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ABSTRACT

Any discontinuity in flow at a plane boundary is dispersed by the diffusion of vorticity

into a boundary layer and wake Experimental measurements in the past have been
correlated with empirical formulations A generalization gives both the horizontal

component and the vertical component of the mean velocity In the lanninar sublayer
the velocity is a solution of the diffusion equation In the turbulent boundary layer

the velocity can be expressed by a Fourier integral In the free stream there is a

vertical persistence of velocity The computation of velocity is provided by subroutines



INTRODUCTION

The drag on a ship is partly a viscous resistance and partly a wave resistance The
viscosity of the fluid causes a transport of momentum from the ship to the fluid The
momentum is located in a boundary layer at the surface of the ship, and m the wake
behind the ship. The boundary layer is laminar at the bow, but the boundary layer is

turbulent at the stern For a nonslip boundary condition the velocity relative to the

ship is zero at the surface and is the velocity for free flow far from the surface A

knowledge of the velocity may be found from an analysis of the analogous problem
in the flow over a plane

When a thin plate moves edgewise through a viscous fluid the plate entrains fluid

if there is a nonslip boundary condition at the surface of the plate Each differential

element of surface of the plate sets up a current which trails downstreann and spreads

out by diflfusion The velocity at the plate is the accumulated sum of velocities m
currents which have been created upstream

The boundary layer of a plate has been the subject of many investigations'"^ There
are three principal methods of analysis The first method is statistical It leads to a

system in which the number of variables is greater than the number of equations

Various schemes for closure have been proposed The second method is polynomial

The velocity is expressed as a power polynomial in a limited region of a laminar

boundary layer The third method is spectral The velocity is expressed as a Fourier

integral The rate of change of the Fourier amplitude is determined by an

integro-difTerential equation The evolution of a velocity distribution from an initial

distribution is determined uniquely by the integro-difTerential equation

The Fourier analysis has been applied to homogeneous isotropic turbulence Contact

of the fluid with a solid boundary is the origin of real turbulence

A comprehensive source of information about boundary layers is Boundary- Layer
Theory by Schlichting'' The Fourier analysis of flow in a fluid has been investigated

by Batchelor^ and by Orszag^

EQUATION OF CONTINUITY

A fluid consists of particles with random velocities The number of particles per

unit volume determines a median density p Across any mathematical boundary there

IS a flux of particles from both sides A boundary which is moving at such a speed

that the flux is zero defines a median velocity v

In a continuous fluid the law of conservation of mass requires that within any

mathematical boundary the mass density p and the particle velocity v are related by

the equation

dp

dt
dr pvds = 1)

where t is the time, dr is a volume element within the boundary, and ds is a surface

element on the boundary Application of the Gauss theorem leads to the equation

dp dp
Ji + V-(pv) = —
dt

^
dt

dp
vVp * pV-v = — -^ pV-v =

dt

The divergence of velocity is the rate of expansion of the fluid.



EQUATION OF MOTION

The bulk modulus k is the rate of decrease of pressure per unit rate of expansion

A pressure pulse is propagated through the fluid with the speed of sound {<. p)^ ~

In a continuous fiuid the gradient of velocity satisfies the identity

i(Vv + Vv) (3)Vv = i(Vv Vv

where Vv is the transpose of Vv The antisymmetric part is the rate of rotation n and

the symmetric part is the rate of strain There would be spinup of fluid particles

if stress were not symmetric In an isotropic fluid the pressure is isotropic and shear

stress IS proportional to shear rate The strain rate is partly an isotropic expansion

rate, which is the trace of the strain rate, and is partly an anisotropic distortion rate,

which is the shear rate The shear stress arises from the anisotropic distortion rate

The stress E is given by the equation

I = -pi - f/uVvI + 2/^9

where p is the pressure, and
fj. is the viscosity

The force on any mathematical boundary is given by the Gauss theorem

VE dr Zds

(4)

(5)

where dr is a volume element within the boundary and ds is a surface element at the

boundary The equation of motion per unit volume is given by the equation

dv
p — -V-E

dt

As a consequence of the identity

V-V'v = VV-v

the equation of motion is the Navier-Stokes equation

dv C dp
,
u u— + vVv = - V -^ + i - VV-v 4- - V-Vv

dt J p ' p p

The kinematic viscosity u is given by the equation

(6)

(7)

(8)

(9)

For hydrodynamics the kinematic viscosity is constant DifTerentiation throughout the

equation of motion leads to the equation

dt
(V-v) + v-V(V-v) + (Vv-Vv) - - V-V

I

— + ^ - V-V(Vv) 10)

where a tensor enclosed m parentheses is the contraction of the tensor by internal

scalar multiplication. This equation is a Poisson equation for the determination of

pressure Differentiation throughout the equation of motion leads to the equation

— (Vxv) + v-V(Vxv) + [Vv-Vv] = - V-V(Vxv)
dt p

(11)

where a tensor enclosed in brackets is the contraction of the tensor by internal vector

multiplication This equation is a diffusion equation for the determination of vorticity



BLASIUS PROFILE

For two-dimensional flow it is fashionable to define Cartesian coordinates x. y, z

such that X is parallel to the plane in the direction of flow, y is perpendicular to the

plane, and z is parallel to the plane in the direction perpendicular to the flow Let

i.j.k be unit vectors in the directions of increasing x.y.z The particle velocity v is

given by the equation

ui^v] (12)

where the components u. v are zero at the plane but approach U . with increasing y
Contmuity in an incompressible fluid is expressed by the equation

du dv— + — = (13)
dx dy

The continuity equation is satisfied when the components of velocity are derived from
a stream function ij^ in accordance with the equations

u = — V ( 14)
dy ox

This follows from the principle that a second-order derivative is independent of the

order of differentiation

For stationary flow the derivative with respect to i is zero Far downstream derivatives

with respect to i approach zero, and the Navier-Stokes equation is reduced to the

equation

du du d^u
U + V = U r (15)

dx dy dy"^

Far downstream the profile of the boundary layer approaches a constant limit

The limiting profile is given by a relation between two dimensionless variables

^ and <, which are defined by the equations

e = X - -^ v = ^"i^ < (16)
\ 1/ Vx

Differentiation leads to the equations

u^u(:' ^ = i >J— (K' - <r) (i'7)

Then substitution in the reduced equation of motion leads to the Blasius equation

tC" + 2<-" = (18)

Boundary conditions for this differential equation are given by the equations

,^ = ^' = at ( - (19)

< - 1 at ( - «> (20)

In the original derivation by Blasius' the variables were so defined that <" approached

a limit of 2 The derivation herein follows the derivation by Schlichting' where the

variables are so defined that <" approaches a limit of unity.



An ascending series is given by the equation

<= y a^e^-' (2i:

m =

This series satisfies the boundary conditions at ^ = Substitution in the differential

equation leads to the recurrence equation

m- 1

. X (3m - 3A; - 2)(3m - 3/t - l)afca^_fc., + 2(3m)(3m + l)(3m + 2)a„ = (22)

fc =

The recurrence is started with a value of ag which is adjusted by trial to make the

series meet the boundary conditions at ^ - ^ The computed value of ao is 16603

The ratio between successive coefficients of the series tends to a constant limit with

increasing order It is possible to estimate a remainder after a finite number of terms

on the basis of the geometric series. In no case can the series be used for ^ greater

than 5 69. where the ratio between terms becomes unity

For large values of ^ the value of ( is the sum of a linear term and a correction.

Correct to first order the correction is a solution of the equation

^^c)C' + 2r' = (23)

where c is an arbitrary constant The computed value of c is -1 72077 The solution

of the differential equation is given by the equations

^^ ^ +

c

-Ai^ + c) \ e'4<*""'^d^ + a4e4<^*^'^ (24)

poo

^' = I -A e'i^^*'^^ d^ (25)

where A is an arbitrary constant. The arbitrary constant is selected so as to make
the corrected linear terms coincide with the series expansion at ( = 5 The integral

in the correction is given by the equation

/lOO

e-i<«*^>' d( = V^ [ 1 - erf(|(^ + c))] (26)

where erf is the error function.

Previous analyses and computations on the Blasius profile are summarized by the

data m a table in a paper by Howarth^, which is the basis for the Table 7 1 in the

text by Schlichting'. That table of data is reproduced by the following subroutine

SUBROUTINE BLSSPF (AU. AN, AX, AY, FU, FV)

FORTRAN SUBROUTINE FOR BLASIUS PROFILE

The free-stream velocity U is given in argument AU, and the kinematic viscosity i/

IS given in argument AN. The coordinates x.y are given in the arguments AX, AY Series

expansions and error integrations are used in the evaluation of the Blasius profile.

The components u, v are stored in functions FU, FV.



TURBULENT PROFILE

Far downstream the flow in the boundary layer is turbulent There have been many
experiments on the turbulent boundary layer In the absence of a fundamental theory

the experiments have been correlated with empirical formulations A celebrated

formulation is the logarithmic law, which expresses mean velocity as the logarithm

of the distance from a wall The logarithm cannot be used at the wall where velocity

IS zero and the logarithm is -<^, or at infinite distance from the wall where velocity

is finite and the logarithm is +°° Corrections have been published by Reichardt* and
by Thompson^ The argument of the logarithm is incremented by unity and the logarithm
is blended with the free-stream velocity

The Reynolds number Rj. is defined by the equation

Ux
/?x = — (27)

u

where U is the free-stream velocity, u is the kinematic viscosity and x is the distan'-e

downstream. The drag D on the wall is given by the equation

where the constant c is defined by the equation

c = 455 (log 10)2'^ (29)

This formulation is equivalent to Equation 21 16 in the text by Schlichting^ A shear

velocity u. is defined by the equation

u, = J- (30)
\p

where r is the shear stress at the wall, and p is the density The shear stress t is

given by the equation

T=— (31)
ax

The boundary layer thickness 6 is determined by the equation

u*6 /?-

u (log/?J a 58 (32)

This equation is equivalent to Table 21 1 in the text by Schlichting^ Finally the mean
velocity u is given by the equation

u= ^^logfl +/c^^^) + (1 -7)t/ (33)

where < is a constant and y is the blending function The experimental value of k is

given by the equation

^ = 040 (34)

Various empirical schemes for the blending function have been tried, but a more
logical basis for the blending function would be the error function To within



experimental error the blending function can be expressed by the equations

y
7 = 1 erf(77 + f ) - erf(7^ - f

;

'
erf(i)

;35)

Then the blending function is in the range 1 > 7 > while y is in the range < y < »

Differentiation with respect to x leads to the equation

2^ (log/?J^=«
1
-

2 58

log/?. J

(36)

and further differentiation leads to the equation

dx

2 58c 3 58

log/?.
(37)

Then the derivative of u. is given by the equation

du.

dx

, 1 dr
ju«

T dx
;38)

Differentiation with respect to i leads to the equation

d6 U
dx u.(log/?j.)

3 58

1 -

log/?, - 1(2.58)-

1 58

log/?.

1
-

2 56

log/?.

:391

Then the derivative of 7 is given by the equation

dy /-ye 2 _ g

dx erf(i) 6 dx
(40)

Finally the derivative of u with respect to x is given by the equation

du 1 / u*y\/ dy du*'— = - log 1 + K U. — + 7 —— 1 +
OX K \ V \ dx dx

1 -t- K

du* dy
7 u —

u,y dx dx

V

(41)

Although the derivatives are given by empirical functions with finite numbers of terms
their integration with respect to y would lead to an unlimited number of terms. In a

practical integration with respect to y the integrand is best approximated by a power
polynomial in y and integrated term by term. A discrete set of integrands is converted
into a discrete set of coefficients by 11 -point Lagrange interpolation and the integration

is completed coefficient by coefficient.

The stream function V 's given by the equation

^
da

dy (42)



and the vertical component v is given by the equation

V =
"" du— dy
, dx

(43)

The integrations are performed with the aid of the following subroutine

SUBROUTINE TBLNPF (AU, AN, AX, AY, FU, FV)

FORTRAN SUBROUTINE FOR TURBULENT PROFILE
'««**** t ««***** 4 >****«**«***'

The free-stream velocity U is given in argument AU, and the kinematic viscosity v

is given in argument AN The coordinates x,y are given in the arguments AX.AY

Empirical formulations and Lagrange interpolation are used in the evaluation of the

turbulent profile The components u. v are stored in the functions FU, FV.

LINE FLUX PROFILE

The usual assumption is made that pressure is constant over a flat plate in a steady

flow parallel to the plate Let the free-stream velocity +U\ be disturbed by a small

counter velocity v The Fourier transform can be applied to a function which is zero

everywhere except at the origin Then Fourier integration leads to the equation

v= - — (i + — j)e-^^*"^d/c (44)

That this expression for velocity has zero divergence can be verified directly by

differentiation Furthermore it can be derived from the stream function i/ in the

equation

> + °° p -Xi + iicy

V' = - r- I
dtc (45)

1

2^ XK

At X = an application of the Euler theorem and an integration of the sine quotient

function shows that ip - - \ for all j/ > and -^ = + | for all y < Thus the flux in the

counter flow is unity at x = The curl of the velocity is given by the equation

Vxv = +
2tt

X-k')
IK

g-Xx*«y^^ = 7k (46)

To within small quantities of second order the vorticity satisfies the differential equation

(47)
dy

dx

d-'y d^y

dy'

Substitution of the Fourier integral into the differential equation leads to the equation

- ^A = L/ (X^ - /c2) (48)

which may be solved by the quadratic rule to give the equation
"

2UK^
X = -

U_

2^ 2v, U + V/72 + Av^tc^
;49)

The parameter X is an even function of the parameter k The radical is negative

upstream and is positive downstream Otherwise the integrals do not converge



When y is increased to infinity the integration with respect to /c makes a significant

contribution to the integration only where /c -

Upstream the parameter A is given by the limit

A- - - (/c -0) (50)

Thus the stream function V is given by the limit

U\x\

V'
- - |e' ^ (y - ± oo) (51)

and the velocity v is given by the limit

- 2 j (y- ±-) (52)

The vertical component of velocity persists with increasing y, but dimmishes rapidly

With distance |x| upstream.
Downstream the parameter A is given by the limit

A - (< - 0) (53)

Thus the stream function V is given by the limit

^^ ^i (y- ±oc) (54)

and the flux in the counter current is everywhere unity It is independent of distance

X downstream.
In the integrals for the components of velocity the integrands are the products of

the monotomc factors

- — e-^' --^e-^^ (55)
27T Stti/c

and the oscillatory factor

e^v (56)

The integration through any number of cycles of the oscillatory factor can be completed
if the monotomc factors are expressed as power series in k. The range of the power
series is limited by the presence of the radical

^) ^'C^ (57)

in the parameter X For small values of < the radical is expressed by the equation

f/\'
a

t/ ^ (-l)'"-^(2m)' (2vK\^'^
^^^^

Zvl " 2u ^"to (2m- l)22'"(mOM U

This series converges only when k meets the limitation

U U
<K< + — (59)

Zv 2v

The series is an even function of k For large values of « the radical is expressed by

8



the equation

U
K^ = K Y.

(-l)'"*U2m)' U

2vl \„":o (2m - l)22'"(m')M2^K

This series converges only when /c meets the hmitation

2iy

U
Zv 1— < - <
U K

(60)

(61

The series IS an odd function of l/'/c Efficient evaluation of the series is only possible

if the ranges of their arguments are much less than the limits of their convergence
The monotonic factors are expanded in each of a sequence of intervals of limited

range
The value of k in the first interval is given by the equation

K - T] + (62)

where 77 is the center of expansion and 6 is the variable of expansion The variable 9

IS given by the equation

= eu (-1 ^u g ^1) (63)

where e is half the range of expansion and u is a variable of interpolation The first

interval straddles the origin where 77 = 0. then in subsequent intervals 77 is incremented
by 2e Thus the monotonic factors are approximated by the series

A
- e
K m =

Required for the computation of velocity are the integrals

>+i n+\

e e
xrty a„u"' e

m _ ifyu du e e '"^ I a^u'^c^^v^du

Required for the integration is the recurrence equation

m _ xcyuu"' e du =
u

, ttyu

Ixey

m
T-^y Jo

um-1 gi^V^cLu

The recurrence is started with the initjal integral in the equation

du
, Ifyu "1 1

1

L ^^y Jo

The recurrence is cycled in ascending order if ey satisfies the inequality

|ey|s 17

(64)

(65)

(66)

(67)

(681

Otherwise the recurrence is cycled m descending order with an initial approximation

for m = 64

The value of /c in the last interval is given by the equation

/c = - (-1 ^ u S ^1) (69)
u

where 6 is the limit of integration The last interval straddles the point where ^ =

Continuity through the point is achieved by giving to the radical in A the same sign



as the sign of < The monotonic factors are approximated by the series

A
"

-<^-'-= E c^w ,-{X-k)x _

m = m =

Then the components of velocity are expressed in terms of the integrals

'6 \

V e-*'^"''''d/c

Required for the integration is the recurrence equation

1
-"^'-'y^ dK =

-<c(i-xy)

im~ 1) J,

1

.(m - [)k"^'^

The recurrence is started with the initial integrals in the equations

,
-K(x-iy) -i°°

-''<^-^v' dK =

-^^'-"y^
die

- e-^'^-'^^'d/c -

^y J

5(i-iy) gt

il

dt - - Ei(-6(i - ly))

(70)

(71)

(72)

(73)

(74)

The recurrence is cycled in descending order if 6{x - xy) satisfies the inequality

\6{x-iy)\^\l (75)

Otherwise the recurrence is cycled m ascending order with an initial approximation
for m = 64

For the series expansions the arguments have Chebyshev spacing and interpolations

are made with 1 1 -point central Lagrange interpolation Preliminary computations have
established a matrix of coefficients such that the coefficients for progressively increasing

powers of the argument are obtained with the product of an array of values of the

function and the matrix of coefficients.

If X satisfies the inequality

ru_

then e and 6 are given by the equations

6
e = —

7

X I V X

6 = _18

X

U_ L8

V X

(76)

(77)

and the last interval can be jettisoned without significant error Otherwise e and 6

are given by the equations

6 =
U_

Qv
(78)

in which case the Reynolds number is less than 36.

The components of velocity for the line flux are computed by the following subroutine.

10



SUBROUTINE LNFXPF (AU, AN, AX, AY, FU. FV)

FORTRAN SUBROUTINE FOR LINE FLUX PROFILE

«*«*««««4t»«*««i

i*****«**«*«^ (*•***«**»**( I *«**««

1

i»»*»*»»«*>

t«««***tt**x

c**^******m**t

"«»«*«*«««

The free-stream velocity U is given in argument Au, and the kinematic viscosity u is

given in argument AN The coordinates x, y are given in the arguments AX, AY Ascending
and descending recurrence relations are used in the evaluation of Fourier integrals

for a line flux profile The components u, v of velocity are stored in functions "u, Fv

NONSLIP BOUNDARY

Exploratory computations with LNFXPF have indicated the nature of the flow from
a line flux

If X and y are decreased to zero, the contribution to integration extends to large

values of k where A approaches the approximation

A -» ^ \k\

2u

At the limit of small x and y the velocity is given by the equation

1 |x|i + yj
V =

^
TT x^ + y^

(kl (79)

(x - 0, y ^ 0) (80]

which IS an efflux upstream and an influx downstream
When X is increased to infinity downstream, the integration with respect to /c makes

a significant contribution to the integration only where /c - and A approaches the

approximation

A - - /c'

U

Then the velocity is given by the equation

V = - U
4nux

. y

2x
^

[k - 0) (81

(82)

This is a Gaussian distribution of velocity

In a continuous distribution of line fluxes the efflux and the influx at the leading

edge would tend to cancel. It is assumed that for integrated distributions the Gaussian

profile IS adequate
The formula for velocity does not meet a nonslip boundary condition because the

velocity at y = varies inversely as the square root of distance downstream However,

a continuous distribution of line fluxes may be integrated to give a constant velocity

As a consequence of the equation

I
da

V a V X
tan"

x - a

the integrated velocity is given by the equation

AuU da
v(x - a) —7= = - Ui

Va

(83)

(y = 0) (84)

11



as required by the nonslip boundary condition Thus the strength of Hne flux per unit

displacement is given downstream by the expression

AuU

na
(85)

The Gaussian distribution is equivalent to the dispersion of a line pulse of vorticity

which has diffused outward for a time equal to the expression

X - a
(86)

U

and has been swept downstream with the speed U

FOURIER TRANSFORM

Let f(x) be a periodic function of x Then it can be approximated by the Fourier

series

|ao + Y, a„cos nz + Yl b^sin nx ;87)

Inasmuch as cosines are even and sines are odd, they satisfy the equation

r

cos kx sin mx dx = (88)

Application of the Euler theorem to the following integrals

r r gi(l:+Tn)x

11 e^'**'"*^ dx ± i
I

e^^^-'^'^dx- i

- „x{k—m,)x

i(k - m)

shows that the trigonometric functions satisfy the orthogonality relations

p + fr

cos kx cos mx dx = sin kx sin mx dx =

= {k ^m) (89)

Application of the addition theorem leads to the equations

r

dx = 27T

COS A:x dx = sin Tnx dx = n
J -w J -n

The mean square error for the Fourier series is given by the equation

- r> + n oo oo

CT^ = —

-

!^ao + S a^cos nx + Y. b^sm nx - f{x)\^ dx

(90)

(91)

(92)

(93)

DifTerentiation with respect to the coefficients shows that for least squares error the

coefficients are given by the equations

1 f*"
/(x) cos nx dx bj, = -

\ f{x) sm nx dx (94)

Because of the symmetry of the trigonometric functions, the trigonometric series is

TT
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given by the equation

Tl= +00 /-* + TT

fi^) = :r S f{s) COS nix - s) ds = — Z fis)e
tn(i-s) ds

The substitutions

2tti
X -^

L
s ->

:tts

L

(95)

(96)

expand the range of approximation from Stt to L The functions f(x) and /(s) are

replaced by the functions F{x) and F{s) as expressed by the equation

Fix) = - E
1

"=_:°° r*t'

i^

2jrn

,

,

The substitution

Snn
/c =

(97)

:98)

replaces summation with respect to n by integration with respect to k in the limit as

/,-»» The approximation of summation by integration requires the functions to have
properties of integrabihty The Fourier series is approximated by the Fourier transform

A{k) =
1

2^
f^(x)e-"'dx

F(x) - A{k) e"^d/c

(99)

(100)

In a multidimensional space there is a Fourier transform for each coordinate Each
transform in a series of transforms can be applied to the amplitude of the previous

transform
The two-dimensional transform is given by the equations

A{a,fi) = ^A \ F{x. y) e-'^^^v) ^x dy

F{x.y)=
I

r^(o,/S)e^'"*''^»dad/S

Let ifiix. y, z) be defined by the equation

^{x,y,z)= { L(a,^)e-^i^^^'''*^*"*''^>da

Then i/p is a solution of Laplace's equation

d^if d^(fi d^(fi

d/S

dx^ dy^ dz^
=

(101)

(102)

(103)

(104)

wherever z ^ The derivative of <^ with respect to 2 is given by the equation

_^ = ± r r V^^7^/l(a,/3)e-^°^'"^^'"*''^'dad^ (105)

where the sign is - for 2 < and the sign is + for 2 > The difference in the derivative

13



on opposite sides of the plane z - \s Arra where a is the source density on the plane

The amplitude

2 Va^ + /?2.4(a, /?) 1061

IS the amplitude for 4tt(7 For a unit source at the origin the amplitude is given by

the equation

Aia.tS)
1

27T va'^ ^ /?'

107)

Two solutions of Laplace's equation are identical to within an additive constant if they

have the same normal derivative on a boundary Thus the inverse of distance is given

by the equation

1 1 1

T \j'x^ + y^ + z^ 2tt

1

Va^ + ^
e'^''^*''^^'^^'^"*''''^ dad^ 108)

Application of the Fourier transform to the real exponential factor in the integrand

leads to the equation

1 _ 1

r
"

27t2

1

a^ ^ ^^ + y'

^x(ax*py.yz) ^^ ^^ ^^ 109)

The evaluation of this Fourier integral can be completed after a transformation of

coordinates

Let K.d.cp be polar coordinates with polar axis in the direction of r Then a.fi.y

are given by the equations

a = K sin d cos P - k. sin d sin

da dp dy - <^ sin 6 dK dd d0

and integration with respect to 6. leads to the equation

1 _ 1

r
~

27T^

y = K cos

1 \ 2 I sin /C7*g«rcos9 ^2 gj^ ddtcdddtp = ~ dK
' TT .]„ KT

(110)

(111)

(112)

This equation confirms the existence of a Fourier transform for the potential of a

pole

Let r, d, be polar coordinates with polar axis in the direction of k. Then x. y. z are

given by the equations

I = r sin 9 cos y = r sin 9 sin 2 = r cos (113)

dx dy dz -» r^ sin 6 dr dd d<p (114)

Another solution of Laplace's equation is given by the equation

d / 1 \ cos d
(115)

dz \r I r

Its Fourier amplitude is given by the equation

1 {'{'{'
I cosd

8^
A{>c) = 7773

uercosS _2r Sin d dr dd d<f> (116)

Integration with respect to 6, is completed with an integration by parts to give the

14



equation

AiK) =
2n^K

( , ^
sin(/cr) ) dr

<cos(icr)
( KT

117)

Integration with respect to r is completed with an integration by parts to give the

equation

Ai>c) =
27t2«;

sin(A:r)

icr 2-n^K
(118)

This equation confirms the existence of a Fourier transform for the potential gradient
of a pole

The gradient of inverse distance is given by the equation

xi + y] + zV.

2Tr'
da d/3 dy 119)

The velocity of a point vortex of unit strength is given by the equation

v= — kxv(- ) = —
47T \r 4TT (^2 _L ,,2

3

\x^ + y^ + z^\z 8tt-

/' "•*
, e'^"^"^*^'' da dfi dy (120)

a*^ + /S"^ + y"^

This equation confirms the existence of a Fourier transform for the velocity of a point

vortex

The circulation around a circle at coordinates r, d is given by the equation

vdr =
sin^i9

(121)

A change from spherical polar coordinates to cylindrical polar coordinates and
integration with respect to z with the aid of the equation

<» 2 , 2X + y" dz

v^z^ + y^ + z^

Vz^ + y' 2 -] -f oo

122)

confirms that the circulation is unity around a line vortex of unit strength and of

infinite length

INCOMPRESSIBLE FLUID

Let r be a position vector in physical space and let k be a position vector in wave

number space The position vectors are defined by the equations

r = zi + yj + zk K = ai + /Sj + yk (123)

where i,j,k are orthogonal unit vectors

Let the velocity vector v at the position vector r be expressed by the equation

v(r) =
I
A(K)e*^MdK| (124)

where k is a vector in wave number space, |dK| is a volume element in wave number
space, and A(k) is the amplitude of the Fourier component with wave number k The

15



amplitude is given by the equation

A(k) = -^ \
v{r)e-'^'\dr\

8tt J

(1251

where \dr\ is a volume element in physical space The gradient of velocity is given by

the equation

Vv = 1 KA(K)e'^ndK|

the divergence of velocity is given by the equation

V-v = I k-A(k) e'^ " IdKl

and the curl of velocity is given by the equation

Vxv = I kxA(k) e'* IdKl

The Laplacian of velocity is given by the equation

V-Vv = - k^Mk) e''''\dr:\

The amplitude kA(k) of the divergence Vv is given directly by the equation

kA(k) = „ 3

1

8^-
V-ve-"""|dr|

126)

(127)

128)

129)

130)

If the divergence is zero for every r in physical space, the amplitude is zero for every k

in wave number space The amplitude satisfies the orthogonality equation

kA(k) = (131

If a nonzero divergence did happen to occur in an incompressible fluid, a pressure

pulse would be created, and the nonzero divergence would be dispersed by a potential

flow

Terms which are quadratic in velocity are expressed by double integrals Let k, and Kj

be variables of integration in the double integration. Incompressibility is expressed
by the equations

k,A(k,) = (Ki - K2)A(k, - Kg) = K2A(Ka) = (132)

When terms with the same wave number are collected in the integration the amplitudes
are collected in a convolution. The product of velocity and its gradient is given by the

equation

vVv = i A(Ka)iCiA(K, - Kj) e"'
''

|dKilidKa|

The square of the gradient is given by the equation

(Vv-Vv) = - A(k2)kiK,A(ki - Kg) e"' "^

IdKilldKgl

This scalar is the divergence of the vector

I A(k2)—^—^

—

^A(Ki - Kg) c"' "^

IdKilldKjl
J J *^r^i

133)

(134)

(135)
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The gradient of pressure is given by the equation

Vp = -pi\ a(k2)-^^^^A(k, -K2)e"' ""idKilldKai (136)
J J ^1 '^i

Substitution in the equation of motion leads to the integro-differential equation

— -A(k,) = - iL/i-k,A(k,) - I A(K2)(i - ^^^^ )k,A(Ki - Kg) IdKgl - - y:,-K,A(K,) (137)
at J \ Ki Ki / p ' '

which expresses the evolution of the spectral representation of the velocity m an
unbounded fluid

The rate of change of amplitude is expressed as the sum of three terms The first

term replaces x in the Fourier transform with x - Ut The second term expresses the

influence of amplitude at other points in wave number space The third term gives

the rate of viscous dissipation

The rate of change of A(k,) is influenced by the presence of A(k2) in the vicinity

of K, In the integrand the postmultiplication of A(k2) by a tensor eliminates any
component of A(k2) in the direction of k, Other terms outside the integral are the

products of scalars and A(ki) Thus the integro-difTerential equation preserves the

orthogonality of Kj and A(Ki)

There is no contribution to the integration where Kg is orthogonal to k, and A(k2)

is parallel to k, There is no contribution to the integration where Kj is colhnear
with K, and A(ki - Kj) is orthogonal to Kj If Kg is on the perpendicular bisector of k,

then interchange of Kg and k, - Kg leaves amplitudes the same but reverses the sign

There is no contribution to the integration by integration along the perpendicular
bisector of k, There is a maximum contribution to the integration when Kj is on the

perpendicular to k, through the tip of k, The influence of A(k2) is a pattern which
is crossed by nodal lines

DIFFUSION

During unbounded evolution the velocity deviates gradually from the boundary
conditions at the surface of a plate. Velocity is injected gradually into the stream to

maintain the boundary conditions It is only at the surface of the plate that velocity

IS injected Everywhere else the evolution of velocity is free Let the plane with plate

be divided into an equally spaced grid Over each grid point there is a sine quotient

function Each sine quotient function is unity at its own grid point and is zero on

every grid line which does not pass through the grid point An analytic function can

be expressed as a series in sine quotient functions. The coefficients of the terms in

the series are just the values of the function at the grid points The terms for defect

in velocity are finite only for grid points within the area of the plate The sine quotient

function at any grid point can be expressed by a Fourier transform The amplitude

of the Fourier transform is a rectangle of constant density in wave number space

Let X. y. z be Cartesian coordinates relative to a grid point with x positive downstream,

with y positive across the stream, and with z positive perpendicular to the stream

Let Q{a.^) be the Fourier amplitude for the sine quotient function for the grid point

and let A be the defect of velocity at the grid point The velocity is injected into the

laminar sublayer where the absence of convection reduces the equation of motion to
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the diffusion equation

dt
~ "^

laz- ^ dy^ ^ dz
= ^

\
^-^ ^ -^z ^ T-z) (138)

The defect in boundary condition is concentrated initially against the plate surface

and then diffuses outward. The velocity for a defect A is given by the equation

v = Ai( e-"'du r fQ(a,/3)e-^"''*'''>'^^*"^'''" dad/3 (139)

\iAi/t

in which the velocity is proportional to the complementary error function That this

IS a solution of the diffusion equation can be verified by direct substitution if 2 ^^^

The error function is symmetric with respect to the plane z - The Fourier

amplitude of the error function is the sum of an integration in the range -°o < 2 <

and an integration in the range < 2 < +0° The integrals in the two ranges are complex
conjugates Integration by parts in each range and cancellation of complex conjugates

lead to the equation

+00
2 e"^^^' 2 f*^>^ 2

e"^^^-^ e'" dudz = — e'"" du (140)

The amplitude of the error function is an even real function of 7 The velocity is given

by the equation

v= A f
r r_t r^e-'^^du^^^^e-«'^^^^-^'-'-^v*-'dadMy (141)

To verify this equation the error function can be replaced by its absolutely convergent
power series, then term-by-term integration leads to the series for the arcsine of

unity The equation gives the initial velocity for the defect A. The velocity continues

to evolve thereafter in accordance with the full equation of motion for unbounded flow.

DISCUSSION

An analysis of the complete Navier-Stokes equation for Reynolds numbers less than
1218 has been given by Schwiderski and Lugt^ They found overshoot in the velocity

profile and the overshoot increased with Reynolds number. There does not seem to

be any confirmation for the overshoot There is no overshoot in the Blasius profile.

Validation of the Blasius theory for Reynolds numbers more than 100000 is given by
the excellent agreement between measurement and theory in Figure 7 9 in the text

by Schlichting' It would be nice to have more experimental data for a smaller Reynolds
number

The flux of momentum across any cross section is equal to the drag upstream of

the cross section The flux of momentum is given by the integral

u{U-u)dy (142)
Jo

where u is the instantaneous velocity in the fluid. The instantaneous velocity can be
replaced by mean velocity only in the case of laminar flow Otherwise the mean square
of the instantaneous velocity is greater than the square of the mean velocity by the

mean square of the fluctuation in velocity
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Heretofore it has been assumed that the blending function for a turbulent boundary
layer is symmetric with respect to the middle of the boundary layer, and is zero

outside the thickness of the boundary layer It is more likely that the blending function
diminishes gradually with distance An empirical formulation is compared with

experimental data in the following figure

where the curve represents Equation (35) and the circles are from a tabulation in the

report by Thompson*
The assumption that the horizontal component of velocity is constant everywhere

in the free stream leads to a vertical component which persists to infinite distance

from the boundary However, the distribution of vertical velocity initiates a jet and
diffusion of vorticity disperses the jet in the free stream

At the leading edge of a boundary layer the flow is laminar, but the flow becomes
unstable where the Reynolds number is 520. and the flow becomes fully turbulent

where the Reynolds number is 500000 For a free-stream flow at 20 knots the laminar

flow is unstable at only one twentieth of a millimeter downstream, and the flow is

fully turbulent at five centimeters downstream Any laminar flow in the boundary layer

of a full-scale ship is insignificant.

CONCLUSION

It IS concluded that the most practical representation of the mean velocity is a

generalization of the empirical formulation by Schlichting
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