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ABSTRACT

Five primitive root multipliers for the prime-modulus

31random number generator X. ,, = AX . mod 2 -1 have been3 i+l i

subjected to a battery of runs tests and serial tests for

pairs and triples. Recommendations regarding these multipliers

are made. Interesting results regarding the relative timings

of the multipliers are presented. We also give results for

the generators with these multipliers after they have been

self-shuffled. A case where self-shuffling produced adverse

results is also presented.
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Introduction

The purpose of this report is to summarize extensive

testing performed on several primitive root multipliers for

31
the prime-modulus random number generator X. ,, = AX . mod 2 -1.r l+l i

Learmonth and Lewis [4] reported similar results for several

different types of generators, including a prime-modulus

generator, designed for use on 32-bit computers. The aim here

is to attempt to discriminate between different multipliers

for a specific type of generator using empirical test results.

The multipliers tested were six primitive roots of

31
2 -1 (supplied by Hoaglin and Sande [1]) and three others of

interest: 16 80 7, the multiplier used in LLRANDOM and IMSL '

s

GGU3; 46 32 5, a primitive root close to the square root of

2-1; and 14
29

= 630360016, used by Payne et al . [6]. Of

the six proposed by Hoaglin and Sande, four were eliminated

in preliminary testing. These appeared adequate statistically,

however, their large magnitude made them rather slow when

implemented. This point will be touched upon later.

Results are also given for these generators with

the additional feature of self-shuffling.

2
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The Generator

The purpose here was to examine several different

primitive roots as potential multipliers for a specific generator,

namely, the Lehmer congruential generator with prime modulus.

For 32-bit computers an appropriate choice of modulus

31
is 2 -1 since this is conveniently the largest prime



expressible in a 32-bit register. The multiplier must be a

31
primitive root of 2 - 1 if the generator is to achieve

31
a full period of 2 - 2 without the requirement of an

additive constant. Of course not every primitive root of

31
2 - 1 will provide a generator whose sequence is adequate

statistically. To date, there is no reliable theoretical

basis for choosing a primitive root multiplier for any prime

modulus which will guarantee good statistical performance.

A variation of the LLRANDOM package was put together

for the testing. Since only the multiplier changed from

generator to generator, the basic code could remain unchanged

with the multiplier and starting value (seed) being arguments

to the generator when called. Four entry points were incorporated

into the IBM 360 Assembler code. Two entry points returned

31integer deviates on the interval [1, 2 -2]. One returned

the sequence directly, while the other entry point returned

the deviates after being shuffled. The other two entry points

returned uniform random deviates on the interval (0.0, 1.0);

again one was the direct sequence, while the other shuffled

the deviates before returning them. The calling sequence to

the code required the multiplier to be supplied as well as the

starting value.

The shuffling scheme employed was as in the LLRANDOM

and GGU3. A table of 128 integer values is maintained within

the generator. These values were obtained by running LLRANDOM



with multiplier 16807 and staring value 1 and retaining

every millionth integer for the table. When an integer is

produced during a call to the generator the low-order seven

bits are removed and are used to provide an index to the table.

The value at that location in the table is then returned with

the newly generated integer replacing the table value. It is

felt that this scheme adequately breaks up the serial correlation

inherent in linear congruential generators. It uses the idea

that the low order bits in a prime modulus congruential generator

with a positive primitive root of the modulus as multiplier,

the lower bits are fairly random. Knuth (3, p. 12) has noted

this but it does not seem to be a well understood phenomenon.

An interesting result came as a by-product of the test-

ing performed here. A generally overlooked fact of the IBM

System 360 and 370 computers, and presumably others, is that

the integer (fixed-point) arithmetic instruction timings

reported are average times. If speed is of importance in the

generator, the multiplier should also have relatively few

non-zero bits in its binary representation.

Some very early proposals for random number generators

used multipliers which were some power of 2 with a small

additive factor. Rather than a lengthy multiplication, the

generator reduced to a shift-and-add type of operation. With

the advances in computer hardware and the availability of the

division simulation algorithm used in LLRANDOM, this consider-

ation has been generally abandoned.

Table 1 summarizies the timing results as experienced

on a System/360 Model 67. The times reported are the elapsed

3



CPU times for the runs test and serial test for pairs and

triples. These runs were made in a multiprogramming environ-

ment (MVT) and do suffer from some contention among tasks

running concurrently. Although the absolute times themselves

are irrelvant, the relative rankings are a result of the number

of bits set to one and their position in each multiplier. Each
1 c

test run consisted of generating 100 samples of 65536 (2 )

deviates and then computing the appropriate test statistics.

The conclusion to be reached from these results is that

among statistically satisfactory multipliers, one should opt

for the one with the fewest high-order bits set to one in its

binary respresentation. This is reinforced by the fact that,

since the self-shuffling scheme used in LLRANDOM is very fast

and shuffling generally improves the generator (Lewis and

Learmonth, 4) , one could shuffle with multiplier 16807 and

obtain a faster and probably better generator than the straight-

forward generator with multiplier 2027812802.

No. of Runs test Serial - 2 Serial - 3

Multiplier one bits (seconds) (seconds) (seconds)

16807 7 304 1179 1399

46325 10 305 1186 1502

397204094 19 551 1268 1506

630360016 13 616 1476 1681

764261123 15 587 1391 1671

1078318381 13 621 1500 1900

1203248318 17 646 1757 1790

1323257245 20 689 1532 1940

2027812802 20 1281 1799 2285

TABLE 1: RELATIVE

4
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3. The Runs Test

The first of the empirical tests applied here is the

runs test. This particular test has been one of the most

frequently cited tests in the literature on the testing of

sequences produced by random number generators.

The development of the runs test antedates the develop-

ment of digital computers. It was first proposed as a non-

parametric test for serial dependence in time series. As a

test for randomness, the runs test is the most powerful test

against the alternative of first-order Markov dependence in

a binary sequence. No other analytic results are known and

Lewis and Learmonth [4] concluded that it is a poor test of

randomness for random number generators.

For a discussion of the runs test, see Knuth [3]

.

Levene and Wolfowitz [5] have shown that for the observed

number of runs of length d, say N , , the statistic

N
d - E[V

(var[N
d ])

1/2

is asymptotically normally distributed with mean and variance

1. By counting observed runs of lengths d = 1,2,..., 7 and

runs of length 8 or greater, these statistics may be combined

to form a runs test statistic which has been assumed to be

distributed as y},. This distributional assumption for the

runs test statistic has been shown to be rather weak; a simulation

result of the true distribution has been given in Lewis and

Learmonth [4]

.



This, rather than compare runs test statistics to a chi-

square distribution, empirical estimates of the distribution of the

runs test statistic were obtained for each of the five multipliers.

These distributional estimates were then compared pairwise

by means of two-sample Kolmogorov-Smirnov tests and two-sample

Anderson-Darling tests. Under the null hypothesis that the

multipliers all produced "random" sequences, these two-sample

tests would test this hypothesis on the distribution of the

runs test statistics.

As a further comparison, these empirical runs test

distributions were also compared to the 500-point empirical

distribution obtained in [4]. This 500-point distribution

estimate was obtained from the results of runs tests performed

on five different generators whose sequences were shuffled.

3.1. Results of the runs test

For each multiplier, samples of 2 (65536) were

generated, and a runs test statistic was computed. This pro-

cess was repeated 100 times with independent starting values.

Sorting these 100 runs test statistics provided an estimate

of the distribution of the statistic for each multiplier. The

same procedure was repeated for each multiplier with the

sequence shuffled.

The distribution of the two-sample Kolmogorov-Smirnov test

generally used is an asymptotic result which is generally felt

to hold when both samples are of size 100 or greater. Since

the samples here are of size 100, a small-sample version of

6



the Kolmogorov-Smirnov test due to Kim and Jennrich [2] was

used. The values to be reported are the same test statistic,

C/100 2
, and the probability of exceeding that value under

the null hypothesis,

Pr{D
ioo,ioo > c/10 °2 > •

For comparisons to the 500-point reference distribution, the

asymptotic distribution of the K-S test was employed.

It is known that the K-S test is not sensitive to

departures in the tails of the sample distributions. Therefore

the Anderson-Darling test was also applied to provide more power

in testing the tails. Until quite recently, there was no two-

sample Anderson-Darling test. A paper by Pettitt [8] provides

an algorithm for such a test and includes small-sample as well

as asymptotic percentage points for the test.

In the tables to follow, the first line provides the

value of the K-S criterion for the specific pair, followed in

parentheses by the probability of exceeding that value under

the null hypothesis. On the line immediately below is the

Anderson-Darling test statistic. The critical values for this

test statistics are 10% (1.933), 5% (2.492), and 1% (3.857).

Table values significant at 10% are marked with a single asterisk,

and those significant at 5% are marked by double asterisks.

The last column presents the two-sample K-S test results against

the 500-point reference sample.



From the results in Table 2 it can be surmised that

all five multipliers produce distributionally commensurate runs

test statistics. There are no grounds to conclude that any of

the five differ from one another nor do they differ significantly

from the 500-point reference distribution. Again the results on

the runs test from [4] which were referred to above must be

borne in mind.

Table 3 presents results applied to the five multipliers

when their sequences were shuffled before computing the runs

test statistics. The intention of shuffling is to break up the

natural sequence produced by a generator. In [4] it was demon-

strated that the shuffling scheme implemented here was effective

in improving the quality of generators known beforehand to be

poor. In Table 3 it is apparent that the shuffling has adversely

affected one sequence. While this result is somewhat distressing

it is intuitively plausible that shuffling can alter a satis-

factory sequence into an unsatisfactory sequence. With the

29 -
exception of the Lehmer multiplier, 14 = 630360016, the results

of shuffling have not changed the conclusions concerning the

runs test results for the other multipliers. it is clear that

it would be very interesting to investigate why shuffling

29affected the generator with multiplier 14 , but this has not

been undertaken.



4 . The Serial Test

Further empirical testing of these five multipliers

was performed using the serial test for pairs and triples.

For many simulation applications, the k-dimensional uniformity

of the generated sequences is an important consideration. The

standard implementation of the serial test divides the k-dimen-

sional unit hypercube into r smaller hypercubes where r

is some power of 2. In this form, the test is essentially

testing the k-dimensional uniformity of the first r bits

of the generated numbers. By tabulating nonoverlapping k-

tuples of the sequences, a contingency table is formed and the

ordinary chi-square test is then performed on the table.

For the testing here, overlapped k-tuples were tabulated.

For many applications requiring k random numbers, the serial

dependence within pairs or triples is vital to the simulation

as well as the serial dependence between tests or triples.

With overlapping the chi-square distribution theory for the

distribution of the test statistic does not hold. Hence the

statistic generated from the contingency table does not possess

a known distribution; in particular it is not chi-square.

Rosenblatt [9] has investigated analytically the serial test

for congruential generators with shuffling.

As with the runs tests, empirical estimates of the

distribution of this statistic have been generated for each

generator tested. For purposes of comparing the multipliers,

the empirical serial test distributions were compared with

one another using the two-sample Kolmogorov-Smirnov test

and the two-sample Anderson-Darling test. Additionally, each

9



was compared to a 500-point reference distributional estimate,

obtained in [4]

.

Each sample in the empirical estimate consisted of 2

pairs or triples respectively. The pairs were tabulated into a

16 by 16 table, while the triples were tabulated into a 16 by

16 by 16 cube. The first four bits of each number were there-

fore being tested. (See [4] for more details of the test.)

Under the hypothesis of multidimensional uniformity, the

expected value for each subcell is known, and a "chi-square"

type statistic was computed. To form an estimate of the distri-

bution of this statistic, 100 such samples were computed and

sorted for each multiplier.

4.1. Results of the serial tests

Table 4 presents the results of the serial test for

pairs when the sequences are not shuffled. Table 5 presents

the results for the shuffled sequences. As with the runs

test results, the first line presents the sample K-S statistic

followed by the probability of exceeding that value under the

null hypothesis. The second line presents the Anderson-Darling

test statistic. The last column presents the two-sample K-S

test results against the 500-point reference distribution.

The results in these two tables are quite as expected. All

of the multipliers are distributionally indistinguishable. One

slightly suspect pair is marked significant, and this is most

likely due to the fact that the multiplier 16807 is known to be

10



46 325
Reference

397204094 630360016 764261123 Distribution

16807 .10 (.5830) .11 (.4695) .09 (.7021) .14 (.2112) .9311 (.3512)
.44 .43 .34 1.00

46325 .09 (.7021) .09 (.7021) .12 (.3682) .7486 (.6296)
.85 .41 1.11

397204094

630 360016

764261123

.09 (.7021) .11 (.4695) 1.0954 (.1813)

.65 .57

.13 (.2820) .5295 (.9419)
1.28

1.1320 (.1541)

TABLE 2: PAIRWISE COMPARISON OF THE DISTRIBUTION OF RUNS TEST STATISTICS
(NOT SHUFFLED)

.

46325 397204094 630360016 764261123
Reference

Distribution

16807

46325

.12 (.3682)

.71

397204094

630 360016

764261123

07 (.9084) .14 (.2212) .09 (.7921)

34 2.13* .34

15 (.1549) .20 (.0241**) .11 (.4695)
3.17** .31

.14 (.2122) .10 (.5830)

1.55 .45

.13 (.2829)
2.24*

.4564 (.9853)

.8398 (.4809)

.6938 (.7216)

1.5701 (.0144**)

.8033 (.5387)

TABLE 3: PAIRWISE COMPAIRSON OF THE DISTRIBUTION OF RUNS TEST STATISTICS
(SHUFFLED)
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46325 397204094
Reference

630360016 76426112 3 Distribution

16807 .11 (.4695) .17 (.0783*) .12 (.3682) .11 (.4695) 1.0042 (.2656)

.49 1.67 .63 1.59

46325 .12 (.3682) .06 (.9684) .11 (.4695) .5112 (.9563)

.77 .23 1.23

397204094 .10 (.5830) .12 (.3682) .9859 (.2854)

.98 1.30

630360016 .10 (.5830) .4747 (.9779)

1.22

764261123 7303 (.6604)

TABLE 4: PAIRWISE COMPARISON OF THE DISTRIBUTION OF SERIAL TEST STATISTICS
FOR OVERLAPPED PAIRS (NOT SHUFFLED)

46325
Reference

397:!04094 630360016 764261123 Distribution

.08 (.8154) .10 (.583) .13 (.2820) .4564 (.9853)

.26 .53 1.40

.07 (.9084) .08 (.8154) .10 (.5830) .4564 (.9853)

.35 .28 .84

.09 (.7021) .15 (.1549) .5295 (.9419)

.52 1.53

.11

1.06
(.4695) .6573 (.7807)

46325

397204094

630360016

.25

764261123 1.1320 (.1541)

TABLE 5 : PAIRWISE COMPARISON OF THE DISTRIBUTION OF SERIAL TEST STATISTICS
FOR OVERLAPPED PAIRS (SHUFFLED)

12



weak with respect to pairs (see Table 8a in Lewis and

Learmonth [4]). It can be concluded that all of the

multipliers are satisfactory in distribution of pairs. It

should also be noted that the shuffling has not affect the Lehmer

29multiplier, 14 = 630360016, as it did in the runs test. This

is bewildering since in the results for triples to follow, the

shuffling does have a marked effect on this multiplier.

Tables 6 and 7 present the results of the serial test

for consecutive overlapped triples. Without shuffling, the only

suspect multiplier is 46325 which is a primitive root close to

31
the square root of 2 - 1. This multiplier was chosen since it

was conjectured that it would perform well in the runs test and

serial test for pairs. The evidence here is that the multiplier

is weak for triples. When shuffling is applied to the sequences,

the results appear satisfactory for all multipliers except

29
14 = 630360016. Here again, as in the runs test, the sequence

produced by this multiplier performs well without shuffling but

becomes very poor when the sequence is shuffled.

13



46325
Reference

397204094 630360016 764261123 Distribution

16807 .17 (.0783*) .06 (.9884) .12 (.3682) .15 (.1549) .6390 (.8088)

2.53 .17 .75 1.65

46325 .15 (.1549) .11 (.4695) .09 (.7021) 1.3693 (.0470**)

1.90 .72 .39

397294094 .09 (.7021) .11 (.4695) .4917 (.9970)

.38 1.21

630 360016 .12 (.3682) .6573 (.7807)

.64

764261123 9311 (.3512)

TABLE 6: PAIRWISE COMPARISON OF THE DISTRIBUTION OF SERIAL TEST STATISTICS
FOR OVERLAPPED TRIPLES (NOT SHUFFLED)

46325 397204094 630360016 764261123
Reference

Distribution

16807 .11 (.4695) .11 (.4695) .18 (.0539*) .08 (.8154) .7668 (.5990)

.84 1.00 2.16 .37

46325 .13 (.2820) .25 (.0023**) .08 (.8154) .8933 (.5387)

.83 3.92** .34

397204094 .15 (.1549) .10 (.5830) .7303 (.6604)

1.80 .49

630360016 .22 (.0099**) 1.7162 (.0055**)

2.61

764261123 .4917 (.9970)

TABLE 7: PAIRWISE COMPARISON OF THE DISTRIBUTION OF SERIAL TEST STATISTICS
FOR OVERLAPPED TRIPLES (SHUFFLED)

14



5. CONCLUSIONS

It is generally known that constructing Lehmer congruential

generators for 32-bit computers requires considerable care due

31
to the small word size. Prime-modulus generators using 2 - 1

as modulus provide an important class of generators for these

systems. By using primitive-root multipliers and a division

simulation algorithm, fast full-period generators can be easily

constructed. The question arises then as to the statistical

quality of these sequences.

The intent here has been to present results of statistical

tests applied to several proposals for primitive root multi-

pliers. The results may be summarized as follows. All of the

multipliers tested appear to be quite adequate statistically

with the possible exception of 46325. None of the multipliers

produced test statistics which differed significantly among them-

selves nor against an independent reference distribution. The

multiplier 46325 did perform poorly with regard to the distri-

bution of triples and is therefore not recommended for use.

As a by-product of this testing, a question about the effect

of shuflling has been raised and in particular about the

self-shuffling scheme used in LLRANDOM. Specifically, for

29the Lehmer multiplier, 14 , shuffling has adversely affected

the statistical quality of the sequence produced on the runs

test and the serial test for triples. Shuffling has been

proposed by Marsaglia and Bray [6] and has been implemented

in several generator schemes. For certain poor generators,

shuffling has provided a simple method for improving the

statistical quality of these generators. However, it is now

15



clear that shuffling is not a panacea for all situations

although it does improve most generators [4] . Statistical

tests must still be applied to shuffled sequences to ensure

that the desired goal has been achieved.

Lastly, the desirability of fast generators, especially

for large-scale simulations, requires that primitive-root multi-

pliers be chosen with relatively few nonzero bits in their binary

representation subject, of course, to theoretical and statistical

validation.
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