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CHANNELS THAT COOPERATIVELY SERVICE A DATA STREAM

AND VOICE MESSAGES*

by

D. P. Gaver
Naval Postgraduate School
Monterey, CA 93940

J. P. Lehoczky
Carnegie-Mellon University
Pittsburgh, PA. 15213

I . INTRODUCTION

A system of channels cooperatively services both

voice and data messages arriving at one node of a communications

network. This paper is devoted to the analysis of a particular

channel-sharing strategy, in which voice traffic always occupies

its channels when available, but data service is allowed to

occur on empty voice channels. Voice traffic is taken to

be of high priority; voice arrivals that find all voice channels

busy are treated as losses . Note that voice traffic will

be relatively infrequent as compared to data, and will also

exhibit relatively long holding (service) times. Data traffic

is taken to be heavy, and exhibits very short holding times

(per word unit) : compared to voice, data appears to arrive

nearly continuously; when all data (and empty voice) channels

are filled, queueing occurs.

Research in part sponsored by ONR at Naval Postgraduate School,
N001480WR00067, and in part by NSF at Carnegie-Mellon University,
ENG79 05526.



We present an analysis of the performance of a special

type of integrated circuit and packet-switched multiplexor

structure. This structure essentially occurs within the

SENET network; descriptions are given by Coviello and Vena

(1975) , and Barbacci and Oakley (1976) . In this network a

time-slotted frame is utilized; a certain portion of each

frame is allocated to voice traffic, while any remaining data

traffic can use all remaining capacity, including that left

unused by voice. Voice, on the other hand, cannot use

capacity unused by data, and operates on a loss system. The

subject of our analysis has the same qualitative flavor.

Typical performance measures that may be calculated are

(i) the loss rate of voice traffic, and (ii) the expected

waiting time, or, equvialently, mean queue length, of the

data

.

The analysis begins with standard probabilitistic

assumptions. Specifically, voice traffic arrives according

to a Poisson(A) process, and each customer has an independent

exponential (y) service time. Data arrivals are according

to an independent Poisson(<5) process, and exhibit exponential

(n) service times. A total of c channels are reserved

for exclusive used of data, while v channels can be used

by both data and voice; however, voice pre-empts data. Voice

operates as an M/M/v loss system, and the well-known "Erlang B"

loss formula will give the loss rate. We are mainly interested

in the behavior of the data queue; however, we wish to



develop expressions for mean queue lengths for certain extreme

(and realistic) parameter values. First, we will require

that 6 /n = p > c . This assumption indicates that the data

must be able to use excess voice capacity in order to remain

stable. Second, we require that n/y be large, perhaps on

4
the order of 10 . This indicates that the voice requires long

service periods while the data service periods are very short.

This problem has been studied in a number of papers

including Halfin and Segal (1972) , Halfin (1972) , Fischer

and Harris (1976) , Bhat and Fischer (1976), Fischer (1977),

and Chang (1977) . Many of these studies begin with the

Kolmogorov forward equations appropriate for this system and

introduce some approximations leading to a solution. While

this approach is entirely appropriate, the approximations

heretofore introduced have not been tailored to the p . > c
d

4
and n/u ~ 10 situation. In fact, several of the approxi-

mations give quite misleading results in this case. We

develop an approximation which is tailored to these rather

extreme but realistic parameter conditions. While the

Kolmogorov equations can be easily written for the Markov

chain {(Q(t), N(t)), t > 0} where Q(t) represents the

number of data messages in the system and N(t) represents

the number of voice messages at time t, the fact that both

Q(t) and N(t) are subject to random fluctuation seems to

make any direct approach to solving the equations difficult.

We thus propose to treat the data as a deterministic process

behaving like a fluid flow.

3



2. THE APPROXIMATION

To better understand the behavior of the data queue

process, we first consider the special case c = 0, v = 1.

In this case, the data can use the single channel only when

voice traffic is not present. Consider a set of parameter

values given by A = .01, y = .01, 5 = 25 , and n = 100. It

follows that p = .25 and p = 1. The overall traffic

intensity parameter p = p d
+ p (1-q) where q, the voice

blocking probability, is .75, so the system is stable. Never-

theless, very long data queues will occasionally be created

for the following simple reason. When no voice traffic is

present and no data queue is present the system appears to

data traffic to be an M/M/l system with p = .25. There will

be essentially no queueing at all, and this situation will

persist for an average of 1/X = 100 time units. However,

when a voice message arrives, the channel becomes unavailable

to the data, and all data messages must now be queued. This

queue will grow at a rate of 25 per unit time. Furthermore,

the voice message exhibits a long holding time (on the average

100 time units) , so the data queue will reach a height of

2500 on the average before it can begin to be serviced. The

channel is now free, and will remain so for about 10 time

units—but now the queue has 2500 customers, not zero as

before. It is clear that the steady-state mean queue length

is very large (2500 in fact); however, it is also clear that

this classical performance evaluation measure can be very



misleading. The actual behavior of the data queue is one of

long periods of essential emptiness followed by long periods

of great queue length. The mean gives an average of these

two extreme situations and therefore is misleading. We propose

to develop approximations for this mean but to also provide

other descriptions of system behavior such as idle and busy

period lengths, first-passage times and steady-date

distributions

.

The mean queue length has been calculated exactly for

c = 0, v = 1 by Fischer (1977) and is given by

Pd /H „ ,,1x „ ,2
1% Pv+ (1 + Pv ) ) (2.1)

d+Pv ) d-p)

4
where p = p , + p / (1 + p ) . It is clear that if n/u ~ 10dv v ~

and p ~ 1 as in the above example, then of the two terms

2
in brackets n/M will be large compared with (1 + p ) , hence.

we can ignore this term. Ignoring this term is equivalent to

ignoring the queueing that occurs when the system is empty.

The analysis presented in this paper ignores terms of this

type.

The fluid flow approximation is based on treating the

data as a deterministic stream. Let us suppose that there are

i voice channels occupied. This leaves c + v - i available

for data. Data arrives at rate 6 and is serviced at rate

(c + v - i)n giving an overall change in the queue length of

6 - n (c + v - i) =r. per unit time, where i = 0,1,..., v. It

is clear that r
Q

< r, < • •
• < r . We assume r

Q
< and



r > 0. The first is necessary for system stability while the

latter follows from p, > c. Thus there is a state N for which
d

r >T < < r„ 7 , n . We treat the case r. T < 0, while r„ = is
N — N+l N N

a straightforward generalization. We refer to the states

0, 1, ... , N as "down" states, while N+l, ..., v are "up"

states (0 <_ N <_ v, so the two sets of states are nonempty) .

These names reflect the fact that if i voice channels are

occupied, then the data queue tends to increase if i is an

up state, and to decrease if i is a down state. The

steady-state distribution of the occupancy of the voice

channels is given by a truncated Poisson(p ) distribution,

pi/i!
p. = —

, < i < v (2.2)
1 v

c
V

j=0

and the loss probability q = p .

For the data queue to remain stable

v

J r.pVi! < .

i=0 1 v

If one defines p = [p, + p (l-q)]/(v + c) then the stability

condition becomes p < 1.

We wish to compute a variety of quantities for the data

queueing system. These quantities include

P^ • (x) = P (voice is in state j when queue empties
I
voice

is in state i and data in state x) , < i < N,
< i < v. - _



t . (x) = expected first-passage time for data from state x

to state starting in voice state i, < i < v.

a. (x) = expected area under data queue-length process

accumulated during the first passage time to 0,

< i < v.

The above quantities give important characterizations

of the system performance. The ^irst-passage times indicate

the time needed to work off a backlog of size x. The area

gives essentially the waiting time. If the queue is empty and

the voice is in a down state then for the fluid model the queue

will remain empty until the voice reaches the first up state,

N+l. The queue immediately begins to grow at rate rM , . It

follows that t , (0) represents the expected duration of the

busy period. Similarly a]u+ -i
(0) gives the expected area

accumulated during the busy period. Using renewal-theoretic

ideas a
N+i

(°) //t
n+] ^ gives the mean queue length during the

busy period. Similarly PN+1 • (0) gives the probability that

the busy period will end in voice state i. The time for the

voice to reach N+l from i and hence the expected time to

initiate a new busy period is easily calculated from the

birth-death nrocess. Let us designate this mean by S.. Then

VN
La-q S iPM+i .;(0) = T gives the expected idle time (we ignore

all queueing during this period). Clearly T/(T + t -,(0))

gives the steady state data component idleness probability and



aN+l (0) * T/ (T + TN+1 (0)) * T
N+1 (0) 9ives the steady-state mean

data queue length. It is clear that the quantities a. (x)

,

t. (x) , and p. . (x) give valuable insight into the behavior

of the queueing process, incidentally providing all of the

standard queueing performance measures. The special case

of one down state (N = 0) is easiest to handle, since in

this case the p. .'s can be ignored.



3. DERIVATION OF p .
.

( x) FUNCTIONS

We use a backward equation approach. Let us assume that at

time t = the queue length is x > and i voice channels

are occupied. It follows that at time dt, the new queue length

will be x + r. dt. The system will remain in state i with

probability 1 - (A min(l,v-i) + iy)dt + o(dt) , will move to

state i+1 with probability A min(l,v-i)dt + o(dt), or will

move to i-1 with probability iydt + o(dt). Thus

p..(x) = p..(x + r . dt) (1 - (A min (l,v-i) + iy) dt + o (dt)

)

+ p. , . (x + r.dt) iy dt
*i-l 1 l

+ p , . (x + r.dt)A min(l,v-i)dt + o(dt) (3.1)

One expands the p. . (x + r. dt) into p^- (x) + r.p.' . (x)dt

+ o(dt), collects terms and lets dt * to derive

p!.(x) (-r.)

= -p..(x)(A min(v-i,l) + iy) + p._-, . (x) iy

+ p . (x) Amin(v-i,l) with <_ j £ N. (3.2)

If r = 0, then (3.2) indicates a linear relationship among

PN -(x), PM _-| • (x) and PN+ i
• (x) . This relationship serves to

allow elimination of p„ T . (x) and therefore allows us to assume
^N j

r < 0. Equation (3.2) can be divided by -r. and the entire

system rewritten in matrix form to yield



P' (x) = £ Q P(x)

here P (x) = (p..(x)), < i < v, < j < N, a (v+l)x(N+l)

*

stochastic matrix for each x, and Q is defined by

S

v
K

K-l

V

(1 + Pv )

K-l

K-2

V
K-l

(2 + pv )

—^2 _v
k-2

v-1
(v-l+p

v )

V
K-V

P V

\

K-(V-I) K-(V-I) K-(V-I)

&/

(3,

where K=c+v-p,. We assume < k < v.
d

Equation (3.3) can be routinely solved to qive

P(x) = exp(£- ) P(0) (3.4)

where exp(M) = I + M + M /2\ + ••• for a square matrix M.

Interestingly, one still needs to determine P(0) before

P(x) is fully determined.

To determine P(0), we partition into down and up states.

Thus

P(x) =

P n (x)

V x)

where
10



P
D
(x) = (p..(x)), < i < N, 0<j<N

P
TT
(x) = (p..(x)), N+l < i < v, < j < N

~U lj — — — —

If no data queue is present (x = 0) and i is a down

state, then

P..(0) =
+ 1 if i = j

if i ^ j

since emptiness is instantaneously achieved. Thus pn (0) = *»

the (N+l) x (N+l) identity matrix. It remains to calculate

V 0) -

A second system of equations can be developed as follows.

Beginning in state i (i up) and x > 0, one must first return

to level x and then hit . The return to level x must occur

in a down state. This allows one to write a system of "Chapman-

Kolmogorov like" equations

Pyix) = PytO) £D (x) (3.5)

Equations (3.3) and (3.5) cnn be cnmhined to give an exoression

for Pn (0) . This expression is in the form of a matrix quadratic

equation:

(P..(0) , -I ) Q^U ~v—N ~

^N+l

?.u
(0)

= (3.6)

11



This equation can be rewritten to be

P (0)A - A91 + P
TT
(0)AloPn (0) - Aoo P TT (0) = (3.7)

where

* / Aii A12

fi =

A21 A22

with A
X1

an (N+1)x(n+1) matrix

and A
22 a (v-N)x(v-N) matrix

Equation (3.7) does not yield a closed form solution except

in very special cases. It can, however, be solved numerically

using a Newton-type iteration. Such solutions have been carried

out, but the results will not be provided here.

DERIVATION OF t . (x) FUNCTION

The first-passage time functions can also be derived using a

backward equation approach. A straightforward derivation gives

r i'(x)

•r t' (x)
V V

/-, (x)

+ 8

T (X).

(3.8)

or

T'(X)\

t;<x)

1

K

1 / 1

'.--V

T (X)

n I
k-1

I

+
n

Q
I

T
l
(x)

Uv
(x)

(3.9)

12



Equation (3.9) can be solved and has an exponential

solution similar to (3.4); however, the initial conditions

must be determined. Letting

(x)

T n (x) = and V x) =

T (X)

T
N+ 1

(X)

T (X)

one can develop a Chapman-Kolmogorov relationship as follows.

Beginning in an up state at level x the process must first

return to x and then hit 0. It follows that

x
TT

(x) = t
tt (0) + P

rT
(0) t_(x) (3.10)

Clearly t(0) = and it remains to calculate t T7 (0).

Straightforward manipulations of equations (3.9) and (3.10)

give

(P
TT

(0) ,-I N )

li\K

\

11(^(0),-!^ Q (3.11)

x n (0)

K-V

where P
TT
(0) nas been previously determined. Using the partitioned

version of

Q =
-11 -12

A
21 $22

13



Equation (11) becomes

V°> h «U (0) %2 " *22
)_1

(«U (0, '^v-N )

/l

l-i-
\ K-V

(3.12)

For example, in the special case v = 1, Pn (0) = (1) ,

k = 1-p, and

V°' = T
1
<0)

u(l + P v
)(l - P) •

(3.13)

In general if N = v-1 (only 1 up state)

v_1
i i

I p .(0) -^-- JL
•

L
A

rVl K-l K- 1

x (o) = i ±=°
v y

v

K-(V-I) PV/ V-1 (0) +
K-V

(3.14)

while if N = (only 1 down state)

t
tt
(0) = - -±- (pv

°'" 0) - £22 7t\

I

K-2

V
K-V

(3.15)

Explicit solutions for other cases can be written down but

become very complicated.

14



4. DERIVATION OF a.(x) FUNCTIONS

The backward equation approach gives a straightforward

derivation of the area accumulated under the queue length proce

during the first-passage time. One derives

-r

+ 8= X

-r a' (x)
V V / w \

a
Q
(x)

a
v
(x)

(4.1)

Once again we define

~D

a ^

a
N

(x)

and ^(x) =

a
N+l (x)

a
v

(x)

Clearly ^ (0) = 0, but a
tI
(0) must be determined. Equation

(4. 1) can be rewritten as

a 1 (x) = — x
n

+ ^ S a(x) (4.2)

which has a straightforward exponential solution once the initial

conditions have been determined. To this end, a second set of

equations can be found using the Chapman-Kolmogorov approach.

15



Beginning in an up state at level x the process must return

to level x, then to 0. The expected area accumulated

during the return to x is given by a. (0) + xt . (0) . It

follows that

a (x) = a (0) + xt (0) + P (0) a(x). (4.3)
~U ~U "U ~u

Equations (4.2) and (4.3) can be combined to give

--V°> - $ <V 0) '-W a*

I

I- < 4 - 4 '

an (0)

*
3y partitioning £) one finds

V 0) = "
y ^U (0)%2 -^22 )

" 1

^U (0)
< 4 - 5 >

A simple example of the calculation involved in (1.5)

is the v = 1 case. It can be shown that

n
p d

(1_p
d )

a, (0) = A, — ~ 5- for p < 1 (4.6)
1

y (l+p
v ) (1-p)

Carrying this a. sten further one can see that the

idle period has mean length 1/A = (1/y) (1/p )

.

Thus

recalling (3.13), we find the mean queue length given by

a
1
(0)/(x

1
(0) + 1/A) or

16



E(Q) v d

(1-p) (l+p
v )

P < 1 (4.7)

The v = 1 case can be carried further. Once a
1
(0)

and x. (0) are known, a. (x) and t.(x) can be determined.

Equation (3.11) becomes x. (x) = x, (0) + t (x) indicating

x, (x) - x
Q
(x) = t. (0) given by (3.13). Equation (3.9) can be

routinely solved to find

T
o

(x) = MI^T (1 +
TT+ p v

)(I-p)
)x

(4.8)

V x) = t l(l-P
d

)

(1 +
(1 + Pv ) (l-p)

)x + (
(l + p v ) (1-p)

The area function can also be explicitly determined

Equation (4.3) becomes a, (x) - a
Q
(x) = xx, (0) + a, (0).

Substituting this into (4.1) gives

V x) = ir (^ + V 0)) +
P

~r r7
a
i
(0)x

(4.9)

a
i
(x) =

T" {

k
+ T

i
(0)) + (^ n

a
i
(0) + T

i
(0)

J
x a

i

all coefficients of which have been previously determined.

In the special case p, = 1/4, p = 1, p = 3/4 mentioned

earlier with A = .01, y = .01, 6 = 25, n = 100 then

17



x (x) = 25.

t (x) = 4x + 200

/ n
602 2 .__

a
Q
(x) = -j- x + lOOx (4.10)

a ( x ) = ^ x
2

+ 300x + 750,000

m/^s
a
x
(0) 750,000 OI- nnE(Q) = ~

, m + 1 1
=

20 + 100 =
250 °

'

T
l
(0) +

y
—
v

The voice loss rate is given by Ap /(1+p ) = A/2 = .005.

18



5. STEADY-STATE DISTRIBUTION OF DATA QUEUE LENGTH

One can use a forward equation approach to develop an

equilibrium distribution for the data queue length. Define

p(x,j,t) to be the probability of j voice channels occupied

and x data units in the system at time t. It is easily

seen that for x > and dt small

p(x, j , t + dt)

= p(x-r dt, j,t) (1 - (A + jy)dt) + p(x-r.
1
dt, j-l,t)xdt

+ p(x-r. +1
dt, j+l,t) (j+1) u dt + o(dt) , <_ j <_ v

where p(x,-l,t) = 0.

Standard manipulations that treat x as a continuous

variable lead to these equations

r .
|E + |E = -(A min(l,v-j) + jy) p(x,j,t)

: 3x at (5#1

+ Ap(x,j-l,t) + (j +Dy p(x,j+l,t), x > 0.

Setting t - ~ and assuming p(x,j,t) + p .
(x) and

[3p(x, j, t) ]/St * 0, we find

r. p'.(x) = -(A min(l,v-j) + jy) p .
(x)

with x > 0, p_ 1
(x) = Pv+1

19

+ A p._
1
(x) + (j+Dy Pj+1

(x) , <_ j i v (5.2)

(x) =0. The prime denotes x-derivatives



Equation (5.2) is incomplete as it does not contain

information about the boundary behavior.

Equation (5.2) can be summarized in matrix form by

P' (x) = -P(x) R ^ x > (5.3)

where P(x) = (p
Q
(x), ... , p (x)) and

-P.

*
R =

v
K K-l

1
-(1+Pv ) pv

K K-l K-.-2

2
-<2+Pv )

K-l k--2

-(v-l+p
v )

K-(V-I)

V
K-(V-I)

V
K-V

-V
K-V

Equation (3) can be routinely solved to get

P (x) = c exp(- — R x) (5.4)

with c = (c„ ,c, , . . . , c ). The constants c must be determined,~ 1 v ~

and equation (5.4) gives only the density function, not the mass

at the boundary. In view of the fluid flow approximation,

there will be mass at 0, given by tt . , for each down state i,

<_ i <_ N, however, no mass at the boundary for any up state,

N+l <_ i <_ v. Furthermore, the equilibrium distribution over i

is given by (p /i!

)

/\ -_ P /j I It follows that

20



w
. v

/ Pi (x)dx + 7T

i
= (p^/il)/ I p^/il, < i < N

n=0
(5.5)

00
. v

/ p.(x)dx = (pVi'.)/ I pl/jl, N+l < i < v
n -1- v • _/% v — —j=0

R =

It remains to determine c and (tt , . . . , i\ ) . Let

with \b$ = I and

a.

=

a
v

where we order the eigenvalues such that a , , . . . , a >

while 0^,..., a < 0. It is clear that (5.4) can be rewritten

to give

/

P(x) = c<J>

exp(- ^ xa
1

)

\\j (5.6)

exp(- — xa )/

n v

The functions p.(x) are linear combinations of

the exp(- ^ xa . ) . In order for these functions to be integrable,

the coefficients associated with those a. which are negative

must be 0. This provides constraints on the c. If

$ = (^ n ,^, / ... / ^ ) whose columns are right eigenvectors, then

cj). =0, <_ i _< N. The remaining equations governing c

come from (5.5). Letting ctju = for <_ i <_ N we have
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V
Pa (*) = I £&^-h exp(- £ xa.) , N+l < i <_ v,
1 j=N+l D J 1 n D

and . (5.7)
°° p /i 1 v

/ p. (x)dx= —-
j- = 2-

I c&.rp../a. .

^k=o (pv
/k:) y i=N+1

This gives v+1 independent equations which determine c.

Once c has been determined, p. (x) , <_ i <_ N are determined

by (5.4). One can now determine tt. , . . . , tt , the boundary

probabilities, using (5.5). The equilibrium distribution is now

completely determined.

Let us consider the special case v = 1. Equation (1)

becomes

P
i
(x) = "Jf ( " 7Po (x) + kvi<*»

Pi (x) =
" ^ fe P (X) - ^1 P

1
(X)) (5.8)

kp^(x) + (k-l)pj(x) = 0,

hence,

kp
Q
(x) + (k-l)p

1
(x) = and p±

(x) = - ^ pQ
(x)

Substitution into (8) yields

22



P6 (x) = -S
(Z^-^I } po

(x) =

(1-p) (1+PV )

p d
(l-p

d )

P (x)

r *
(1 ~ p) (1+p

v }

iPn (x) = c exp
|

-
p (i- p ) J

'0
(5.9)

1-p p (1-P) d+Pv ) -I

pi
(x)

"
c TT exp

H" p d d-p d )

X
J

Now

/ Pl (x)dx = 3—^

thus

1+P,
= c

^-Pd J

n
p d

(1 - p d }

(i-p) (i+p
v )

and c =
P (1-p)*v K

U_

(l-P d )

2
n

(5.10)

It is then possible to determine tt„ by means of the

relation
00

^0
=
ITp" "

/
P (x)dx

'

v

Finally we find the marginal queue length distribution in a simple

explicit form

P (1-p)

p(x) =

" <l-Pd >

2
Pd

exp H
(1-p) (1+ PV )

n Pd d-P d
)

l-P
1-p.

x >

(5.11)

x =

The mean queue length is given by

E(Q) »(£>
d v

(1-p) (l+p
v )

P < I- (5.12)
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6 . GENERALI ZATIONS

The preceding analysis giving the data queue length

can be carried out in greater generality. One may wish to view

voice transmissions as a stream of alternating bursts and dead

times. At any time, t, a voice customer assigned to a particular

channel will be in one of two states: active transmission or

inactive. During an inactive period the channel could be used

for data transmissions. Such a strategy could greatly increase

the data capacity, or reduce the data queue length, or both.

One might assume a voice user moves between the active and inactive

states in a Markovian way. As a result, one can define voice

states (1, ... , M) and a continuous time Markov chain with

generator £ describing the movement among these states. For

each voice state i the number of channels available for data

transmission can be found, and a rate of increase or decrease in

the data queue length determined. Let that rate be denoted by

r., and assume that the voice states are labelled in such a way

that r, < r < • • • < r... We would assume there is a state I
i — 2 — — M

for which r
T

< < r , Up and down states can now be defined.

The analysis carried out in previous sections can be shown to

hold for this more general situation. The expression yg must

be replaced by g, while the expression

/M
K-l

K-V
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must be replaced by

r
i

IV
It follows that first passage times, queue lengths,

and busy period lengths can be determined for this more general

problem.

A second generalization involves a voice limitation

procedure. One way to prevent the buildup of very long data

queues is to increase the number of voice channels. This can

be accomplished by providing lower transmission rates on certain

voice channels, for example, one might provide 10 8kBPS channels;

however, when 8 of those are in use one might divide the remaining

2 into 4 2kBPS channels. This results in lower quality trans-

mission but less delay. Again this situation can be modelled by

assuming various voice states (1, ... , N} and movement among

them according to a Markov chain with generator Q. Each voice

state determines a data queue rate r. . Again the preceding

analysis can be applied directly to this case. One can there-

fore study the tradeoffs between data queue length (and delays)

,

voice blocking probabilities, and voice transmission quality

from formulas in this paper.
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