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which the matrix H is split into two smaller unitary right Hessenberg

matrices Hj and H 2 by a rank-one modification of II. The eigenproblems for

Hj and H 2 can be solved independently, and the solutions of these smaller

eigenproblems define a rational function, whose zeros on the unit circle

are the eigenvalues of II. The eigenvectors of H can be determined from

the eigenvalues of H and the eigenvectors of Hj and H 2 • The outlined

splitting of unitary upper Hessenberg matrices into smaller such matrices

is carried out recursively. This gives rise to a divide and conquer

method that is suitable for implementation on a parallel computer.

When H £ R n n is orthogonal , the divide and conquer scheme simpl if ies

and is described separately. Our interest in the orthogonal eigenproblem

stems from applications in signal processing. Numerical examples for the

orthogonal eigenproblem conclude the paper.
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1 . I ntroduct ion

Divide and conquer (DC) methods have been developed for "the symmetric

e igenprobl em , see Cuppen [Cu] , Dongarra and Sorenson [DS] , and

Krishnakumar and Morf [KM] , and have for these problems been shown to be

efficient on parallel computers and competitive on single processor

machines [DS] , [Cu] ,
[KM] . The DC method has also been applied successfully

to the computation of singular values by Jessup and Sorensen [JS] . In the

present paper we describe a DC method for the unitary e igenprobl em , and we

also discuss the simplifications that arise for real orthogonal matrices.

Let H 6 CnXn be unitary. Then H is unitarily similar to a upper

Hessenberg matrix with real-valued non-negative subdiagonal elements. If

a subdiagonal element vanishes, then the eigenproblem splits into

e igenprobl ems for smaller upper Hessenberg matrices. We therefore may

assume that H is a upper Hessenberg matrix with positive subdiagonal

elements. Then all eigenvalues of H are simple. It is easily seen that H

can be written as a product of n Givens reflectors G: € CnXn ,

II = H(7i,72 ..--.7n):= G
X
G 2 . . . G^Gn , (1.1)

where, for 1 < k < n,

G k : =

k-1

^k 7 k

n-k-1

> 7k € C , <7
k £ R , cr

k > ,

'k Il7 k |

2
+ * k

2 = 1, (1 .2a)

and

G n

n-1

•7n
? 7n € C,

| 7 n |
= 1 (1.2b)



Here L denotes the j x j identity matrix. The 7=, 1 < j < n, are the so-

called Schur parameters of II, and 7= denotes the complex conjugate of 1 = .

The cr- , 1 < j < n, are said to be complementary parameters of H, and are

the subdiagonal elements of H.

The DC method described uses the product representation (1.1) of II,

the so-called Schur parametric form of H. An application of particular

interest to us is the computation of Pisarenko frequency estimates for a

random stationary stochastic process, see below. In this application H is

defined by its Schur parametric form. The determination of Gaussian

quadrature rules on the unit circle, so-called Gauss-Szego quarature

rules, also gives rise to unitary (or real orthogonal) matrices in Schur

parametric form, see Section 5. When the Schur parameters are not

explicitly known, they can be computed from

Ti = "H 11

tj = -cg;
1
G
j-2

G
2

G" H )jj' J = 2
' 3 < • • • >

n

where G. denotes the conjugate transpose of G k , and M^ denotes the element

(j,j) of a matrix M G Cnxn .

The DC method is most easily described for II G R nXn orthogonal . Then

H = G 1 G
:

G s.! G s Gs+1 G n

II

In-
G«

1,

(1-3)

where Hj G RsXs and H 2 € R
(n "s)x(n " s) are orthogonal. The Givens reflector

G s G R , s < n, can be written as a Householder transformation

G, = I - 1\ (1.4)

where



w

Wc

es+1 ws+ i 6

1/2
(1 + 78 )

1/2

;s+l := -2- 1/2
(l - 7s )

l/2

(1.5)

(1 .6a)

(1.6b)

Throughout this paper e: denotes the jth column of an identity matrix of

appropriate order. By (1.3)-(1.4), H is orthogonal ly similar to

H,
(I - 2wwH ) =: H - 2HwwH (1.7)

This is one step of the DC method for orthogonal matrices: The eigen-

values, and if so desired the eigenvectors, of H^ and H 2 are computed

first. H is a rank-one modification of H, and the eigenvalues of H are

computed as the zeros on the unit circle of a rational function, whose

poles are the eigenvalues of H .

Section 2 describes the DC method for unitary matrices. In Section 3

we show some results on the orthogonality of the eigenvectors and on the

location of the eigenvalues. These results are analogous to bounds

presented by Dongarra and Sorensen [DS] for the DC method for symmetric

matrices. Section 4 discusses simplifications that can be made when

H is real and orthogonal, and also considers some computational details.

Computed examples for the orthogonal eigenvalue problem are presented in

Sect ion 5

.

An outline of a unitary DC method with convergence results for the

root-finder has previously been presented in [GR] . The splitting into

subproblems is done differently in the present paper. A related DC method

is described by Arbenz and Golub [AG] . Cybenko [Cy] reduces the

orthogonal eigenproblem to an eigenproblem for a symmetric tridiagonal



matrix. The orthogonal eigenproblem is in [AGR1] solved by solving

singular value problems tor certain bidiagonal matrices, and a CJK

algorithm tor unitary matrices is presented in [Grl] . A comparison with

respect to accuracy and speed of these methods still remains to be done.

Here we only note that DC methods are suitable tor implementation on

parallel computers, see [DS]
,
[KM] , and Section 2. Some of the schemes

mentioned transform the orthogonal eigenvalue problem to a symmetric one.

The real eigenvalues of the latter problem are then mapped to the unit

circle to yield the eigenvalues of the orthogonal eigenproblem. The

mapping from the interval to the unit circle may be sensitive to

perturbations of arguments near the end points of the interval , and it may

therefore be difficult to determine eigenvalues close to ±1 accurately

with these schemes.

Pisarenko [Pi] proposed a method for decomposing a random stationary

stochastic process {xm }?? q , xm G IR , into a sum of harmonics in white

no i se , i.e.,

^m = Z Q p cos ( m^ + ^) + ym , m > 0, (1-8)
£=1

where the 6„ are arbitrary phase shifts and {ym }°°_n is a zero mean white

noise process with variance a . The </>„ are called P i sarenko frequency
't

est imates . Assume for simplicity that p is the number of distinct

harmonics in the 'signal' {xm }°°_Q is known, and that < </>,, < n for

1 5: ^ < P- Then the <j>» can be determined as follows. Form the

(2p+l ) x (2p+l ) Toeplitz covariance matrix M for the signal {xm }°"?
q , and

2 2pcompute its least eigenvalue Am j n
. Then A mjn = a , see [Pi] • Let {->,}• i be

the Schur parameters associated with the Toeplitz matrix M-A
f

I. They can



be determined from "the Szego recursions (Levinson's algorithm) , see e.g

[AGR2] . From our assumptions it follows that M-A
mjr)

l is singular, but

leading principal submatrices not identical with M-A mjn I are not.

Therefore, -1 < 7j
< 1 for 1 < j < 2p , and 72p <E {-1,1}. By (1.1)-(1.2) it

'ollows that the Schur parameters { 7 :}

.2PX2P ...^.u j;„4.!«-* „; „!..-„ /\\ 2P

follows that the Schur parameters { 7:}-_ i define an orthogonal matrix H €

^z\>~*v w j-th distinct eigenvalues {A:}. , . Enumerate the eigenvalues so that

those with Im(A:) > have smaller index than the eigenvalues with Im(Aj) <

0. Then the Pisarenko frequency estimates are given by

</>j := arg(Aj) , 1 < j < p .

The coefficients Q: of (1.8) are two times the weights belonging to the

Gauss-Szego quadrature rule with abscissas A:, 1 < j < p. For details see

[AGR2] , where also references to related work can be found. The unitary

DC method yields the Gauss-Szego weights with no extra computational

effort when computing the eigenvalues Aj . Gauss-Szego quadrature is

discussed in Example 5.1 of Section 5.



2. The unitary e igenprobl em

In this section we describe a divide and conquer method for unitary

right Hessenberg matrices with positive subdiagonal elements. First we

need to generalize the splitting (1.3)-(1.7) to Givens reflectors with

complex-valued Schur parameters. This is accomplished by noting that the

G s defined by (1.2a) are diagonally unitarily equivalent with a real

Householder transformation. Introduce

7s :=
7s/ I 7s I , 7s #

7s =

Then | 7s I

— 1? and for G s defined by (1.2a) we obtain

Is+1

7s G« il

s-l

n-s-1

hs I ^s

^s I 7s I

n-s-1

(2.1)

where, similarly to (1.5)-(1.6), w = e s u;s + e
s

, jw
s

,

1
G R n and

cs := 2- l/2 (l + | 7s |)
l/2

u;s+1 := -2" 1/2
(1 - | 7s |)

1/2

(2.2a)

(2.2b)

Substitution of (2.1) into (1.1) yields

H =
II.

In-«

(I - 2wwH ) (2.3)



ith

H
i := H(7j ,7 2 , . . . ,7 s-i > "7s') ,

=- '- zr I - IH2 := H(7 S 7 s+i » 7s 7 s+ 2 ' • • • '7s 7n)

A unitary similarity transform of (2.3) yields, analogously with (l.r),

H' : =
Hi

H,
(I - 2wwH ) =: H - 2HwwH . (2.4)

Let

H k
= Wk A k W

R

!
, k = 1, 2, (2.5)

be spectral resolutions, i.e., the W k are unitary and the A k are diagonal.

Then H has the spectral resolution H = W A W , where

W : =
W,

, A := = diag(A
x
,A 2 , . . . ,

A

n ) , (2.6)

with
|
A
k |

= 1 for 1 < k < n.

We are in a position to describe how the spectrum of H can be obtained

from A, the last row of Wj and the first row of W2 • Introduce the

characteristic polynomial

X(A) := det(AI-H) = det(AI-H') = det (AI -H+2HwwH )

= det(AI-H) det(I+2(AI-H)" 1HwwH
)

= V»(A)(1 + 2wH (AI-H)" 1 fiw)

.Hr, 1aiT/H.= 0(A) (1 + 2wnW(AI-A)" 1 AW"w)
,

8



where H' is defined by (2.4), W and A by (2.6), w by (2.2) and xl>(\)

det(A[-H] ) . Let z = [G\= i
be given by

= W Hw =
W^es^s

W
2
e

l
ws+1

(2.7)

and define the spectral function

<j>(\)
*( A ) _

1
,
o„H /XT n-U„ _ 1 , o £ \, |2

^(A)
+ 2zM (AI-A)- 1 Az = 1 + 2 £ |

<•
|

j=l
A " A

J

n „ A + A:

j=i
A A

J

(2.8)

u
/here we have used that z z = 1 . Let

9j := arg(Aj) , 6 := arg(A) , < 0j , < 2*

Then, with i := 4 - 1

,

n _ ,Q, - 6,

<K A ) = i E ICjI
2 cot(-i-2— ) =: i*(0) ,

$
,<?= - 0,

'CO = i.E iCjlV-inf^J!) > i^ = i

(2.9)

(2.10)

We may assume that the 6 are distinct and that all (,- ^ 0, because

otherwise we can make these conditions hold by deflation, see below. Let

6- G [0 , 2?r [ , 1 < j < n, denote the zeros of $(6). Then the eigenvalues of

H' and of H are given by Aj' := exp(i0j'), 1 < j < n. The sets {^}H
=1 and

{#: }:_i strictly interlace.

We describe a rootfinder for $>($). By the inequality (2.10). the

zeros of $(#) can be determined accurately. We may assume that



<
1

< 2 < • • • < #n < 27r and that 9 , our initial approximation of a

zero of $(#) 5 satisfies # n -27r < < 0-^ . By the strict interlacing of the

sets {#:}P_i and {0- }"— i > ^(^) has precisely one zero, denoted 0-^ , in the

open interval ]0 n -27r, 0± [ . Assume for the moment that

$(0 (o)
) < , (2.11)

and introduce

*(0) : = p + a cot^
1

2
-
)

. (2.12)

The coefficients p and a are determined by osculatory interpolation, i.e.,

$(0(o)
) = $(0 (o)

) , l>'(0
(o)

) = $'(^ (o)
) , (2.13)

wh i ch y i e Ids

t, = *</ o)
) - *'(#(0)

) sin(«! - (o)
) ,

I = af <#«•>) sinf i -/°'))
. I

The zero of $(#) in ]^ n -27r,^ 1 [ is our next approximation of 0-^ . New

approximations of 0j are computed from
, j > 1, in a similar

fashion. The sequence {0 }^n satisfies < 0^ for j > 0, and converges

monoton i cal ly and quadrat i cal ly to 0± as j increases, see [GR] for a

proof

.

If instead of (2.11) we have

<J>(0
(O)

) > , (2.14)

then we replace (2.12) by

*(0) = p + a cot( gn ~ g

)
(2.15)

10



in (2.13). This defines p and a . The zero 8 of $(6) in the open

l nterva 1 ^On-lit ,6± [ is our next approximation of 0^'. New approximation:

,(j+l) i(J)of #j are computed from for j > 1 in a similar fashion. II le

sequence {# }\2.n satisfies 9 > 6± for j > 0, and converges monoton i cal 1

y

and quadrat i cal ly to 6^ , see [GR] . In the implementation used to generate

the computed examples of Section 5, the iterations are carried out until

<J>(0
(j+l)

) > $(0 (i) < ^{6 {}
' l}

). The value (j) is accepted as an approximate

root of $(0) = 0.

From

6 '

A : = d i ag [e , e ',..., e n
]

W' Wr'
(2.16)

and the spectral resolutions (2.5) of H
x
and H 2 , we can now compute the

spectral resolution of H:

H = WAWH WMW = I (2.17)

By (2.3) -(2.4) , we can for some vector u 6 C n express H as

H = H - 2uu H
, u : =

H^es^s

e
l
u's+l

e c n

Let A := exp(i#) and v 6 C n form an eigenpair of H, i.e. Hv — vA . Then

.-^H(H - 2uu n )v = vA ,

or, equ i val ent ly

,

.~.H.(H - IA)v = ua , a := 2u nv .

This shows that any normalized eigenvector v of H associated with the

eigenvalue A is a normal ization of

1 1



V = (H-AI) _1
u =

-i,(H 1
-IA)-xH

1
esws

-l(H2 -IA)-
ie

1
wi+x

W
1
(I-A I

1

I A)- 1W I

1

, e s u;s

W2 (A 2 -IA)-
1
\\fe s u;s+1

(2.18)

where Wk and A k are given by (2.5) . Let
|| || 2 denote the Euclidean vector

and matrix norms. From HWjj = ||W2 || 2
= HAJ^ = 1 and (2.6), (2.7), (2.10),

(2.18) it follows that

6(A) := ||v'|| 2
= H(A-IA)- 1 x 2

|| 2

n
=

• 1 - I

2 )
1/2

= (J*'(*))
l/2

> J (2.19)

We choose

V
A

=
W

1
(l-A I

1

1 A)' 1 w5I e s a;s

W 2 (A 2
-IA)- 1W^e

1
cs+1

/6(A) (2.20)

and note that the lower bound (2.19) for 6(A) indicates that severe

cancellation of significant digits does not take place in the computation

of v
A

by (2.20) .

By (2.7) , we only require the last row of Wj and the first row of W2

(as well as A) in order to determine the spectral function (2.8) . Hence,

if we do not desire the eigenvectors, then it suffices to determine the

first and last rows of W in order to be able to compute the spectrum of

H Hlarger problems. We call the triplet {A,ej W,enW} the partial spectral

resol ut ion of H. The first and last elements of v, can easily be

determined from

e?vA = e[IW
1
(I-A}I A)- 1w5I e s u;s /6(A) ,

e|?v
A

= e n.sW2 (A 2 -IA)-
1W^e

1
o)s+1 /6(A)

(2.21)

12



We may assume that the columns o"f W are such that all components of the

vector W e
t
are real and positive. Then e. W e

1
is the weight correspond-

ing to the node exp(i#
k ) in the Gauss-Szego quadrature rule with nodes

{exp ( i 6-') }"_i 5 see [Gr2] and Example 5.1.

We assumed above all components (,* of z to be non-vanishing and all

eigenvalues A: of H to be distinct. These conditions can be made to hold

true by def lat ion . Our discussion follows Dongarra and Sorensen [DS] .

First assume that Q vanishes. By (2.4)-(2.7)

,

W HH'W = A - 2W HHwwHW = A (I - 2zz H
) , (2.22)

and from e* z = it follows that

A(I - 2zz ) e p — Ae« = A<,e«, \„ := e„ Ae
I

/vc
£

(2.23)

Substituting (2.23) into (2.22) yields

H'We„ = We.Art

and therefore

W,

W 2 A 2
'

e
C

=
W,

W 2 A 2
r

e
C
X
C

Thus if £» = 0, then we can determine an eigenpair of li without explicitly

computing a zero of $(8) and without using (2.20) .

For a general z € C , with z z = 1 , we obtain

||A(I-2zzH )e
£ || 2

= 2|C
£ | ,

and we accept {A^,e/>} as an eigenpair of A if

13



2|C £ l<<i (2.24)

for some smal 1 constant (j .

Assume that z = [Ci]"_i with 2
| C; I

> (
i
for all j. We may now be able to

deflate due to close eigenvalues. Let A — diag[A l5 A 2 ,
. . • , A n ] with

A, « A 2 , and choose the Givens reflector

G =

so that

-7 a

a 7

n-2

€ Cnxn (2.25)

Gz = [(Kit
2 + IC2I

2
)

1 /2 ,o,C 3 ,C4 - . . . ,Cn]
T

,

1 . e

'» := IC 2 l/(Kil
2

+ IC 2 I

2
)

1/2
,

7 := -C x ^/(ICil 2
+ IC 2 |

2
)

1/2

2 ^HWe accept {7^ + 7 2 I 7 I

» G e 2 } as an (approximate) eigenpair of

A(I - 2zzH ) if

| 7 (r(A 1
- A 2 ) I

< t 2 , (2.26)

for some smal 1 constant e 2 , because

M\ oH 2npH.A(I-2zZn )G"e 2 - (X^ + 7 2 l7r)G"e 2 || 2 = | 7<r( 7l - 72 ) I

If 7j = 7 2 then we have determined an eigenpair exactly. In case

Aj 7^ A 2 we note that | y<r ( Aj - A 2 )| < i|Aj - A 2 |, and , moreover , if | 7 |
«

or I7I » 1 then ^^(Aj - A 2 ) |
<< |

X
1

- A2 |
. Hence, inequality (2.26) may

be satisfied, even if | X
l

- A 2 |
> e 2 • Assume that (2.26) is valid. Then A

is replaced by

14



A := diag[A
1 ( 7

2
) + \ 2 a

2
, A 3 , A4 , . . . , A n ] G C <n-1>*("-1)

and if A has close eigenvalues, "then deflation is repeated.

The unitary DC method can be used in two ways. One approach is to

divide the original e igenproblem , as well as subproblems so obtained,

until only trivial e igenprobl ems of orders two and one remain. These

small e igenprobl ems are solved analytically. From the solutions of small

e igenproblems , the solutions of e igenprobl ems of larger size are computed,

and this step is repeated until the solution of the original eigenproblem

has been determined. This approach is used in the numerical examples of

Sect ion 5

.

An alternative approach is to use the DC technique to generate just a

few sube igenprobl ems , each of which can be solved independently by some

other numerical scheme, such as the unitary GR method [Grl] , or the scheme

in [AGR1] , in case the matrix is real orthogonal

.

We conclude this section with some bounds of the computational

complexity of the unitary DC method. Assume that H £ CnXn is given in

Schur parametr i c form (1.1) with pos i t i ve subd i agonal elements a- . Let n,=

2 for some positive integer C, and subdivide the given eigenproblem unl i

1

5 e igenprobl ems for 2x2 matrics are obtained. The latter e i genprobl ems

are solved analytically. We assume that the number of iterations required

by the rootfinder for $(#) can be bounded independently of n.

Let first n independent processors be available. The reduction of the

original eigenproblem for H to ^ e i genprobl ems for 2x2 matrices can be

carried out in tj := 0(log2 S) time steps. This computation only requires

the determination of the Schur parameters for the unitary matrices of the

smaller e i genprobl ems , see (2.3). Let the Schur parameters for all
^

unitary 2x2 matrices be known. The spectral resolution of all these

15



matrices can be computed in t 2 : = 0(1) "time steps. Assume that the

partial spectral resolutions (2.21) of all 2 unitary 2^ x 2^ matrices

are known for some j € [2 , £] . In order to compute the partial spectral

resolution of all 2 unitary 2/ x z matrices, we have to compute 2/ zeros

of each of the 2 functions $(#) , see (2.8) . Hence, a total number of n

zeros have to be computed, and we use one processor to determine each one.

Each function $(#) has 2/ terms, and can therefore be evaluated in 0(2/)

time steps for each value of 6. Hence, we can determine all eigenvalues

of all 2 unitary 2^ x 2^ matrices in to := 0(2; time steps. For each

eigenvalue we compute the first and last elements of the corresponding

eigenvector from (2.21). The first and last element of one eigenvector

can be determined by one processor in 0(2^) time steps. These

computations have to be carried out for n eigenvectors by n processors and

therefore require t^ = 0(2^) time steps. Hence, the number of time steps

required to determine the partial spectral resolution of H by n processors

i s

*1 + t2 + £ UJ;
+ £ Vr = 0(n)

j=2 j=2
(2.27)

Now let n independent processors be available, and assume that the

partial spectral resolutions of all 2 unitary 2J
"
1

x 2J
"
1 matrices are

known for some j £ [2 , C] . We have now n processors available for each

evaluation of each of the 2 functions $(0). Each of these functions $(0)

has 2r terms and can for each value of 6 be evaluated in 0(log2
2^) time

steps. Hence, we can compute all eigenvalues of all 2 unitary "2: x T

matrices in to i— 0(log2
2^) time steps. The first and last elements of

each eigenvector of each of the 2 J unitary 2* x 21 matrices can be

16



determined in t^ := ( 1 og2
2^) time steps, by using n processors to

compute each sum with "2r < n terms. The initial determination of the R

unitary 2x2 matrices and their spectral resolutions cannot be sped up

essentially by using more than n processors, and requires {^(X*^) + 0(t 2 )

time steps. Hence, the number of time steps required in order to compute

the partial spectral resolution of H by n processors is

0(ti) + 0(t 2 ) + £ t!.
j)

+ £ tj,
j) = O(log 2 n) + £ 0(j) = 0(log2 n ) _ (2 . 28)

j=2 j=2 j=2

The time complexities (2 . 27) - (2 . 28) suggest that the unitary DC method

presented could be attractive for use in real-time signal processing

appl i cat ions.

17



3. Some properties of the unitary DC method

We show some properties of the eigenvectors of II and zeros of $(#) .

Analogous results have previously been obtained by Dongarra and Sorensen

[DS , Lemmas 4.2, 4.6 and 4.7] for the DC method for the eigenproblem for

symmetric tridiagonal matrices. The following formulas are used in

several of the proofs:

*(A) = 1 + 2 £ Kj|
2 t—^x ,

j=l
A " A

j

i
n o A:

*'(A) = "2 £ Kjl
2 J—

j=l (A - Aj

(3.1)

(3.2)

$'(0) = <^'(A)A (3.3)

Lemma 3 . 1 Let Aj/x G C, |A| = | /i
|
=1 and A ^ n . Assume that Aj/i £ {A:}",

,

where A = diag[A 1? A 2 ,
. . . , A n ] . Let v, and v^ be defined by (2.20) . Then

|v
A%| = U'(A)^(/i)|- l/2 4>{\) - <j>(n)

= |*'(<?
A )*'(^)

1/2

A - ft

(3.4)

e - e

A
lCVwhere A = e , // = e , < 9^ , 6^ < 2n . In particular, if A and /x are

distinct eigenvalues of H, then <f>(\) = <f>(n) = 0, and therefore v
A
v„ = 0.

Proof. By (2.20), (2.6) and (2.7),

V
A

=
W,

W. In-s

(A - IA)" 1 Z/6(A)
, (3.5)

and therefore

18



'a% - sih a nylCA ^ yl
*oo

= (SiX^SOOY 1

!: n Ufr r • (3.6)
j=i ( Aj

- A ) ( Aj
- /<)

Now

AAj x / A
;

A
;

(A
j
-A)(A

j
-/i) (A

j
-A)(A

j
-,0 hbfi ~ v-J

• '< 3 - 7)

Substituting (3.7) into (3.6) yields

i a ^ #• KjI' a
j o £ LiLjVv

A
"v, = (a.(A)»W )-» ^(2 t ^ 2± ^) ,

and by (2.19), (3.1) and (3.3),

v
A% = ( ^(A)KaOA,0-

i/2
a

^ (A

^ : l
M

, , i/o i6
\ *(0\) - $ (^u)

= ($'(^)$'(^))- l/2 ie A -^ ^
e - e

This shows (3.4) . D

The denominator |A-^| in (3.4) suggests that it may be numerical ly

difficult to obtain orthogonal eigenvectors when the associated

eigenvalues are very close. The following lemma sheds some light on this

situation, and shows that due to deflation the roots of $(#) are bounded

away from each other.

Lemma 3 .

2

Let Ai = e , 1 < j < n, be the eigenvalues of A, and let z =

[Cj]jl_i be defined by (2.7). Let (
l

be an arbitrary but fixed positive

19



constant and assume that the Aj are pairwise distinct and that 2
| G |

> Cj

for all j. These conditions can be made valid by deflation. Assume that

the A: are sorted so that <
X

< 2 < • • • < n < 27r , and let n+1 : = lit +

6
1

. Let G [0,27r[ be a zero of $(9), and let k be such that
k < < k+ 1

.

Then

,(3.8)

(3.9)

Proof. Introduce the index sets

I
x

:= { j : < 0, + 2tt£ < + n , for some I G Z, 1 < j < n}
,

I 2 := {j : 0-tt < 0j + 2;r£ < 0, for some £ G Z, 1 < j < n} .

Then I
x

D I 2 = and I x U I 2 = {1 , 2 , . .
.

, n} . Further

A + A
;

1
A

+ \- - ( < c

=->j = «*HH)
| >

:x f
< , j G Ij

,

j e i 2

In particular, k G I 2 and, provided that k < n, k+1 G I
x

. If k = n then

1 G Ij. Moreover,

,0-0 - 0:

:ot( 2"^) ^ cot(—2—j

) , Vj G Ij

(
-

k x ,0 - 0;n
:ot[ 2—

5J
> cot( 2—J

j , Vj G I
:

(3.10)

From $(0) = 0, it follows that

,0-0;

E Kjl
2 cot(V) = £ |Cj|» cot(V)

20
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By (3.10), (3.11) and z z = 1 we obtain, provided that k < n,

-KR+1 |

2 cotf4*±i) < c„t(H) , (3.12)

or, equ i val ent ly

,

K k + i|
2 tan(^) < tan( " +

,

1

) (3.13)

If k = n then we define C n+l

Now assume that

(,'n and (3 . 1 2) - (3 . 13) remain valid.

(3.14)

We wish to determine a lower bound for #k+l - ^ - From tan ^ < x for

< x < ^ it follows that if < k+1 -# < %f , then

tan(gk+1
2

"
)

< ek+1 - e .

Substituting (3 . 14) - (3 . 15) into (3.13) yields

|C k+ 1 |

2 tan(I(fl
k + 1

- *
k )) < <?

k + 1
- 6 ,

and from tan (^ (^k+ l~^k ) ) - aC^k-fl
- ^)' we obtain

Kk + ll 4(^+1" °k) ^ ^k + l
" e

Finally, substituting |< k+ i |
> ^ into (3.16) yields (3.8).

In order to show (3.9), we note that from (3 . 10) - (3 . 1 1 ) and z z

fol 1 ows that

- e,

(3.15)

(3.16)

= 1 it

- co*f-^±!) > |Ck l> cot(^)

or, equ i val ent ly

,

tan
re - e 0..J-, - *

f-^)> |Ck|2tan(!^__!) , (3.17)
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which corresponds "to (3.13) . We now assume "that,

* k+ 1
- 9 > ±(0

k+ 1
-

k ) . (3.18)

We would like to determine a lower bound for #-#
k . Similarly as in the

derivation of (3.15) we obtain that if < #-#
k

< =j2r , then

2~JS
) - 9 " ^ • (3.19)

From (3. 17)-(3. 19) and tan
(J (0 k+ 1

-0)) > l(0
k+ 1

-0) , we obtain

' - *k > lCkl
2
4(^k+l " *k) • ( 3 '20)

Finally, substituting
| C k |

> U into (3.20) yields (3.9). D

Our final lemma shows that the computed eigenvectors are close to

orthogonal if the zeros of $(#) are evaluated with sufficient accuracy.

Lemma 3.3 . Let A = diag[A
1
,A 2 , . . . , A n ] , and let A, /2 be computed

approximations of the distinct roots A, /j of
<f>

. Introduce the relative

errors a
k , /? k of A

k
-A and A

k
-/i, respectively, i.e.

rA
k

- A = (A k
- A)(l + ok )

< k = 1,2, . .
.
,n . (3.21)

U k - A = (Ak - /i)(l + /? k ) •

Assume that for some constant < e < 1, |
o- k |

< ( and
| /? k |

< e for all k,

and that |A| =
|
ft \

- 1. Then

i

vi%i = iVcv^i < «(2 + o(Hi)
2

•

where C = diag[/7 l5 p2 ? • • • j /?n] with
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Pk
'

a k + /? k + Q k /? k 6(\)6(fl)

(1 + a
k ) (1 + /3 k )\6(A)6(/x)

(3.22)

For rj := e , < On < 2tt, we define 6 (?;) = (^'(r/)^) l/2
= (J*'(^))

1/2

Proof. We first note that since A, p. are computed by determining zeros of

$(0)> < 6 < 2n , the requirement
|
A| =

|

/i
|
= 1 i s satisfied. Analogously

to (3.6) we obtain

v.% = (S(X)SWr 1 t -—

N

A " k=l (A
k

- A)(A
k

- A)

-l
(6(\)6(ii)y' e Clcl

k=i (* k -
~
X)(K - /i)(i + s k )(i + /? k )

where the last equality follows from (3.21). Now

= VA/J = (^(A)6(m))' 1 £ Ki

k=l ( A k - A ) ( A k - p)

and (2.19) imply that

K k l

2n

k=i (
A
k - A

) ( A k - *0
=

Therefore

A /^ \,.= 1
(A

k
-A) (A k -/i) (1+Q k ) (l+/? k )

ic k l

2n

k5i (\- v
K= (l(X) ' (wrl£ (wvrt ((^)W) !

)
' (3.23)

23



which shows that v- H v- = v^Cv^ with C defined by (3.22). From (2.19),

(3.3), (3.2) and (3.21) it follows that

k=l
Ki

2 (-A
k
)A

(A-A
k )

2

(3.24)

n /

E (id
k=i v

2 ("\c) A A/A

(A-Ak )
2 (l+o k )

From (-A k
A)/(A-A

k )
2 > it follows that A/(A(l+a

k )
2
) > and therefore

VA ^ ,„ , ,_ IN -2 ^ ^ ,
^-2

(1 + « k )

> (1 + lOkl)"^ > (1 + (3.25)

Substituting (3.25) into (3.24) yields <5(A)/i5(A) < 1 + c, and similarly one

can show that 6(ji)/<5(/i) < 1 + c. Hence, by (3.22) ,

Pk\ 1
( + € + €'

(i - o 2 (1 + e)
2 = e(2 + 0(r^l)

:

Fi nal ly

,

l

v
I
Hv

Zil = l

v
A
hCv^l ^ H v aII2 HCII2 IM2 = IIC|| 2 = max

| pk |

^ ^ "
1 <k<n

and the desired bound now follows from (3.26) . D

(3.26)
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4. The orthogonal eigenproblem

The computational work required for the real orthogonal eigenproblem

is smaller than for the unitary one. Th i s section discusses these

differences, and considers some details of our implementation of a DC

scheme for the real orthogonal eigenproblem. Our computer program is for

the case when H G Rnxn with n = 2 , where £ is a positive integer, and we

assume in this section that n is of this form. Many of our comments are

valid for more general values of n, also.

We first note that the subdivision of the eigenproblem for II into

smaller e igenprobl ems , as described by (1.3)-(1.7), does not require any

computational work. Subdivision yields the block-diagonal matrix

H :_ G
1
G 3G 5 . . .Gp.sGn^Gn^Gn , (4.1)

and we obtain simple formulas for the eigenpairs of each 2x2 block on the

diagonal as follows. Let

G : =
-7 a

a 7

2X2 -1 < 7 < 1, <r > 0, 7
2 + a 2 = 1 (4.2)

Since G is real, symmetric, orthogonal and has distinct eigenvalues

{^1*^2} > we have Aj^ = 1 and \ 2 — -1. Let Xj = [(p^] be an eigenvector of

unit length. Then we can choose

^ = .2- l/2 (l + 7)" 1/2

X2 = 2" 1/2 (1 + 7 )
1/2

,

(4.3)

ind from <r = (1 - 7
2
)

1 it follows that

i, = 2- l/2 (l 7 )

1/2

,* 2 = ,2"1/2 (1 7)" 1/2
(4.4)
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Cancellation of significant digits is avoided by using (4.3) if 7 > and

(4.4) otherwise. An eigenvector associated with A 2 = -1 is given by x 2 : =

[£2>-£l]
T

-

If 7 n = -1 then G n = l n ,
and the eigenpairs of Gp.jGp are those of G n_± .

If 7„ = 1 we need to determine the eigenpairs of

-T n-l -o-n-1

^n-l "Tn-l

We find that the eigenvalue Aj = _
7n-l + i^n-l °^ ^ has an associated

eigenvector x
x

:= [2"
,
-2"

] , and the eigenvalue A2 = ~7 n-i
- i^n-l nas an

associated eigenvector x 2 := [2" ,2"
J

Note that since the eigenvalues of G given by (4.2) are A = ±1,

independent of -1 < 7 < 1, deflation takes place numerous times during the

computat ions

.

We turn to the computation of the Householder transformation (1 .4)

.

In oder to avoid cancellation of significant digits, we compute {ws ?
ws-»-i}

given by (1.6) as follows. If 7 S > 0, then we use (1.6a) and replace

(1.6b) by

w s+ i
: - - <7s2 (1 + 7S ) (1.6b')

In case 7 S < , we use (1.6b) and replace (1.6a) by

,, ._ „ 0-1/2 M _ >.-l/2
u>s .- a s Z (1 - 7 S ; (1.6a')

Due to H having real-valued elements, the eigenvalues and eigenvectors

of H occur in complex conjugate pairs. Therefore only zeros of $(#) for

< 6 < ir have to be computed. Moreover,

n _ ,9- 6,

•(0 = .£ Kjl
2 cot(^-)
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can be simplified. Assume that < #
k < n for some k < n and let

^k+ 1 - 27r -
k . Then

| ( k |

= Kk+1 I ' and we obtain

'Gi. i_i -9 9^-9< '0^+0
| Ck |

2cot(V) + K k + 1 !

2cot(^^) = , Ck |

2(cot(V) cot(^))

=
I Ck I

2 sin 9

COS V - cos K k l

2 sin 9

>»m*H^)
(4.5)

We use the right hand side of (4.5) in the computations

we need to evaluate cot(-l) as well as cotf n ~
J
= tan S.

The contribution from (4.5) to $'(0) is

1 - cos 9 cos 9 U
2lC kl

2

dflVcos
1

- cos 9J ~ 2|C kl
(cos cos 9

k )
2

If 9 k = then

(4.6)

The stable evaluation of the right hand side of (4.6) can be accomplished

as described in Table 4.1.

Cond i t i ons Eval uate

cc k
<

cc
k > and s

c
s _ >

cc
k > and s

c
s_ <

1 / -2 -2n
J(sjf + s-z )4^+

2s i s- Us+s-J

C
k + (

S
* V

2s, s- \2s, s-/

Table 4.1: Stable evaluation of (
1 -cc k ) / (c-c k ) , where

c : = cos 9 , c k :

:= sintV)-

r9„+9
cos P

k , s : = sin V , s
k

:= sin Pk , s. := si n(-V),

The interlacing of the zeros of <^(A) with the {A
k }j) , implies that it

easily can be determined whether - or = n are zeros of <I>(0) . Let
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the k , 1 < k < n , be ordered so that < 6
X

<
2

< ... < p < n < p+ 1

< ... < n < 2n . Since the A k = exp(i# k ) appear in complex conjugate

pairs, we obtain

c6
l

> => $(0) = ,

\e p < n => $(tt) = .

Finally, we consider the computation of eigenvectors v» defined

by(2.20) . Let

W2=i [v« w« . . . ,«£2] , wf 6 C"- ,

A
x =: diag[exp(i«j ') ,exp(i^ ) , . . . ,exp(iffg ')] , < 0- ' < 2w ,

(2) (2) (2) (2)
A 2 =: diag[exp(iflj ;

) ,exp(i^ ;

) , . . . ,exp( i0},.£)] » <
0J

;

< 2* ,

«1 es^s =! LCi ><2 ' • • • »Cs J >

w H . ,, -• iy
(2

> ^
(2) / 2)lTw 2 e

l
u's+ i —

• Lsj » ^2 ' ' • ' 'sn-sj '

and A =: exp(i0), < 9 < 2n . Then

W 1
(I-A

1

H A)- 1W
1

H e s cs = £ (1 - expCiC*-^)))- 1 Ci^M^
j=l J J J

E (1 - expCKfl-^)))-^
(1)

J J J

+ E [(l-expCi^-^)))"^}
1^ + (l-explilJ))))^]

n\ J JJ J JJ
O<0j

}<n
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= 1 £ (l + lcot^xj^wj" + i Z (l-itanCl))^
1

^
1 '

<f=0
0- =n
J

0<*
(1)

<* 9 .
,'V •

,' '"'X
j 2 sin(-L__jsin^^__j

(4.7)

.(1) (1).
- i sin £ (sin(-L-)sin(-V-))^ ReCC^wj

1
')

o<0: '<*

We may assume that close eigenvalues have been eliminated from A and A

bv deflation , and that therefore the 0- and 0- are distinct. Hence, the*
J J

sums over 0- =0 and 0- — n contain at most one term each.

Analogously to (4.7) we obtain

-1„ H.
n̂ S

W 2 (A 2 -IA)"
1 W 2"e lWs+1 £ (exp(i^ 2)

)-exp(i0))- 1
c|

2)
wj

2)

j=l J J J

1 E (l + icot(|) K
j

2)w^ + 1 £ (-l-fitan(|))cj
2)
wj

2)

<j

2,
=°

,0+0
(2) ,(2)

+ 2 £
S 1

o<*<
2
><»

J si

^ si^W>»f>)
,6-e. e+0'.

n{-J-) Sin(-T-)

2
e

,(2)
,0+0.

(2) ,(2)

(2) (2),E sin ^(sin(^_) sin(_^_))-i i.( (
WwW)

0<^<,

+ A sin ,(2)
,0+0.

(2) ,(2)

(2) (2)'

£ cos ^(sin(-^-)sin(-^-))- 1 Re( Cj
Wwj^)

0<f
)<,

(4.8-)
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The evaluation of 6(A) defined by (2.19) can also be simplified. We have

*(A) = E
i<jV

,(i)

n-s

+ £
c,
(2V 1/2

(2).
1 |A-exp(i0J 0|

2 J=l |A-exp(i0J ')
|

where , e.g.,

E
j=l |A-exp(i«j' )

)|
2

' 3 ?
,f=0

.(1)
= 4 e icjV/sin'cg) + 4 e id

(i)

|

2/cos 2
(^)

(1)-

+
(1)1 r ic

;

i

[1
o<er'<n

,(1)
0+0:

(1;

(sin(-^-))- + (sin^))

(4.9)

The simplifications of this section for the orthogonal eigenproblem have

been implemented in a Pascal program. Several other mathematically

equivalent forms of (4.7)-(4.9) could also be used. We have tried to find

formulas that avoid unnecessary loss of significant digits.
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5. Numerical examples

We report, results of some computed examples with an experimental

program for the orthogonal e igenproblem . The program is written in Turbo

Pascal 4.0 and was run on an IBM PC AT computer with unit roundoff

u = 2 ~ 2-10" . Our code implements the formulas of Section 4.

Generally very accurate answers are obtained. Lemma 3.2 indicates,

however, that a zero of $(#) may be very close to a singular point of

$(#) and by Lemma 3.3 the difference 0-0- has to be computed to high

re 1 at i ve accuracy in order to yield nearly orthogonal eigenvectors.

Example 5.2 below shows that, indeed, 6-6- can be extremely tiny and that

loss of accuracy in both eigenvectors and eigenvalues may result. This

loss of accuracy could be reduced, e.g. , by representing 6 and 0- in higher

precision arithmetic.

In this section A G CnXx denotes the diagonal matrix with the computed

eigenvalues of H € RnXn as entries, and W 6 CnXn is the matrix with the

computed eigenvectors. We evaluate the residual errors HHW-WAHqq and

||W W-IHoo, where Hoo denotes the uniform matrix norm.

Example 5.1. This example discusses the application of the unitary and

orthogonal e i genprob 1 ems to the construction of Gauss-Szego quadrature

rules. Consider the inner product on the unit circle

<f,g> = f(A) g(A) da(A)
,

J|A| = 1

(5.1)

vith a positive measure da(A) . Let V-'k » < k < n, be monic orthogonal

polynomials with respect to (5.1). They satisfy a recurrence relation
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<A (A) := 1

V- k
(A) := AVk.i(A) + 7 k k.i(A), 1 < k < n

(5.1a)

(5.2b)

for some parameters 7 k G C such that
| 7 k |

< 1 for 1 < k < n. Here

V' k. 1
(A) := A" V k-i(l/^) 1S the "reversed polynomial." Let 7 n € C be an

arbitrary complex number of unit magnitude, and define ipn by (5.2b) with

k := n. Writing the recursions (5.2) (for 1 < k < n) in matrix form

yields the unitary matrix

H — G
XG 2 • • .G

n
jG n , (5.3)

whose eigenvalues {A
k }P, are the zeros of V'n • Here G k is defined by 7 k

according to (1.2) for 1 < k < n. Hence, the parameters {7 k }
n are the

U
Schur parmaeters for H. Let H = WAW be a spectral resolution, and define

the weights p k := |e,We k |
for 1 < k < n. Then

f(A)da(A) = £ p kf(A k ) + en (f)
|A|=1 k=l

is a Gauss-Szego quadrature rule with respect to the measure da(A)

,

because the error c n (f) vanishes when f is any trigonometric polynomial of

degree less than n. See [Gr2] for details. The computed examples

illustrate the case when all Schur parameters 7 k are real valued and H

therefore is real orthogonal.

A particularly simple example is 7 k
:= 0, 1 < k < n, and 7 n := -1.

Then i< k (\) = \
k

, < k < n , and t/'n (A) = A
n - 1 , and therefore

A
k = exp(27ri (k-1 )/n) ,

.p k = 1/n .

1 < k < n (5.4)
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n ||HW-WA||oo l|W
MW-I|| o0

4 4.6-10" 12
i .5-icr 11

8 6.4-10" 12 3.010" 11

16 1 ,4-lCf 11 5.4-10 n

32 2.910" 11
1 .8-10" 10

64 3.9-10" 11 3.4-10" 10

These Schur parameters have been used for Table 5.1. In the table "#

defl. close e.v." stands for number of deflations due to close

eigenvalues, and "# defl. small
I C|< I

" * s short for number of deflations

due to components £ k of z of small magnitude. Two eigenvalues are

considered close if (2.26) is satisfied for e 2
:= 1-10"

, and
| ( k |

is

regarded small if (2.24) is valid for c
l

:— 1-10" . These values of (^ and

( 2 are used in all computed examples of this section.

# defl. close e.v. # defl. small
|

(

k |

2

8

24

64

160

Table 5.1: 7 k
:= 0, 1 < k < n; yn := -1

For 7 k := 0, 1 < k < n, and 7 n := 1, we obtain the polynomials V k (^) =

A , < k < n, and ^'n(^) : = A
n + 1. Hence, the eigenvalues are A

k
=

exp ( i 7T (2k- 1 ) /n ) , 1 < k < n, and the Gauss-Szego weights p k
are the same as

in (5.4). Table 5.2 shows computations for the present Schur parameters,

and differs from Table 5.1 mainly in that fewer deflations take place.

# defl . smal 1
| < k |

o

o

Table 5.2: 7 k := 0, 1 < k < n; -) n := 1
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n HHW-WAHoo HW
H W-I|| co # defl . c 1 ose e .

v

4 7.8-10" 12
1 .6-10* 11

8 1 .7-10" 11 4.2-10" 11 2

16 3. 1-10" 11
1 .610" 10 10

32 4. 1-10" 11 3.5-10" 10 34

64 5.610" 11 7.5-10" 10 f)S



In Tables 5.3-5.4 we have chosen 7 k
:= 0.8, 1 < k < n. This makes the

A
k
gather in the left half plane. For the examples of Table 5.3 we have

max Re Xl, < -\. For the examples of Table 5.4 we obtain max Re A k < - -j .

A k ^l
k 4 4

n HHW-WAHoo l|W
H
W-I|| 00 # def 1 . c 1 ose e .

v

4 2.7-10 12
1 .610" 11 2

8 5.5-10" 11
1 .8-10" 10 8

16

32

5.210" 11

3.2-10" 8

3.2-10" 10

9.3-10" 8

24

63

64 3.2-10"8
1 .610" 7 157

# defl smal 1
| Ck

1

3

Table 5.3: 7 k : = 0.8, 1 < k < n; 7 n := -1

# defln HHW-WAHoo l|W
H
W-I||oo # d ef 1 c 1 ose e .

v

4 4.8-10" 11
1 .7-10" 10

8 9.4-10" 11 5.5-10- 10 2

16 4.8-10" 10 6.6-10" 9 10

32 6.310" 10 2.310"8 34

64 4.210"8
1 .9-10" 7 97

smal 1
| Ck I

1

Table 5.4: 7k :=0.8,l<k<n;7 n :=l

In the last computed quadrature rules of this example we let the 7 k , 1

< k < n, be uniformly distributed in the open interval ]-l,l[, and let 7 n

be -1 or 1 with probability i each. The 7 k are determined with the random

number generator of Pascal. Table 5.5 shows the result of 30

e igenprobl ems so generated. The maximum, average and minimum in Table 5.5

are over all 30 e igenproblems

.
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max

average

mi n

HHW-WAHoo

7.2-10 7

5.8-10" 8

2.910"9

||W
HW- I||oo # defl. close e.v

2.5-10'6 30

2.310 7 26.5

1.5-10" 8 22

# defl . smal 1
| ( k

Table 5.5: Uniformly distributed 7 k e]-l,l[, 1 < k < n; uniformly
distributed 7 n £ {-1,1}. Max, average and min are over
30 e igenprobl ems with n := 32

The numerical experiments of Table 5.5 indicate that for many choices

of Schur parameters 7 k , the magnitudes
|

(

k |
are not sufficiently small to

give rise to frequent deflations. This behavior has also been observed in

many other computed experiments. In contrast, massive deflation in DC

methods for symmetric tridiagonal matrices often is caused by small

components of the vector correspnding to z = [Cj<] k _i • E

Example 5.2. This example suggests that it might not be possible to

increase the small lower bound for min |#-#j| of Lemma 3.2 significantly.
J

The Schur parameters for Table 5.6 are obtained by reversing the sign of

the 7 k , 1 < k < n , of Table 5.4.

min

n l<k<n

4 6.6-10

8 8. 1-10

16 0*

32 0*

64 0*

-2

Table 5.6

# defl

.

# defl .

HW-WA||oo ||W
H
W-I||oo c 1 ose e.v. sma ii K k

6.9-10" 11 3. 1-10" 10

7.2-10" 10 2.5-10" 8 2

1 .2-10" 7 3.1-10"8 10

7.210" 7
1 .9-10" 6 34 2

7.210" 7 2.610" 6 97 5

7 k
:= -0.8, 1 < k < n; 7 n := 1. *The matrix has

numerically the eigenvalue X = 1 of multiplicity two
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Because a k
= 0.6 > 0, 1 < k < n, "the matrix H has distinct eigenvalues

mathematically. Numerically two eigenvalues are so close that they are

not distinguished with our present choice of e 2 = 1-10"
. A smaller value

of £ 2 » such as € 2
= 1*10"

,
gave in some numerical experiments larger

residual errors ||HW-WA||oo or ||W
HW-I|| 00 .
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