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DM Approximations for the Gravest

Frequency of a Vibrating System

by J. E. Brock

Abstract : Estimates are made of the smallest nonzero frequency of

vibration of undamped linear mechanical systems having lumped and/or

distributed mass and permitting rigid body motions. The approxima-

tions are smaller than the correct values but remarkable accuracy

may be achieved. The procedures are based upon methods of S. Dun*,

kerley and S. G. Mikhlin.

Note : This report amends, augments, and is intended to replace an

earlier report (Cunkerley-Mikhlin Estimates of Gravest Frequency of

a Vibrating System, Naval Postgraduate School Report NPS-59BC75101,

October 1975). In particular, it corrects errors in an earlier deri-

vation and adds an example which illustrates the equations in the

amended derivation.

Acknowledgment ; Appreciation is expressed to the Office of Naval Research

which has sponsored this work through the Foundation Research Program

at the Naval Postgraduate School and also to Professor R. E. Newton who

first directed the writer's attention to the merits of the Dunkerley

viewpoint.
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Introduction

The purpose of this paper is to develop and to illustrate by a number

of examples some interesting and useful extensions of a procedure, gener-

ally known as Dunkerley's method, for estimating the gravest frequency of

an undamped linear mechanical vibrating system. The theory is developed

in the next section hereof. The equivalent of equation 15 was given in

the year 189^ by S. Dunkerley (3) who obtained the result empirically

based on calculations performed while investigating the vibrations of

shaft and disk systems; he certainly did nofe recognize the generality or

the theoretical basis of his formula. Temple and Bickley (12) discussed

the procedure in 1933 indicating Its applicability to both lumped and

continuous mass distributions. However Bickley and Talbot (1) In a

later (1961) textbook on vibrations do not mention the method. South-

well (11) treats the method in his well known treatise (1936, 19^1) without

citing Dunkerely. This may be the reason that the method is sometimes

called the Dunkerley-Southwell method. However, although Southwell may

have arrived at the result independently (he did indeed discover another

method of determining lower bounds; cf. Lamb and Southwell (6)), his book

does cite Temple and Bickley (12) among the general references.
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A formulation in terms of integral equations and their eigenvalues,

iterated kernels, etc., which is appropriate for continuous mass distrib-

utions, is a logical extrapolation, by analogy, from the formulation in

terms of matrices, their eigenvalues, powers of matrices, etc., which is

appropriate for systems having a finite number of degrees of freedom, so

that, in a sense, all the work reported herein stems from Dunkerley (3)

and Temple and Bickley (12). Indeed it was via this path that the writer

was led to the results reported here. However, the relationship with the

theory of integral equations, a thoroughly developed and explored discipline,

is so very close that it seemed likely that the developments at which the

writer has arrived had been anticipated, in purely mathematical context, by

an earlier writer. Indeed this is the case. Mikhlin (8) definitely attri-

butes the ideas to Mikhlin (7). In neither of these references, however,

does Mikhlin refer to Dunkerley (3), Temple and Bickley (12), or South-

well (11). It seems clear that Mikhlin arrived at his results without

being aware of Dunkerley' s formula or of its relation to his own work.

Accordingly, the writer believes that it is appropriate to call the ex-

tended procedure by the name Dunkerley-Mikhlin. The present paper may

be considered as a brief exposition of this method, and some extensions,

and of its application to a variety of problems of engineering vibration.

Derivations

We consider an undamped linear vibrating system characterized by

N*N symmetrical matrices K (stiffness) and M (mass). Suppose that there

are p rigid body modes which are known (by inspection). (Thus, if p > 0,

K has no inverse.) There exists a modal matrix U, not necessarily unique,

and a (diagonal) spectral matrix ft
2 in which frequency-squares are arranged

in non-descending order, such that

-3-



KU = MUft
2

; U
T
MU = I = N*N unit matrix (la,b)

Now consider any other system which is similar to the original system

except that p additional constraints have been incorporated so as to eliminate

the rigid body modes. Let the flexibility of this system be C.

Consider the kth mode (lop) of the original system. There are constants

a., such that

\ a \ + E a
jk

u
j

(2)

does not involve applying loads to the added constraints. Thus, for k>p,

P

+ cX/i

Define the filtering matrix
P

0=1 J J

w hich is such that , n , ^ , *
f if k£p

Thus, for k>p,

i^ if k>p

(3)

F I - Su.uTm W

(5)

CMPi^ - CM^ = u^v
k

- o^\ + <JaJk
Uj (6a)

J-l

while for kip,

CMF^ = (6b)

Equations 6 may be combined to give

UA + B » CMFU (7)

where

A - dlagCO ... uf^ oT2

2
... o^2

] (8)
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and B is a matrix the first p columns of which are zero and the remaining

columns of which are linear combinations of uu Uj

,

the matrix \f lB = U MB, the kth column of which is

u . Now consider

(9)

and, because of equation lb, this can have nonzero elements only in the

first p positions. Thus A + U
-1
B and (A + U"J

B)
n

are of the forms

l?2 i

DJ loj ~rP~~
(10a >b)

respectively, where Oj is a p*p matrix of zeros,
2

is a (N-p)*p matrix

of zeros, E is the nonzero part of U"l
B, and D is the nonzero part of A.

Finally, from the equality

(A + U"l
B)
n

=» (U^CMFU)
11

(11)

by taking traces, we get

N

53"C2n = tr[(A+ tT'B)
n
] - tr[(ir»CMFU)

n
] = tr[(CMF)

n
] = trCcf) (12)

k=p+l

where Q is defined as the matrix triple product CMP. Note, however, for

computational convenience, that

tr(cf ) = tr[(CMF)
n

] = tr[(MFC)
n

] = tr[(FCM)
n

] (13)

We have used the fact that if A and B are matrices conformable in either order,

then tr(AB) = tr(BA).

V/e will refer to equation 12 as the nth DM (Dunkerley-Mikhlin)

evaluation and to the corresponding relation
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vi^ [tr(Qn)]
"1/2n

(l4)

as the nth DM approximation. We will repeatedly us« the symbol £ to mean

"greater than but approximately equal to," and a symbol indicating the

opposite order.

If M is diagonal, if there are no rigid body modes (i.e., if p=0),

and if we take n=*l, equation 14 becomes M

a)j
2 » tr(Q) = tr(CM) = 21\<^ (15)

This is what is generally referred to as Dunkerley's formula. It was

(obliquely) stated In 189^ by S. Dunkerley who regarded it as an empirical

representation of calculations he had made of shaft and rotor frequencies.

Simple extensions to continuous mass distributions are obvi6us and

have been discussed by many writers, among the first of whom were Temple

and Bickley, Reference 6. However, the theoretical basis for the contin-

uous case seems to have been first established by Mikhlin, who, however,

did not consider problems of mechanical vibration and who seems to have been

unaware of Dunkerley's work. In the continuous case, matrix multiplication

is replaced by integration and the compliance matrix C is replaced by a

symmetrical function of two variables, z(x,y) which gives deflection at x

due to unit loading at y. This notation is appropriate to a one-dimensional

herein
field; however, examples given in Roformnoo 1 illustrate cases involving

two dimensional fields. The mass matrix M which heretofore need not have

been a diagonal matrix, now becomes the equivalent of an infinite diagonal

matrix, namely, a function m(x) specifying mass per unit length. The matrix

Q is replaced by the function T

q(x,y) « m(y)[z(x,y) - 2i^(y) | ii_(0 m(0 z(x,0 d£] (16)

k=l
K ^0 K
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where the functions u.(x), k=l,2,...,p, describe the known orthonormal

rigid body modes, satisfying
L

(
m(C) u

±U) UjCO d£ = & (17)

(Kronecker delta). In equation 16, z(x,y) is the compliance of any

system which is like the given system but with additional constraints

so as to eliminate the rigid body modes. The function

z(x,y) is sometimes called the Green's function.

The continuous analog of raising the matrix Q to the nth power

is the formation of the nth iterated function

%(*,y)
L
q^CxjO q(C,y) d£; qx

(x,y) = q(x,y)
(lg)

and the operation corresponding to taking the trace of Q is

y -2n

k=p+l
q^Cx.x) dx (19)

If there is both lumped and distributed mass, we may write
r

m(x) = m(x) + 2^ m 5(x-x. ) (20)

k=l
K K

where 6(x-x, ) denotes the Dirac "function," m(x) denotes a continuous mass

distribution, and the sum represents r distinct point masses m. located

aX> X a Xi_, K~J.,<i | . . . ,r»

Illustration

We consider a finite element model of a segment of an Euler-Bernoulli

T i

beam. The displacement vector is u * [Xj x
2

x
3
x
H ] where x

l
is the (up-

ward lateral) displacement at the left end, x
3
is the similar displacement

at the right end, x
2
/L is the slope at the left, and x^/L is the slope at

-7-



the right. The length of the segment is L. The FEM consistent stiffness

and mass matrices are

K = (2EI/L
3
)
'6 3-6 3'

3 2-31
-6 -3 6 -3

L 3 1-3 2

N - (m/420) 156 22 54 -13

22 4 13 -3

54 13 156 -22

__13 -3 -22 4

First we exhibit the classical solution. The modal matrix (the first two

columns of which are not uniquely determined) is

U - Tl a b cl/vfiT, where a
2

3, b 2
5, and c

2 = 7.

-2a -6b -12c

1 -a b -c

-2a 6b -12c

and the spectral matrix is

fl
2 - diag[u>

2 w2 w2 u2
] * (840EI/mL 3

) diag[0 6/7 10]
2 2 3 «

There is no difficulty in verifying equations la and lb.

Next, we employ the EM method and verify the correctness of

equation 12. Vfe constrain the system by rigidly fixing the left end

so as to form a cantilever. We easily determine

C - (LV6EI) o"

2 3

3 6

CM (mL 3/2520EI) "00

69 17 246 -32

.84 21 336 -42.

and we also calculate

P - -3 -4 3
1"

36 33 36 3

3-1-3 4

.36 3 -36 33.

730

Next, we obtain

q » CMF = (mL
3
/25200EI) "0 0"

-3 -19 3 16 i

-35 35
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Finally we calculate

tr(Q) = 38mL 3/25200EI = w
3

+ M^

tr(Q2
) = 123M(mLV25200EI) 2 « u>: + a>

-<

3 "

& -6
tr(Q 3

) = 42902 (mLV25200EI) 3 = w
3

+ u>„

and so on. All of these calculations check out correctly.

One may observe that the two diagonal elements of Q give directly

U). = 35mL 3/25200EI, u>~ = 3mL
3 /25200EI

but this is only fortuitous in the present illustration as may be seen in

examples lb and lc which appear later.

Now we illustrate the equations employed in the derivation of

equation 12. First, it is easy to verify that

FU

Next we form

CK =

[0 u u ]
3 <

' 0"

-1 -1 1

-1 1

and obtain

[v
3
vj = CK[u

3
uj o"

6b 10c

12b
m

/rfn

which obviously satisfy the constraints which have been introduced at the

left end. We can also calculate the coefficients a.
l 3

= 2b, a23 = -3b/a,

a
llf

5c, and &2k = -6c/a, so that, indeed

v = u, + a, ,u + a„u • v = u + a u + a_ u
3 3 131 232' < • !< 1 2>* 2

We can also calculate and verify that

u>
2
CMu, =* (6/7)(840EI/mL 3 )(bmL 3/2520EI)[0 21 42]

T
/^n = v 3

with a similar calculation relating u^ and v^.

-9-



Next we calculate

CMFU » QU » (•mtV^OEI)

7b c

p 14b

A = (mL 3/25200EI) diag[0 35 3]

UA - (yBL
3
/25200EI) 35b 3c

-210b -36c

35b -3c

.0 210b -36c

B - CMFU - UA - (*4rlL
3
/25200EI) -35b -3c

210b 36c

175b 33c

210b 36c

(mL , /25200EI)[0 35(a 13Ul+a2 3
u
2

) 3(3,^^)]
Noting that U" 1 - (MU) , we finally calculate

U" XQU (mL 3/25200EI)

so that

D = (mL 3
/2520QEI)f35 6

1

3

70b 15c

-3.5ab -6ac

35

3 .

E =• (mL
3/25200EI)

A + U~'B-ii

70b 15c

"

-3.5ab -6ac

Vfe also verify that

tr(U" lQU) - 38mL 3/25200EI, tr[(U
_1
QU)

2
] - 123M(mL 3/25200EI) 2

, etc.

Although it is worth remarking that neither K nor C possesses an

inverse, this is to be expected in cases for which there are rigid body

modes j and the modified system involves perfectly rigid constraints. It

is of some interest to note the form of the product CK.
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Applications

Example 1, part a. A uniform, massless cantilever beam has concentrated

masses m, 9m, and 4m at distances 9L, 21L, and 27L, respectively, from

the fixed end. It is desired to estimate the lowest frequency of harmonic

oscillation. Taking the lateral deflections of the point masses, namely

x,, x
2 , and x^, as the elements of a vector u, we easily determine

M « m diagCl 9 *»];

C » (9L 3/EI) 27 81 108
81 343 ^90

108 ^90 729

Q = CM = (9mL 3/EI) '

27 729 ^32
81 3087 I960

108 4410 2916

H

Prom equation 12, taking n=l, we get

V V
w

l
£(EI/54270mL 3

)
2=4.2926«10~ 3 (EI/mL

3
)

2

Taking n=»2, we get

u>,£ (E2 I 2/2878089084m2L6 )^« 4.3174l6-10"
3

(EI/mL
3
)

A Rayleigh approximation, details of which are not given here, gives

the numerical coefficient for an upper bound as 4. 317542* 10"
3

, so that

the first approximation is in error by less than 0,6% and the second

is in error by less than 0.003$.

Example 1» part b. Now suppose that the fixed support at the left of

this beam is replaced by a frictionless pivot. The frequency cox =

corresponds to the rigid body mode u, = [3 7 9]
T
/(774)'/2 . we obtain

F 765 -189 -108
-21 333 -252
-27 -567 450

/774; Q = CMF = (9mL 3/86EI) -702 -810 864

-6198 -10962 10952
-9858 -22806 21024

and we have no difficulty in obtaining

u3 a ^0.03195(EVmL
3 ) 2̂

, w xS 0.033494 (EI/mL
3 )^

for the first and second DM approximations, respectively. A Rayleigh

approximation gives the numerical coefficient as 0.033586 so that the

errors are less than 5% and 0.3% respectively.
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Example 1, part c. Now suppose that the beam is completely free at the left

so that there are two rigid body modes, involving translation and rotation.

We use the same matrix C as above although a simpler one could be constructed

since the leftmost segment of length 9L obviously does not enter the present

T \A T
problem. Ws take u

l
- [ill] /(14)

z and u^ as a combination of [1 1 1]

T
and [3 7 9] proportioned for orthonormality. Thus we find Uj ;

[15 1 -6]
T
/(378)

/2
. We calculate

42 -126 84

-14 42 -28
21 -63 42

/126; Q - (96mL 3/EI) "0 0'

1 -3 2

L3 -9 6J

and we get tr(Q) « 288mL 3/EI, tr(Q ) - 82944 (mL 3/EI) 2 both of which give the

exactly correct result

u>
3
- (EL/288mL 3)^

since there are only three frequencies the smallest two of which are known

to be zero.

Example 2. Now we consider a cantilever beam in the form of a truncated

right circular cone having base radius b, tip radius a, and length L, and

having uniform physical properties. Assuming an Euler-Bernoulli model,

we obtain the bending compliance

z(x,y) - {(£-n)[(l-an)"
2- (l+2an)] + 2a2n7(l-an)>/6Ba2

where

B = irEbV4 = (EI ) root ; a 3 (b-a)/bL; £ =* Max{x,y}; n = Min{x,y}

The mass per unit length is

m(x) = mo(l-ax)
2

; m© irb
2
Y

mo being the value pertaining to the root end and y denoting mass density.

Performing the indicated evaluations gives

W*;
2 £ m(x) z(x,x) dx = moL"(l+4q)/60B

for the first estimate and, noting the symmetry of z(x,y),

-12-



in it

m(x) m(y) z (x,y) dx dy =

= nv,
2L 8

[3(q
,,

-l)/8 - q
k log

e
(q)/4 + 3p

2 - 5p
3 + llpV4

- 3p
5
/5 - p

6/20 - p
7
/70 + 9p

8/80 - p
9
/5 + 2p» °/25]/l8B2

p
8

where q = a/b, p = 1-q. Although both of these evaluations give results for u^

which are smaller than the correct value, the second gives a result which

has a maximum error of 0.8% (for q = 0) for = q = 1. The first, and

much simpler, evaluation is much less accurate, but it serves as a guide to

the following approximation

w 15- 8.72[(l-0.0l6q)/(l+5.053q)]
/2
(B/moL")

/2

which has a maximum error of \A% for q = 0.1. The "exact" results, for

comparison, were calculated from formulas given by Conway, Becker, and

Dubil, Reference 2.

Next, we consider some cases for which the mass distribution is

of the form described by equation 20. The first and second DM evaluations,

respectively, take the forms

Z-)u" 2 = m(x) z(x,x) dx + /-jm. z(x, ,x, )

i=l
1

*o k»l * K K

Z^w""= m(x) m(y) z
2
(x,y) dy dx + 2 ^^ m. m(x) z (x^) dx

1*1 Vo k=1

+ 2-, 2-im, m. z (x. ,x.)

i=l j=l J J

The first term in these evaluations is what we had previously for continuous

distributions and the last term may be identified with the trace of the

appropriate matrix.

Example 3. Suppose that the cantilever beam of example la itself has a

-13-



mass 4m distributed uniformly along its length. (Note that the upper

limit of integration is 27L. ) We have m(x) = 4m/27L and z(x,y)

(3xyw-w )/6EI, where w Min{x,yJ. We calculate

w, £ [(W27L)(27L)Vl2EI + 54270mL7EI]"
/* = 0.004054(EI/mL 3

)

^

for the first DM approximation. Note that we have seen the number

54270 in example la. The second DM approximation is more labor; it

gives

Uj £ [ll«3
,7

/35 + 4759166988/7 + 2878089084]"^ (EI/mL 3
)

1
'*

= (81O.554923033/35)" ^(EI/mL 3 )*2 = 0. 004 08289 (EI/mL 3 )^2

An "exact" evaluation by transfer matrix procedure gives the numerical

coefficient 0.00408305, so that th6 errors for the first and second

approximations are 0.7% and 0.004$ respectively.

Example 4. Consider the case of a uniform cantilever beam of length L

and mass pm having a concentrated mass (l-p)m at its tip. The compliance

function z(x,y) is given in example 3 and the mass function is m(x) a

pm/L + (1-p) m 6(x-L). The first and second DM approximations give

u)^ [(3EI/mL 3 )/(l-3p/4)]^; {(a):-1.5? at p - 1}

w^ [5040(EI/mL 3 )V(560-856p+329p
2
)]

/S {(b):-0.017* at p - 1}

( In these and other estimates given in this example 4 , the estimate is

distinguished by a lower case letter identification, followed by the maximum

percent error and the value of p for which it obtains.)

This example affords an opportunity to discuss other types of simple

but accurate approximations. A Rayleigh approximation based upon the

deflection function y » 3Lx2 -x 3 gives

Wj 4 [(3EI/mL 3 )/(l-107p/l40)]^; {(c):+1.5* at p - 1}

This is an upper estimate while (a) is a lower estimate. An obvious average

is

u.i » [(3EI/mL
3
)/(l-53p/70)]'

/z
;

{(d):-0.392 at p - 0.83 j

-14-



Approximation (d) gives equal weighting to (a) and (c). This happens

to be approximately optimal in this case but this is only fortuitous. The

coefficient of p should lie somewhere between 105/1^0 and 107/1^0. Both are

exact for p = 0. We can choose the coefficient so as to make the result

exact for another value of p , say p = 1. This is a uniform cantilever for

which

u)
l
» (1. 87510^0687...

)

2
(EI/mL 3

)

K2

Thus we obtain

w
1
» [(3EI/mL 3 )/(l-0.757328p)y 2

; {(e):-. 3662 at p - 0.81}

Exactly the same result is obtained by replacing the first term in the

first DM evaluation by the known exact value appropriate for a uniform

cantilever with no added mass at the tip. This suggests replacing the

coefficient 11/1680 in the first term of the second DM evaluation by

(1.8751...)" 8 and we get

a), js [630(EI/mL 3
)
2/(70-107p+4l.l222805p2

)]

ly

S {(f):-0.006# at p = 0.86}

This accuracy is almost incredible. It goes without saying that the

accuracy of these approximations is far greater than that of the physical

theory to which they pertain.

Example 5. we next take up an example which combines the features of

mixed (i.e., lumped and distributed) mass distribution and rigid body

motion. We consider the axial motion of a uniform elastic bar of mass m,

length L, and axial stiffness EA, which has a concentrated mass 2m at the

left end and a concentrated mass 3m at the right end. This dumb-bell

shaped object is not constrained or tied down at any point. The mass

function is

m(x) m/L + 2m6(x-0) + 3n6(x-L)

We consider the compliance of a system fixed at the left end.

z(x,y) = Min(x,y)/AE

-15-



and we obtain

q(x,y) = [m(y)/AE][Min(x,y) - (8Lx-x2 )/12L]

Thus the first DM evaluation gives

a), > (9AE/13mL)^ = 0.832(AE/mL)^

and the second gives

u> >(l^A2E2/242m2L2 )^ = 0.87829(AE/mL/2

The exactly correct coefficient is the smallest positive root of the

equation tan x = 5x/(ox -1), which is approximately 0.87935. Thus the

errors are 5»^% and 0.12$ respectively.

Example 6 We determine the fundamental

harmonic frequency of a uniform hinged-

, „ , *_ _«_ T ^ * Sketch of uniform
guided beam of length L. Tne mass func-

hinged-guided beam

tion is m(x) mo const. The compliance

function is

z(x,y) * z(y,x) = [3xy(2L-y) - x 3 + <x-y> 3 ]/6EI

'(x-y) 3 if x*y

if x£y
<x-y> 3 -

1

The DME1, given by equation 19 with n » 1, is

/•L

u>f £ S^2 =
[ moZ(x,x)dx = moLV6EI; w

x
£ 2.^95(EI/m L-/*

The DME2 is obtained from equation 19 with n * 2, viz.

^ £ Z<*? =
f f

q(x,5)q(5,x)dSdx =

i=l
1 >oh

» 2I f m(x)m(Oz2 (x,Od£dx>( ( m(x)ra(

'0*0

because of the symmetry of z(x,y). Tne important consequence of this

is that we can take

z2 (x,0 = [3x£(2I^x)-5
3
]
2/36E2

I
2

and not have to concern ourselves with the alternate form applicable

for £ > x. Continuing the evaluation we arrive at (17/630) (moL
1
*/EI) 2

,

-16-



from which we obtain

WjSs 2.W3(EI/m l/
,

)

Vk

The exact result is

w
x
= (Tr

2A)(EI/m L,#

)

,/Z
= 2.M67*l(EI/m L,| )"

so that the excellence of the approximations is evident.

Having the excellent approximation to ui
x
given by the DMA2, we

can get a reasonable approximation to the second frequency, viz.

*DMA1 " ^ l ) EMA2
ufcz (w7

2
) mfll - C(^)mA^

y'= ^6 " (17/630

)

,/e

]moL-/EI

giving

o),«20.4(EI/moLH
)

Va

2

The correct coefficient is (3V2) 2
sr 22.2.

This exanple permits us also to exhibit another possibly useful

feature of the method. In this case it is known that

\ - [(k-iM^EZ/taoL*)*, k=l,2,...,

-2 -4
so that our precise evaluations of Za>. and Eu), lead to

ao co

22 n"
4

= irV96; 2j n"
8

= 17*7l6l280
n=l,3,5,... n=l,3,5,...

These are well known results; cf. Jolley (5). However, for other cases

the corresponding sums may be unknown. For this reason we have looked

into all possible cases of a uniform beam having end conditions of the

following types: fixed, hinged, guided (see right end of the figure), and

free. Letting

n* = u>
2m L

,

*/EI

the results may be exhibited in the form shown in Table 1.

In Table 1 the physical case described by the specification of end

conditions corresponds to the frequency equation indicated. The sum of

reciprocal second and fourth powers of the frequencies (except for factors

-17-



Table 1 Some results for uniform beams

CASE EQUATION END CONDITIONS r
-2 **

Hi

1 cosn s sechn
clamped-clamped ( *

)

free-free
1/420 71/17463600 4.7300407449

2 tann * tanhn
clamped-hinged( *)

hinged-free 1/210 13/727650 3.9266023120

3 tann = -tanhn
clamped-guided ( *

)

guided-free
1/30 29/2835 2.3650203724

4 cosn s -sechri clamped-free 1/12 11/1680 1.8751040687

5 slnn m hinged-hinged ( *

)

guided-guided (
*

)

1/90 1/9450 3.1415926536

6 cosn a hinged-guided 1/6 17/630 1.5707963268

* The root, n 3 0, is to be excluded for cases marked with an asterisk

of El/m,Lk and E2I2
/mo

2L 8
, respecively) are shown. The smallest root

of the frequency equation is also given. This information may be useful

in augmenting information contained in work by Young et al. (16) and by

Gorman (4). It may be remarked that neither of these references treats

the end condition ^ = ^- = which we call "guided;" this condi-

tion is certainly not technically important but its inclusion seems to

be indicated on the grounds of completeness.

In the table, an asterisk indicates that the obvious root, n - 0,

Of the frequency equation is to be excluded. The sums include only non-

zero frequencies, and n l
Indicates the smallest positive root. We

evidently have such results as

d)

ZCn?
5 ]'*- 71/17463600

i-i

where n.^ denotes the ith positive root of equation j. From this

evaluation we could obtain

n^4. 7191
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Exanple 7 In order to illustrate a case for which the field of integration

is two dimensional, we consider a uniform circular elastic plate which is

clamped at its outer radius r = a. The influence relationship, z(P,Q),

is given by Tlmoshenko (Ik) in the form of a series, but for our purposes

all that is needed is the "self" influence, i.e., the deflection under the

unit lateral load

z(P,P) = (a
2-r2

)
2
/l6TTDa

2

which is also given in (Ik). Thus, with mo denoting mass per unit area of

plate, we find ^

a>7
2 £ zLcjT

2
=(mo/l67TDa

2

)f (a
2-r2

)
2rdrd8 = i^aV^D

~ i-1 j o 'n
whence ,.

w,^ 6.9(D/moa*)*

This is actually a poor estimate, the correct coefficient being

approximately 10.22 rather than 6.9. The reason lies essentially in the

fact that the sum includes a double infinity of terms corresponding to

both radial and circumferential nodal lines and the frequencies are not

well separated. A better approximation may be obtained with great labor

by considering the EME2, or, much more easily, by excluding all modes

having radial nodal lines. This is accomplished by considering a unit

load uniformly distributed on the circumference of a circle of radius p.

The deflection is (1*1)

z(r,p) = [(r
2+p 2 )log

e
(p/a) + (l+p 2/a2 )(a2-r2

)/2 - (p
2-r2 )]/8TrD

for r £ p, and

z(r,p) = [Cr2+p 2 )log
e
(r/a) + (l+p 2/a2 )(a2-r2 )/2]/&VD

for r £ p. The mass function is

m(r) = 27rrmo

and without difficulty we obtain the DME1 and the DME2
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eo oo

2w72
- moaV96D; £<*?* s (17/184320) (moaVD)*

i»l
x

1=1
x

from which we get the respective estimates

uijs: 9.8(0/1^")* u)
1
s:10.2042(D/moa

,,

)

Va-

It is difficult to assess the accuracy of the latter result.

Ihe correct coefficient is the square of the smallest positive root

of the equation

J (x) IjCx) + Jj(x) I (x) =

which is given by Rayleigh (9) as (3.20) » 10.24. However, an upper

bound given by Timoshenko (13) is

[19.2(51-2(519)' ]* « 10.217

so that our result is definitely in error by no more than 0.13$.

Example 8 Consider a uniformly tensioned

uniform circular elastic membrane of radius

a. The influence function is

z(P,Q) =» z(r,e;p,<|>) =

* ci/ihrT) ioge {
a-^ p2

:
2a2rpco

;
(9
'f

)j^ a2
[r

2+p 2-2rpcos(M>)]
which is a rearrangement of a form given by

Rektorys (10) with the addition of the membrane

tension T in the denominator. Ihe DME1 gives

Notation for analysis

of circular membrane.

i=l

-2
'z(P,P)dS = ~

Thus, the DME1 is useless except that it demonstrates the divergence of

the double sum

m=0 n=l »
n

-20-



where j .
is the nth positive zero of J (x). We have been unable to

m,n m

evaluate the integral which gives the DME2. For a successful numerical

evaluation we do as was done in the preceding exanple, namely confine

attention to axisynmetric modes. The deflection at radius x of such a

circular membrane loaded by unit force uniformly distributed on a

circle of radius y is

z(x,y) - (1/2ttT) log
e
[a/Max(x,y)]

and the mass function is

m(x) = 2TTmoX

There is no difficulty in obtaining the DMEt and the DME2, viz.
co - oo

2>7 = moaVMT 23 w7 4 = raJaV32T2

i«l
1

i=l
±

As in the evaluation in the preceding example, these sums include

only frequencies for axisymmetric modes. The exact results in the

present case are

Since j ,» 2.4048, the DMA1, which gives the coefficient 2, is in error

by 17% and the DMA2, which gives the coefficient (32)
/if

is in error by

only 1,135.

Incidentally, we have here established the interesting and possibly

useful results .

2j-2
. = 1/4; 2jA = 1/32

i»l
u

»
1

i=l
u>1

Example 9 We now consider the lateral vibrations of a simply supported

rectangular elastic plate having dimensions a and b. V/e assume that the

ratio p b/a does not exceed unity. The compliance is (14)
00 oo

z(x,y;£,n) = (V^abD)^ ^ [sindmrx/a) sin(rmr^/a) sin(rory/b) sin(mrn/b)]

m=l n=«l [(m/a)
2 + (n/b)

2
]
2

-21-



Thus, the DMEL is

2>![
2
= (moa'A))^ £ (™

2*2
+ nVp2 )'

2

lal
m=l n-1

» (m aV1*TT
,,

p
,|Dy [n

2
7r
2
p
2 csch2 (mrp) + mrpcoth(mrp) - 21/n*

n=*l

which converges fairly rapidly. The WE2 gives
qq 00 oo

2w^ = (iHbaVir*D)
aV ^T (m2 + n2

p
2 )'*

m=l n=l
CO

* (mgaV96p e
TT

8D2
)/ [2n

f>

TT
lt p't

(csch'
>

nTTp+2csch2nTrpcothnTTp)
n=I

+ 12n 3
TT

3
p

3 csch2mrpcothmTp

15mrp<n7rpcsch2mTp+cothmrp-A 8]/n
8

and this series converges quite rapidly. Thus, for the particular case

a b, by taking only one term of the series we get

(Sf « 6.7556«10"*
6
m2a 8/D2

;a)
l
«19.6l5(D/moa

,>

)

/2

The exactly correct coefficient is 2tt
2 » 19.739 so that our estimate is

quite good.

For this particular problem, a simple formula (17) gives all of the

double infinity of natural frequencies, viz.

wm n
" 1T^m2/a2 + n2/b2 )(D/m )

/i

and the correctness of the DI^El and the DP-E2 can be verified term by term.

It is merely fortuitous that the exact result for u;, (=t*\i) can be obtained

in this case by taking only one term of the double series shown above.
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