
NPS-OR-93-019

NAVAL POSTGRADUATE SCHOOL
Monterey, California

COMPUTER VISUALIZATION OF
BATTLEFIELD TENETS

William G. Kemple

Harold J. Larson

December 1993

FedDocs
D 208.14/2
NPS-OR-93-019

Approved for public release; distribution is unlimited.

Prepared for:

TRAC Monterey
* tonterey, CA 93943-0692

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

Rear Admiral T. A. Mercer Harrison Shull

Superintendent Provost

This report was prepared for and funded by TRAC Monterey.

Reproduction of all or part of this report is authorized.

This report was prepared by:

<L

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1 21 5 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1993

3. REPORT TYPE AND DATES COVERED

Technical

4. TITLE AND SUBTITLE

Computer Visualization of Battlefield Tenets

5. FUNDING NUMBERS

RKQHL
6. AUTHOR(S)

William G. Kemple and Harold J. Larson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey, CA 93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

NPS-OR-93-019

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

TRAC Monterey
P.O. Box 8692

Monterey, CA 93943-0692

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

1 1. SUPPLEMENTARY NOTES

The views expressed in this report are those of the authors and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

1 3. ABSTRACT (Maximum 200 words)

The Battle Enhanced Analysis Methodologies (BEAM) project was designed to investigate

the use of computer graphics in describing the performance of battalion-sized units in

simulated combat. These descriptions were to be data-based and objective, providing useful

critiques of actual performance according to standard Army doctrine. They would be natural

candidates for use at the Army's Combat Training Centers.

The first year's effort demonstrated objective graphic displays that portray the destructive

potential of direct fire weapons in the defense (described in [1,2,4,5]). These displays allow

straightforward objective comparisons of different defensive alignments, and, from simulated

battle runs, of defensive fire control strategies. These references also describe simple
uncluttered displays that portray the movements and interactions of company (or higher)

sized units throughout a battle.

This report describes further results of the BEAM project. The initial displays were
specifically derived for direct fire weapons in the defense; a major development is the

extension to displays for indirect fire weapons in the defensive. This allows separate and joint

examination of the direct and indirect fire destruction potential, providing, among other

things, objective measures of the synchronization and agility of a force, as well as indicators of

its intelligence function.

1 4. SUBJECT TERMS

Combat Power, Indirect Fire, Synchronization, Agility, Computer
Graphics

15. NUMBER OF PAGES

66

1 6. PRICE CODE

1 7. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

COMPUTER VISUALIZATION OF BATTLEFIELD TENETS

William G. Kemple, Harold J. Larson

Naval Postgraduate School

Monterey, California 93943

Abstract

The Battle Enhanced Analysis Methodologies (BEAM) project was
designed to investigate the use of computer graphics in describing the

performance of battalion-sized units in simulated combat. These
descriptions were to be data-based and objective, providing useful

critiques of actual performance according to standard Army doctrine.

They would be natural candidates for use at the Army's Combat
Training Centers.

The first year's effort demonstrated objective graphic displays that

portray the destructive potential of direct fire weapons in the defense

(described in [1,2,4,5]). These displays allow straightforward objective

comparisons of different defensive alignments, and, from simulated

battle runs, of defensive fire control strategies. These references also

describe simple uncluttered displays that portray the movements and
interactions of company (or higher) sized units throughout a battle.

This report describes further results of the BEAM project. The initial

displays were specifically derived for direct fire weapons in the defense;

a major development is the extension to displays for indirect fire

weapons in the defensive. This allows separate and joint examination

of the direct and indirect fire destruction potential, providing, among
other things, objective measures of the synchronization and agility of a

force, as well as indicators of its intelligence function.

Introduction

To maximize combat readiness, the U. S. Army employs highly

instrumented combat ranges for training troops under the most realistic

possible conditions. Many of these ranges accommodate force-on-force battles,

including simulated firings of weapons and of kills against the opponent; the

physical variables used in these simulated kills (times of events, locations of

players) are then available for computer replays, including investigations of

the effects of changes to some battle details.

A General Accounting Office report has criticized the Army for not

making better use of objective observable measures in improving the training

experience. The Battle Enhanced Analysis Methodology (BEAM) project has

the important goal of using player and event time-location data to

(objectively) visually portray the effectiveness of combat unit performance

according to the standard battlefield tenets.

The ability of a force to inflict damage on an enemy at a given time varies

from place to place on the battlefield. A surface whose height reflects the

spatial distribution of this ability is useful for comparing performances of

units which may employ different plans and/or tactics. Because such a surface

is comparative in nature, its actual height for any given battlefield location is

not of major importance. Its consistency in identifying locations at which the

force has equal potential to do damage (equal heights) versus those locations

where the potential is larger (greater heights) or smaller (lesser heights) is

important, as is consistency across displays of alternate plans or tactics.

As previously reported in Battle Enhanced Analysis Methodologies

(BEAM) reports (see [1,2,4,5]), this approach proves useful in describing the

Destructive Potential (DP) of direct fire weapons in the defense and in

examining the synchronization of these weapons. In these situations, the

main factors under the commander's control that will cause differences in DP

are the placements of the friendly weapons systems and the fire control

measures employed. The height of the DP surface at any point on the

battlefield is determined by the number and type of friendly weapon systems

which can engage the enemy at that point, the distances of these weapon

systems from that point and the composition of the enemy force.

More specifically, the direct fire Destructive Potential DPdf(x,y) at point

(x,y) on the battlefield, for a battalion in the defense, is determined by the

types and locations of defending weapon systems, their lines of sight, and

associated probabilities of killing a target at the given point. Let index w

identify a defending weapon system and let index t represent enemy target

type; the weapon system may have two or more different armaments. For the

given defensive position it then is possible to determine the points x,y on the

battlefield which are within the effective ranges of the armaments and for

which line of sight exists. Thus we can define Bernoulli (0,1) variables LWi t for

each defending weapon system w and target type t; LWi t is for all targets of

type t at points x,y which are out of range of the armament or for which line

of sight does not exist.

For each defending weapon system pr,w,t is the probability a target of type t

at location x,y would be hit and killed by a round fired by armament w at

range r from x,y. Granted armament w can fire Rwj rounds per minute, the

expected number of kills to be made in one minute, by armament w against

(instantaneously replaced) targets of type t at point x,y is Rw,t^w,tPr,w,t-

Granted an attacking force is composed of different target types, let ft

represent the fraction of the attacking force of type /. The Operational

Lethality Index (OLI) for weapon type w against location x,y is defined by

Lamont [3] as OLIw(x,y) = *ZtftRw,tLWi tpriZVi t, the total number of expected kills

to be made in one minute by this weapon system at location x,y. Finally, the

direct fire Destructive Potential for the defending force, at point x,y, with

weapon systems located at their given positions, is the sum of these OLIw

values:

Dpdf{x>y) = Y,OUw {x f y) = YY;ftRw,tLw,tPr lw,t

w w t

This DP surface has units of kills-per-tninute; it is not claimed to actually

represent the expected number of kills which would be made at point x,y in

any actual or simulated battle. Rather it provides easily interpreted

comparative values for judging

• those areas in which the commander has chosen to concentrate

his fire in selecting the locations for the defending weapons.

• which of several different defending force dispositions and/or

fire control measures is better aligned with the commander's

intent.

• the ability of the force, as deployed, to adjust its concentration

of fires in response to the enemy's actions.

In addition to these Destructive Potential displays, simplified intuitive

displays of the movements and interactions of company or higher sized units

over the course of a battle have been described. These employ standard army

symbology to identify units; the time trace of the locations of the units is

easily visible, as is the dispersion within the units. These can provide clear

uncluttered indications of the maneuver of several units through the course

of the battle. They can also be used to provide indicators of the agility and

intelligence functions of units (see the later discussion of synchronization,

agility and intelligence).

All of these displays were constructed with data observed from units

undergoing training at the National Training Center (NTC), Fort Irwin,

California, using available computer hardware and software. Since no single

available software package was capable of doing the necessary computing and

graphic display, a mixture of platforms and programs was used. This made

the production of these displays very time consuming and limited their

portability.

During the second year of this project, it was decided to investigate the use

of different computer software, to make the production of displays faster and

more straightforward, and to easily incorporate a graphical user interface. In

addition, effort was concentrated on the production of graphic displays to

show the effects of indirect fire, and the agility of forces. The results of these

efforts are described in succeeding sections.

Software, user interface

The displays produced were derived from position-location data observed

at the NTC, together with a digital terrain representation of the NTC.

Different computer platforms were involved, as were numerous software

packages which contributed various facets of the final displays. To unify and

simplify this operation, the TAE+ software package was investigated for

applicability. This package has a well-developed graphical user interface,

allowing one to choose and display any of many different objects;

unfortunately the objects which it displays must be created with its own

editor, which was incapable of handling the computational demands of lines

of sight and destructive potential displays.

The software package PV-Wave was known to be capable of creating the

graphics required, and was expected to soon have a graphics user interface

which could easily interact with the BEAM displays. Since this user interface

was not currently available, effort was concentrated on using the Wave

control language to create graphics and to easily display them, doing away

with the intermediate requirements of other platforms and software packages.

Several basic PV-Wave procedures have been derived, which are listed in

the appendix. The first of these (putpic.pro) will read previously constructed

displays (created in the original manner) into PV-Wave and display the

surface. The resulting displays have been enhanced by adding battle graphics

and a color bar to define the surface levels, both of which had previously been

added with other software packages.

It had been agreed that destructive potential displays for indirect fire

support would necessarily be dependent on the lines of sight of the observers

who direct the fire. Thus, being able to determine the lines of sight of possible

fire-direction observers is a part of the indirect fire combat potential. A PV-

Wave procedure has been developed which will read the positions of the

designated observers (at the desired time into the battle) from a player-

location file, determine the lines of sight for all these positions (currently

arbitrarily limited to a circle of radius 4000 meters), and then plot the

accumulated lines-of-sight for these locations. This procedure is called

readlead.pro and is also listed in the appendix; it effectively does away with

the previously required intermediate steps of creating the .srf file required for

putpic.pro. In addition, a method of capturing a graphic image previously

displayed in PV-Wave into a file is described in the comments at the bottom

of the listing for putpic.pro. Such a file can then be quickly recalled and

redisplayed, avoiding the time-consuming line-of-sight determination

required in initially building the display.

Indirect Fire

Direct fire weapons do not account for the total Destructive Potential for a

defending battalion. Standard doctrine calls for additional support provided

by indirect fire (from both mortars and artillery fire) as well as possible air

support. Commanders at all levels are responsible for integrating fire support

into their plans (see reference [7], page 94, for more detail). The same basic

approach is feasible for any and all of these; explicit attention has been given

to the development of a DP surface for artillery fire, described and illustrated

in this section.

The artillery fire DP surface will be derived in units of kills per minute, to

be compatible with the direct fire surface; this allows addition of the two

surfaces to see how well the two have been integrated in the overall plan, if

desired. Review of doctrine and interviews with US Army and Marine Corps

officers identified several variables that affect the use and effectiveness of

artillery fire. Some of these officers have had command experience, and

several had participated in training at the NTC on opposing forces, as

observer controllers or with the training unit; some had Desert Storm

experience. The experience of these officers was used to model the effects of

key variables: the types of artillery weapons available together with the types

of rounds employed, the numbers and locations of observers for controlling

this fire, the locations of barriers and the target reference points (TRPs), the

trafficability of the terrain and the enemy force mix.

It is assumed that artillery support is provided by an artillery battalion,

which provides one or more Firing Units (FUs). The attacking force is

assumed to be armored; thus the FUs are assumed to be 155mm and/or Sin

tubes, since these are the only ones which are effective against this type of

force. The Fire Direction Center (FDC) is assumed to know the locations of the

FUs and their characteristics; it (and the FUs) knows the locations of the TRPs.

Based on the officer experience already described, the probability of an artillery

salvo killing a tank or Armored Personnel Carrier (APC), located at point x,y,

is assumed to be Pmax =-9, using Dual Purpose ICM ammunition. This is the

assumed maximum probability of a kill at each point under "ideal"

conditions and information, for either type of FU; these ideal conditions may

not exist at all x,y and Pmax for targets at such points is reduced to account for

this.

The "ideal" conditions which give the largest value for scoring a kill are

• An observer is sufficiently close to the point x,y, has LOS to

that point, observes the target and calls for fire.

• The point x,y is within 2 kilometers of a TRR

• The target is stationary at the given point.

(It is also assumed that the locations of the FUs allow them to range over the

whole battlefield; if this does not hold, the discussion below is still

appropriate by including one additional multiplicative factor with values 1 or

0, depending on whether the point x,y is within range of an FU.) The

determination of the lines of sight is made by the procedure test_LOS.pro,

listed in the appendix; the kernel of this procedure is the LOS algorithm in

the JANUS(A) combat model. The procedure find_range.pro (see the

appendix) was written to determine distances between points on the

battlefield.

The probability of scoring a kill at x,y is degraded for any one or more of

these conditions which do not hold; the way in which the probability of

scoring a kill is degraded is to some degree arbitrary. Different weight

functions describing the degradation in Pmax were shown to selected officers;

they were asked to choose which of these were most appropriate for the

various factors, and to supply necessary parameter values for the functions.

For example, the range from the fire control observer to the target should

have an inverse effect on Pmax ; as this range increases, the probability of a

salvo scoring a kill should decrease. A bell-shaped bisquare weight function

8

was recommended for this effect, described and pictured below. Separate

procedures were written for each of the weight functions used (see

weightJoisauar e .pr o , weight_exponential.pro, weight_linear .pro in the

appendix); the parameter values needed are specified by procedure inputs.

Both the shapes of the functions and their parameter values are easily

changed in the indirect fire DP procedure (arty.pro listed in the appendix).

Four different functions have been employed in effecting the degradations

to Pmax; three of these were chosen from the officer discussions just described.

The fourth was suggested later during a briefing of this material. The indirect

fire displays to be presented below were derived using the functions to be

described; the methodology employed is appropriate for any desired shapes

and parameter values.

First, if one or more observers has line of sight to point x,y, then the

closest observer is assumed to call fire on that point. The range from this

closest observer to x,y is used to degrade the probability of scoring a kill. This

is done using a bisquare weight function

,2

fM)=
.3 + 7(l - rf/36) , for r

x
< 6km

.3, for /j > 6km,

pictured in Figure 1. With r\ the range from the observer to x,y, .3 <f\(r\) < 1,

with this smallest value occurring for all ranges of 6km or more. The

probability Pmax is multiplied by /i(n).

6

Figure 1. Bisquare weight for range from observer.

Second, the initial approach taken to account for whether or not the point

x,y is close to a TRP was to use a "cookie cutter" function, pictured in Figure 2.

The closer the desired firing point is to a TRP, the more likely a kill will be

scored. This function is

(1, for r2 < 2km

.65, for r2 > 2km,

used to adjust for the distance, r2 , from x,y to the closest useable TRP.

hi*)-

This degradation caused by distance from the target to the closest TRP has

also been modeled with a second function (suggested during a briefing of

these results) which declines linearly from 1 to .65; this function is

l-.175r, forr2 <2km

.65, for r2 > 2km,
£{*)-

10

as pictured in Figure 3. Subsequent displays show the differences (and

similarities) of results derived using these two functions. If x,y lies within

2km of a TRP, Pmax is multiplied by fair?) (for initial output displays) or by

fl{rl) f°r subsequently computed displays; in either case, if x,y is more than

2km from a TRP, Pmax is multiplied by .65.

Finally, the faster an enemy weapon system can travel, the less likely it is

to be hit by artillery. This is accounted for by considering the trafficability at

each point on the battlefield. Let s be the trafficability (expected speed of the

target) at point x,y; if the target is stationary, then s = and the probability of

scoring a kill is not degraded. As s increases, the probability of scoring a kill is

degraded by using the exponential decay function

.35 + .65 (e"
s/35 - e~

l
)/(l - e~

l

)
, for s < 35km / hr,

.35, for s> 35km /hr,

pictured in Figure 4. For any target whose speed is 35km /hr or more, the

multiplier is .35.

These degradation factors are the same for either type of FU employed. To

summarize, for any given FU of type w the probability of scoring a kill at

point x,y is the product /3(s)/2(r2)/i(ri)Pmax . Again, as with direct fire, if FU w

can fire Rw rounds per minute the expected number of kills scored per

6(s) =

n

minute at point x,y is the Operational Lethality Index OLIw (x,y) =

Kw/3(s)/2(r2)/l(n)Pmax; granted two or more FUs may be employed the indirect

fire Destructive Potential is the sum

Dfy(*,y)=X0LJ«;(*/y)-
w

Since both Destructive Potentials are in units of kills/minute, they may be

added together to give the total Destructive Potential DP(x,y) = DP^fix,y)

+ DP
if
(x,y).

Figure 4. Exponential decay for range from observer.

The same NTC battle used for the direct fire Destructive Potential displays

(see [5]) has been employed for DP{f(x,y) displays. This featured an armor-

heavy task force with a defense in sector mission; the task force commander

intended to destroy the enemy in Engagement Areas SHARK and PIRANHA.

The observed scenario was followed in initial locations of the defending force;

twelve command leaders at various levels were designated as being the

observers, who could then call for fire against designated targets. Assumed

artillery support is provided by an artillery battalion, which supplies two FUs

(155mm or 8in tubes).

To see their effect, a barrier is simulated in Engagement Area CUDA (this

is done by reducing the trafficability with fs(s)), and TRPs are placed at the

corners of the engagement areas. To simulate the reductions in force caused

12

by casualties, half of the observers were chosen at random at time T = 30

minutes into the battle and were removed (killed), leaving six observers to

call fire; again at time T = 90, half the remaining observers were removed,

leaving three to call fire. At time T = 90 the barrier was assumed breached in

two places and the defender's artillery rate of fire was cut in half; this was

done to simulate the effects of tubes having become casualties, troop fatigue,

logistic problems with maintaining supplies, etc.

A total of 6 DPif{x,y) displays are presented; these represent the resulting

surface at times T = (start of the battle), as well as T = 30 and T = 90. Figures 5,

7, and 9 use the original cookie-cutter function /2(r2) to describe the

degradation caused by the range between the point x,y and the closest TRP;

Figures 6, 8, and 10 use the linear-decay function /2 (r2) for this same purpose.

To sharpen the comparison of the cookie-cutter and linear-decay functions,

the same observers were "randomly" removed at times 30 and 90, mentioned

above, and the figures for the same times are displayed together.

The overall picture is the same in both three-figure sequences. First, the

dramatic increase in DPjf caused by the barrier is evident throughout each

sequence, as are the breaches in the barrier at T = 90. Next, moving forward in

time, the loss of observers at T = 30 results in fewer areas with high DPif, and

the further loss of observers coupled with the reduction in firing rate at T = 90

result in very low DPif, throughout the battlefield except at the barrier.

In addition, one can readily see the difference caused by the cookie-cutter

versus the linear-decay function. In the first sequence of figures, at times T =

and T = 30, the cookie-cutter function causes large, homogeneous areas of

high DPjf, making it difficult to observe the effect of distance from a TRP on

DPif. In the second sequence, using the linear-decay function, the DPif, surface

decreases smoothly away from the TRPs, highlighting their importance.

13

This approach for indirect fire DP can be easily modified in a number of

ways. The degrading functions /i(-),/2('),/3(-) can be of any desired shape and

value; the cutoff values where the functions remain constant can occur at

other values and the constant achieved can be different. If other degrading

factors are desirable they can easily be added in the same way. Other indirect

fire DP measures (e. g. close air support) can be modelled and pictured in the

same way. Procedures artydraw.pro and artydrawl.pro (see the appendix) were

derived from putpic.pro; they can be used to simultaneously display several

surfaces on the Wave screen, or to create postscript image files, that maintain

the same color contour values for all figures.

Attack postures versus defense

As discussed, both DPdfix,y) and DPif{x,y) are defined for a defending force.

The same basic concepts are appropriate for an attacking force. The destructive

potentials are static measures, defined for a particular time epoch T. The

indirect fire destructive potential DP{f{x,y) for an attacking force can be

defined in essentially the same manner as employed above. For an attacking

force, the indirect fire Destructive Potential should profit from the targets

being (essentially) static; it may suffer from the fact that the observer(s) calling

for fire may be moving and that the targets may be in protected positions.

Appropriate degradations for these effects can be easily incorporated into the

indirect fire Destructive Potential.

The direct fire Destructive Potential for an attacking force can also be

defined in a similar manner to that previously discussed. That is, at any given

time T the locations of attacking vehicles are fixed (as are the locations of the

defending force); lines of sight from these positions can be determined. If the

attacking vehicles are capable of firing while moving (perhaps with degraded

14

probabilities of scoring hits and kills, as well as rates of fire) then again a

surface representing expected kills per minute can usefully describe their

destructive potential.

Indicators of Synchronization, Agility and Intelligence

Destructive Potential displays can be very useful in critiquing unit

performance at the NTC. At the start of any given defensive battle, the DP

surface should achieve its largest values at the areas of importance stressed by

the commanders IPB; the color-coded display of the surface immediately

indicates whether this has occurred or not. For persons well acquainted with

the terrain over which the battle is to be fought, it is a relatively simple

matter to find alternative defensive positions which result in a DP surface

which achieves its maximum values at appropriate locations. This provides

an objective critique of the commander's initial positioning of his forces in

the defense.

The Destructive Potential surface for a force in the defense can be

examined at any time in a simulated battle. Let T represent the time

parameter for the battle, with T = being the "starting time", and DPj(x,y) the

height over x,y at time T. This surface depends only on the defensive

locations, their lines of sight, firepower available and the initial enemy force

mix; it is totally independent of actual enemy locations. In a simulated battle,

it is possible to record the height of the DP surface over those points x,y e Rt

on the battlefield which are actually occupied by enemy weapon systems,

giving the Theoretical Destructive Potential at time T: TDPj =

Xx,y e RT DPj{x,y). With an attacking force, the set of occupied locations Rj will

change with T as the vehicles move. The trace of this quantity over time

proves useful for a number of things. If the defense is well synchronized and

15

agile, this quantity should be and remain close to its maximum possible as the

battle progresses (T increases).

TDPj, as just defined, will automatically decrease at any time T at which

the defense kills an attacking weapon (since the set of occupied x,y positions

Rj will decrease in size). If a particular attacker, located at position x'y' is

killed at time T', let the height of the DP surface at that point (at that time) be

DPt{x /
,\/

/
). Define the Realized Defensive Potential at time T to be the sum of

these heights where kills occurred, at times T'<T:

RDPr= ^DPr>(x,y).

(*'Y)

This quantity represents credit earned which should be given to the defense

for kills already made by time T. Now define the Applied Destructive

Potential to be ADPj = TDPj + RDPj, the sum of the theoretical and realized

destructive potentials.

ADPj does not drop in value when the defense scores a kill; it does drop

in value if the locations of the attacking systems move to places where the

defender's Destructive Potential surface is lower. For a well-synchronized

defense ADPj should achieve and maintain a high value through time; this

will occur only if the high values of the defender's DP surface correctly track

the locations of the attacking weapon systems. Thus ADPj provides an

objective, numeric measure of the synchronization of the defending force.

Relative changes in ADPj (over time) indicate the rate at which the

Applied Destructive Potential is increasing or decreasing; the sign of the

relative change indicates whether ADPj is increasing (+) or decreasing (-).

ADPj is increasing whenever the defender is successful in placing higher

values of DP over the enemy locations, and is decreasing when it is not

successful in this goal. If the defense is agile, it should correctly anticipate the

16

enemy's actions, leading to ADPj increasing (or at least not decreasing); if it is

not agile, and does not accomplish this goal then ADPj is decreasing (attack is

agile). If ADPj were actually measured continuously in time, then its

derivative with respect to time T gives this measure of agility. Granted ADPj

will be computed only at specific times To = 0, T\,T2, this measure of agility

can be computed at time Ty by

ADPj. - ADPj.
,

AGj. = 1 '—.
' Tj-TH

AGj: > indicates the defense is agile (ADP is nondecreasing), while AGj- <

means the attacker is agile (ADP is decreasing).

This Applied Destructive Potential ADPj can also be used in measuring

the intelligence function of the defense. At time T, the defending force has an

implied belief in the locations of the attacking enemy through the DPj

surface; that is, granted the defender is rational, the maximum value(s) of

DPj should correspond with the places the defender (through his

intelligence) thinks the enemy is located (at time T). In any battle simulation,

one also knows where the attacking weapon systems are in fact located. The

worth or usefulness of the defender's intelligence is indicated by comparing

these locations. If the defender's intelligence is perfect, the DPj surface is high

at the actual enemy locations and thus ADPj is high. It is low if this is not the

case. The previously discussed movement and maneuver displays can be

used to get an objective measure of the "worth" of the defender's intelligence

at time T.

Nelson [6] identified useful descriptors of the centroid (or middle) of a

unit, as well as descriptors of its dispersion or geographic spread. For

concreteness, let the centroid be determined by the median location and the

dispersion by Nelson's convex hull (at time T). Define A j as the volume

17

under DPj over this convex hull (for the actual locations of the attackers at

time T).

This centroid could then also be located at the maximum value of the DPj

surface, the location the defending force thinks is most likely for the enemy

(at time T) and the convex hull can also be placed there. Now define Ej as the

volume under DPj over this "expected" convex hull (from the defender's

point of view). The difference INTj = At - Ej will always be less than or equal

to and provides an objective measure of the quality of the intelligence of the

defense (or of the quality of use of this intelligence). The closer INTt is to 0,

the better the intelligence of the defense; through time as the battle

progresses, INTj provides a trace of the intelligence usage of the defense.

References

[1] Enhancing Tactical Direct Fire Synchronization Measures, D. Dryer,

W. Kemple, H. Larson, Proceedings of the 24 th Symposium on the

Interface: Computing Science and Statistics, 1992.

[2] Toward Battlefield Visualization, W. Kemple, H. Larson, S. Lawphong-

panich, R. Lamont, M. Nelson, D. Dryer and J. Fernan, Proceedings of the

Statistical Graphics Section, American Statistical Association, 1992.

[3] Direct Fire Synchronization, Major R. W. Lamont, USMC, MS Thesis in

Operations Research, Naval Postgraduate School, September, 1992.

[4] GRAPHICAL DISPLAYS OF SYNCHRONIZATION OF TACTICAL
UNITS, Harold J. Larson, William G. Kemple, Naval Postgraduate

School, NPSOR-93-010, March, 1993.

[5] Visualizing Synchronization of Tactical Units, Harold J. Larson, William

G. Kemple, Major David A. Dryer, USA, to appear in Mathematical and

Computer Modelling.

[6] Graphic methods for depicting combat unit locations, dispersion, and

maneuver agility, Captain M. S. Nelson, USA, MS Thesis in Operations

Research, Naval Postgraduate School, September 1992.

[7\ OPERATIONS, FM 100-5, Commander, TRADOC, Fort Monroe, VA
23651-5000, 5 May 1986.

18

Appendix A. PV Wave Command Language Procedures.

PUTPICPRO:

Procedure to replace Spyglass pictures
Assumes line of sight has been determined, stored as before
Reads data back in, puts up display
Unless directed otherwise, scales colors from to
top of color scale for max observed.
Syntax: putpic, no, top title (in quotes) , filename to read (in quotes),
color=color (to save the color bar) .

The first argument (no) is a fixed number for the window number
(in case one wants to see two pictures simultaneously, odd for top
even for bottom500)

.

If one wants to scale the colors displayed, divide the phrase
"bytscl (data) " by the desired factor (or multiply by a fraction).

PRO putpic, no, title, file, sntc,botlftxy, color, x,y

; data=fltarr(101,151)
data=fltarr (151, 101)
status=dc_read_free (STRING (file) ,data)
;data=transpose (data)

color=intarr(2,251)
color (0, *) =indgen (251)

color (l,*)=indgen (251)

wave3_restore, ' LOS . SAV ; Brings back terrain heights and botlftxy

x=botlftxy (0)+.l*indgen(151)
y=botlftxy (1) +. l*indgen (101)

window, no MOD 2,xsize=776,ysize=440,xpos=50+50* (no MOD 2),$
ypos=30+300* (no MOD 2)

shade_surf , sntc,x,y, az=0, ax=90, position=[.1, .1, .85, .95],$
zaxis=-l, shade=bytscl (data) ,xtitle=l KiloMeters ' , $

ytitle='KiloMeters' , /save, xrange= [4 5, 60] ,yrange=[99. ,109.] ,$
ystyle=l

;xyouts, 75, 102, title, alignment=. 5, size=l .

3

contour, sntc,x,y, nlevels=25, posit ion= [.1, .1, .85, .95] , /noerase,
title=title, $ xrange=[45, 60] ,yrange=[99, 109] ,ystyle=l

x=45+.l* [50,0,18]
y=99+.l*[0,80,100]
oplot,x,y,position=[.1, .1, . 85, . 95] ,thick=3, /noerase /phase line plot
x=45+.l*[80,150]
y=99+.l*[0,60]
oplot,x,y,position=[. 1, .1, . 85, . 95] ,thick=3, /noerase ;phase line plot

x=45+.l*[72,82,92,98,101]
y=99+.l*[100,80,80,91,100]
oplot,x,y,position=[. 1, . 1, . 85, . 95] , thick=3, /noerase ; piranha

x=45+.l*[30,35,65,68,4 0,30]

22

108

106

104

102

100

Figure 5. Indirect Fire Destructive Potential at T=0. Cookie-Cutter Weight Function.

Arty Surface at iime =

o

1

108

106

104

102

100

Figure 6. Indirect Fire Destructive Potential at T=0, Linear-Decay Weight Function.

19

ime = 30

c

3

KiloMeters

Figure 7. Indirect Fire Destructive Potential at T=30, Cookie-Cutter Weight Function.

Arty Surface at Time = 30

KiloMeiers

Figure 8. Indirect Fire Destructive Potential at T=30, Linear-Decay Weight Function.

20

:ace at Time = 90

o

2

KiloMeters

Figure 9. Indirect Fire Destructive Potential at T=90, Cookie-Cutter Weight Function.

urface at Time = 90

Figure 10. Indirect Fire Destructive Potential at T=90. Linear-Decay Weight Function.

2 1

y=99+.l*[77,65,63,84,91,77]
oplot, x,y,position= [. 1, . 1, . 85, . 95] , thick=3, /noerase ; shark

x=45+.l* [71,71,102, 102, 82, 71]
y=99+.l*[60,30,30,40,60,60]
oplot, x, y, position=[. 1, . 1, . 85, . 95] , thick=3, /noerase ; cuda

xyouts, 50.2, 99.4, 'PL Victoria'

xyouts,53,102.3, ' EA Cuda'

xyouts, 49, 106.7, 'EA Shark'

xyouts, 52.7, 108.7, 'EA Piranha'

shade_surf , color, az=0, ax=90, posit ion= [. 88,. 1, . 93,. 95], shades=color, $

xstyle=4, ystyle=4, /noerase

axis,position=[.88, .1, .93, .95] , xstyle=4,yaxis=l,ytitle=' Score' , /noerase

END
A displayed image can be stored in a Wave variable, and then quickly
redisplayed.
For a window in a given position, the full picture goes from (0,0) to
(x,y) = (max X, max Y) - 1. With the image displayed, it is put into
variable image by

image=tvrd (0, 0, x, y) .

With a window located at the same place, the image is displayed with
tv, image

Window in putpic is restored with window, no, xpos=50, ypos=30,

$

xsize=776,ysize=4 4

If image captured the previous display, it is then redisplayed with
above command: tv, image

To save such an image to file, use the save command:
save, image, xpos, ypos, xsize, ysize, filename= ' name

' , /verbose

It can then be recovered later by restore, ' name' , /verbose

23

READLEAD.PRO:

PRO readlead, leaders, x, y, leader=leader, SNTC, BOTLFTXY

The vector leader specifies the indices of the positions identifying the
leaders. This is set up to specifically read from the initial position
file gplt.dat; the number of leaders is 34 and there are 279 positions in
this file for time 01:58:10. The indices of the leaders originally given
by Jude can be restored by the command

restore, ' leader.dat
' , /verbose

This brings back the single vector named L which contains the indices of
the specified individuals. The image currently generated simply sums the
numbers of individuals who have line of sight to the given point, using
Dave Dryer's LOS algorithm. This image can be quickly retrieved with

restore, ' leader . img
' , /verbose

and then viewed with the procedure given at the end of the putpic.pro
file.

openr, 1,
' /home2/ntc/ jcf /dad/ingres/gplt .dat

'

y=intarr(34) ; size determined by leader, array of identifiers
x=strarr (279) ; size determined by number of records desired

readf,l,x ; reads in all data for time 01:58:10

close,

1

color=intarr (2, 251) ; Used to put up the color bar on the right.
color (0,*)=indgen (251)
color (1,*) =indgen (251)

; Now go with unit numbers in fifth column, should be unique.

for i=0,33 do y (i) =max ((float (strmid (x, 29, 4)) EQ leader (i)) *indgen (279)

)

; endfor

leaders=x (y (where (y GT 0))) ; identifies possible locations for callers

XARR=float (strmid (leaders, 36, 6)) /1000 ; x-coordinates in correct system
print,' size of XARR: ',size(XARR)
YARR=float (strmid(leaders,43,6)) /1000 ; y-coordinates
YARR (where (YARR LT 70)) =YARR (where (YARR LT 70)) +100 ; corrected

y-coordinates
HFARR=intarr (34)

HFARR(*)=0 ; All holdfires=0
RNGARR=intarr (34)

RNGARR(*)=4000 ; All sighting ranges=4000

wave3_restore, filename=' LOS . SAV

24

; The following code is lifted from LOSNEWMOD. PRO

MAPXY = SNTC
MAPARAM = SIZE (MAPXY)

XRNGMAP = FIX (MAPARAM (1)

)

YRNGMAP = FIX (MAPARAM (2)

)

H = 1

L =

N = N_Elements (XARR)

LABELX

:

LOSURF = INTARR (XRNGMAP, YRNGMAP)
LABELY:
PRINT, L+l, ' OUT OF ' ,N
IF (L EQ N-l) THEN GOTO, LABELZ

LABELZ:
HF = FIX(HFARR(L)

)

IF (HF EQ 1) THEN GOTO, SKPWPN
IF ((XARR(L) LT 45) OR (XARR(L) GT 60) OR (YARR(L) LT 99) OR (YARR(L) GT
109)) THEN GOTO, SKPWPN XS = (XARR(L) - BOTLFTXY(O)) * 10

YS = (YARR(L) - BOTLFTXY(l)) * 10

RNG = RNGARR(L)
IXS = FIX(XS)
IYS = FIX(YS)

GRIDS = INTARR(2, 6000)
DISTARR = FLTARRd, 6000)
NUMGRIDS =

' 1

RNGDIST = RNG / 100
BXG = FLOAT (IXS)
BYG = FLOAT (IYS)

INCXARR = [1., -1., -1., 1.]
INCYARR = [1., 1., -1., -1.]

INITSUBX =
• [0., 1., 1., 0.]

INITSUBY =
- [0., 0., 1., 1.]

GRIDS (*,0) = [BXG, BYG]
FOR 1=0, 3 DO BEGIN
XG = BXG - INITSUBX (I)

YG = BYG -
• INITSUBY (I)

LABELA: DIST = SQRT ((XG-XS) "2 + (YG-YS)"2)

IF (DIST LT RNGDIST) THEN BEGIN
IXG = FIX(XG)
IYG = FIX(YG)
GRIDS (*, NUMGRIDS) = [IXG, IYG]
DISTARR (*, NUMGRIDS) = [DIST]

NUMGRIDS = NUMGRIDS + 1

XG = XG + INCXARR (I)

GOTO, LABELA

ENDIF ELSE BEGIN
YG = YG + INCYARR (I)

XG = BXG - INITSUBX (I)

25

DIST = SQRT((XG-XS)"2 + (YG-YS)"2)
IF (DIST GT RNGDIST) THEN GOTO, LABELB
GOTO, LABELA

ENDELSE

LABELB:
ENDFOR

GRIDS = GRIDS (*, 1 : NUMGRIDS)
DI STARR = DI STARR (*, 1: NUMGRIDS)

FOR J = 0, NUMGRIDS-1 DO BEGIN

XT = FLOAT (GRIDS (0, J))

YT = FLOAT (GRIDS (1, J))

RANGE = DISTARR(0, J)

IXT = FIX (XT)

IYT = FIX(YT)
IELEV = FLTARR(500)
IF (IXT LT 0) OR (IXT GT XRNGMAP-1) OR (IYT LT 0) OR (IYT GT YRNGMAP-1)
THEN GOTO, LABEL5

IDX = ABS(IXT - IXS)
IDY = ABS(IYT - IYS)
IF ((IDX EQ 0) AND (IDY EQ 0)) THEN GOTO, LABEL4

; PRINT, *IDX, IXY =', IDX, IDY
IP = 1

IF (IDY GT IDX) THEN GOTO, LABEL1

Y=YS
DY = (YT - YS) / FLOAT (IDX)
INC = 1

IF (XT LT XS) THEN INC = -1

FOR IX = IXS, IXT, INC DO BEGIN
IY = FIX(Y)

ZZ = MAPXY(IX,IY)
IELEV (IP) = ZZ

Y = Y + DY
IP = IP + 1

ENDFOR
GOTO, LABEL2

LABEL1: ;—STEP IN Y

—

X = XS
DX = (XT - XS) / FLOAT (IDY)
INC = 1

IF (YT LT YS) THEN INC = -1

FOR IY = IYS, IYT, INC DO BEGIN
(CHANGED FROM: FOR IY = IYS-1, IYT, INC DO BEGIN)

IX = FIX(X)
ZZ = MAPXY(IX,IY)

IELEV (IP) = ZZ

26

;PRINT, 'IELEV =', IELEV(IP)

X = X + DX
IP = IP +1

ENDFOR

LABEL2: ITRGT = IP - 1

ZO = 6

ZOBS = ZO + IELEV (1)

PLOS =

ZT = IELEV (ITRGT) + 2

I STOP = ITRGT - 1

DZ = (ZT-ZOBS) / FLOAT (ISTOP)

Z = ZOBS
FOR 1=2, ISTOP DO BEGIN

Z = Z + DZ
ZZ = IELEV(I)

IF (Z LT ZZ) THEN GOTO, LABEL3 ; —NO LOS
ENDFOR

LABEL4: PLOS = 1

LOSURF(IXT,IYT)=LOSURF(IXT,IYT) + 30

GOTO, LABEL5

LABEL3:

LABEL5:

ENDFOR

SKPWPN:
IF (L EQ N-l) THEN BEGIN
WINDOW, 6,xsize=776,ysize=4 4 0,xpos=50,ypos=30
x=botlftxy (0) + . l*indgen (151)

y=botlftxy(l)+.l*indgen(101)

SHADE_SURF,MAPXY,x,y, AZ=0, AX=90, ZAXIS = -1, SHADE=BYTSCL (LOSURF) , $

position=[.1, .1, .85, .95] , xtitle='KiloMeters
* ,

$

ytitle='KiloMeters' , /save,xrange= [4 5, 60] ,yrange=[99. ,109.],

$

ystyle=l

title='LOS for leaders*
CONTOUR, MAPXY,x,y, /T3D, NLEVELS=29,$

position= [.1, .1, .85, .95] , /noerase, title=title,

$

xrange=[45, 60] ,yrange=[99, 109] ,ystyle=l

27

x=45+.l*[50,0,18]
y=99+.l*[0, 80,100]
oplot, x,y,position=[. 1, . 1, . 85, . 95] , thick=3, /noerase ;phase line plot
x=45+.l*[80,150]
y=99+.l*[0,60]
oplot, x, y, position=[. 1, . 1, . 85, . 95] , thick=3, /noerase ;phase line plot

x=45+.l*[72,82,92,98,101]
y=99+.l*[100,80,80,91,100]
oplot,x,y,position= [. 1, . 1, . 85, . 95] , thick=3, /noerase ; piranha

x=45+.l*[30,35,65,68,4 0,30]
y=99+.l*[77,65,63,84,91,77]
oplot, x, y, position=[. 1, . 1, . 85, . 95] , thick=3, /noerase ; shark

x=45+.l*[71,71,102,102,82,71]
y=99+.l*[60,30,30,4 0,60,60]
oplot,x,y,position=[. 1, . 1, . 85, . 95] , thick=3, /noerase ; cuda

xyouts, 50.2, 99.4, 'PL Victoria'

xyouts,53,102.3, ' EA Cuda'

xyouts, 49, 106.7, ' EA Shark'

xyouts, 52.7, 108.7, 'EA Piranha'

shade_surf , color, az=0,ax=90, position=[.88, .1, .93, .95], shades=color,

$

xstyle=4, ystyle=4, /noerase

axis, position=[.88, .1, .93, .95] , xstyle=4, yaxis=l,yt it le=' Score' , /noerase

PRINT, 'END'
GOTO, LABELZZ

ENDIF
H = H + 1

L = L + 1

GOTO, LABELX

L = L + 1

GOTO, LABELY

LABELZZ:

; RETURN apparently not needed
END

28

TEST_LOS.PRO:

FUNCTION test_LOS, in_xs, in_ys, height_s, in_xt, in_yt, height_t

COMMON BILL, IsntC, BOTLFTXY

Bill Kemple last update 19 July 1993

function to test line of sight (LOS) between a sensor at
(xs,ys), height_s feet above the terrain and a target at
(xt,yt), height_t feet above the terrain.

**

there are several print statements included to help in debugging
if debug is set to 1, they will print, otherwise they will not

debug can be set in the workspace or main program by commenting
the next line out, or here by using it

debug =

modified 12 Jun 93 to add target height (for trps)
need to carry this through

—FROM JANUS (A) 2.0 FASTUP.FOR
Isntc -two dimensional array of grid elevation cell data (nearest foot)
elev -array of terrain elevation data (meters) along

the los projection from sensor to target

20 June 93 changed input files to give 3 digit (1 unit = 100m) coords

our cells are in hundreds of meters, and the indices start
at (0,0), so subtract the smallest grid value.

we want the lower left corners of the cells that our points are in.
the entire cell is assumed to have the same elevation,

converting the coordinates to integer truncates them.

xs = in_xs - 4 50.

ys = in_ys - 990.

xt = in_xt - 4 50.

yt = in_yt - 990.

Ixs = FIX(xs)
Iys = FlX(ys)

Ixt = FlX(xt)
Iyt = FlX(yt)

elev = FLTARR(500) ; array to hold the elevation of cells between
; our points

; ; for bounds check, need min & max values — for now, hard wire them

29

IF (Ixs LT 0) OR (Ixs GT 150) OR (Iys LT 0) OR (Iys GT 100) $

THEN BEGIN
PRINT, 'Bad xs or ys ', xs, ys
RETURN, LOS_FLAG =

ENDIF

IF (Ixt LT 0) OR (Ixt GT 150) OR (Iyt LT 0) OR (Iyt GT 100) $

THEN BEGIN
PRINT, 'Bad xt or yt ', xt, yt
RETURN, LOS_FLAG =

ENDIF

for debugging
IF debug EQ 1 THEN BEGIN

PRINT, 'xs, ys =', xs, ys
PRINT, 'xt, yt =', xt, yt

ENDIF

if the points are in the same cell, LOS exists, and we need go
no farther, if not, start the big loop.

calculate the delta_x and delta_y values and see which is larger,
full unit moves are made in the direction of the larger, and

fractional moves for the smaller.

IF Ixs EQ Ixt AND Iys EQ Iyt THEN BEGIN
RETURN, LOS_FLAG = 1

ENDIF

Idelta_x = ABS(Ixt - Ixs)
Idelta_y = ABS(Iyt - Iys)

for debugging
IF debug EQ 1 THEN BEGIN

PRINT, 'FASTUP CALCULATION:'
PRINT, 'SENSOR xs, ys =', xs, ys
PRINT, 'TARGET xt, yt =', xt, yt
PRINT, 'SENSOR Ixs, Iys =*, Ixs, Iys
PRINT, 'TARGET Ixt, Iyt =', Ixt, Iyt
PRINT, ' '

PRINT, 'Idelta_x, = Idelta_y =', Idelta_x, Idelta_y
ENDIF

start the big loop

Istep =

IF (Idelta_y LT Idelta_x) THEN BEGIN ; —STEP IN X

—

for debugging
IF debug EQ 1 THEN BEGIN

30

PRINT,
PRINT,
PRINT,

ENDIF

STEP IN X-

whole moves will be made in the x direction, see if the target is
left (xt < xs) or right (xs < xt) from the sensor

next, need the fraction to move in the y direction for each whole
increment in the x direction

these increments will be accumulated and only used when they add up
to whole steps

IF (xt LT xs) THEN BEGIN
increment = -1

ENDIF ELSE BEGIN
increment = 1

ENDELSE

y_increment = (yt - ys) / FLOAT (Idelta_x)

y_accumulator = ys

find the elevation for every cell between the sensor and the target
and store them in elev for the LOS test

FOR Ix_cell = Ixs, Ixt, increment DO BEGIN
Iy_cell = FIX(y accumulator)

; ; for debugging
IF debug EQ 1 THEN BEGIN
PRINT, 'Istep, Ix_cell, Iy_cell
ENDIF

=', Istep, Ix cell, Iy cell

elev(Istep) = Isntc(Ix cell,Iy cell)

/; for debugging
IF debug EQ 1 THEN BEGIN

PRINT, 'elev =', elev (Istep)
ENDIF

y_accumulator = y_accumulator + y_increment
Istep = Istep + 1

ENDFOR

ENDIF ELSE BEGIN ; end of step in x, start step in y

— STEP IN Y

—

; for debugging
IF debug EQ 1 THEN BEGIN

31

PRINT,
PRINT,
PRINT,

ENDIF

i STEP IN Y-

**

whole moves will be made in the y direction, see if the target is
down (yt < ys) or up (ys < yt) from the sensor

next, need the fraction to move in the x direction for each whole
increment in the y direction

these increments will be accumulated and only used when they add up
to whole steps

x_accumulator = xs
x_increment = (xt - xs) / FLOAT (Idelta_y)

IF (yt LT ys) THEN BEGIN
increment = -1

ENDIF ELSE BEGIN
increment = 1

ENDELSE

find the elevation for every cell between the sensor and the target
and store them in elev for the LOS test

FOR Iy_cell = Iys, Iyt, increment DO BEGIN
Ix cell = FIX(x accumulator)

; ; for debugging
IF debug EQ 1 THEN BEGIN
PRINT, 'Istep, Ix_cell, Iy_cell
ENDIF

=', Istep, Ix_cell, ly_cell

elev (Istep) = Isntc(Ix cell,Iy cell)

for debugging
IF debug EQ 1 THEN BEGIN

PRINT, 'elev
ENDIF

elev (Istep)

x_accumulator = x_accumulator + x_increment
Istep = Istep +1

ENDFOR
ENDELSE ; end step in y

since Istep started at 0, it now gives the number of cells between

sensor and target, inclusive

32

for debugging
IF debug EQ 1 THEN BEGIN

PRINT, 'Istep =', Istep
PRINT, ' '

PRINT, ' EXIT FASTUP---
ENDIF

—FROM JANUS (A) 2.0 FANLIN.FOR
parameters

height_s -sensor height above ground level (feet)
height_t -target height above ground level (feet)

are added to terrain elevation to give
elevation_s -sensor altitude (feet)
elevation_t -target altitude (feet)

elevation_s = height_s + elev(0)
elevation t = height_t + elev (Istep - 1)

; for debugging
IF debug EQ 1 THEN BEGIN

PRINT, ' '

PRINT, 'elevation_s =
'

, elevation_s
PRINT, 'elevation_t =' , elevation_t
PRINT, ' •

ENDIF

—FROM JANUS (A) 2.0 QRLOS . FOR

LOS_FLAG (0=NO, 1=YES)

—COMPUTE DELTA-Z ALONG LOS LINE
there are Istep cells along the path including the endpoints.

for LOS testing we only use the interior points.

the sensor and the target are treated as being at the lower
valued edge of their cells, so the LOS line starts at the

sensor elevation and makes its entire rise or fall in
Istep - 1 increments.

; for debugging
IF debug EQ 1 THEN BEGIN

PRINT, '
'

PRINT, ' COMPUTE DELTA-Z ALONG LOS LINE '

PRINT, ' '

ENDIF

Inum_LOS_tests = Istep - 2

z_increment = (elevation_t-elevation_s) / FLOAT (Istep - 1)

PRINT, ' QRLOS CALCULATION-

for debugging
IF debug EQ 1 THEN BEGIN

PRINT, ' '

PRINT, 'TARGET CELL =', Istep

33

PRINT, 'SENSOR HEIGHT
PRINT, 'TARGET HEIGHT
PRINT, 'NUM STEPS
PRINT, ' z_increment

ENDIF

=', elevation_s
=', elevation_t
=', Inum_LOS_tests
=', z increment

for every interior point between the sensor and the target, calculate
the elevation of the LOS line and compare it to the terrain elevation

start with the elevation at the sensor and add z_increment for
each step

LOS_line = elevation_s

FOR 1=1, Inum_LOS_tests DO BEGIN
LOS_line = LOS_line + z_increment
elevation = elev(I)

; ; for debugging
IF debug EQ 1 THEN BEGIN

PRINT, 'I, LOS_line, elevation =', I, LOS_line, elevation
ENDIF

**

test to see if LOS exists this far along the LOS line

IF (LOS_line LT elevation) THEN BEGIN ; —NO LOS
RETURN, LOS_FLAG =

ENDIF
ENDFOR ; all points have been tested, all OK, LOS EXISTS

; / for debugging
IF debug EQ 1 THEN BEGIN

PRINT, ' LOS EXISTS!!!!!!
ENDIF

RETURN, LOS_FLAG = 1

END

34

FIND_RANGE.PRO:

FUNCTION find_range, xO, yO, xl, yl

*** **********************

Bill Kemple last update 15 June 1993

function to find the range between two points (a sensor and a target
perhaps.

the units are the same as in the passed parameters

xs = FLOAT (xO)

ys = FLOAT (yO)

xt = FLOAT (xl)

yt = FLOAT (yl)

DIST - SQRT((xt-xs) ~2 + (yt-ys) /v

2)

RETURN, DIST
END

35

WEIGHT_BISQUARE.PRO:

FUNCTION weight_bi square, range, max_range, min_weight

Bill Kemple last update 3 august 1993

bisquare function to find a weight based on the the range
between two points.

the weight starts at w = 1.0 at range = 0.0 and decreases
to w = min_weight at range = max_range

the units for range and max range should be the same

IF range GE max_range THEN BEGIN
w = min_weight

ENDIF ELSE IF range LE . THEN BEGIN
w = 1.0

ENDIF ELSE BEGIN
mr = float (max_range)
r = float (range)
mw = float (min_weight)
w = (1.0 - (1.0 - sqrt(mw)) * (r/mr) A

2) ~2
ENDELSE

RETURN, w
END

36

WEIGHT_EXPONENTIAL.PRO:

FUNCTION weight_exponential, range, max_range, min_weight

Bill Kemple last update 3 August 1993

exponential function to find a weight based on the the range
between two points.

the weight starts at w = 1.0 at range = 0.0 and decreases
to w = niin_weight at range = max_range

the units for range and max range should be the same

IF range GE max_range THEN BEGIN
w = min_weight

ENDIF ELSE IF range LE . THEN BEGIN
w = 1.0

ENDIF ELSE BEGIN
mr = float (max_range)
r = float (range)
mw = float (min_weight)
e_l = 0.367879
one_e_l = 0.632121

a = (mw - e_l) / one_e_l
b = (1 - mw) / one_e_l
w = a + b * exp(-r/mr)

ENDELSE

RETURN, w
END

37

WEIGHT_LINEAR.PRO:

FUNCTION weight_linear, range, max_range, min_weight

Bill Kemple last update 3 august
.993

function to find a weight based on the the range
between two points.

the weight starts at w = 1.0 at range = 0.0 and decreases linearly
to w = min_weight at range = max_range

the units for range and max_range should be the same

IF range GE max_range THEN BEGIN
w = min_weight

ENDIF ELSE IF range LE . THEN BEGIN
w = 1.0

ENDIF ELSE BEGIN
mr = float (max_range)
r = float (range)
mw = float (min_weight)
w = 1.0 - (((1.0-mw) / mr) * r)

ENDELSE

RETURN, w
END

38

ARTY.PRO:

PRO ARTY, color

Bill Kempie last update: 26 november 1993
modified artyOl.pro to build arty. pro

changed the weight for distance from xy to a trp

last setup to run 1 nov 93 -- artynewO
2 nov 93 -- artynew30

this procedure determines the distructive potential DP due to
artillery at each point on the battlefield.

the units are {expected enemy weapons system kills per minute},
the same as in the direct fire DP surface, so the surfaces can be
added to give an overall DP surface (less close air support)

.

factors under the commander's control that determine the surface
are:

locations of the artillery firing units (FUs)
locations of people who would call fire (FOs)

locations of the target reference points (TRPs)
locations of the obstacles (OBSTs)

**

several print commands have been inserted for debugging, to
invoke them, set debug to 1

the function test__LOS can be skipped by setting no_test_LOS = 1

the function find_range can be skipped by setting no_find_range = 1

debug gives more output than the buffer can handle, so i'll
use debug2 for finding fos

debug3 is used to test the traf ficability routine

debug =

debugl =

no_test_LOS =

no_find_range =

debug2 =

debug3 =

18 Jul 93 - to see how long this guy takes
dl goes here
d2 goes at the end
diff is the elapsed time

dl = today ()

the analysis proceeds as follows:

the terrain elevation data is brought into the current

39

workspace from the Isntc file using the RESTORE command.

since the Isntc entries are just elevations, xy
coordinates that correspond to them are generated using a

routine copied from putpic.pro

a real array the same size as Isntc is created to hold the
artillery DP surface value at each point, xy.

data files are read in and arrays and tables are
constructed

the arty DP value is calculated for each point on the
battlefield,

the surface generated by these values is written to 'outfile'.
it can be written as a PostScript file or displayed
using the procedure artydraw.pro

**

several user defined functions are used, if the program goes too
slow, the code can replace the calls, the functions are:

find_range (xO, yO, xl, yl)
determines the range between two points,

test_LOS (Isnt c, xO,yO, height 0,xl,yl, height 1)

adapted from Janus (A)

tests for LOS between two points, with the observer at
(xO,yO), heightO (feet) above the terrain (Isntc), and the
target at (xl,yl), heightl above the terrain.

trafficability (x,y,s)
returns trafficability (s) at (x,y) that may or may not be

due to an obstacle.
NOTE: no terrain data with traf ficability is available at this
time, so the traf ficability is the min of traf ficability_max or
the min value assoviated with an obsticle in this cell. The
procedure trafficability nis not use at this time.

weight_bi square (distance, max_distance, min_weight)
a bisquare weight multiplier

starts at 1.0 at distance = 0.0,
and decreases to min_weight at distance = max_distance,

weight_linear (distance, max_distance, min_weight)
a linear decreasing weight multiplier

starts at 1.0 at distance = 0.0,
and decreases to min_weight at distance = max_distance,

weight_exponential (distance, max_distance, min_weight)
an exponentially decreasing weight multiplier

starts at 1.0 at distance =0.0,
and decreases to min_weight at distance = max_distance.

a description of each function is given in its preamble.

40

**

the first step is to bring the terrain data into the current
workspace using the RESTORE command, we are currently

using a portion of the NTC in the variable Isntc, which
was SAVED into the file 'bill.dat' all Isntc has are the

elevations (feet) for each 100m x 100m cell

COMMON bill, Isntc, botlftxy

RESTORE, filename = 'bill.dat'

**

some initial values that may want to be read in at a later time:

cellsize -

the size of a terrain cell.
the elevation data contains one number per cell
often a cell is 100m x 100m
elevation and traf ficability are assumed constant throughout a cell
coordinates for weapons systems, trps, etc are given in these units
e.g. when cellsize = 100,

a trp at 551 1200 and a tank at 552 1200 are 100m apart

perfect -

the one round fire-for-ef feet probability of killing an armored
vehicle if everything is ideal

the DP at xy starts out at perfect if any FO has LOS to xy
OTHERWISE, THE DP AT XY IS 0.0

fo_max_range -

if any FO has LOS to xy, the nearest such is the designated FO.

the starting DP (perfect) is reduced by a multiplicative weight that
gets smaller as the distance from the designated FO
to xy gets greater, this continues until the distance equals
fo_max_range . a designated FO farther than this only contributes
min_weight

trp_max_range -

TRPs only contribute to the DP at xy if there is one within distance
trp_max_range of xy that can also be seen by the designated FO. in
this case, the TRP multiplier decreases linearly from 1.0 to
min_trp_weight

traf ficability_max -

the open terrain speed of armored vehicles unimpeded by obstacles

min_fo_wt -

the smallest multiplier (weight) for an FO that has LOS to the target

min_trp_wt -

the multiplier used when nearest TRP the FO has LOS to is more than
trp_max_range

min_traff_wt -

the multiplier used when the traf ficability at xy is greater or equal
to traf ficability_max

41

firingrate - the max sustained rart of fire for the firing units
in volleys per minute, for now, 3 at start of battle, 1.5 at end
to reflect arty at deminished capacity due to counter battery fires

cellsize = 100.

perfect =0.9
fo_max_range = 6000.0
trp_max_range = 2000.0
traf ficability_max = 35.0
min_fo_wt = 0.3
min_trp_wt = 0.65
min_traff_wt = 0.35
firingrate = 3.0

outfile = ' artynew30 . srf

'

**

now we create a floating point array the same size as Isntc to
hold the artillery DP surface value at each point, xy.

since Isntc is an integer array, we use its dimensions explicitly
to create a floating point array

surface_size = SIZE (Isntc)
DPcols = surface_size (1)

DProws = surface__size (2)

artysurf = MAKE ARRAY (DPcols, DProws, /Float)

**

next we want to create x and y coordinate values that match up
with the elevation data in Isntc

copied from putpic.pro.
botlftxy is: 45, 99

this creates an x_coord vector: 45, 45.1,..., 60 (151 values)
and a y_coord vector: 99, 99.1,..., 109 (101 values)

x_coord = botlftxy (0) + . l*indgen (151)
y_coord - botlftxy (1) +. l*indgen (101)

**
the next step is to read in the data and create some arrays
or tables.

our terrain is in 100m cells, so the data in the input files
must have 3 digit coordinates (1 unit = 100m)

the data files and the structures are:

fu.dat
gives the type and battery center for each arty btry.

read into one dimensional arrays and

42

stored in FU_TBL

fo.dat
gives the type, location, and height for each observer

read into one dimensional arrays and
stored in FO_TBL

trp.dat
gives the type, location, and height for each TRP

read into one dimensional arrays and
stored in TRP_TBL

obstacle.dat
gives the type, location (x and y of lower left corner) and

traf ficability (speed) for each cell that is in an obstacle
read into one dimensional arrays and

Stored in OBST_TBL

also, the values in FO_TBL and TRP_TBL are used to compute the
array FO_TRP, which gives the LOS information between each FO
and each TRP

**

a similar procedure is used for each of the input files:

first, create arrays with more rows than will be in the file

then, read in the data and resize the arrays so they have
as many rows as there were in the file.

next, create arrays for any working variables

next, build the table - working variables are add to the right
as the need for them surfaces.

finally, get the number of records (rows) in the table

**

start with the firing unit info

fu_reaches_xy is a working variable

fu_type = INTARR(20)
fu_x = FLTARR(20)
fu_y = FLTARR(20)
fu_max_range = FLTARR(20)

status = DC_READ_FREECfu.dat', $

fu_type, fu_x, fu_y, fu_max_range, $

Resize = [1,2,3,4], /Col)

fu_int = SIZE (fu_type)
fu_reaches_xy = MAKE_ARRAY (Size = fu_int)

FU_TBL = BUILD_TABLE('fu_type, fu_x, fu_y, ' +$
1 fu_max_range, fu_reaches_xy '

)

num FU = N Elements (FU TBL)

43

col is type
col 1 is x coord
col 2 is y coord
col 3 is max range (meters) for this type arty
col 4 is reach, a boolian evaluated at each point xy on the

battlefield, if this fu can reach xy, it's a 1, ow a

; for debugging
IF debug EQ 1 THEN BEGIN
FOR i = 0, num_FU -1 DO BEGIN

PRINT, FU_TBL(i)
ENDFOR

PRINT, 'number of firing units, num_FU ', num_FU

;; print, 'firing units fu_type, fu_x, fu_y ', fu_type, fu_x, fu_y
;; print, 'firing units fu_type, fu_x, fu_y ', FU

ENDIF

**
next, read in the observer info

observers are people who would call artillery during a

battle, leaders, forward observers, etc. they are
identified and listed in a file like fo.dat before this

procedure is run.

fo_index is a working variable used to point back into this
table

fo_rangeto_xy is a working variable, as we evaluate DP at point
xy on the battlefield, the distance from xy to fo(i) is

temporarily stored there.

fo_sees_xy is a working variable, set to 1 if fo(i) can see xy,
set to if he cannot.

fo_type = INTARR(IOO)
fO x = FLTARR(IOO)
fo_y = FLTARR(IOO)
fo_height = FLTARR(IOO)

status = DC_READ_FREECbluldr_30.dat', fo_type, fo_x, fo_y,
fo_height, $ Resize = [1,2,3,4], /Col)

fo_float_size = SIZE(fo_x)
fo_int_size = SIZE (fo_type)

fo_index = MAKE_ARRAY (Size = fo_int_size)
fo_rangeto_xy = MAKE_ARRAY (Size = fo_float_size)
fo_sees_xy = MAKE_ARRAY (Size = fo_int_size)

FO_TBL = BUILD_TABLE('fo_type, fo_x, fo_y, fo_height, ' +$
' fo_index, fo_rangeto_xy, fo_sees_xy')

num_FO = N_Elements (FO_TBL)

44

FO TBL.fo index = INDGEN(num FO)

col is type
col 1 is x coord
col 2 is y coord
col 3 is height above terrain for this fo
col 4 is range from this fo to xy. reevaluated at each point xy on

the battlefield,
col 5 reflects LOS from this fo to xy.

reevaluated at each point on the battlefield.
if this fo can see xy, it's a 1, ow a

for debugging
IF debug EQ 1 THEN BEGIN

FOR i = 0, num_FO -1 DO BEGIN
PRINT, FO_TBL(i)

ENDFOR

print, 'number of observers, num_FO ', num_FO

print, 'observers fo_type, fo_x, fo_y ', FO
print, 'observers fo_type, fo_x, fo_y ', fo_type, fo_x, fo_y

ENDIF

; ; for debugging
IF debugl EQ 1 THEN BEGIN

PRINT, ' fos read in'

print, 'number of observers, num_FO ', num_FO

ENDIF

**

read in the target reference point info

trp_type = INTARR(IOO)
trp_x = FLTARR(IOO)
trp_y = FLTARR(IOO)
trp_height = INTARR(IOO)

Status = DC_READ_FREECtrp.dat', $

trp_type, trp_x, trp_y, trp_height, $

Resize = [1,2,3,4], /Col)

trp_int = SIZE (trp_type)
trp_float = SIZE(trp_x)

trp_index = MAKE_ARRAY (Size = trp_int)
trp_rangeto_xy = MAKE_ARRAY (Size = trp_float)

45

TRP_TBL = BUILD_TABLE('trp_type, trp_x, trp_y, ' +$
'trp_height, trp_index, trp_rangeto_xy '

)

num_TRP = N_Elements (TRP_TBL)

TRP_TBL. trp_index = INDGEN (num_TRP)

; ; for debugging
IF debug EQ 1 THEN BEGIN

FOR i = 0, num_TRP -1 DO BEGIN
PRINT, TRP_TBL(i)

ENDFOR
print, 'number of trps, num_TRP ', num_TRP

ENDIF

;; print, 'trps: type, x, y, height *, $

/; trp_type, trp_x, trp_y, trp_height

; ; for debugging
IF debugl EQ 1 THEN BEGIN

PRINT, "trps read in'

print, 'number of trps, num_TRP ', num_TRP

ENDIF

**

read in the obstacle info
the x and y values give the lower left corner of a cell

obstacle cell size is the same as for elevation
the entire cell is assumed to be in the obstacle

obstacle_type = INTARR(IOO)
obstacle_x = INTARR(IOO)
obstacle_y = INTARR(IOO)
obst_traf = FLTARR(IOO)

status = DC_READ_FREECobstacle.dat', $

obstacle_type, obstacle_x, obstacle_y, $

obst_traf, $

Resize = [1,2,3,4], /Col)

OBST_TBL = BUILD_TABLE('obstacle_type, obstacle_x, ' +$
' obstacle_y, obst_traf)

num_OBST = N_Elements (OBST_TBL)
/

—

—

— —~~ — — ~~ — — ~~* — ~ — ~~ — ~ — — — — — — — — — — — — — — —. — —_______ MMw—xaaMMtaBaaaa

; ; for debugging
IF debug EQ 1 THEN BEGIN

FOR i = 0, num_OBST -1 DO BEGIN
PRINT, OBST_TBL(i)

ENDFOR
print, 'number of obstacles, num_OBST *, num_OBST

ENDIF

46

/ ; for debugging
IF debugl EQ 1 THEN BEGIN

PRINT, 'obst read in'
print, 'number of obstacles, num__OBST ', num_OBST

ENDIF

numJDBST = N_Elements (obstacle_x)
print, * obs : type, x, y, s ', obstacle_type, obstacle_x, $

obstacle_jy, obst_traf

**

next we want to create a FO x TRP matrix (2-d array FO_TRP)

.

there is one row for each FO and one column for each TRP.
if trp(j) can be seen by fo(i), the (j,i) entry is 1

if not, the entry is a 0.

create the array, establish loop bounds, and go

FO_TRP = INTARR(num_TRP, num_FO)

fo_loop = num_FO - 1

trp_loop = num_TRP - 1

FOR i = 0, fo_loop DO BEGIN
FOR j = 0, trp_loop DO BEGIN

/
————————————

; ; for debugging
IF no_test_LOS EQ 1 THEN BEGIN

FO_TRP
(j , i) =1

ENDIF ELSE BEGIN
FO_TRP(j,i) = test_LOS (FO_TBL(i) . fo_x, FO_TBL (i) . fo_y, $

FO_TBL(i) .fo_height, TRP_TBL
(j) . trp_x, $

TRP_TBL(j) . trp_y, TRP_TBL
(j) .trp_height)

ENDELSE

ENDFOR ; end of trp loop (j)

ENDFOR ; end of fo loop (i)

,
_

_

- —

—

_ — — — — — -

; ; for debugging
IF debug EQ 1 THEN BEGIN

FOR i = 0, fo_loop DO BEGIN
FOR j = 0, trp_locp DO BEGIN

PRINT, i, j, FO_TRP(j,i)
ENDFOR

ENDFOR
ENDIF

IF debugl EQ 1 THEN BEGIN
PRINT, 'fo_trp table done 1

ENDIF

**

47

now we walk across the terrain, grid-by-grid, at each cell, we check
to see which firing units can hit us.

if any can, we see which FOs have LOS to us. the closest is the
designated FO for this xy.

the closest TRP to xy that the designated FO can see is determined,
if it is within trp_max_range of xy, there is a TRP contribution
if not, min_trp_wt is used.

19 jul — to speed things up
FOR x = 465, 470 DO BEGIN

FOR y = 1030, 1035 DO BEGIN

FOR x = 450, 600 DO BEGIN
FOR y = 990, 1090 DO BEGIN

for debugging
IF debugl EQ 1 THEN BEGIN

PRINT, 'starting terrain walk 1

print, 'x = ' , x

print, 'y - ', y
END IF

the routine to determine which;;, if any, FUs can reach xy, and
multiplies their firing rate;;s into DP at xy, goes here

; ; for now, we assume
; ; all FUs can reach all xy

that Pmax for all arty types is .9

FU_TBL. fu_reaches_xy = FU_TBL. fu_reaches_xy *

FU_TBL. fu_reaches_xy = FU_TBL. fu_reaches_xy + 1

num_FU_that_reach_xy = TOTAL (FU_TBL. fu_reaches_xy)

E_kills_max = num_FU_that_reach_xy * firingrate * „9

/
— ~ ~ —— — ________.__—_____—____— _ _ _ _ ___ __ _______________ _._—. —___—

; ; for debugging
IF debug2 EQ 1 THEN BEGIN

PRINT, 'E_kills_max = ' , E_kills_max
ENDIF

**

1) find the range from xy to each FO
2) sort them
3) starting with the closest, test LOS
4) if any FOs have it,

a. nearest with LOS is the designated FO.
b. his row number in FO_TBL is read from the first element

of the index column of the new table "close_FOs"
c. the distance from xy to the nearest TRP that the designated FO

can see is determined
d. the traf ficability is determined

48

e. DPxy is calculated
5) otherwise, DPxy = 0.

1) find the range from xy to each FO ...

FOR i = 0, num_FO -1 DO BEGIN
fox = FO_TBL(i) . fo_x
foy = FO_TBL(i) .fo_y

FO_TBL (i) . fo_rangeto_xy = find_range (fox, foy, x, y) * cellsize
ENDFOR

,
— — — —

—

— — — — _______

; ; for debugging
IF debug2 EQ 1 THEN BEGIN

FOR i = 0, N_ElementS (FO_TBL) -1 DO BEGIN
PRINT, FO_TBL(i) . fo_rangeto_xy

ENDFOR
ENDIF

• _______________

; 2) sort them . .

.

close_FOs = QUERY_TABLE (FOJTBL, $
1 * Order By fo_rangeto_xy '

)

num_close_FOs = N_Elements (close_FOs)

; for debugging
(2) ...

s = SIZE (close_FOs)
IF s(0) EQ THEN BEGIN ; no FOs

PRINT, 'for some reason, no FOs in sorted table'
ENDIF

for debugging
IF debug2 EQ 1 THEN BEGIN

PRINT, 'testing LOS, FOs to xy'

FOR i = 0, N_Elements (close_FOs) -1 DO BEGIN
PRINT, close_FOs(i)

ENDFOR
ENDIF

3) starting with the closest, test LOS . .

.

i -
desig_FO_flag =

WHILE (desig_FO_flag EQ 0) AND (i LE num_close_FOs -1) DO BEGIN
desig_FO_flag = test_LOS (close_FOs (i) . fo_x, close_FOs (i) . fo_y, $

close_FOs (i) . fo_height, x, y, 0.0)

IF desig_FO_flag EQ 1 THEN $; LOS exists
designated_FO_row = close_FOs (i) . fo_index

i - i + 1

ENDWHILE
i = ; just in case

49

4) if any have it ...

4. a) nearest with LOS is the designated FO . .

.

4.b) his row number in FO_TBL is read from the first element
of the index column of the new table "close FOs"

IF desig_FO_flag EQ 1 THEN BEGIN ; (4) LOS exists range_fo_xy =

FO_TBL (designated_FO_row) . fo_rangeto_xy

**

<<move on to testing TRPs>>
«this endif will be a long way down>>

4.c) the TRP weight is determined ...

i. determine if there are TRPs close enough to adjust
fire at xy

(i.l) determine the range from xy to each trp

(i.2) extract the info for any TRP that is close enough to use
for adjusting fire at xy, and

(i.3) make sure there is at least one.

(i.3.a) check if any can be seen by the designated FO. if any
can, the closest to xy will be identified first,
its range to xy is used to determine the TRP weight

ii. otherwise, (none close enough, or none can be seen)
the range_trp_xy is set to trp_max_range so the
TRP weight will be min_trp_wt

(i.l) determine the range from xy to each trp ...

FOR i = 0, num_TRP -1 DO BEGIN
trpx = TRP_TBL(i) .trp_x
trpy = TRP_TBL(i) .trp_y
TRP_TBL (i) . trp_rangeto_xy = find_range (trpx, trpy, x, y) $

* cellsize
ENDFOR

/
~ — — — — — — — — — — — — — — — — _ ————————————————— — — —________________——————__________

for debugging
IF debug2 EQ 1 THEN BEGIN

FOR i = 0, N_Elements (TRP_TBL) -1 DO BEGIN
PRINT, TRP_TBL(i) . trp_rangeto_xy

ENDFOR
ENDIF

• _________ _ __________ ________________________________
f

(i.2) extract the info for any TRP that is close enough ...

pOtentialJTRPs = QUERY_TABLE (TRP_TBL, $
1 * WHERE trp_rangeto_xy LE trp_max_range ' + $
' Order By trp rangeto xy '

)

for debugging
IF debug2 EQ 1 THEN BEGIN

PRINT, 'testing range, TRPs to xy'
FOR i = 0, N_Elements (potent ialJTRPs) -1 DO BEGIN

50

PRINT, potential_TRPs (i)

ENDFOR
ENDIF

(i.3) make sure there is at least one

s = SIZE (potential TRPs)

for debugging
IF debug2 EQ 1 THEN BEGIN

PRINT, ' s = ', s

ENDIF

IF s(0) GT THEN BEGIN ;(i.3) TRPs are close enough

(i.3. a) check if any can be seen by the designated FO ...

ITRP =

NTRIALS = N_Elements (potential_TRPs)
FOUND_TRP_FLAG =

WHILE ((ITRP LT NTRIALS) AND (FOUND_TRP_FLAG EQ 0)) DO BEGIN
trp_col = potential_TRPs (ITRP) . trp_index
fo_row = designated_FO_row
LOS_fo_trp = FO_TRP (trp_col, fo_row)

IF (LOS_fo_trp GT 0) THEN BEGIN ; fo can see trp
FOUND_TRP_FLAG = 1

range_trp_xy = TRP_TBL (trp_col) . trp_rangeto_xy
ENDIF

ITRP = ITRP + 1

ENDWHILE ; a good trp found or all trps have been tried

ITRP = ; just in case

; 1 nov 93 above mod'd to use linear wt with trps vs cookie cutter.

; below commented
IF FOUND_TRP_FLAG EQ 1 THEN BEGIN ; f O can see trp

TRP_wt =1.0
ENDIF ELSE BEGIN ; end fo can see trp

; start trp close enough, but can't be seen
TRP_wt = min_trp_wt

ENDELSE

ii. otherwise, (none close enough, or none can be seen)
range_trp_xy is set to trp_max_range, causing the
TRP_weight to be min_trp_wt . .

.

ENDIF ELSE BEGIN ; end (i.3) TRPs are close enough
; start no trps work

range_trp_xy = trp_max_range

ENDELSE ; end no trps work

51

**

(4.d) the traf ficability at xy is determined, (if there is more than
one obstacle in the cell, the smallest traf ficability is used)

(4.e) the DP due to arty at xy is calculated

for debugging
IF debug3 EQ 1 THEN BEGIN

PRINT, 'x = ",x, ' y = ' ,y
PRINT, 'getting ready to query obst_tbl

'

ENDIF

20 sep 93... according to pv-wave, the query_table function in this
version of wave has bugs and is probably the cause of my

problems, so i'm going to code around it for obstacles

temp_OBST = QUERY_TABLE (OBST_TBL, $

' * WHERE (obstacle_x EQ x) AND (obstacle_y EQ y) '

)

new for debugging
IF debug3 EQ 1 THEN BEGIN

PRINT, 'one 1

ENDIF

IF (x GE 468) AND (y GE 1032) THEN BEGIN
s = SIZE(temp_OBST)

PRINT, 'size temp_OBST = ',s(0)
ENDIF

s = SIZE(temp_OBST)
IF s(0) EQ THEN BEGIN no obstacles

new for debugging
IF debug3 EQ 1 THEN BEGIN

PRINT, 'two'
ENDIF

traf_xy = traf ficability_max

for debugging
IF debug3 EQ 1 THEN BEGIN

PRINT, 'traf_xy = ',traf_xy
ENDIF

ENDIF ELSE BEGIN ;end no obs,
; start obstacle (s) exists

xy_OBST = QUERY_TABLE(temp_OBST, $

' * Order By obst traf)

new for debugging
IF debug3 EQ 1 THEN BEGIN

PRINT, 'three'

52

END IF

traf_xy = xy OBST (0) . obst traf

for debugging
IF debug3 EQ 1 THEN BEGIN

PRINT, 'traf_xy = ' ,traf_xy
END IF

ENDELSE ;end obstacle (s) exists
; traf ficability found

20 sep 93 the new stuff starts here

temp_obst_traf =

FOR i = 0, num_OBST -1 DO BEGIN

temp_x = OBST_TBL(i) .obstacle_x
temp_y = OBST_TBL (i) . obstacle_y

IF (temp_x EQ x) AND <temp_y EQ y) THEN BEGIN
IF temp_obst_traf EQ THEN BEGIN /first obs this xy

temp_obst_traf = OBST_TBL (i) . obst_traf
ENDIF ELSE BEGIN /several obs this xy

; find worst
IF OBST_TBL(i) .obst_traf LT temp_obst_traf THEN BEGIN

temp_obst_traf = OBST_TBL (i) . obst_traf
ENDIF

ENDELSE
ENDIF

ENDFOR

IF temp_obst_traf EQ THEN BEGIN ; no obs
traf_xy = traf ficability_max

ENDIF ELSE BEGIN ; obstacle (s) exists
traf_xy = temp_obst_traf

ENDELSE

4.e)

artysurf (x-450,y-990) = E_kills_max $

* weight_bisquare (range_fo_xy, fo_max_range, min_fo_wt) $

* weight_linear (range_trp_xy, trp_max_range, min_trp_wt) $

weight_exponential (traf_xy, traf f icability_max, min_traf f_wt)*

53

for debug
IF debug3 EQ 1 THEN BEGIN
PRINT, 'x y artysurf = ',x, ' ',y, ' ' , artysurf (x-450,y-990)
ENDIF

5) ...

ENDIF ELSE BEGIN ;end (4) LOS exists, start doesn't
artysurf (x-450, y-990) = 0.0 ; can ' t shoot here

ENDELSE ;end LOS doesn't exist

ENDFOR ; end of x loop
ENDFOR ; end of y loop
**
write a file that contains the DP surface values,

accept the pv-wave default orientation (row)

status = DC_WRITE_FREE (out file, artysurf)

d2 = today ()

diff = dt_duration(dl,d2)
print, dl
print, d2
print, diff

RETURN
END

54

ARTYDRAW.PRO:

PRO ARTYDRAW

**
Bill Kemple

last update: 22 nov 1993

last setup 22 nov 93 -- artynewO.srf --> artynew0.eps

A MODIFICATION TO PUTPIC PRO
draws either screen images, postscript files for printing,

or encapsulated postscript files for inclusion in other
software

the color bar on the right is a pain in the . .

.

it has been set to scale itself the same as the surface,
but it doesn't behave exactly the same.

**

we need to get the data in first,
this procedure assumes that:

the terrain has been SAVEd in "terrainfile" and
it is already an array named "isntc"

of the proper dimensions -- xcols by yrows

the potential surface is in "surfacefile" and
it was written with dc_write_f ree row oriented (default)

**

we are going to put most of the things that are terrain or
situation specific here, if this procedure is to be called
from another program, we may want them in common or in the
call line, but, we can always just edit this before running
the program that calls it.

terrainfile = 'bill.dat'
title = 'Arty Surface at Time=0'
surfacefile = 'artyO.srf
xcols = 151
yrows = 101
outfile = 'arty0.eps'

**

if we want to restore variables into a common, declare it here

RESTORE, filename = terrainfile

surf = fltarr (xcols, yrows)

status=dc_read_f ree (surfacefile, surf)
**

in order to draw axes whose tic marks match the grid
coordinates of the terrain, we need to generate coord vectors
for example, if the lower left corner,

botlftxy is: 45, 99, xcols = 151, and yrows = 101,

55

this creates an x_coord vector: 45, 45.1,..., 60 (151 values)
and a y_coord vector: 99, 99.1,..., 109 (101 values)

x_coord = botlftxy (0) +. l*indgen (xcols)
y_coord = botlftxy (1) +. l*indgen (yrows)

the following two lines set the position on the screen of the
plot and determine the color table

no =

LOADCT, 5

these two let me bring in a color table that i created with the
color_edit function, to use one of the library tables, uncomment

the loadct line above and put in the numbe you want

restore, 'bkrgb'
tvlct, r, g, b

**

IT SEEMS THAT WE CAN EITHER WRITE A PS FILE OR DRAW A SCREEN
IMAGE, BUT NOT BOTH... ONE SET OF THE FOLLOWING NEEDS TO BE
COMMENTED OUT

**

use the first two lines that follow if you want a postscript file,
the first and the third if you want it encapsulated

SET_PLOT, 'PS'

DEVICE, /Color, Filename = outfile

DEVICE, /Encapsulated, /Color, Filename = outfile

**

use the following lines if you want to draw a screen image
— — — —_______ __ _ ______ ____

^

window, no MOD 2,xsize=776,ysize=440, xpos=50+50* (no MOD 2),$
ypos=30+300* (no MOD 2)

**
the following lines draw the colored potential surface
— note that the xrange and yrange are terrain specific

we may want to save them with the terrain

shade_surf, surf, x_coord, y_coord, az=0, ax=90, $

position= [. 1, . 1, . 85, . 95] , zaxis=-l, shade=bytscl (surf)

,

$

xtitle='KiloMeters
' , ytitle- 1 KiloMeters ' , /save, $

xrange=[45, 60] , yrange= [99 . , 109 .] , ystyle=l

zaxis=-l,xtitle=' KiloMeters' ,

$

**
the following lines draw a contour plot of the terrain
again, the xrange and yrange are terrain specific

we may want to save them with the terrain

56

contour, isntc, x_coord, y_coord, nlevels=25, $

position= [. 1, . 1, . 85, . 95] , /noerase, $

title=title, xrange=[4 5, 60] ,yrange=[99, 109] ,
ystyle=l

**

the following lines add the control measures to the contour plot
they are all terrain and operation specific, we may want to
just replace them with text developed in an editor when needed.

x=45+.l*[50,0,18]
y=99+.l*[0,80,100]
oplot, x,y,position= [. 1, . 1, . 85, . 95] , thick=3, /noerase /phase line plot
x=45+.l*[80,150]
y=99+.l*[0,60]
oplot, x, y, position=[. 1, . 1, . 85, . 95] , thick=3, /noerase /phase line plot

x=45+.l*[72,82,92,98,101]
y=99+.l*[100,80,80,91,100]
oplot, x, y, position= [. 1, . 1, . 85, . 95] , thick=3, /noerase / piranha

x=45+.l*[30,35,65,68,4 0,30]
y=99+.l*[77,65,63,84,91,77]
oplot, x,y, position= [. 1, . 1, . 85, . 95] , thick=3, /noerase / shark

x=45+.l*[71,71,102. 102,82,71]
y=99+ L*[60,30,30,40,60,60]
oplot, x, y, position= [. 1, . 1, . 85, . 95] , thick=3, /noerase / cuda

xyouts, 50.2, 99.4, 'PL Victoria 1

xyouts,53,102.3, ' EA Cuda'

xyouts, 49, 106.7, ' EA Shark 1

xyouts, 52.7, 108.7, 'EA Piranha'
**

the following lines add a color bar to the right of the plot

the colors should match up with the the surface, but it's not

perfect

topval = fix (max (surf)) + 1

color=intarr (2, topval)
color (0, *) =indgen (topval)

color (1, *) =indgen (topval)

shade_surf, color, az=0, ax=90, position= [. 88, . 1, . 93, . 95] , $

shades=bytscl (color) , xstyle=4, ystyle=4, /noerase

axis, position= [.88, .1, .93, .95] ,xstyle=4, $

yaxis=l, yrange = [0, topval], ytitle= ' Score ', /noerase

DEVICE, /Close_File

57

END
**

A displayed image can be stored in a Wave variable, and then quickly
redisplayed.
For a window in a given position, the full picture goes from (0,0) to
(x,y) = (max X, max Y) - 1 . With the image displayed, it is put into
variable image by

image=tvrd (0, 0, x, y)

.

With a window located at the same place, the image is displayed with
tv, image

Window in putpic is restored with window, no, xpos=50,ypos=30,

$

xsize=77 6,ysize=44
If image captured the previous display, it is then redisplayed with
above command: tv, image

To save such an image to file, use the save command:
save, image, xpos, ypos, xsize, ysize, filename=' name 1

, /verbose

It can then be recovered later by restore, ' name ', /verbose
**

58

ARTYDRAW2.PRO:

PRO ARTYDRAW2

**
Bill Kemple

last update: 26 nov 1993

last setup 26 nov 93 — artynewO.srf and artynew90 . srf
--> artynew90.eps

; A MODIFICATION TO ARTYDRAW PRO

reads in both a basecase surface file and the surface file of
interest, the basecase file is used to control the colors.

draws either screen images, postscript files for printing
or encapsulated postscript files for inclusion in other
software

the color bar on the right is a pain in the . .

.

it has been set to scale itself the same as the surface,
but it doesn't behave exactly the same.

**

we need to get the data in first,
this procedure assumes that:

the terrain has been SAVEd in "terrainfile" and
it is already an array named "isntc"

of the proper dimensions -- xcols by yrows

the potential surface is in "surfacefile" and
it was written with dc_write_f ree row oriented (default)

the basecase surface is in "basefile", written the same way

**

we are going to put most of the things that are terrain or
situation specific here, if this procedure is to be called
from another program, we may want them in common or in the
call line, but, we can always just edit this before running
the program that calls it.

the no= variable is the window number for the surfacefile
artydraw puts the base surface in window 0, so use different
numbers here for each different window you want to display
simultaneously.

terrainfile = 'bill.dat'
title = 'Arty Surface at Time=90*
surfacefile = ' artynew90 . srf

'

basefile = 'artynewO.srf
xcols = 151
yrows = 101
outfile = 'artynew90.eps'
no = 1

59

**

if we want to restore variables into a common, declare it here

RESTORE, filename = terrainfile

surf = fltarr (xcols, yrows)

base = fltarr (xcols, yrows)

status=dc_read_f ree (surfacefile, surf)

status=dc_read_free (basefile, base)

topval = fix (max (base)) + 1

**

in order to draw axes whose tic marks match the grid
coordinates of the terrain, we need to generate coord vectors
for example, if the lower left corner,

botlftxy is: 45, 99, xcols = 151, and yrows = 101,
this creates an x_coord vector: 45, 45.1,... ,60 (151 values)
and a y_coord vector: 99, 99.1,... ,109 (101 values)

x_coord = botlftxy (0) + . l*indgen (xcols)
y_coord = botlftxy (1) +. l*indgen (yrows)

**

the following line determines the color table

LOADCT, 5

these two let me bring in a color table that i created with the
color_edit function, to use one of the library tables, uncomment

the loadct line above and put in the numbe you want

restore, 'bkrgb 1

tvlct, r, g, b
**

IT SEEMS THAT WE CAN EITHER WRITE A PS FILE OR DRAW A SCREEN
IMAGE, BUT NOT BOTH... ONE SET OF THE FOLLOWING NEEDS TO BE
COMMENTED OUT

**

use the first two lines that follow if you want a postscript file,
the first and the third if you want it encapsulated

SET_PLOT, 'PS'

DEVICE, /Color, Filename = outfile

DEVICE, /Encapsulated, /Color, Filename = outfile

**
use the following lines if you want to draw a screen image

60

window, no,xsize=776,ysize=440,xpos=50+50* (no MOD 2),$
ypos=30+300* (no MOD 2)

**

the following lines draw the colored potential surface
— note that the xrange and yrange are terrain specific

we may want to save them with the terrain

shade_surf, surf, x_coord, y_coord, az=0, ax=90,
position=[.1,.1,.85,.95], zaxis=-l,
shade=bytscl (surf ,min=0,max=topval) ,

xtitle=' KiloMeters ' , ytitle=' KiloMeters
' , /save,

xrange=[45, 60] , yrange= [99 . , 109 .] , ystyle=l

zaxis=-l, xtitle=' KiloMeters
' ,

$

**

the following lines draw a contour plot of the terrain
again, the xrange and yrange are terrain specific

we may want to save them with the terrain

contour, isntc, x_coord, y_coord, nlevels=25, $

position= [. 1, . 1, . 85, . 95] , /noerase, $

title=title, xrange=[45, 60] ,yrange=[99, 109] ,ystyle=l

**

the following lines add the control measures to the contour plot
they are all terrain and operation specific, we may want to
just replace them with text developed in an editor when needed.

x=45+.l*[50,0,18]
y=99+.l*[0,80,100]
oplot,x,y,position=[. 1, . 1, . 85, . 95] , thick=3, /noerase ;phase line plot
x=45+.l*[80,150]
y=99+.l*[0,60]
oplot,x,y,position=[. 1, . 1, . 85, . 95] , thick=3, /noerase /phase line plot

x=45+.l* [72,82,92,98,101]
y=99+.l*[100,80,80,91,100]
oplot,x,y, posit ion= [.1, .1, .85, . 95] , thick=3, /noerase piranha

x=45+.l*[30,35,65,68,40,30]
y=99+.l*[77,65,63,84,91,77]
oplot,x,y, posit ion=[.1, .1, .85, .95] , thick=3, /noerase shark

x=45+.l*[71,71,102,102,82,71]
y=99+.l*[60,30,30,40,60,60]
oplot,x,y,position=[.1, .1, .85, .95] , thick=3, /noerase cuda

xyouts,50.2,99.4, 'PL Victoria 1

xyouts,53,102.3, ' EA Cuda'

61

xyouts, 49, 106.7, 'EA Shark 1

xyouts, 52.7, 108.7, 'EA Piranha 1

**

the following lines add a color bar to the right of the plot
the colors should match up with the the surface, but it's not

perfect

color=intarr (2, topval)
color (0, *) =indgen (topval)

color (1, *) =indgen (topval)

shade_surf, color, az=0, ax=90, position= [. 88, . 1, . 93, . 95] , $

shades=bytscl (color) , xstyle=4, ystyle=4, /noerase

axis, position= [.88, .1, .93, .95] ,xstyle=4, $

yaxis=l, yrange = [0, topval], ytitle=' Score 1

, /noerase

DEVICE, /Close_File

END
**

A displayed image can be stored in a Wave variable, and then quickly
redisplayed.
For a window in a given position, the full picture goes from (0,0) to
(x,y) = (max X, max Y) - 1. With the image displayed, it is put into
variable image by

image=tvrd(0, 0, x,y)

.

With a window located at the same place, the image is displayed with
tv, image

Window in putpic is restored with window, no, xpos=50, ypos=30,

$

xsize=776, ysize=44
If image captured the previous display, it is then redisplayed with
above command: tv, image

To save such an image to file, use the save command:
save, image, xpos, ypos, xsize, ysize, filename= ' name

' , /verbose

It can then be recovered later by restore, 'name' , /verbose
**

62

INITIAL DISTRIBUTION LIST

1. Research Office (Code 08) 1

Naval Postgraduate School

Monterey, CA 93943-5000

2. Dudley Knox Library (Code 52) 2

Naval Postgraduate School

Monterey, CA 93943-5002

3. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22314

4. Department of Operations Research (Code OR) 1

Naval Postgraduate School

Monterey, CA 93943-5000

5. Prof. William Kemple (Code OR/Ke) 2

Naval Postgraduate School

Monterey, CA 93943-5000

6. Prof. Harold J. Larson (Code OR/La) 1

Naval Postgraduate School

Monterey, CA 93943-5000

7. Director 5

U. S. Army TRADOC Analysis Command-Monterey
ATTN: ATRC-RDM
P. O. Box 8692

Monterey, CA 93943-0692

8. Director 1

U. S. Army TRADOC Analysis Command-Monterey
ATTN: ATRC-RDM (CAPT Fernan)

P. O. Box 8692

Monterey, CA 93943-0692

9. Studies and Analysis Division 1

ATTN: Maj Upton
MCCDC
3093 Upshur Ave.

Quantico, VA 22134-5130

63

DUDLEY KNOX LIBRARY

3 2768 00337208 7

