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ABSTRACT

:

This monograph presents an introduction to dimensional analysis, a
subject of profound significance for all quantitative sciences and
engineering. Although the purely formal mathematical relations of dimen-
sional analysis can be found in many texts, the present analysis, while
still reasonably brief, goes well beyond the usual textbook treatment.
It develops a unified theory of physical measurements which involves
several novel and original features. Firstly, the usual qualitative
concept of a physical dimension is replaced by a precise quantitative
definition. Secondly, the famous Pi Theorem is shown to follow simply
from the existance of a certain comprehensive set of consistent "natural
units" which differ from ordinary English or metric units only in their
fundamental scales of force, length, time, and temperature; these scales
can always be chosen to fit the particular phenomena under consideration.
Thirdly, it is shown that the mathematical form of any equation remains
unaffected if all quantities in it be consistently transformed from
ordinary fixed units to natural units. Fourthly, the analysis uncovers
an unconventional dimensional relation (energy = mass x temperature) that
is valid and useful under certain commonly encountered conditions.
Finally, the theoretical discussion clears up certain common conceptual
muddles, including those often associated with the various alternative
units of force and mass.

Engineering applications of the theory are illustrated by various
examples involving mainly fluid flow, turbomachinery, propellers, and
related devices. In particular, highly significant absolute performance
limits are established for certain broad classes of propellers, lifting
rotors, and air turbines, merely by nondimensionalizing the well known
momentum/energy relations in an unconventional but systematic manner.





Errata

for

Dimensional Analysis and the Concept
of Natural Units in Engineering by T. H. Gawain

p. 3 line Ik

P./.U line lU

p. 1+9 line 7

Change "Fl for work" to "FL for work".

Change "F = FL" to "E = FL".

Change "visosity" to "viscosity".
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1. Generalized Units

The various familiar quantities which appear in physical equations

of all kinds are of two general types: dimensional or dimensionless. A

dimensional quantity (for example, a force, a length, a velocity, a

stress, a heat flux, etc.) is one which can only be expressed as some

multiple of an appropriate physical unit of measurement. This numerical

or algebraic multiple is termed the measure. The quantitative specifi-

cation of any dimensional quantity, therefore, always involved both unit

and measure. Moreover, for any dimensional quantity of fixed physical

magnitude, the numerical value of the measure is inversely proportional

to the size of the unit of measurement. Hence, the numerical measure of

any dimensional quantity can never be dissociated from the magnitude of

its corresponding unit.

On the other hand, a dimensionless quantity is simply one which is

not associated with any particular physical unit. It is a pure number.

Consequently, the numerical magnitude of any dimensionless quantity does

not depend in any way on the units used for expressing other related

dimensional quantities occurring in the same equation or problem. In

particular, the ratio of any two dimensional quantities which are

both expressed as multiples of a common unit turns out to be independent

of the size of that unit. It is, therefore, a dimensionless number.

For example, let symbols a and b denote two physical lengths, say the

length and width of a certain wooden block. These are both dimensional

because their respective numerical measures depend on the size of the

length unit used. This might be any convenient unit of length: inches,

feet, meters, etc. On the other hand, the ratio a/b turns out to have a



fixed value independent of the size of the length unit in which a and b

are separately expressed. Hence, ratio a/b is dimensionless.

It often happens also that a quantity initially looks as if it

might be dimensional but it turns out, upon further analysis, that its

numerical magnitude is actually independent of the particular units

which appear to be involved. This assumes, of course, that the actual

units used are themselves consistent, as will be explained more fully

later; for the present, we take the consistency of the units for granted.

Under these circumstances we conclude that the quantity in question is

actually dimensionless. This important idea is best clarified by means

of a specific example. Suppose, for instance, that a certain situation

involves a velocity V, a length A, and the acceleration of gravity g.

These are all dimensional quantities whose magnitudes depend on

the units in which they happen to be expressed. Suppose further

that quantities of the form Vig and V/v^Tg happen to appear in the mathe-

matical analysis of the problem. Offhand, it might perhaps appear that

the numerical values of both these combinations is dependent on the

particular units in which the separate quantities V, &
9
and g happen to

be expressed. Analysis shows that the magnitude of V£g does indeed

depend on the units used. On the other hand, the numerical value of

V/v^g turns out to be independent of the units used, provided, of course,

that they are consistent. Thus, for example, V/JTg has the same

numerical value whether evaluated in terms of English units or metric

units. We conclude, therefore, that the quantity VXg is dimensional but

that the quantity V/v/£g is dimensionless.

We can now generalize the above important principle as follows: if

it can be shown that the magnitude of some given quantity is in fact



independent of the actual magnitudes of particular units (provided only

that all units are consistent), then the quantity in question is

necessarily dimensionless. The idea of consistency of units as mentioned

above is elaborated further in the later discussion.

For most engineering purposes, it suffices simply to label all

dimensional quantities with the customary names or abbreviations of their

respective units such as ft, sec, lb/ft , Btu/hr ft , and so forth. For

purposes of dimensional analysis, however, it is considerably more useful

to represent every such unit by a corresponding generalized symbol. Thus,

the chosen unit of force may be represented by the letter F, the unit of

mass by M, the unit of length by L, and so on. We term symbols such as

F, M, L . . . generalized units or dimensions. Of course, we can also

have composite generalized units such as L/T for velocity, F/L for

pressure, Fl for work, and so forth.

It should be pointed out that this particular usage of these dimen-

sional symbols as generalized units is somewhat unorthodox. Most text-

books use these same symbols, which they also call dimensions, in only a

qualitative (or even in only a metaphorical) sense. The precise quanti-

tative significance associated with the present concept of the generalized

unit turns out to be much clearer as well as far more useful than the

essentially qualitative character of the orthodox concept of a dimension.

Two related advantages of this scheme are its generality and its

exactness. Thus, written relations involving such generalized units

remain valid and quantitatively exact whether the symbols subsequently

are taken to represent English units, metric units, or even units which

are neither English or metric! Of particular value and interest in this



connection are units of the type which we have chosen to call "natural

units." These are explained in detail later in this report.

The present discussion encompasses the entire realm of mechanics

and thermodynamics, but it specifically excludes the phenomena of elec-

tricity and magnetism. It is a remarkable fact that all of the general-

ized units, however complex, which can occur in this realm are

expressible as various combinations of just six generalized units! These

six fundamental dimensions are summarized in Table 1.1.

Table 1.1 Fundamental . Dimensions

Symbol for One
Quantity Generalized Unit

Force F

Mass M

Length L

Time T

Energy (including Heat) E

Temperature 6

In principle, the phenomena of electricity and magnetism could also

be included in this analysis by adding one more fundamental dimension to

represent electrical charge, but this possibility will not be developed

further in the present discussion.

Once the above six generalized units have been specified, the

corresponding consistent derived units for all other quantities can be

expressed in terms of these fundamental ones. Thus, for example, the

consistent derived unit for velocity may be defined as the velocity

which corresponds to unit length L traversed in unit time T. This may,

therefore, be denoted by the generalized symbol L/T. For the particular



case where L happens to be one foot and T happens to be one second, the

corresponding consistent derived unit of velocity then becomes one foot

per second abbreviated as ft/sec. On the other hand, if L is one kilo-

meter and T is one hour, then L/T denotes km/hr. Similarly, the

consistent derived unit for pressure is that pressure which corresponds

to unit force F acting over unit area L , or F/L . Again, this expres-

Q o p
sion could represent lbf/ft , dynes/cm , newtons/m , and so on,

depending on the specific fixed units adopted in a particular case.

This method of expressing, in a generalized way, various typical derived

units in terms of the six fundamental units is illustrated further in

Table 1.2.

This initial formulation also suggests that the magnitudes of each

of the six fundamental units may be specified arbitrarily. Consequently,

the corresponding magnitudes of all consistent derived units become fixed

accordingly. For convenience, we shall designate any hypothetical

dimensional system which actually possesses six such degrees of freedom

as an unconstrained system.

We shall see later, however, that the two general types of systems

of major importance in science and engineering each satisfy two additional

constraints so that in each case we end up with just four degrees of

freedom. Naturally, these constraints ultimately affect the final form

of the various units. These units are shown in Table 1.2 in their initial

unconstrained form. The basis for the subsequent changes in the form of

the units is developed in the following sections of this report.



Table 1.2 Typical Consistent Derived

Units in Unconstrained Form

Typical Generalized

Angle

Symbol Unit

1. 1
See Note

2. Strain e 1

3- Area A L
2

k. Volume V L
2

5. Velocity V L/T

6. Angular Velocity (JO l/T

7. Acceleration a L/T
2

8. Volumetric Flow Rate Q L3/T

9. Pressure P F/L
2

10. Moment M FL

11. Surface Tension o~ F/L

12. Viscosity M- ft/l
2

13. Kinematic Viscosity u flt/m

Ik. Specific Impulse I ft/m

15. Mass Flow Rate m m/t

16. Mass Flux G m/tl
2

17. Moment of Inertia J ml
2

18. Density P M/L3

19- Gas Constant R FL/M9

20. Specific Weight Y F/L3

21. Power P E/T

22. Energy Flux q/A e/tl
2



23. Specific Enthalpy h E/M

2k. Specific Heat C E/M9

25. Specific Entropy s E/lVIB

26. Thermal Conductivity k E/TLG

27. Heat Transfer Coefficient U E/TL
2

28. Coefficient of Thermal
Expansion p l/8

29. Inertial Constant k ML/FT
2

30. Work/Energy Factor 11, FL/E

NOTE: The symbol 1 signifies that the corresponding quantity is

dimensionless.



2. Auxiliary Constraints

In the discussion so far, the six fundamental generalized units have

been treated as independent. This amounts to saying that the magnitude

of each one of these six may be prescribed arbitrarily, without any

reference to the magnitudes assigned to any of the others. However, in

the various systems of units which have actually won general acceptance

in science and engineering, certain additional constraints are customarily

imposed, thus reducing the number of arbitrary selections which can be

made to less than six. We shall now summarize the most important of these

constraints.

In some systems, the units F, M, L, and T are so chosen that unit

force F imparts unit acceleration L/T to unit mass M. We shall term any

system of units which conforms to this constraint an inertial system.

Other systems are subject to a somewhat different constraint. In

particular, the units F and M may be so chosen that unit force F equals

the weight of unit mass M in the earth's gravitational field, under

prescribed standard conditions of gravitational acceleration. We shall

term any system of units which conforms to this constraint a gravitational

system .

All systems of units to be considered further in this discussion are

either inertial or gravitational systems, these two categories being quite

distinct.

Another important constraint on dimensional systems is based on the

character of the energy unit E. In the present context, energy may be

expressed in terms either of work or of heat, that is, either in mechanical

or in thermal units. The mechanical unit of energy E is defined as the

work done by unit force F on unit displacement L. On the other hand, the

thermal unit of energy E is defined as the heat required to produce unit

8



increase of temperature 9 in unit mass M of water at prescribed standard

conditions of pressure and temperature. The specification of water as the

particular medium in connection with this last definition is arbitrary but

convenient, and it is the universally accepted standard. In line with these

definitions, we can described a system of units as being either mechanical

or thermal, according to the units used for expressing energy. In partic-

ular, in a mechanical system all energy quantities must be expressed

exclusively in mechanical units. On the other hand, if a system utilizes

either thermal units exclusively, or else uses some mixture of mechanical

and thermal units depending on the particular energy quantity in question,

we shall classify it as a thermal system.

All systems of units to be considered further in this discussion are

either mechanical or thermal systems, these two categories being here

treated as distinct and mutually exclusive.

In mechanical and aeronautical engineering, for all general purposes

other than those associated with the phenomena of electricity and magnetism,

two types of dimensional systems have established themselves as preeminent.

We shall call them dynamic and thermodynajnl

c

systems, respectively. These

two distinct types of dimensional systems can now be simply defined as

follows

:

Any system of units which is both inertia! and mechanical shall be

here designated as a dynami c system.

Any system of units which is both gravitational and thermal shall be

designated as a thermodynamic system.

The relationships defined above are summarized in Table 2.1. All

further discussion herein shall be restricted to just these two main types

of dimensional systems. It will be shown that for each of these two major

types the fundamental units whose magnitude can be specified arbitrarily

9



are just four in number. This reduction from six degrees of freedom to

four comes about because each of these types of systems is subject to two

auxiliary constraints as explained above.

Both types of systems discussed above may, of course, be implemented

in English units and in metric units. This is illustrated further in

Table 2.2. The English units shown are those commonly used for engineering

purposes in the English speaking countries of the world. The metric units

shown are known as MKS units (meter, kilogram, second). They are used in

engineering work throughout Europe. Also in common use for scientific

purposes in all countries, are the metric CGS units (centimeter, gram,

second), but these are perhaps of less importance in engineering; they are

not included in the table.

10



Table 2.1 The Two Main Types

of Dimensional Systems

I. Dynamic System

1. Inertial Constraint

Unit force F imparts unit acceleration L/T to unit mass M,

2. Mechanical Constraint

The unit of energy E equals the work done by unit force F
over unit displacement L.

II. Thermodynamic System

1. Gravitational Constraint

Unit force F equals the weight of unit mass M under standard
conditions of gravitational acceleration gs

L/^
.

2. Thermal Constraint

The unit of energy E equals the heat required to produce unit
temperature rise 9 in unit mass M of water at standard
conditions of pressure and temperature.

11
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3. Newton's Second Law of Motion

For any unconstrained system in which all four of the units F, M,

L, and T are arbitrary and independent, Newton's Second Law of Motion may

be written in the form:

where: f = net force acting on a body

m = mass of body

a = acceleration of body

k = inertial constant

The numerical magnitude of the inertial constant k in this equation

depends solely on the relative magnitudes assigned to the four units F, M,

L, and T. Also, from Equation (3-1) we may infer the units of k
y

.

Denoting these units by the symbol U(k ) , we may write:

U(k
x

) = ^2 (3-2)

Next, consider any inertial system. From the definition of inertial

units, it follows that units F, M, L, and T are so related in magnitude

that:

k
x
= 1 (3-3)

Moreover, in this case, the magnitude of k remains unity by definition

regardless of how the magnitudes of M, L, and T or F, L, and T are

assigned. Hence, by our original definition of a dimensionless quantity,

it follows that in any inertial system, the inertial constant k
T

is

dimensionless.

Equation (3-1) now becomes simply:

f = m a (3-^)

Next, consider the case where f in this equation equals unit force

F, and where m equals unit mass M. The resulting aceleration a then equals

13



unit acceleration —2 and we may write

F = fe (3-5)

also conversely

M = S (3.6)

These results express in quantitative form the fact that only three

of the four units F, M, L, and T can now be regarded as independent.

Thus, if we choose M, L, and T as the three independent units, then force

F becomes the consistent derived unit as defined by Equation (3-5).

Conversely, if we choose F, L, and T as the three independent units, then

mass M becomes the consistent derived unit as defined by Equation (3-6).

From Equation (3-5) > we also see that in any inertia! system of units

ML
the generalized unit F can always be replaced by -=-2 and thus eliminated.

Alternatively, from Equation (3-6), we see that M can always be replaced
2

FT
by -=— and thereby eliminated. By means of these substitutions, either

Li

the unit F or the unit M (but not both) can be eliminated from all of the

original generalized units shown in Table 2.2. The resulting generalized

units so obtained are summarized later in Table 5.2. Please note,

however, that the important relations (3-5) and (3-6) apply to inertia!

systems only !

Next, consider the alternative to inertial units, namely, gravita-

tional units. As we have already seen, in general the inertial constant

ML
kT has the units ™2. In the gravitational case it turns out, however,
1 M

that k becomes numerically equal to the standard acceleration of gravity

g . Of course, g itself has units of acceleration —2. To emphasize the

numerical equality between k and g , but at the same time to mark the
J- s

apparent disparity between the units of these two quantities, the inertial

14



constant k for the case of gravitational units is usually assigned the

distinctive symbol g or g . In this text we use g .

Hence, for any gravitational system of units, Newton's Second Law of

Motion assumes the specific form:

f = i m a (3-7)
6o

In English and metric MKS Units, respectively, the inertial constant

takes on the following values, namely:

go
. 32 . 1739 (gf)(-S^)

9 - 80665 (l^)(ifj2) (3 -8)

Note that the actual numerical magnitude of g depends only on the

units of length and time involved. The ratio (^r~p) or (r^r), in other words

/Ms
the ratio (=), is included only for the sake of formal consistency of units

in the equation of motion. We shall now show, however, that by a slight

change of convention, this mass/force ratio can actually be deleted with-

out introducing any error.

In the case of a body falling freely in a gravitational field of

intensity g, the acceleration a becomes equal to g and the force f acting

on the body becomes equal to its weight w. Hence, Equation (3-7) reduces

to:

w = - m g (3-9)
eo

Now, if the gravitational acceleration g be taken as equal to the standard

acceleration g , then the corresponding weight w becomes what we may term
s

the standard weight w . In this case, Equation (3-9) can be rewritten and

rearranged to read:

w g

(-£) = l = (-*) (3-10)
m g

Q

15



The most striking fact here revealed is that this ratio is numeri-

cally equal to unity for any gravitational system regardless of how the

magnitudes of M, L, T, or of F, L, T happen to be chosen. This follows

from the fact that standard weight w is always numerically equal to mass
S

m by definition, and likewise that g is always numerically equal to g .

*-' s

Moreover, the numerical value of g itself depends only on the magnitudes
s

of units L and T and is, of course, independent of units F or M.

Inasmuch as the numerical magnitude of the above ratio is unity and

is independent of all units provided only that they constitute a gravi-

tational system, then by the criterion we have earlier laid down, this

ratio must be deemed to represent a dimensionless quantity in such a

system. Hence, with the equation on the left side of (3-10) we can

associate the dimensional statement:

F— = 1 = dimensionless! (3-H)
M

Moreover, as a consequence of (3-11), the generalized units of g reduce

as follows.

U(g
Q

) = (|)(|2 ) = (1)(|2 ) =^2 (3-12)

Furthermore, if we adhere consistently to this particular convention, it

follows that the quantities f and m in Equation (3-7) must now be expressed

in like units, the earlier distinction between unit F and unit M having

disappeared by virtue of statement (3-11)!

It should now be clear that we have the choice of two formally distinct

yet quantitatively equivalent conventions for any gravitational system,

depending on whether we do or do not adopt the formalism represented by

Equation (3-11). If we do choose to incorporate (3-11) within our system,

and this is certainly a valid option, then there is no longer any need for

distinguishing between the symbol F for unit force and the symbol M for

16



unit mass. A single common symbol will now serve for either use. It is

well to choose for this purpose a new symbol which is not identified

exclusively with either force or mass. For definiteness in the present

discussion, we choose the symbol G to represent this generalized gravi-

tational unit.

The two alternatives discussed above are summarized in Table 3.1.

Table 3-1

Alternative Conventions for Gravitational Units

of Force and Mass

Distinct Units Common Unit

Force Mass Force or Mass

Generalized F M G
Units

English lbf lbm lb

Units

Metric MKS kgf kgm kg
Units

Both of the above conventions are correct and both find wide use.

Most textbooks favor the use of distinct units of force and mass since this

preserves a certain parallel with the usage in an inertial system of units.

On the other hand, many practicing scientists and engineers prefer the use

of the common unit on the grounds of convenience and simplicity.

The particular convention finally adopted makes a nominal difference

in the apparent units of certain quantities. For example, work per unit

mass becomes ft Ibf/lbm in the one notation and simply ft in the other.

17



Likewise, specific impulse becomes lbf sec/lbm in the one notation and

simply sec in the other. The distinction is purely formal, however. The

actual magnitudes of the respective units are entirely unaffected by the

difference of notation. Corresponding numerical operations in the two

conventions are always identical.

Some theoreticians are averse to the use of a common label for force

and mass units on the grounds that force and mass are entirely dissimilar

physically. This physical distinction is indeed fundamental. Neverthe-

less, the expression of unlike physical quantities in terms of units which

are nominally alike, while somewhat exceptional, is not wholly without

precedent. Perhaps the best examples of this are heat and work. These

two quantities are so unlike in their physical manifestations that it

required many years of intensive scientific effort to establish the fact

that they are simply two different forms of energy in transit and that

they can indeed be expressed in like units if desired. Also, work and

moment are quite different physically, yet both are expressible in terms

of the common generalized unit FL. Also, specific heat and specific

entropy are physically distinct yet share the common unit E/M9. Hence,

the adoption of a common label for the gravitational units of force and

mass does not really entail any denial of the important qualitative and

physical difference between these two quantities. This usage arises

instead from the fundamental fact that in any gravitational system, a

definite choice of the magnitude of either unit suffices to determine the

magnitudes of both . These two units are, therefore, not independent. It

is in some respects simpler, clearer, and more consistent to avoid two

distinct symbols in our list of fundamental units when in fact only one

of these can be regarded as truly independent.

18



Now reverting again to the discussion of inertial systems, we invite

attention once more to the familiar and important relation (3-5) which

for convenience we repeat here, namely:

F = ffe (3-5)

Under the conventional qualitative interpretation of dimensional symbols,

this is generally taken to mean that symbol F, for example, somehow

represents the "physical character or essence" of "mass times acceleration."

Moreover, this "character" or "essence" denoted by F is conceived of as

being an innate physical quality, fixed and independent of any particular

unit or system of units in terms of which it may happen to be expressed in

any particular instance. Of course, a similar interpretation is applied

to the dimensional symbol for mass M, for acceleration L/T , and so on,

each of which is supposed to retain its own unique and fixed qualitative

character under all circumstances. Thus, the meaning of each symbol is

taken to be immutable and quite independent, for example, of whether we

happen to be dealing with an inertial or a gravitational system. In other

words, dimensional symbols are regarded as somehow representing the ulti-

mate being of Nature herself who remains indifferent to the arbitrary and

contingent units adopted by Man.

Actually, whether we realize it or not, such an interpretation of

dimensional symbols as representing unchanging physical qualities or

essences is actually metaphysical; it has no operationally verifiable

meaning. Furthermore, the difficulties that can arise from any attempt

to work consistently within this conceptional framework are very great.

For example, the scientist who has once accepted the inertial dimensional

relation (3-5) in such a grandiose sense is then debarred from ever

accepting the gravitational relation (3-11), even for a gravitational

19



system ! We rewrite (3-11) here for convenience in the form:

F = M (3-11)

If confronted with this relation, he is inclined to dismiss it out of

hand, as absurd. He feels that, to paraphrase Kipling, "Force is Force

and Mass is Mass, and never the twain shall meet!"

Such paradoxes and confusions can be eliminated by dropping this

metaphysical interpretation of dimensional symbols and adopting instead

the simple concept of the generalized unit as proposed in this paper.

This definition treats the dimensional symbol much like any other ordinary

algebraic symbol. The symbol merely denotes precisely one unit of a

particular kind. Dimensional relationships then take on exact quantita-

tive meanings. Also, the specific forms of these relationships then

become definitely contingent upon the particular type of dimensional system

we happen to be dealing with. Therefore, certain dimensional relations

like (3-5) > for example, which happen to characterize any inertial system,

need not necessarily agree with corresponding relations like (3-H) for a

gravitational system. The seeming paradox is, therefore, resolved.

Furthermore, as long as we adhere consistently to a system of a fixed

type, say a dynamic system for example, then all dimensional relations

remain invariant and independent of the specific magnitudes which may

happen to be assigned to the independent fundamental units of the system.
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k. Energy Relations

Recalling that the mechanical unit of energy E is simply the work

done by unit force F acting over unit displacement L, we can at once write

the following dimensional relation for any mechanical system, namely:

E = FL (k-1)

With regard to thermal systems, the situation is slightly more

complicated. For heat addition to some arbitrary medium at constant

pressure we may write, provided that the temperature rise is small,

q = C m AT
P

q = net heat added

m = mass of medium

AT = temperature rise

C = specific heat of medium
at constant pressure (4-2)

Now, consider the specific case where the medium happens to be water

at the specified standard conditions of pressure and temperature. Also

in this case, let m be taken as equal to unit mass M and let AT be taken

as equal to unit temperature rise 9 . Recall that the thermal unit of

energy E is the heat required to produce unit temperature rise 9 in unit

mass M of water at standard conditions. Hence, in this case, q will

simply equal unit energy E. In addition, from Equation (4-2) we note that

for water at standard conditions, the specific heat C in any thermal

system equals unity by definition, regardless of the actual magnitudes

assigned to units M and 9. Consequently, specific heat C must be regarded

as a dimensionless quantity in any thermal system! Upon substituting these

various quantities into Equation (4-2) we finally obtain the basic dimen-

sional relation
E = M9 (4-3)

which is applicable to any thermal system of units.
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Thus, the dimensional relation which governs the derived energy unit

E is Equation (k-l) for any mechanical system or Equation (4-3) for any

thermal system. In either case, E can be eliminated from the list of

fundamental units. Hence, whenever E occurs in the generalized units

listed in Table 1.2, it can be replaced by FL or M9 , respectively, as

appropriate.

It should be pointed out that whereas the mechanical relation (4-1)

is universally recognized in textbook discussions of dimensional analysis,

the corresponding thermal relation (4-3), while equally correct, is more

or less unconventional and is not usually mentioned. In fact, the only

textbook writer who has actually proposed the thermal relation (4-3), so

far as this author is aware, is Csanady. See the bibliography, item (l8).

Even in that reference, however, there seems to be no clear statement of

the fact that the stated relation is specifically applicable only to

thermal systems of units, but not otherwise.

The distinction between a mechanical and a thermal system can also

be conveniently expressed in terms of a work/energy conversion factor lu,

which is here defined as the number of units of work FL contained in one

unit of energy E. Hence, the units of X, may be written:

uCkg) = f (4-4)

Now, for any mechanical system:

E = FL (4-5)

whereupon k^ obviously reduces to a dimensionless quantity of unit

magnitude

.

On the other hand, for any thermal system:

E = M6 (4-6)

In this case, lu, reduces to Joule's constant, also known as the mechanical
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equivalent of heat and usually denoted by symbol J. Its units become:

U<V - U <J ) - t - § (U "7)

Moreover, if the system is not only thermal but also gravitational,

which for thermodynamic units is always the case by definition, then we

may, if we choose, reduce the units of J further to

U(J) = § -
I (4-8)

which is a dimensional relation that, while correct, is not widely

recognized.

The numerical values of Joule's constant for the English and metric

units considered in this report are:

English J = 778.3 ft lbf/Btu

Metric J = Ul86 joule/kcal (1+-9)

As we have seen, it would also be entirely correct, although unorth-

odox, to write for the thermal units above the equivalent expressions:

1 Btu = 1 lbm °F

1 kcal = 1 kgm °C (4-10)
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5. Consistent Derived Units for Dynamic and Thermodynamic Systems

The various auxiliary constraints which characterize dynamic and

thermodynamic systems of units were previously summarized in words in

Table 2.1. In view of the foregoing development, these same constraints

can now be expressed symbolically in the form of specific dimensional

relations. This is summarized in Table 5.1.

Table 5.1 Auxiliary Constraints

I. Dynami c Systems

1. Inertial Constraint

F-fte

2
M FT

2. Mechanical Constraint

F = FL

II. Thermodynamic Systems

1. Gravitational Constraint

F = M = G

2. Thermal Constraint

Either one applies

E = M9 (A correct but unorthodox relation.)
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First, consider the dynamic system of units. By introducing the

relations in the upper part of Table 5.1 into the various generalized

units originally listed in Table 1.2 we obtain the results summarized in

Table 5*2. Note that there are two possibilities depending on whether we

choose to eliminate F or M from the list of fundamental (independent)

units. These two representations, although distinct, are of course

completely equivalent. In other words, we have here two alternative

forms of description of one common set of units. These two forms are

summarized in Table 5.2.

Next, consider the thermodynamic system of units. By introducing

the relations in the lower part of Table 5.1 into the various generalized

units listed in Table 1.2 we obtain the results summarized in Table 5.3.

Two forms are listed corresponding to the two possible conventions

regarding force and mass units.

A comparison of the generalized units in Tables 5.2 and 5*3 show that

while some of the quantities have identical generalized dimensions in both

the dynamic and thermodynamic systems, others have quite different units

in the two systems . Such differences are entirely proper and do not

indicate anything amiss

.

Nevertheless, for purposes of the subsequent dimensional analysis, it

is rather inconvenient to have to deal separately with two distinct and

somewhat disparate systems . It would be much more convenient if these

two systems could be placed on some common footing so that a single

unified analysis could subsequently be made which would be equally appli-

cable to both.

Fortunately, it happens that this can indeed be accomplished, and in

a very simple way at that. Two different cases must be considered corres-

ponding respectively to English and metric units. Note from Table 2.2
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Table 5.2 Typical Derived Units in

Any Dynamic System

Quantity- Symbol Generalized

M, L, T, e

Units

F, L, T, 9

1. Angle a 1 1

2. Strain e 1 1

3. Area A L
2

L
2

k. Volume V L3 L3

5. Velocity V L/T L/T

6. AngularVeloc it

y

(JU l/T l/T

7. Acceleration a L/T
2

L/T
2

8. Volumetric Flow Rate Q, L
3/T L3/T

9- Pressure P m/lt2 F/L
2

10. Moment M ml
2
/t

2
FL

11. Surface Tension o m/t
2

F/L

12. Viscosity
M-

m/lt ft/l
2

13. Kinematic Viscosity u L
2
/T L

2
/T

Ik. Specific Impulse I L/T L/T

15. Mass Flow Rate m M/T FT/L

16. Mass Flux G M/TL
2

FT/L3

17. Moment of Inertia J ML
2 p

FLT^

18. Density P M/L3
2/ kFTVL

19. Gas Constant R L
2
/T

2
9 L

2
/T

2
9

20. Specific Weight Y
P P

m/lt F/L3

21. Power P ML
2
/T3 FL/T

22. Energy Flux q/A M/T3 F/TL
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23. Specific Enthalpy

2k. Specific Heat

25. Specific Entropy

26. Thermal Conductivity

27. Heat Transfer Coefficient U

28. Coefficient of Thermal
Expansion

29. Inertial Constant

30. Work/Energy Factor

h L
2
/T

2
L
2
/T

2

C
P

s

L
2
/T

2
e

L
2
/T

2
e

L
2
/T

2
9

l
2
/t

2
9

k ML/T 39 F/T9

u m/t39 F/TL9

P i/e i/e

k
i

1 1

h 1 1
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Table 5.3 Typical Derived Units in

Any Thermodynamic System

Quantity Symbol Generalized

F, M, L, T, 9

Units

G, L, T, e

1. Angle a 1 1

2. Strain e 1 1

3. Area A 1? L
2

k. Volume V 1? L3

5. Velocity V L/T L/T

6. Angular Velocity U) l/T l/T

7. Acceleration a L/T
2

L/T
2

8. Volumetric Flow Rate Q L3/T L3/T

9- Pressure P F/L
2

G/L
2

10. Moment M FL GL

11. Surface Tension a F/L G/L

12. Viscosity
M-

ft/l2 gt/l
2

13. Kinematic Viscosity u <!> lt LT

1U. Specific Impulse I (> T

15. Mass Flow Rate
•m M/T G/T

16. Mass Flux G m/tl
2

g/tl
2

17. Moment of Inertia J ML
2

GL
2

18. Density P M/L3 G/L3

19- Gas Constant R (|)L/e L/e

20. Specific Weight Y F/L3 G/L3

21. Power P M9/T G9/T

22. Energy Flux q/A M9/TL
2 G6/TL

2

23. Specific Enthalpy h e 9
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2k. Specific Heat CI 1
P

25. Specific Entropy si 1

26. Thermal Conductivity k M/TL G/TL

27. Heat Transfer Coefficient U M/TL
2

G/TL
2

28. Coefficient Thermal
Expansion P i/e i/e

29. Inertial Constant k
I

=
6o (f)L/T

2
L/T

2

30. Work/Energy Factor k
E = J (|) L/e L/e
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that for English units, the dynamic and thermodynamic systems share the

common units F, L, T, and 9 but differ in the units used for M and E.

Let the gravitational unit of mass he M' and the gravitational unit of

energy be E*. Also note that the units of the conversion factors g and

J may be written:

, v M' L_ M*
Ulg

o j " F T^ " M (5-1)

U(J) = p
Now, let X denot any arbitrary quantity as expressed in the dynamic system

of units and let X' denote the corresponding quantity as expressed in the

related English thermodynamic system. As we have seen, the generalized

units of X and of X' may in general be different. Nevertheless, a simple

relation can always be found of the form

X=g
o

m
J
n

X' (5-2)

which may be said to convert X' to X. The exponents m and n can always be

found such that the units on both sides of Equation (5-2) agree exactly.

Note that g and J are the only conversion factors required for this

purpose.

The procedure involved can best be explained by means of a specific

example. Let us take the case of thermal conductivity k, for instance.

Then, Equation (5-2) becomes:

k = go

m
J
n

k' (5-3)

We next write the corresponding relation of units. It is actually most

convenient for this purpose to utilize the original unconstrained forms

listed in Table 1.2. Thus:

LTLeJ LM J LE'J LtlgJ (5-*0
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Matching exponents of M' and E', respectively, gives:

M': m+0+0=0
E': - n + 1 = (5-5)

from which we find that in this case:

m = n = 1 (5-6)

Consequently, Equation (5-3) can finally "be written as:

k = Jk' (5-7)

A similar procedure can be applied to all other quantities listed

in Table 1.2. This has been done and the results are summarized in the

appropriately designated column of Table ^.k.

Next, consider metric units. Table 2.2 shows that in this case the

dynamic and thermodynamic systems share in common the units M, L, T, and

9 but differ in the units of F and E. Let the distinct gravitational

units now be denoted by F" and E". Hence, the units of the conversion

factors g and J may be written:

U(g
o

) = |,|2 =
|lf (5-8)

U(J) = ^
Let X again be an arbitrary quantity as expressed in the dynamic

system of units and let X" be the corresponding quantity as expressed in

the related metric thermodynamic system. Once more there exists a conver-

sion of the form:

x = g
m

J
n

x" (5-9)

Let us illustrate this by an example. Again we choose thermal

conductivity k for this purpose. Hence:

k = go
m

J
n

k" (5-10)

The corresponding relation of generalized units becomes:

r e "i tf ~f^ rF"Li
n

r e"~i

LTLeJ
=
Lf"J L^J Ltl?I (5-h)
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Matching exponents of like terms gives

F": -m+n + = (5-12)

E": - n + 1 =

which gives

m = n = 1 (5-13)

Therefore, Equation (5-10) becomes finally:

k = go
J k" (5-14)

The various conversion factors obtained by this method are summa-

rized in Table 5.4. Note that the conversions required in English and

in metric units may or may not be of the same form, depending on the

quantity in question, and that some of the quantities already have the

required units and do not need conversion.

As a result of these conversions, we can confine our attention in

the remainder of this report exclusively to the dynamic system of units.

Every result obtained for this system now has an exact counterpart in the

thermodynamic system. This can always be accomplished simply by substi-

tuting for all dynamic quantities their respective thermodynamic equivalents

as listed in Table 5.4.
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Table 5.k Conversion Factors

Quant ity
Symbol

Dynamic Units
Dimensional Equivalent in

Thermodynamic Units

English Metric

1. Angle 01 ex
' a"

2. Strain e e
' e"

3. Area A A» A"

k. Volume V v' v"

5. Velocity V V V"

6. Angular Velocity ou CD
1

uu"

7. Acceleration a a' a"

8. Volumetric Flow Rate ! Q Q* Q"

9. Pressure p P* W"
10. Moment M M' go

M"

11. Surface Tension a a' V"
12. Viscosity H M-' V"
13. Kinematic Viscosity u u' u"

Ik. Specific Impulse I
•o

1 '

So 1
"

15. Mass Flow Rate m i'/s
o

m"

16. Mass Flux G G'/g G"

17. Moment of Inertia J J'/6 J"

18. Density P P'/g P"

19. Gas Constant R 8 R '

So*"

20. Specific Weight Y Y' V"
21. Power P JP' go

JP»

22. Energy Flux (q/A) J(q/A)' g J(q/A)"

23. Specific Enthalpy h g Jh' go
Jh"
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2k. Specific Heat C
P

25. Specific Entropy s

26. Thermal Conductivity k

27. Heat Transfer Coefficient U

vy «o
JCp"

go
Js' g JS"

Ofc' goJk
"

JU' go
JU"

28. Coefficient of Thermal
Expansion P

29. Inertial Constant V= g
o

30. Work/Energy Factor k
E

== J

P' p»

See note below

NOTE: The inertial constant g and the work/energy factor (Joule's

constant) J provide the needed conversions "but, of course, are not them-

selves converted.
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6. Natural Units

Recall that any dynamic system of units has four degrees of freedom.

In other words, we may specify the magnitudes of its four fundamental

units arbitrarily. These fundamental units are customarily taken either

as F, L, T, and 9 or as M, L, T, and 9. For definiteness in the ensuing

discussion we arbitrarily choose F, L, T, and 9 as fundamental. We shall

define these units in a special way and call them natural units. We

shall designate these fundamental natural units by the special symbols F*,

L*, T*, and 9*.

Natural units are any set of consistent units which are defined on

the basis of certain selected dimensional parameters which occur in a

problem or phenomena of interest and which are of fundamental significance

to the physical situation. To establish a complete basis for a dynamic

system of natural units with four degrees of freedom, we require four

suitable reference parameters.

The method can be most simply and clearly explained by means of a

specific example. Let us take for our example a flow situation which is

characterized by four important parameters listed in Table 6.1.

Table 6.1 Reference Parameters

Characteristic
Parameter Symbol

P

Units

A density <$
A velocity V (£)

A length z L

A thermal conductivity k (-)
^T9 ;
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All of the quantities listed in Table 6.1 are initially expressed

not in natural units "but in ordinary English or metric units. The

symbols F, L, T, and 9 without asterisks denote these fixed units.

Now the natural unit of force F* is defined by a relation of the form:

F* - [p£*if [><!>? [*< L >]

C

bOf ( 6 -x >

= f F

where the four exponents a, b, c, and d remain to be determined. They are

determined from the condition that the net exponent of F must equal unity

in this case, while the net exponents of L, T, and 9 must each be zero.

Thus, for each dimension in turn we obtain:

F: a+0+0+d=l
L: -Ua + b + c + =

T: +2a-n+0-d=0

9: 0+0+0-d=0 (6-2)

Solving Equations (6-2) gives:

a = 1 b = 2 c = 2 d =

and F* = f F = (pV
2
£
2
)F (6-3)

Similarly, the natural unit of length L* is defined by a relation of

the form:

L* =
[
P (^)]

a
[v(i)jV.(l)]

C

[
k(^)]

d
(6-k)

Equating coefficients of like terms in similar fashion gives:

a + + + d =

-Ua+b + c + = + l

+ 2a-b+0-d =

+ + 0-d = (6-5)
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Notice that the left side of Equation (6-5) is indentical to that

of Equation (6-2). Only the right side changes to reflect the change in

the desired dimension. This will continue to be the case as long as we

retain the same set of four reference parameters p , V, 4, and k.

Solving Equation (6-5) gives:

a = b = c = + 1 d =

and (6-6)

L* = £ L = IL

The same method may be applied twice more to obtain T* and 9*.

Details are left as an exercise for the student. The results are summa-

rized in Table 6.2.

Table 6.2 Natural Units

F* = f F = (pV
2
4
2
)F

L* = j& L = (i)L

T* = t T = (|)T

It is evident that since we now know the four fundamental natural

units F*, L*, T*, 9* it becomes a simple matter to express any consistent

derived unit in this system. For example, let us derive the natural unit

of viscosity. We may write this directly from its basic definition in the

form:

» fa)
,g^-, ia^p^g

(6-7)

= pv-e (^2)
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Alternatively, we may express it in the form:

frGO = [pHStf [v(|)J [KdJ [k(^f

FT,

(6-8)

" ^i (T2 ^

Again equating exponents of like terms as "before gives:

F: a+0+0+d=l
L: -*4-a + b + c + = -2

T: + 2a-b+0-d = + l

0: + 0+0-d =

Solving Equation (6-6) gives:

a = +1 b = +1 c = +1 d =

(6-9)

and (6-io)

u*G0 = ^(fe) = pv* (Sa)

^ o (6-n)

Comparison of Equation (6-7) and Equation (6-10) shows that the

results obtained by these two methods are identical.

Notice that Equations (6-2), (6-5), and (6-9) can be solved because

the determinant of the coefficients on the left is nonvanishing, that is:

+10 0+1
-k +1 +1

+2 -1 +0 -1

0-1
If this inequality (6-11) had not been satisfied, this would have

signified that the four equations involved were not all linearly indepen-

dent, so that no solution could have been obtained. It would have meant

that the original choice of reference parameters did not constitute an

adequate set. In that case it would have been necessary to change one or

more of the reference parameters. As it is, the parameters p, V, I , k

actually chosen do constitute an adequate set
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Now having a complete and definite set of consistent natural units

at our disposal, we can express any dimensional quantity of interest in

terms of these units. This idea can best be explained by means of one

or two specific examples. For the first example consider some force f

which happens to be of interest. Expressing this same force first in

fixed units then in natural units and equating the two gives:

fF = f*F* (6-11)

Now writing F* in terms of the relevant reference parameters gives:

fF = f*F* = f*(pV
2
A
2
)F (6-12)

Hence:

fF fF f
f*

=
F*

=
(pV^)F

= p^F (6-13)

Notice that the fixed unit F cancells out of Equation (6-13) so that

f*, the force as expressed in natural units, turns out to be dimensionless

Take another example. Let |i denote the viscosity of the fluid.

Expressed in natural units this becomes

* - M- L p. L
V-

z

.F*T*\ " ,FT x

("let) P^(fe)

or (6-1*0

u* = J&-
** pVX

The reader will recognize that the viscosity p,* as expressed in

natural units is simply the reciprocal of the familiar Reynolds number.

This provides a useful and interesting interpretation of the physical

significance of Reynolds number. In other words, Reynold's number is

nothing more than an indication in generalized terms of the relative

importance and influence of viscosity in a given type of flow field, high

Reynold's number denoting low viscosity and vice versa.
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Notice that p,*, like f*, is dimensionless. It is apparent from the

manner of their derivation that all initially dimensional quantities,

when finally expressed in natural units, are thereby reduced to dimen-

sionless form. Moreover, being dimensionless, the magnitudes of these

quantities become independent of any particular fixed units! For example,

the same value is obtained for \j,* whether p,, p, V, and i are expressed in

English units or in metric units. This means that when expressed in

consistent natural units, all quantities are reduced to their most funda-

mental and invariant form.

It is also of interest to express the four reference quantities

themselves in dimensionless form. Working first with density p , we obtain

the following relation where the necessary exponents are supplied immedi-

ately by simple inspection.

[p(^)
\* =

,2 ,1

[p(%)] [v(£)] [i(i)J [<)]

- l (6-15)

Analogous results are obtained for the other reference parameters

so that we can write:

p* = y* = I* = k* = 1 (6-16)

Suppose that the four reference parameters, instead of being p, V,

i 9
and k, happen to be four other parameters, call them A, B, C, and D.

Also let X be any quantity of arbitrary dimensions. Then X can always be

transformed into a dimensionless version X* in natural units according to

a relation of the general form:

X

X* = A^\%d
(6-17)

By using the methods previously explained, a definite solution can always

Uo



be obtained for the four exponents a, b, c, d such that the numerator

and denominator of (6-17) are both of like dimension. Hence, X* is

dimensionless. The denominator of (6-17) then expresses the natural unit

of X as a numerical multiple of the corresponding ordinary fixed unit.

It is not difficult to see from Equations (6-l6) and 6-17) that

however the reference parameters A, B, C, D be chosen, when they themselves

are expressed in the natural system of units, they will invariably be

reduced to unit magnitudes, that is:

A* = B* = C* = D* = 1 (6-18)

In fact, the natural system of units may be defined as that system of

consistent dynamic units in which the four reference parameters themselves

take on unit magnitudes.

Naturally, the four reference parameters A, B, C, D must always be so

chosen that the determinant analogous to (6-11) is nonvanishing.

Fortunately, this is only a very mild constraint.
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7. Formal Invariance of Physical Equations

Consider any physical equation which is valid when an quantities in

it are expressed in fixed English or metric units of the type we have

defined as comprising a dynamic system. Now let us ask what happens if

we shift from these initial units to some other set, such as from English

to metric, or vice versa. We stipulate, however, that both of these sets

of units shall conform to the constraints which define a dynamic system.

In other words, the shift amounts simply to arbitrary changes in the magni-

tudes of the four fundamental units, nothing more. Naturally, the

magnitudes of all consistent derived units then also change correspondingly,

in accordance with the fixed relations of consistency implied by their

respective generalized labels.

What is the effect on our mathematical equation of such arbitrary but

systematic changes in the actual magnitudes of all units? In this

connection we note firstly that all additive terms of any valid equation

are always expressed in identical units. Thus, while a shift in the size

of the units will affect the numerical magnitudes of every additive term

in any given equation, the numerical values of all such terms will always

be changed by exactly the same numerical conversion factor! Hence, an

equation that is initially satisfied in terms of the original units will

continue to be satisfied when expressed in terms of the new units. More-

over, the mathematical form of the equation itself, when expressed in

terms of symbols rather than numbers, remains entirely unaffected by this

type of change. This fact we term "the principle of formal invariance of

physical equations .

"

These ideas can perhaps be made most clear by means of a simple

example. Consider the formula for the volume V of a sphere of radius r.

This may be written:

V = | tt r3 (7-1)
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The consistent generalized units in this case are unit length L

3
for r and unit volume L for V. Now the mathematical formula (7-1) itself

remains valid and unchanged in analytical form regardless of how the unit

length L happens to be specified, whether in inches, feet, centimeters,

etc. For a sphere of fixed physical size, the numerical magnitudes of

the terms on both sides of the equation do indeed depend on the units

used, but the analytical form of the equation itself is in no way affected

by the choice of units.

The reader can verify that these same relations so clearly illustrated

by this simple geometrical example are in fact true in general.

Since natural units also satisfy all of the requirements stipulated

above, we conclude that if all quantities in any valid physical equation

be transformed from their initial fixed units to corresponding natural

units, the equation itself continues to be valid and its mathematical form

is not affected by this change of dimensional base.
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8. The Pi Theorem

With these principles established, it now becomes a simple matter to

verify the validity and clarify the significance of a famous theorem of

dimensional analysis known as the Pi Theorem.

Consider any set of n physical quantities which may be of signifi-

cance in a particular physical situation. Let a subset of four of these

quantities, denoted by A, B, C, D, represent the parameters which will be

used to establish the dynamic system of natural units. Let the remaining

quantities be denoted simply as X,,X , — X. X • . All of the foregoing

are initially expressed in ordinary fixed English or metric units. Let

there exist among these parameters one or more known or unknown physical

equations or physical relationships which we symbolize here in the form:

f(A, B, C, D; X
x

, X
2
,—X.,— -X

n _^) =
(8 _l}

As we have already seen, the physical parameters X , X X. X .

be reduced to natural units by relations of the form:

X.
1

can

X.* = a. b. c. d. (8-2)
1

A
X
B

i
C

X
D

X

i = 1, 2, (n-l+)

where the exponents a., b., c, d. can always be found such as to render

the X* dimensionless. Also, as we have seen, the reference parameters

themselves will transform to unit magnitudes, that is:

A* = B* = C* = D* = 1 (8-3)

Moreover, according to the principle of formal invariance of physical

equations, the symbolic mathematical form of relation (8-1), whether known

or unknown, will not be affected in any way by the shift to natural units.

Hence, Equation (8-1) will now assume the form:

f(l, 1, 1, 1; X
1
*

l X
2
*,-~

X

±
»,-«X^) =

{Q _h)
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This result shows how a situation which is initially defined by n

dimensional parameters can always be reduced to an equivalent description

in terms of (n-k) dimensionless parameters. This is the essence of the

Pi Theorem.

In the discussion so far, we have considered only the case of a

system with just four degrees of freedom. Other cases can arise involving

some greater or lesser number of degrees of freedom. For example, if we

extend the present theory to include electrical charge as an additional

fundamental dimension, the number of degrees of freedom can increase to

five. Also, if we choose to deal with dimensional systems involving either

more or fewer auxiliary constraints than those which characterize the

present system of dynamic units, the number of degrees of freedom can

either decrease or increase. Also within the specific theoretical frame-

work here developed, we can have problems which do not require all four of

the presently available degrees of freedom. For example, there are many

problems in mechanics in which phenomena involving temperature happen to

be of no interest. In that case, we may drop 9 from the list of funda-

mental dimensions required and consequently reduce the number of reference

parameters needed from four to three.

The previous reasoning can be readily generalized to fit such varying

circumstances. Suppose, for example, that we are dealing with a situation

that involves n dimensional parameters in all and requires k fundamental

dimensions. From the pattern already established, it is apparent that a

subset consisting of k of the dimensional parameters can be chosen as the

basis for the system of natural units. These k parameters take on unit

magnitudes when themselves transformed into natural units. The remaining

(n-k) parameters become transformed into dimensionless form. It is common

in dimensional analysis to refer to such dimensionless parameters as
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dimensionless pi's. Hence, the situation may be summarized by saying

that a set of n dimensional parameters involving k fundamental dimensions

can always be reduced to an equivalent set of (n-k) dimensionless pi's.

This statement is known as the Pi Theorem.

The great practical importance of the Pi Theorem stems from two

inter -related facts. Firstly, this theorem permits a reduction in the

number of significant parameters which must be considered in any physical

problem from n to (n-k). This is usually a tremendous simplification in

itself. In experimental work, for instance, it can represent an enormous

savings of effort, time, and money. Secondly, the final parameters which

are ultimately retained turn out to be dimensionless. This means that

they are expressed in their most general, significant, and invariant form,

all nonessential aspects having been eliminated through the nondimension-

alizing process. This is also of the greatest value in enhancing

theoretical insight.

In some textbook discussions of the Pi Theorem, the somewhat

misleading impression is created that this method is applicable mainly to

experimental work, as a kind of gimmick which is only useful for presenting

test curves. On the contrary, the approach via natural units is of the

greatest value also for theoretical work. In particular, the systematic

reduction of all analytical equations to their appropriate dimensionless

forms in accordance with the principles of natural units and of the formal

invariance of equations adds immeasurably to the simplicity, power,

significance, and elegance of the analysis. Organization of all results

on this basis is mandatory for all serious scientific work, both experi-

mental and theoretical.
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9. On Choosing Reference Parameters

In solving any given problem, the dimensional reference parameters

A, B, C, D should be selected so far as possible from among the para-

meters that are:

1) highly significant.

2) independent or known.

3) relatively constant.

k) finite and nonvanishing.

Once a definite set of reference parameters has been selected, it is

usually advisable to adhere to this set consistently throughout the entire

course of a given problem. This guarantees that all results will be

expressed on the basis of a single consistent and known set of natural

units. A consistent approach of this kind represents a very powerful

method of imposing the maximum possible degree of simplicity and order in

the analysis of any complex physical phenomenon.

It is likewise desireable that every equation be expressed consistently

in terms of the corresponding natural units, with each quantity expressed

in its dimensionless version. When this is done, each relation is displayed

in its most general and significant form, and all unessential aspects are

eliminated. Moreover, all final numerical results then become wholly

independent of the particular system of fixed units, whether English or

metric, in which all dimensional quantities happen to be expressed initially.
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10. Some Typical Applications

Our first example closely parallels the case treated in Section 6.

It deals with the flow of fluids at essentially constant density. This

restriction on density has the effect of eliminating any direct influence

of heat or temperature on the mechanics of the flow. Hence, in an

inertial system, if we are not interested in heat transfer effects, only

three fundamental units are involved in the mechanics of the problem.

For definiteness, we take these to be F, L, and T. Hence, three funda-

mental reference parameters are required for constructing the system of

natural units. The pertinent physical properties are density p and

viscosity (i. However, under normal circumstances inertial effects are of

far greater magnitude than viscous effects. Therefore, in this case,

density p must be regarded as playing the more fundamental role with

viscosity p, representing merely a modifying influence.

For any given type of geometrical configuration, for example, flow

about an aircraft model of given design, it is necessary to choose some

characteristic length JLto represent the scale of size involved. Thus,

if the aerodynamics of the wing are considered to be of dominant impor-

tance, some characteristic dimension of the wing such as wing span b or

mean geometric chord c might be chosen for this purpose.

As a rule, in most fluid mechanics problems, there also exists some

velocity V which characterizes the kinematics of the field in a natural

way. Thus, in flow about an aircraft model, the velocity of the

undisturbed fluid far from the model may be chosen for this purpose. For

flow through a uniform pipe, the volumetric mean velocity represents a

suitable choice.

It is clear, therefore, that density p, characteristic length & 3

and characteristic velocity V constitute the natural reference parameters
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for a vast range of fluid mechanics problems of the general type just

described.

In problems of this type, we are often interested in evaluating

certain overall forces such as the lift or drag on the airplane model.

In other cases we might wish to evaluate certain pressures or stresses,

such as the shear stress at the wall of a pipe. In most cases, the above

forces and stresses will be influenced to some degree by the visosity of

the fluid. Hence, our problem relates to quantities like those illus-

trated in Table 10.1.

We illustrate the procedure for establishing natural units for this

case by considering in detail the fundamental unit of force F*. This may

be represented in the form:

n2 -£. „ T -,b r- nC

F* =[p( !
^)]

a
[v(^)] [X(L)

(10-1)

We now equate exponents of like units. Thus:

for F a + + = + l

for L -Ua+b+c=0

for T + 2a - b + = (10-2)

The solution is:

a = 1 b=2 c=2 (10-3)

whereupon the required unit of force becomes:

F* = p V
2

I
2
F (10-10

The other results in Table 10.1 are obtained by the same general

method

.

Two features of Table 10.1 warrant reiteration. Note again that

when transformed into dimensionless pi's, the reference parameters trans-

form into unit magnitudes. Also, notice again that the dimensionless pi

corresponding to viscosity turns out to be the reciprocal of the Reynolds
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Table 10.1 Typical Physical Quantities in Incompressible Flow

Ratio of
Natural

Fixed Unit to Dimensionless
Quantity Symbol Unit Fixed Unit Pi

Reference Parameters

Density P FT
2
/L

U
P 1

Velocity V L/T V 1

Length I L i 1

Other Quantities

f F pV
2
*
2

f-
f

Force
~
pv

2/

Stress T F/L
2

pv
2

Viscosity M- FT/L
2

pve

Fundamental Natural Units

Force F* = (pV
2
4
2
)F

Length L* = (&)L

Time T* = (|)T
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number. Conversely, Reynolds number is merely the reciprocal of the

viscosity as expressed in the p, V, I system of natural units.

The usefulness of the natural units can be shown in yet another way.

Suppose we are investigating experimentally the drag force D on a certain

aircraft configuration. The drag D will depend not only on the shape and

attitude of the model, but also on the parameters p, V, i,, and p,. We may

express this fact symbolically in the form:

D = f(p, V, i,"n) (10-5)

Upon invoking the principle of the formal invariance of physical

euations, we may immediately rewrite this in terms of natural units in

the form:

D* = f(l, 1, 1, n*) (10-6)

Since p, V, and I all transform to unity, they become constants and

no longer need be referred to explicitly. Hence, Equation (10-6) is

equivalent to:

V
py

2
x
2j

f\pW (10-7)

By departing slightly from strict natural units, we may put this in

the form more usually encountered, namely:

D
- Elx

\\ pvV> f'\ * ) (io-8)

The factor \ is inserted on the left in recognition of the fact that

the quantity \ pV occurs in Bernoulli's equation and represents the so-

called dynamic pressure. The dimensionless drag force on the left of

Equation (10-8) is termed the drag coefficient and is usually denoted by

C^. The dimensionless parameter on the right is simply the Reynolds

number, often written as Re. Hence, Equation (10-8) may be rewritten

simply as:

C
D

= f"(Re) (10-9)
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The transformation involved in going from Equation (10-5) to

Equation (10-9) is of course exactly consistent with the Pi Theorem.

Notice the great simplification entailed in reducing the number of

significant parameters from five to two.

If all quantities in the above problem happen to be initially

expressed in English gravitational units, it is first necessary to

convert them to English inertial units before proceeding. From Table 5^

we see, however, that the only parameter in the above list which happens

to be affected by this change is the density. The required conversion is

simply:

P = P'/g (10-10)

The procedure beyond this point is now exactly as before and need

not be repeated here. It is of interest, however, to inspect the result

so obtained for p,*, when its components are expressed in gravitational

units, namely:

Some writers prefer to rearrange this to read

Re = Pj^4\ (10-12)
(gQM. )

thereby associating the conversion factor g with a.' rather than with p'.

Now (j,' has the generalized units FT/L whereas (g y-
'

) has the units M/KT.

Consequently, viscosity in gravitational units is sometimes expressed in

the units M/LT rather than FT/L . Note, also, that in any inertial system

o
the units FT/L and M/TL are exactly equivalent; in a gravitational system

P
they are not. Incidentally, the units FT/L correspond exactly to the

usual definition of viscosity as the ratio of stress to strain rate; the
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gravitational units M/TL do not. Nevertheless, both units are found in

practice. There need be no confusion over this provided that the actual

units used are clearly labelled.

Under certain special conditions, the inertial forces, instead of

being much greater than the viscous forces, become much smaller. This

is true, for example, of laminar flow in a uniform pipe. It is also true

for any geometrical configuration at a sufficiently low Reynolds number,

that is, at a sufficiently high dimensionless viscosity. These are some-

times called creeping flows. In such cases, it becomes advantageous to

change the reference parameters from p, V, JL
9
to u-, V, i. When this is

done, the resulting dimensionless pi's as measured by experiment are found

to exhibit a much simpler behavior than if expressed in the p, V, i

system. Details of this particular case are summarized in Table 10.2.

Verification is left as an exercise for the student.

Our next example will deal with turbo pumps for incompressible fluids,

The significant fluid property now is clearly density p, with viscosity |i

playing a subordinate role. We again use inertial units as being simpler.

Consider the problem of testing a particular machine from among a family

of geometrically similar models which vary only in size. Wheel diameter

D can be chosen as the characteristic length. The rotational speed N can

be established and controlled independently and is held nearly constant

in normal use. Volumetric flow rate Q, varies in response to certain

valve settings as does the net useful pressure rise through the machine.

However, in place of pressure rise, we prefer to utilize the equivalent

enthalpy rise per unit mass H. We can now write:

H = f(p, N, D, Q, |i) (10-13)

In this situation p, N, D provide the appropriate reference

parameters. This choice conforms to the rules given in Section 9*
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Table 10.2 Typical Physical Quantities

in Creeping Flows

Quantity Symbol

Reference Parameters

Viscosity pi

Velocity V

Length I

Ratio of

Natural
Fixed Unit to Dimensionless
Unit Fixed Unit Pi

FT/L
2

M- 1

L/T V 1

L I 1

Other Quantities

Force J

Stress i

Density f

Fundamental Natural Units

F \iVl f* = F/m-VX

F/L
2

V.V/Z t* = tZ/\iV

FT
2
/I> n/vx p* = pVX/p,

Force

Length

Time

F* = (m,VjOf

L* = (jfc)L

T* = (|)T

= Re
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Nondimensionalizing in the usual way gives:

tfr)
= f^' (^'J M)

The first two of these dimensionless pi's represent dimensionless

enthalpy rise and dimensionless flow rate, respectively, and are clearly

of dominating importance. The third pi represents the modifying influ-

ence of viscous effects. It is often ignored in practice.

Now consider the problem of turbo-pumps from another viewpoint.

Suppose we wish not to test a given machine, but to select a suitable

machine to perform a specified pumping job. In this context, the primary

knowns would be p, H, Q and these become the reference parameters.

Equation (10-13) may be rearranged to state that:

D = f(p, H, Q, N, m.) (10-15)

Nondimensionalizing in the usual way gives:

(^) 'KanS^ k#7?)J
(io-i6)

The first two of these pi's are commonly termed the specific

diameter and specific speed, respectively. This example shows that fixing

the specific speed of a turbo pump largely determines the required

specific diameter required. Again viscosity plays a very secondary role.

Suppose now that we deal not with turbo pumps but water turbines.

For testing a turbine of given design the appropriate reference parameters

would be the density p, the wheel diameter D, and the useful enthalpy

drop per unit mass H supplied for driving the turbine. In addition, the

rotational speed N could be treated as an independent parameter and the

resulting shaft power P and the mass flow rate m as dependent parameters.
s

On the other hand, if we are selecting a water turbine to perform a

specified service, the more convenient reference parameters would be
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density p, available enthalpy drop per unit mass H, and required shaft

power P . Then rotational speed N could be the independent parameter
s

and required wheel diameter D and mass flow rate m the dependent para-

meters. It is suggested that the student work out the detailed

dimensionless pi's for these two cases.

Next, consider the case of a family of geometrically similar compres-

sors. Suppose that both enthalpy rise per unit mass H and absolute outlet

pressure P are functions of absolute inlet pressure P , absolute inlet

temperature T , wheel diameter D, rotational speed N, and mass flow rate

m. Let us neglect viscosity effects in this instance. Notice that

temperature is now involved so that four reference parameters are needed.

It is suggested that the student, using P , T, , N, and D for this purpose,

determine the three dimensionless pi's involved and that he express in

symbolic terms the two unknown relations that exist among them.

As another example of the foregoing principles, consider the thrust

f produced by an ideal propeller of disc area A when operating in a fluid

of density p. The propeller is supplied with shaft power P. The relative

forward velocity of the propeller with respect to the undisturbed fluid

is V.

From the momentum theory of propellers, it is known that the fore-

going parameters satisfy the relation.

f
3 = 2pAP(P - fV) (10-17)

We are usually interested in the performance of a propeller of known

size operating in a known medium and driven by an engine of known power.

Hence P, A, P are obviously the appropriate reference parameters for

this case. Only three reference parameters are needed since temperature

9 is not involved in any of the five parameters of Equation (10-17).
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The dimensional exponents in the units corresponding to the three

reference parameters can now be summarized as follows.

Parameter Units

2, k
p FT /L

A L
2

P FL/T (10-18)

Let us first determine the fundamental natural unit of force. Thus:

F*,[p(^)]
a

[
A(L2)]

b

[p(>£)]

C

(iQ_i9)

Equating exponents of like terms leads to three equations in the

exponents of F, L, and T, respectively.

F: la + (0)b + lc = 1

L: -ka. + 2b + lc =

T: +2a + (0)b - lc = (10-20)

The solution of these equations gives:

a = 1/3

b = 1/3

c = 2/3 (10-21)

The natural unit of force F* is, therefore, related to the fixed

unit F as follows.

F* = (p
1//3

A
1/ 3 P

2/3 )F (10-22)

When expressed in this natural unit, the dimensionless thrust, there-

fore, becomes simply:

f#=
P
V3 AV3 p2/3 (10 .23)

Upon repeating this procedure for the other parameters, the following

results are obtained. The symbol * means "is transformed to." Thus:
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p -» p* = 1

A -» A* = 1

P - P* = 1

f
f -» f* •=

p
l/3

A
l/3

p2/3

V * ^ =

p
-V3 A

-l/3 pl/3
{l0 _2k)

Next we replace the five dimensional quantities in Equation (10-17)

by their dimensionless counterparts as defined by Equation (10-2*0. The

results may he summarized in the form:

f*3 = 2(1 - f*V*) (10-25)

This result expresses the relation between the dimensionless thrust

f* and the dimensionless forward speed V* for an ideal propeller. It can

be shown that any real propeller can approach but never exceed the ideal

performance defined by Equation (10-25). Hence, the result in this form

is highly general and significant.

Notice that Equation (10-25) is much simpler to grasp and far more

informative than the original dimensional version (10-17). However, this

transformation can only be made on the basis of the dimensionless para-

meters defined in Equation (10-2U).

Imagine an investigator acquainted with Equation (10-17) but insuf-

ficiently versed in the principles of dimensional analysis. It is highly

unlikely that he would intuitively hit upon the simple looking yet

sophisticated form (10-25), or upon the unfamilar parameters defined in

(10-2U). Even if these parameters were actually pointed out to him, it

is unlikely that he could readily grasp their real significance. Yet any

student armed with an understanding of the dimensional principles
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explained in this paper can derive these quantities by a straightforward

procedure and readily interpret their physical significance.

Of course, when we consider real propellers, the relation (10-25) is

modified by various factors including the effects of rotational speed N

and of viscosity [i. However, the fact that the quantities N and (j, do not

even appear in the basic momentum formulation merely confirms that these

are indeed secondary rather than primary parameters. If we wish to

include them, Equation (10-25) must be replaced by an experimentally

determined relation of the form:

f* = f(V*, N*, p*) (10-26)

where the secondary pi's are defined as follows.

N
N* =

-1/3
A
- 5/6 p

+l/3
(10.2Y)

"•"
p
2/3 A

l/6
p
l/3

It is of interest to compare the foregoing formulation with a more

commonly encountered alternative. For any family of geometrically similar

fixed pitch propellers, the thrust and shaft power are determined by two

relations of the form:

f = f
x (p,

N, D, V, n)

P = f
2
(p, N, D, V, »0 (10-28)

In the conventional analysis, p , N, D are chosen as reference para-

meters. The results become, in our present notation

f* = fjfas n*)

and

P* = f
2
(V*, p*) (10-29)
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where
f* = —5-r- = thrust coefficient (O

pnV F

p
P* = —r—c = power coefficient (C )

pN-TT

V / N

V* = — = advance ratio (J)
ND v '

u
li* = p = viscosity parameter

pND (10-29)

The symbol enclosed in parenthesis in each of the above expressions

is the conventional symbol for the parameter in question. As a rule, the

viscosity parameter fj,* is not included in conventional analyses but is

shown here for the sake of completeness.

The above scheme of conventional coefficients is often a very

convenient one. However, it does not lend itself to displaying the

inherent performance limitation implied by the momentum analysis in the

clear and simple form shown in Equation (10-25). Hence, these conventional

coefficients are not as fundamental as those defined earlier in Equation

(10-2U). The basic reason for this limitation is that N, a parameter of

relatively secondary importance, is included among the reference parameters.

Our next example is closely related to the previous one. It deals

with the power required by an ideal rotorcraft of weight W to climb

vertically at a steady rate of climb V. The basic propeller relation

Equation (10-17) applies also to this case, except that the rotor thrust

f becomes equal to the weight W. However, for this application the

quantities p, A, and W now constitute the preferred reference parameters.

Apart from this, the procedure is the same as before. The following

results are obtained.
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p -» p* = 1

A - A* = 1

W -» W* = 1

p
P -» P* = —-T-fo TTo

—
TTTo ~ dimensionless power

p
-i/2

A
-i/^

w
+i/^

(10-30)

V
V - V* = —t-tt -ttz—

+1
/

p
= dimensionless rate of climb

p ' A" ' W '

Now, Equation (10-17) translates to:

1 = 2P* (P* - V*) (10-31)

which fixes the minimum dimensionless power P* required for any specified

value of dimensionless rate of climb V*.

Our final example relates to a fixed windmill or small air turbine

which extracts useful power from the wind or from the slipstream. The

simple momentum energy relation given by Equation (10-17) still applies.

However, the sense of the force is reversed as is also the sense of the

power flow. To avoid the inconvenience of dealing with negative signs,

it is advisable to replace f by -D and P by -P in Equation (10-17). We

thereby obtain:

D
3

= 2pAP (DV-P) (10-32)

It is now appropriate to choose p, A, V as reference parameters.

Notice that parameter V was not a suitable reference quantity in the

previous applications because it could take on zero values for those

cases. However, in the application to the windmill, the wind velocity V

must necessarily be nonzero, of course. Hence, the quantity becomes a

suitable reference in the present context. We therefore obtain:

D
D* =

P* =

pAV
2

(10-33)

P

p AV3 (10-3*0
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The basic equation (10-32) now reduces to:

D*3 = 2P* (D* - P*) (10-35)

This fundamental result expresses the limiting dimensionless power

P* attainable from an ideal windmill or air turbine as a function of the

dimensionless drag force D*. This represents a theoretical performance

limit which any real device may approach but never exceed. For a small

auxiliary power turbine mounted, say on an aircraft, the drag force D* is

of definite interest. For a stationary windmill acted upon by the wind,

the drag force would seldom be of much interest in itself; the power

available is the only parameter of real concern in this case.

It is suggested that the student sketch the curve of P* versus D*

from Equation (10-35). It is easy to see that the curve must pass

through the origin. By differentiating Equation (10-35) we find that the

maximum power point has the coordinates:

2 3
D
*crit

=
(
3

} ^max
=

(
3

} (10-36)

while the maximum drag point has the coordinates:

T")"X" = — ~P& = —
max "" 2 crit

"" u (10-37)

The last few examples above are particularly instructive because

they show that an astonishing amount of very clear, valuable, and basic

information can be extracted from something as elementary as the basic

momentum-energy relation of Equation (10-17). These examples also

illustrate the rationale which governs the choice of reference parameters

The wealth of information and the depth of insight that can be

attained by the judicious use of consistent natural units is not as

widely nor as fully appreciated as it should be. It is hoped that this

discussion has succeeded firstly in explaining clearly the concepts and
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procedures involved and secondly in demonstrating the great scope and

value of these dimensional methods.
,

For the convenience of the reader who might wish to pursue this

subject further, a bibliography is appended in the next section.
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