

k
x

l (k
2
-k

1
)

!

k -k -u(t -t .)
r . /. . t n n-i n n-i
{u(t -t .)

}

e
n n-1

(k
n
_k

n 1
)!

n n-i

-d-e )ut -d-8 )u(t -t )

1 2
e e

.. e

-(!-©_ )u(t -t )
I n n-1
n

" IT™, PImin. _ T. > t.-t. 1
1 '3=1 lei . l 3 j-1

Thus T, ,...,T satisfy (3.2,b) . D
1 n

Theorem 3.1 requires no hypothesis on the damage variable X, ex-

cept that X not be degenerate at zero to insure that the distribu-

tions for N, ,...,N and T_ , . .

.

rT are proper. However ([4], TheoremIn In
5.4) if X is_ infinitely divisible , then N , ,N have a MVG-N dis-



11

tribution . The situation is summarized in Figure 2.

Y
l'**"

Y
n

N ,...,N
l n

i r . . . , T
1 n

Figure 2

A converse result ([4], Theorem 5.5) is that if N, ,...,N are
1 n

MVG-N for all n and for all Y, , . . . ,Y which are independent and ex-
1 n

ponential, then X is infinitely divisible.

The bivariate damage process is a special case ([4], Theorem 3.1)

in that for it the chain of implications is

Y ,Y BVE =* N ,N BVG-N => T ,T BVE

without special hypotheses on X.

4. Coherent systems. It can be supposed that Y, , . . . ,Y are theIn
breaking thresholds of the components in a coherent system. In this

context a coherent system can be conveniently described by a form of

its life function based on its minimal path sets. The minimal path

sets P,,...,P are set minimal combinations of components that by all
1 p

functioning can cause the system to function. The number of cycles un-
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til a minimal path set P ceases to "function" is min. N., and the
ieP 1

time until the path set ceases to function is min. T.. The number
ieP 1

of cycles to failure for a coherent system is

(4.1) T (N, ,...,N ) = max. , min. N.,
1 n 3=1,...,p ieP. l

and the time to failure is

(4.2) T (T,

,

,T ) = max. , min. „ T.,
1 n 3=1,...,p ieP . i

where t (t, ,...,t ) = max. , min. _, t., t. ^ 0, i = l,...,n, is
1 n 3=1/ • • • >P ieP

.
i i

the life function of the system [2]

.

Relationships similar to (1.1) and (1.2) hold for coherent systems.

From (4.1) and (2.1) it is immediate that

(4.3) x(N. ,...,N ) > k « t(Y-.,...,Y ) > X. + ...+X, ,In 1 n 1 k

and from (4.2) and (2.2)

(4.4) x(T_,...,T ) > t « x(N_,...,N ) > K(t).In In
Then, similarly to (1.3) ,

(4.5) P[T(N ,...,N ) > k] = EG
T
(X

1
+...+X

k
) ,

provided that G (0) = 1, where G (y) = P [x (Y, , . . . ,Y ) > y] , y > 0, is
x x l n

the survival function for x (Y , . . . ,Y ), and similarly to (1.5),
1 n

» ( t}
k ~Ut

(4.6) P[x(T
x

T
r) > t] = Ik=0

ES
x
(X

l
+ --* +X

k )
ki

'

Thus the experience of a coherent system whose components are exposed

to a multivariate damage process can be represented by a univariate
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damage process with Y = x (Y , ...,Y ), N = t(N.,...,N ), and T
J- n In

= t(T , ...,T )

.

1 n

A nonnegative random variable T(or Y) has an increasing hazard

R(t)
rate average (IHRA) distribution if —~- is increasing, where R(t)

= -logP[T>t], t > 0. These distributions have been considered in the

connection that if T, ,— ,T are independent and IHRA (in particularIn
if T, ,...,T are exponential), then t (T, , . . . ,T ) is IHRA, where tIn In
is the life function of a coherent system (Birnbaum, Esary, and Marshall

[1], Theorem 4.2). A partial extension is that if T, , . . . ,T have a— 1 n

joint distribution with exponential minimums, then t(T_,...,T ) has
1 n

an IHRA distribution ( [3] , Application 5.3)

.

The time to failure of a coherent system exposed to the multivari-

ate damage process has an IHRA distribution under relatively weak as-

sumptions on Y, , . . . ,Y .

1 n

Theorem 4.1. Y. , . . . ,Y have exponential minimums (in particular
1 n

Y, , . . . ,Y MVE) => x (T, , . . . ,T ) is IHRA, where x is a coherent lifeIn In —
function .

Proof . The result follows from Theorem 2.1 and the preceeding re-

marks . D

For the basic case of the univariate damage process, but with Y

assumed to be IHRA rather than exponential, it is shown in [5] (Theorem

5. 2, a) that T is IHRA. The proof uses Theorem 4.1 in conjunction

with (4.6) and certain properties of IHRA distributions. An applica-

tion of the result is that t(T.,...,T ) is IHRA for any joint distri-
l n
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bution of Y l( ...,Y such that t (Y, , . . . ,Y ) is IHRA.in in
It is also shown in [5] (Theorem 5.2,b) that if Y has an increas-

ing hazard rate(IHR) distribution, then N has a discrete analogue of

an IHRA distribution (referred to as a D-IHRA distribution subsequently),

and conversely (Theorem 5.2,c) that if N has a D-IHRA distribution,

then Y must have an IHRA distribution. Assuming Y is IHR is more

restrictive than assuming that Y is IHRA, and the question of whether

Y is IHRA implies N is D-IHRA is unresolved. The remaining results

in this section have a potential bearing upon, but do not resolve, this

question.

A positive integer valued random variable N can be said to have

R(k)
a discrete increasing hazard rate average (D-IHRA) distribution if

is increasing, k = 1,2,..., where R(k) = - log P [N > k]

.

Lemma 4.2. N, ,...,N MVG-N => t (N, , . . . ,N ) D-IHRA, where xIn In
is a coherent life function .

Proof. Suppose that N, , . . . ,N satisfy (3.3) with P [M > k]In J

6, , i 8. < 1, JeJ. Let X T = -log 6. JeJ. Since 9_ < 1, then

X > 0. Let S , JeJ, be independent random variables with the expo-
J J «~ X

J
S

nential survival functions P[S >s] = e , s £ 0. Let U, ,...,U
J in

be related to the S . JeJ, by (3.1). Then U, , . . . ,U are MVE, and
J In

P[min.
€l

N. > k] = Hmin
{jeJ:InJ^ }

Mj > k]

k rr
"X

J
k

T{jeJ:inJ^0}
9
J T{JcJ :InJ?fc0}

e
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= P[min
{jeJ:lnJ^}

S
j

> k] = P[min
ieI

u
i

> k]

for each nonempty I c {l,...,n}. From the form of t it follows by

the standard inclusion-exclusion argument that

P[t(N. ,...,N ) > k] = P[t(U, ,...,U ) > k] .In In
From Application 5.3 of [3], t (LL , ,U ) is IHRA, so that

1 n

p[t(u\,...,u ) > t] = e"
R(t)

x n

R(t) . . . _.
where —-— is increasing. Then

p[t(n_,...,n ) > k] = e"
R(k)

1 n

R(k)
where —-— is increasing, k = 1,2,... . D

Theorem 4.3. Y, ,...,Y MVE and X infinitely divisible =>

1 n -

T (N. ,...,N ) D-IHRA, where x is a coherent life function.
1 n

Proof . The result follows from Lemma 4.2 and the observation in

Section 2 that the hypotheses imply that N ,...,N are MVG-N.
1 n

Theorem 4.3 and (4.5) can be used in an argument (similar to the

proof of Theorem 5. 2, a in [5]) to show for the univariate damage pro-

cess that

Y IHRA and X infinitely divisible =» N D-IHRA.
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