RESEARCH REPORTS DIVISION NAVAL POSTGRADUATE SCHOO MONTEREY, CALIFORNIA 93940

NPS55-79-027 NAVAL POSTGRADUATE SCHOOL Monterey, California

CHANNELS THAT COOPERATIVELY SERVICE

A DATA STREAM AND VOICE MESSAGES, I

by

D. P. Gaver and J. P. Lehoczky November 1979

Approved for public release; distribution unlimited.

Prepared for: Naval Research n, VA 22217

FEDDOCS D 208.14/2:NPS-55-79-027

Naval Postgraduate School Monterey, California

~~

Rear Admiral T. F. Dedman Superintendent Jack R. Borsting Provost

~ ~

This report was prepared by:

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION P	PAGE	READ INSTRUCTIONS
	2. GOVT ACCESSION NO.	BEFORE COMPLETING FORM 3 RECIPIENT'S CATALOG NUMBER
NPS55-79-027	2. 60VT ACCESSION NO.	V. REGISTENT S CATALOG NUMBER
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Channels that Cooperatively Service a Data Stream and Voice Messages, I.		Technical
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(8)
D. P. Gaver and J. P. Lehoczky		DD 1473
9 PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School Monterey, Ca. 93940		61152N;R000-01-10 N0001480WR00054
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Chief of Naval Research		November 1979
Arlington, VA 22217		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	44 15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; dist		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and		
Communication Data-Voice Channels Queues Probability Models	e Communications	5
20. ABSTRACT (Continue on reverse side if necessary and	identify by block number)	
A system of channels mutually acco voice having pre-emptive priority being allowed to queue. Approxima are derived.	but being a los	s system, and data
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLE	TE UNCL	ASSIFIED

CHANNELS THAT COOPERATIVELY SERVICE A DATA STREAM

AND VOICE MESSAGES*

by

D. P. Gaver Naval Postgraduate School Monterey, CA 93940 J. P. Lehoczky Carnegie-Mellon University Pittsburgh, PA. 15213

I. INTRODUCTION

A system of channels cooperatively services both voice and data messages arriving at one node of a communications network. This paper is devoted to the analysis of a particular channel-sharing strategy, in which voice traffic always occupies its channels when available, but data service is allowed to occur on empty voice channels. Voice traffic is taken to be of high priority; voice arrivals that find all voice channels busy are treated as losses. Note that voice traffic will be relatively infrequent as compared to data, and will also exhibit relatively long holding (service) times. Data traffic is taken to be heavy, and exhibits very short holding times (per word unit): compared to voice, data appears to arrive nearly continuously; when all data (and empty voice) channels are filled, queueing occurs.

Research in part sponsored by ONR at Naval Postgraduate School, N001480WR00067, and in part by NSF at Carnegie-Mellon University, ENG79 05526.

We present an analysis of the performance of a special type of integrated circuit and packet-switched multiplexor structure. This structure essentially occurs within the SENET network; descriptions are given by Coviello and Vena (1975), and Barbacci and Oakley (1976). In this network a time-slotted frame is utilized; a certain portion of each frame is allocated to voice traffic, while any remaining data traffic can use all remaining capacity, including that left unused by voice. Voice, on the other hand, cannot use capacity unused by data, and operates on a loss system. The subject of our analysis has the same qualitative flavor. Typical performance measures that may be calculated are (i) the loss rate of voice traffic, and (ii) the expected waiting time, or, equvialently, mean queue length, of the data.

The analysis begins with standard probabilitistic assumptions. Specifically, voice traffic arrives according to a Poisson(λ) process, and each customer has an independent exponential(μ) service time. Data arrivals are according to an independent Poisson(δ) process, and exhibit exponential (η) service times. A total of c channels are reserved for exclusive used of data, while v channels can be used by both data and voice; however, voice pre-empts data. Voice operates as an M/M/v loss system, and the well-known "Erlang B" loss formula will give the loss rate. We are mainly interested in the behavior of the data queue; however, we wish to

develop expressions for mean queue lengths for certain extreme (and realistic) parameter values. First, we will require that $\delta/\eta = \rho_d > c$. This assumption indicates that the data must be able to use excess voice capacity in order to remain stable. Second, we require that η/μ be large, perhaps on the order of 10^4 . This indicates that the voice requires long service periods while the data service periods are very short.

This problem has been studied in a number of papers including Halfin and Segal (1972), Halfin (1972), Fischer and Harris (1976), Bhat and Fischer (1976), Fischer (1977), and Chang (1977). Many of these studies begin with the Kolmogorov forward equations appropriate for this system and introduce some approximations leading to a solution. While this approach is entirely appropriate, the approximations heretofore introduced have not been tailored to the $\rho_d > c$ and $\eta/\mu~\gtrsim 10^4$ situation. In fact, several of the approximations give guite misleading results in this case. We develop an approximation which is tailored to these rather extreme but realistic parameter conditions. While the Kolmogorov equations can be easily written for the Markov chain $\{(Q(t), N(t)), t > 0\}$ where Q(t) represents the number of data messages in the system and N(t) represents the number of voice messages at time t, the fact that both Q(t) and N(t) are subject to random fluctuation seems to make any direct approach to solving the equations difficult. We thus propose to treat the data as a deterministic process behaving like a fluid flow.

2. THE APPROXIMATION

To better understand the behavior of the data queue process, we first consider the special case c = 0, v = 1. In this case, the data can use the single channel only when voice traffic is not present. Consider a set of parameter values given by $\lambda = .01$, $\mu = .01$, $\delta = 25$, and $\eta = 100$. It follows that ρ_d = .25 and ρ_v = 1. The overall traffic intensity parameter $\rho = \rho_d + \rho_v (1-q)$ where q, the voice blocking probability, is .75, so the system is stable. Nevertheless, very long data queues will occasionally be created for the following simple reason. When no voice traffic is present and no data queue is present the system appears to data traffic to be an M/M/l system with ρ = .25. There will be essentially no queueing at all, and this situation will persist for an average of $1/\lambda = 100$ time units. However, when a voice message arrives, the channel becomes unavailable to the data, and all data messages must now be queued. This queue will grow at a rate of 25 per unit time. Furthermore, the voice message exhibits a long holding time (on the average 100 time units), so the data queue will reach a height of 2500 on the average before it can begin to be serviced. The channel is now free, and will remain so for about 100 time units--but now the queue has 2500 customers, not zero as before. It is clear that the steady-state mean queue length is very large (2500 in fact); however, it is also clear that this classical performance evaluation measure can be very

misleading. The actual behavior of the data queue is one of long periods of essential emptiness followed by long periods of great queue length. The mean gives an average of these two extreme situations and therefore is misleading. We propose to develop approximations for this mean but to also provide other descriptions of system behavior such as idle and busy period lengths, first-passage times and steady-date distributions.

The mean queue length has been calculated exactly for c = 0, v = 1 by Fischer (1977) and is given by

$$\frac{\rho_{d}}{(1+\rho_{v})^{2}(1-\rho)} \left\{ \frac{\eta}{\mu} \rho_{v} + (1+\rho_{v})^{2} \right\}$$
(2.1)

where $\rho = \rho_d + \rho_v / (1 + \rho_v)$. It is clear that if $\eta/\mu \gtrsim 10^4$ and $\rho_v \gtrsim 1$ as in the above example, then of the two terms in brackets η/μ will be large compared with $(1 + \rho_v)^2$, hence. we can ignore this term. Ignoring this term is equivalent to ignoring the queueing that occurs when the system is empty. The analysis presented in this paper ignores terms of this type.

The fluid flow approximation is based on treating the data as a deterministic stream. Let us suppose that there are i voice channels occupied. This leaves c + v - i available for data. Data arrives at rate δ and is serviced at rate $(c + v - i)\eta$ giving an overall change in the queue length of $\delta - \eta(c + v - i) = r_i$ per unit time, where $i = 0, 1, \ldots, v$. It is clear that $r_0 < r_1 < \cdots < r_v$. We assume $r_0 < 0$ and

 $r_v > 0$. The first is necessary for system stability while the latter follows from $\rho_d > c$. Thus there is a state N for which $r_N \leq 0 < r_{N+1}$. We treat the case $r_N < 0$, while $r_N = 0$ is a straightforward generalization. We refer to the states 0, 1, ..., N as "down" states, while N+1, ..., v are "up" states $(0 \leq N \leq v, \text{ so the two sets of states are nonempty})$. These names reflect the fact that if i voice channels are occupied, then the data queue tends to increase if i is an up state, and to decrease if i is a down state. The steady-state distribution of the occupancy of the voice channels is given by a truncated Poisson(ρ_v) distribution,

$$P_{i} = \frac{\rho_{v}^{i}/i!}{\sum_{j=0}^{v} \rho_{v}^{i}/i!}, \quad 0 \leq i \leq v \quad (2.2)$$

and the loss probability $q = p_v$.

For the data queue to remain stable

$$\sum_{i=0}^{v} r_{i} \rho_{v}^{i} / i! < 0$$

If one defines $\rho = [\rho_d + \rho_v(1-q)]/(v + c)$ then the stability condition becomes $\rho < 1$.

We wish to compute a variety of quantities for the data queueing system. These quantities include

 $P_{ij}(x) = P(voice is in state j when queue empties|voice is in state i and data in state x), <math>0 \le i \le N$, $0 \le i \le v$.

- $\tau_i(x) = expected first-passage time for data from state x$ to state 0 starting in voice state i, <math>0 < i < v.
- $a_i(x) = expected area under data queue-length process$ accumulated during the first passage time to 0, $<math>0 \le i \le v$.

The above quantities give important characterizations of the system performance. The first-passage times indicate the time needed to work off a backlog of size x. The area gives essentially the waiting time. If the queue is empty and the voice is in a down state then for the fluid model the queue will remain empty until the voice reaches the first up state, N+1. The queue immediately begins to grow at rate r_{N+1} . It follows that $\tau_{N+1}(0)$ represents the expected duration of the busy period. Similarly $a_{N+1}(0)$ gives the expected area accumulated during the busy period. Using renewal-theoretic ideas $a_{N+1}(0)/\tau_{N+1}(0)$ gives the mean queue length during the busy period. Similarly $p_{N+1,i}(0)$ gives the probability that the busy period will end in voice state i. The time for the voice to reach N+1 from i and hence the expected time to initiate a new busy period is easily calculated from the birth-death process. Let us designate this mean by S;. Then $\sum_{i=0}^{N} S_{i} p_{N+1,i}(0) = T$ gives the expected idle time (we ignore all queueing during this period). Clearly $T/(T + \tau_{N+1}(0))$ gives the steady state data component idleness probability and

 $a_{N+1}(0) \cdot T/(T + \tau_{N+1}(0))$. $\tau_{N+1}(0)$ gives the steady-state mean data queue length. It is clear that the quantities $a_i(x)$, $\tau_i(x)$, and $p_{ij}(x)$ give valuable insight into the behavior of the queueing process, incidentally providing all of the standard queueing performance measures. The special case of one down state (N = 0) is easiest to handle, since in this case the p_{ij} 's can be ignored.

3. DERIVATION OF p_{ij}(x) FUNCTIONS

We use a backward equation approach. Let us assume that at time t = 0 the queue length is x > 0 and i voice channels are occupied. It follows that at time dt, the new queue length will be $x + r_i$ dt. The system will remain in state i with probability 1 - $(\lambda \min(1, v-i) + i\mu)dt + o(dt)$, will move to state i+1 with probability $\lambda \min(1, v-i)dt + o(dt)$, or will move to i-1 with probability iµdt + o(dt). Thus

$$p_{ij}(x) = p_{ij}(x + r_i dt)(1 - (\lambda \min(1, v-i) + i\mu)dt + o(dt))$$

+ $p_{i-1} j(x + r_i dt) i\mu dt$
+ $p_{i+1} j(x + r_i dt) \lambda \min(1, v-i)dt + o(dt)$ (3.1)

One expands the $p_{ij}(x + r_i dt)$ into $p_{ij}(x) + r_i p_{ij}'(x) dt$ + o(dt), collects terms and lets dt $\rightarrow 0$ to derive

$$p'_{ij}(x)(-r_{i}) = -p_{ij}(x)(\lambda \min(v-i,1) + i\mu) + p_{i-1,j}(x)i\mu + p_{i+1,j}(x)\lambda\min(v-i,1) \text{ with } 0 \le j \le N.$$
(3.2)

If $r_N = 0$, then (3.2) indicates a linear relationship among $p_{Nj}(x)$, $p_{N-1,j}(x)$ and $p_{N+1,j}(x)$. This relationship serves to allow elimination of $p_{Nj}(x)$ and therefore allows us to assume $r_N < 0$. Equation (3.2) can be divided by $-r_i$ and the entire system rewritten in matrix form to yield

$$P'(\mathbf{x}) = \frac{\mu}{\eta} \bigotimes_{\sim}^{\star} P(\mathbf{x})$$

here $P(x) = (p_{ij}(x)), 0 \le i \le v, 0 \le j \le N, a (v+1) \times (N+1)$ stochastic matrix for each x, and Q^* is defined by

where $\kappa = c + v - \rho_d$. We assume $0 < \kappa < v$.

Equation (3.3) can be routinely solved to give

$$\mathbb{P}(\mathbf{x}) = \exp\left(\frac{\mu}{\eta} \mathcal{Q}^*\right) \mathbb{P}(\mathbf{0})$$
(3.4)

where $\exp(M) = I + M + M^2/2! + \cdots$ for a square matrix M. Interestingly, one still needs to determine P(0) before P(x) is fully determined.

To determine $\underline{P}(0)$, we partition into down and up states. Thus

$$\underline{P}(\mathbf{x}) = \begin{pmatrix} \underline{P}(\mathbf{x}) \\ \underline{P}(\mathbf{x}) \end{pmatrix}$$

where

$$P_{D}(\mathbf{x}) = (P_{jj}(\mathbf{x})), \qquad 0 \leq j \leq N, \quad 0 \leq j \leq N$$

$$P_{U}(x) = (p_{jj}(x)), \quad N+1 \leq i \leq v, \quad 0 \leq j \leq N.$$

If no data queue is present (x = 0) and i is a down state, then

$$P_{ij}(0) = \begin{cases} +1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

since emptiness is instantaneously achieved. Thus $P_{\sim D}(0) = I$, the (N+1) × (N+1) identity matrix. It remains to calculate $P_{\sim U}(0)$.

A second system of equations can be developed as follows. Beginning in state i (i up) and x > 0, one must first return to level x and then hit 0. The return to level x must occur in a down state. This allows one to write a system of "Chapman-Kolmogorov like" equations

$$\underline{P}_{U}(\mathbf{x}) = \underline{P}_{U}(\mathbf{0}) \quad \underline{P}_{D}(\mathbf{x})$$
(3.5)

Equations (3.3) and (3.5) can be combined to give an expression for $P_U(0)$. This expression is in the form of a matrix quadratic equation:

$$(\underbrace{P}_{U}(0), -\underline{I}_{V-N}) \bigotimes^{*} \begin{pmatrix} \underline{I}_{N+1} \\ \underline{P}_{U}(0) \end{pmatrix} = \underbrace{0}_{N}$$
(3.6)

$$\mathbb{P}_{\mathbf{U}}^{(0)} \stackrel{\mathbf{A}}{\approx}_{11} - \stackrel{\mathbf{A}}{\approx}_{21} + \mathbb{P}_{\mathbf{U}}^{(0)} \stackrel{\mathbf{A}}{\approx}_{12} \mathbb{P}_{\mathbf{U}}^{(0)} - \stackrel{\mathbf{A}}{\approx}_{22} \mathbb{P}_{\mathbf{U}}^{(0)} = 0 \qquad (3.7)$$

where

$$Q^{*} = \begin{pmatrix} A_{11} & A_{12} \\ & & \\ A_{21} & A_{22} \end{pmatrix}$$
 with A_{11} an $(N+1) \times (N+1)$ matrix
and A_{22} a $(v-N) \times (v-N)$ matrix

Equation (3.7) does not yield a closed form solution except in very special cases. It can, however, be solved numerically using a Newton-type iteration. Such solutions have been carried out, but the results will not be provided here.

DERIVATION OF $\tau_{i}(x)$ FUNCTION

The first-passage time functions can also be derived using a backward equation approach. A straightforward derivation gives

$$\begin{pmatrix} -\mathbf{r}_{0}\tau_{0}^{\dagger}(\mathbf{x}) \\ \vdots \\ -\mathbf{r}_{v}\tau_{v}^{\dagger}(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + \begin{pmatrix} \tau_{0}(\mathbf{x}) \\ \vdots \\ \tau_{v}(\mathbf{x}) \end{pmatrix}$$
(3.8)

or

$$\begin{pmatrix} \tau_{0}^{*}(\mathbf{x}) \\ \vdots \\ \tau_{V}^{*}(\mathbf{x}) \end{pmatrix} = \frac{1}{\eta} \begin{pmatrix} \frac{1}{\kappa} \\ \frac{1}{\kappa-1} \\ \vdots \\ \frac{1}{\kappa-V} \end{pmatrix} + \frac{\mu}{\eta} \varrho^{*} \begin{pmatrix} \tau_{0}(\mathbf{x}) \\ \tau_{1}(\mathbf{x}) \\ \vdots \\ \tau_{V}(\mathbf{x}) \end{pmatrix}$$
(3.9)

Equation (3.9) can be solved and has an exponential solution similar to (3.4); however, the initial conditions must be determined. Letting

$$\tau_{\mathrm{D}}(\mathbf{x}) = \begin{pmatrix} \tau_{0}(\mathbf{x}) \\ \vdots \\ \tau_{\mathrm{N}}(\mathbf{x}) \end{pmatrix} \quad \text{and} \quad \tau_{\mathrm{U}}(\mathbf{x}) = \begin{pmatrix} \tau_{\mathrm{N+L}}(\mathbf{x}) \\ \vdots \\ \tau_{\mathrm{V}}(\mathbf{x}) \end{pmatrix}$$

one can develop a Chapman-Kolmogorov relationship as follows. Beginning in an up state at level x the process must first return to x and then hit 0. It follows that

$$\tau_{U}(x) = \tau_{U}(0) + P_{U}(0) \tau_{D}(x)$$
 (3.10)

Clearly $\tau_{D}(0) = 0$ and it remains to calculate $\tau_{U}(0)$.

Straightforward manipulations of equations (3.9) and (3.10)

give

$$(\underbrace{\mathbf{P}}_{\mathbf{U}}(\mathbf{0}), -\mathbf{I}_{\sim \mathbf{V}-\mathbf{N}}) \begin{pmatrix} \frac{1}{\kappa} \\ \vdots \\ \frac{1}{\kappa - \mathbf{v}} \end{pmatrix} = \mu (\underbrace{\mathbf{P}}_{\mathbf{U}}(\mathbf{0}), -\mathbf{I}_{\sim \mathbf{V}-\mathbf{N}}) \underbrace{\mathbf{0}}^{*} \begin{pmatrix} \mathbf{0} \\ \sim \\ \mathbf{I}_{\mathbf{U}}(\mathbf{0}) \end{pmatrix}$$
(3.11)

where $P_U(0)$ has been previously determined. Using the partitioned version of

$$Q^{\star} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{221} & A_{22} \end{pmatrix}$$

Equation (11) becomes

$$\tau_{U}(0) = \frac{1}{\mu} \left(\mathbb{P}_{U}(0) \mathbb{A}_{12} - \mathbb{A}_{22} \right)^{-1} \left(\mathbb{P}_{U}(0), -\mathbb{I}_{v-N} \right) \begin{pmatrix} \frac{1}{\kappa} \\ \vdots \\ \frac{1}{\kappa-v} \end{pmatrix}$$
(3.12)

For example, in the special case ~v = 1, $\underset{U}{\mathbb{P}}_{U}(0)$ = (1), κ = 1- ρ_{d} and

$$\tau_{U}(0) = \tau_{1}(0) = \frac{1}{\mu(1 + \rho_{V})(1 - \rho)} .$$
 (3.13)

In general if N = v-1 (only 1 up state)

$$\tau_{v}(0) = \frac{1}{\mu} \frac{\sum_{i=0}^{v-1} p_{vi}(0) \frac{1}{\kappa - i} - \frac{1}{\kappa - v}}{\sum_{\kappa - (v-1)}^{\rho} p_{v,v-1}(0) + \frac{v}{\kappa - v}}, \qquad (3.14)$$

while if N = 0 (only 1 down state)

$$\tau_{U}(0) = -\frac{1}{\kappa\mu} \left(\begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \quad (\rho_{V} \ 0 \cdots 0) - A_{22} \end{pmatrix}^{-1} \begin{pmatrix} \frac{1}{\kappa-1} \\ \frac{2}{\kappa-2} \\ \vdots \\ \frac{V}{\kappa-V} \end{pmatrix}$$
(3.15)

Explicit solutions for other cases can be written down but become very complicated.

4. DERIVATION OF a (x) FUNCTIONS

The backward equation approach gives a straightforward derivation of the area accumulated under the queue length process during the first-passage time. One derives

$$\begin{pmatrix} -r_0 a'_0(x) \\ \vdots \\ -r_v a'_v(x) \end{pmatrix} = x \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} + Q \begin{pmatrix} a_0(x) \\ \vdots \\ a_v(x) \end{pmatrix}$$
(4.1)

Once again we define

$$\mathbf{a}_{\mathrm{D}}(\mathbf{x}) = \begin{pmatrix} \mathbf{a}_{0}(\mathbf{x}) \\ \vdots \\ \mathbf{a}_{\mathrm{N}}(\mathbf{x}) \end{pmatrix} \quad \text{and} \quad \mathbf{a}_{\mathrm{U}}(\mathbf{x}) = \begin{pmatrix} \mathbf{a}_{\mathrm{N+1}}(\mathbf{x}) \\ \vdots \\ \mathbf{a}_{\mathrm{V}}(\mathbf{x}) \end{pmatrix}$$

Clearly $a_D(0) = 0$, but $a_U(0)$ must be determined. Equation (4.1) can be rewritten as

$$\underline{a}'(\mathbf{x}) = \frac{1}{\eta} \mathbf{x} \begin{pmatrix} \frac{1}{\kappa} \\ \vdots \\ \frac{1}{\kappa - \mathbf{v}} \end{pmatrix} + \frac{\mu}{\eta} \mathcal{Q}^{\star} \underline{a}(\mathbf{x}) \qquad (4.2)$$

which has a straightforward exponential solution once the initial conditions have been determined. To this end, a second set of equations can be found using the Chapman-Kolmogorov approach. Beginning in an up state at level x the process must return to level x, then to 0. The expected area accumulated during the return to x is given by $a_i(0) + x_{\tau_i}(0)$. It follows that

$$a_{u}(x) = a_{u}(0) + x_{u}(0) + P_{u}(0) a(x).$$
(4.3)

Equations (4.2) and (4.3) can be combined to give

By partitioning Q^* one finds

$$a_{U}(0) = -\frac{n}{\mu} \left(\underbrace{P}_{U}(0) \underbrace{A}_{12} - \underbrace{A}_{22} \right)^{-1} \underbrace{\tau}_{U}(0)$$
(4.5)

A simple example of the calculation involved in (4.5) is the v = 1 case. It can be shown that

$$a_{1}(0) = \frac{\eta}{\mu^{2}} \frac{\rho_{d}(1-\rho_{d})}{(1+\rho_{v})^{2}(1-\rho)^{2}} \text{ for } \rho < 1$$
(4.6)

Carrying this a step further one can see that the idle period has mean length $1/\lambda = (1/\mu)(1/\rho_v)$. Thus recalling (3.13), we find the mean queue length given by $a_1(0)/(\tau_1(0) + 1/\lambda)$ or

$$E(Q) = \frac{\eta}{\mu} \frac{\rho v^{\rho} d}{(1-\rho)(1+\rho_{v})^{3}} \qquad \rho < 1. \qquad (4.7)$$

The v = 1 case can be carried further. Once $a_1(0)$ and $\tau_1(0)$ are known, $a_i(x)$ and $\tau_i(x)$ can be determined. Equation (3.11) becomes $\tau_1(x) = \tau_1(0) + \tau_0(x)$ indicating $\tau_1(x) - \tau_0(x) = \tau_1(0)$ given by (3.13). Equation (3.9) can be routinely solved to find

$$\tau_{0}(\mathbf{x}) = \frac{1}{\eta(1-\rho_{d})} \left(1 + \frac{\rho_{v}}{(1+\rho_{v})(1-\rho)}\right) \mathbf{x}$$

$$\tau_{1}(\mathbf{x}) = \frac{1}{\mu} \left[\frac{\mu}{\eta(1-\rho_{d})} \left(1 + \frac{\rho_{v}}{(1+\rho_{v})(1-\rho)}\right) \mathbf{x} + \left(\frac{1}{(1+\rho_{v})(1-\rho)}\right)\right]$$
(4.8)

The area function can also be explicitly determined. Equation (4.3) becomes $a_1(x) - a_0(x) = x\tau_1(0) + a_1(0)$. Substituting this into (4.1) gives

$$a_{0}(x) = \frac{x^{2}}{2} \left(\frac{1}{\kappa} + \tau_{1}(0)\right) + \frac{\rho_{v}}{\kappa} \frac{\mu}{\eta} a_{1}(0) x$$

$$(4.9)$$

$$a_{1}(x) = \frac{x^{2}}{2} \left(\frac{1}{\kappa} + \tau_{1}(0)\right) + \left(\frac{\rho_{v}}{\kappa} \frac{\mu}{\eta} a_{1}(0) + \tau_{1}(0)\right) x + a_{1}(0),$$

all coefficients of which have been previously determined. In the special case $\rho_d = 1/4$, $\rho_v = 1$, $\rho = 3/4$ mentioned earlier with $\lambda = .01$, $\mu = .01$, $\delta = 25$, $\eta = 100$ then

$$\begin{aligned} \tau_0(\mathbf{x}) &= \frac{\mathbf{x}}{25} \\ \tau_1(\mathbf{x}) &= 4\mathbf{x} + 200 \\ a_0(\mathbf{x}) &= \frac{602}{3} \mathbf{x}^2 + 100\mathbf{x} \end{aligned} \tag{4.10} \\ a_1(\mathbf{x}) &= \frac{602}{3} \mathbf{x}^2 + 300\mathbf{x} + 750,000 \\ E(\mathbf{Q}) &= \frac{a_1(\mathbf{0})}{\tau_1(\mathbf{0}) + \frac{1}{\mu} \frac{1}{\rho_V}} = \frac{750,000}{200 + 100} = 2500 \end{aligned}$$

The voice loss rate is given by $\lambda \rho_v / (1+\rho_v) = \lambda/2 = .005$.

5. STEADY-STATE DISTRIBUTION OF DATA QUEUE LENGTH

One can use a forward equation approach to develop an equilibrium distribution for the data queue length. Define p(x,j,t) to be the probability of j voice channels occupied and x data units in the system at time t. It is easily seen that for x > 0 and dt small

p(x,j,t + dt)

$$= p(x-r_{j}dt, j, t)(1 - (\lambda + j\mu)dt) + p(x-r_{j-1}dt, j-1, t)\lambda dt + p(x-r_{j+1}dt, j+1, t)(j+1)\mu dt + o(dt), 0 \le j \le v$$

where $p(x,-1,t) \equiv 0$.

Standard manipulations that treat x as a continuous variable lead to these equations

$$r_{j} \frac{\partial p}{\partial x} + \frac{\partial p}{\partial t} = -(\lambda \min(l, v-j) + j\mu) p(x, j, t)$$

$$+ \lambda p(x, j-l, t) + (j+l)\mu p(x, j+l, t), \quad x > 0.$$
(5.1)

Setting $t \rightarrow \infty$ and assuming $p(x,j,t) \rightarrow p_j(x)$ and [$\partial p(x,j,t)$]/ $\partial t \rightarrow 0$, we find

$$r_{j} p'_{j}(x) = -(\lambda \min(1, v-j) + j\mu) p_{j}(x) + \lambda p_{j-1}(x) + (j+1)\mu p_{j+1}(x), \quad 0 \leq j \leq v \quad (5.2)$$

with x > 0, $p_{-1}(x) = p_{v+1}(x) = 0$. The prime denotes x-derivatives

Equation (5.2) is incomplete as it does not contain information about the boundary behavior.

Equation (5.2) can be summarized in matrix form by

$$P'(x) = -P(x) R^* \frac{\mu}{\eta}, \qquad x > 0$$
 (5.3)

where $P_{\sim}(x) = (p_0(x), \ldots, p_v(x))$ and

Equation (3) can be routinely solved to get

$$\mathbb{P}_{\mathcal{C}}(\mathbf{x}) = \mathfrak{C} \exp\left(-\frac{\mu}{\eta} \, \mathbb{R}^{*} \mathbf{x}\right) \tag{5.4}$$

with $\underline{c} = (c_0, c_1, \dots, c_v)$. The constants \underline{c} must be determined, and equation (5.4) gives only the density function, not the mass at the boundary. In view of the fluid flow approximation, there will be mass at 0, given by π_i , for each down state i, $0 \leq i \leq N$, however, no mass at the boundary for any up state, $N+1 \leq i \leq v$. Furthermore, the equilibrium distribution over i is given by $(\rho_v^i/i!)/\sum_{j=0}^v \rho_v^j/j!$ It follows that

$$\int_{0}^{\infty} p_{i}(x) dx + \pi_{i} = \left(\rho_{v}^{i}/i!\right) / \sum_{n=0}^{v} \rho_{v}^{j}/i!, \quad 0 \leq i \leq N$$

$$\int_{0}^{\infty} p_{i}(x) dx = \left(\rho_{v}^{i}/i!\right) / \sum_{j=0}^{v} \rho_{v}^{j}/j!, \quad N+1 \leq i \leq v$$
(5.5)

It remains to determine c and (π_0, \dots, π_N) . Let $\mathbb{R}^* = \Phi D \Psi$ with $\Psi \Phi = I$ and

$$\begin{array}{c} D = \left(\begin{array}{cc} 0 & & \\ & \alpha_{1} & \\ & & \ddots \\ & & & \ddots \\ & & & & \alpha_{v} \end{array} \right) \end{array}$$

where we order the eigenvalues such that $\alpha_{N+1}, \ldots, \alpha_{V} > 0$ while $\alpha_{1}, \ldots, \alpha_{N} < 0$. It is clear that (5.4) can be rewritten to give

$$\mathbb{P}(\mathbf{x}) = \mathbb{C}^{\Phi} \begin{pmatrix} 1 & & \\ \exp(-\frac{\mu}{\eta} \mathbf{x}\alpha_{1}) & \\ & \ddots & \\ & & \ddots & \\ & & \exp(-\frac{\mu}{\eta} \mathbf{x}\alpha_{v}) \end{pmatrix} \psi (5.6)$$

The functions $p_i(x)$ are linear combinations of the $exp(-\frac{\mu}{\eta}x\alpha_i)$. In order for these functions to be integrable, the coefficients associated with those α_i which are negative must be 0. This provides constraints on the <u>c</u>. If $\Phi = (\Phi_0, \Phi_1, \dots, \Phi_v)$ whose columns are right eigenvectors, then $c \Phi_i = 0, 0 \leq i \leq N$. The remaining equations governing <u>c</u> come from (5.5). Letting $c \Phi_i = 0$ for $0 \leq i \leq N$ we have

and

$$p_{i}(x) = \sum_{j=N+1}^{V} c\phi_{j}\psi_{ji} \exp\left(-\frac{\mu}{\eta} x\alpha_{j}\right), \quad N+1 \leq i \leq v,$$

$$\int_{0}^{\infty} p_{i}(x) dx = \frac{\rho_{v}^{i}/i!}{\sum_{k=0}^{V} (\rho_{v}^{k}/k!)} = \frac{\eta}{\mu} \sum_{j=N+1}^{V} c\phi_{j}\psi_{ji}/\alpha_{j}.$$
(5.7)

ā

This gives v+l independent equations which determine c. Once c has been determined, $p_i(x)$, $0 \leq i \leq N$ are determined by (5.4). One can now determine π_0, \ldots, π_N , the boundary probabilities, using (5.5). The equilibrium distribution is now completely determined.

Let us consider the special case v = 1. Equation (1) becomes

$$p'_{0}(x) = -\frac{\mu}{\eta} \left(-\frac{\rho_{v}}{\kappa} p_{0}(x) + \frac{1}{\kappa} p_{1}(x) \right)$$

$$p'_{1}(x) = -\frac{\mu}{\eta} \left(\frac{\rho_{v}}{\kappa - 1} p_{0}(x) - \frac{1}{\kappa - 1} P_{1}(x) \right)$$

$$kp'_{0}(x) + (k-1)p'_{1}(x) = 0,$$
(5.8)

hence,

$$kp_0(x) + (k-1)p_1(x) = 0$$
 and $p_1(x) = -\frac{k}{k-1}p_0(x)$.

Substitution into (8) yields

$$p_{0}'(x) = -\frac{\mu}{\eta} \left(\frac{-\rho_{v}}{\kappa} - \frac{1}{\kappa-1} \right) p_{0}(x) = -\frac{\mu}{\eta} \frac{(1-\rho)(1+\rho_{v})}{\rho_{d}(1-\rho_{d})} p_{0}(x)$$

. $p_{0}(x) = c \exp\left[\frac{\mu}{\eta} \frac{(1-\rho)(1+\rho_{v})}{\rho_{d}(1-\rho_{d})} \right]$ (5.9)

$$p_1(x) = c \frac{1-\rho_d}{\rho_d} \exp\left[-\frac{\mu}{\eta} \frac{(1-\rho)(1+\rho_v)}{\rho_d(1-\rho_d)} x\right]$$

Now

$$\int_{0}^{\infty} p_{1}(x) dx = \frac{\rho_{v}}{1 + \rho_{v}}$$

thus

$$\frac{\rho_{\mathbf{v}}}{1+\rho_{\mathbf{v}}} = c \frac{(1-\rho_{d})}{\rho_{d}} \frac{\eta}{\mu} \frac{\rho_{d}(1-\rho_{d})}{(1-\rho)(1+\rho_{v})} \text{ and } c = \frac{\rho_{\mathbf{v}}(1-\rho)}{(1-\rho_{d})^{2}} \frac{\mu}{\eta} . \quad (5.10)$$

It is then possible to determine
$$\pi_0$$
 by means of the relation

$$\pi_0 = \frac{1}{1+\rho_v} - \int_0^\infty p_0(x) dx$$

Finally we find the marginal queue length distribution in a simple explicit form

$$p(x) = \begin{cases} \frac{\mu}{\eta} \frac{\rho_{v}(1-\rho)}{(1-\rho_{d})^{2}\rho_{d}} \exp \left[-\frac{\mu}{\eta} \frac{(1-\rho)(1+\rho_{v})}{\rho_{d}(1-\rho_{d})} x\right] & x > 0 \\ \\ \frac{1-\rho}{1-\rho_{d}} & x = 0 \end{cases}$$
(5.11)

The mean queue length is given by

$$E(Q) = \left(\frac{\eta}{\mu}\right) \frac{\rho_{d} \rho_{v}}{(1-\rho)(1+\rho_{v})^{2}} \qquad \rho < 1. \quad (5.12)$$

6. GENERALIZATIONS

The preceding analysis giving the data queue length can be carried out in greater generality. One may wish to view voice transmissions as a stream of alternating bursts and dead times. At any time, t, a voice customer assigned to a particular channel will be in one of two states: active transmission or inactive. During an inactive period the channel could be used for data transmissions. Such a strategy could greatly increase the data capacity, or reduce the data queue length, or both. One might assume a voice user moves between the active and inactive states in a Markovian way. As a result, one can define voice states {1, ..., M} and a continuous time Markov chain with generator Q describing the movement among these states. For each voice state i the number of channels available for data transmission can be found, and a rate of increase or decrease in the data queue length determined. Let that rate be denoted by r, and assume that the voice states are labelled in such a way that $r_1 \leq r_2 \leq \cdots \leq r_M$. We would assume there is a state I for which $r_{I} < 0 < r_{I+1}$. Up and down states can now be defined. The analysis carried out in previous sections can be shown to hold for this more general situation. The expression μQ^{\star} must be replaced by Q, while the expression

$$\eta \left(\begin{array}{c} \frac{1}{\kappa} \\ \frac{1}{\kappa-1} \\ \vdots \\ \frac{1}{\kappa-v} \end{array} \right)$$

must be replaced by

$$\begin{pmatrix} \frac{1}{r_1} \\ \vdots \\ \frac{1}{r_N} \end{pmatrix}$$

It follows that first passage times, queue lengths, and busy period lengths can be determined for this more general problem.

A second generalization involves a voice limitation procedure. One way to prevent the buildup of very long data queues is to increase the number of voice channels. This can be accomplished by providing lower transmission rates on certain voice channels, for example, one might provide 10 8kBPS channels; however, when 8 of those are in use one might divide the remaining 2 into 4 2kBPS channels. This results in lower quality transmission but less delay. Again this situation can be modelled by assuming various voice states $\{1, \ldots, N\}$ and movement among them according to a Markov chain with generator Q. Each voice state determines a data queue rate r_i . Again the preceding analysis can be applied directly to this case. One can therefore study the tradeoffs between data queue length (and delays), voice blocking probabilities, and voice transmission quality from formulas in this paper.

BIBLIOGRAPHY

Barbacci, M. R. and Oakley, J. D. (1976). "The integration of Circuit and Packet Switching Networks Toward a SENNET Implementation," 15th NBS-ACM Annual Technique Symposium.

Bhat, U. N. and Fischer, M.J. (1976). "Multichannel Queueing Systems with Heterogeneous Classes of Arrivals," <u>Naval Research</u> Logistics Quarterly 23

Chang, Lih-Hsing (1977). "Analysis of Integrated Voice and Data Communication Network," Ph.D. Dissertation, Department of Electrical Engineering, Carnegie-Mellon University, November.

Coviello, G. and Vena, P.A. (1975). "Integration of Circuit/Packet Switching in a SENET (Slotted Envelop NETwork) Concept," National Telecommunications Conference, New Orleans, December, pp. 42-12 to 42-17.

Fischer, M. J. (1977a). "A Queueing Analysis of an Integrated Telecommunications System with Priorities," INFOR 15,

Fischer, M. J. (1977b). "Performance of Data Traffic in an Integrated Circuit- and Packet-Switched Multiplex Structure," DCA Technical Report.

Fischer, M. J. and Harris, T.C. (1976). "A Model for Evaluating the Performance of an Integrated Circuit- and Packet-Switched Multiplex Structure," IEEE Trans. on Comm., Com-24, February.

Halfin, S. (1972). "Steady-state Distribution for the Buffer Content of an M/G/l Queue With Varying Service Rate," <u>SIAM J</u>. Appl. Math., 356-363.

Halfin, S. and Segal, M. (1972). "A Priority Queueing Model for a Mixture of Two Types of Customers," <u>SIAM J. Appl. Math.</u>, 369-379.

INITIAL DISTRIBUTION LIST

	Number of	Copies
Defense Documentation Center Cameron Station Alexandria, VA 22314	2	
Library Code Code 0142 Naval Postgraduate School Monterey, CA 93940	2	
Library Code 55 Naval Postgraduate School Monterey, Ca. 93940	1	
Dean of Research Code 012A Naval Postgraduate School Monterey, Ca. 93940	1	
Attn: A. Andrus, Code 55 D. Gaver, Code 55 D. Barr, Code 55 P. A. Jacobs, Code 55 P. A. W. Lewis, Code 55 P. Milch, Code 55 R. Richards, Code 55 M. G. Sovereign, Code 55 R. J. Stampfel, Code 55 R. R. Read, Code 55 J. Wozencraft, Code 74	1 25 1 1 1 1 1 1 1	
Mr. Peter Badgley ONR Headquarters, Code 102B 800 N. Quincy Street Arlington, VA 22217	1	
Dr. James S. Bailey, Director Geography Programs, Department of the Navy ONR Arlington, VA 93940	1	
Prof. J. Lehoczky Dept. of Statistics Carnegie Mellon University Pittsburgh, PA. 15213	5	

DISTRIBUTION LIST

STATISTICS AND PREBABILITY FROGRAM CFFICE OF NAVAL RESEARCH CODE 436 AFLINGTON VA 22217	1
CFFICE OF NAVAL RESEARCH NEW YORK AREA CFFICE 715 BRDACWAY - STH FLOOR ATTN: UK. ROBER GRAFTEN NEW YORK, NY 10003	1
DIRECTOR CFFICE OF NAVAL RESEARCH ERANCH OFF 536 SCUTH CLAFK STREET ATTN: DEPUTY AND CHIEF SCIENTIST CHICAGO, IL 60605	1
LI ERARY NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA 92152	1
NAVY LIBRAFY NATIONAL SPACE TECHNOLOGY LAB ATTN: NAVY LIERARIAN BAY ST. LGUIS MS 29522	1
NAVAL ELECTRONIC SYSTEMS COMMAND NAVELEX 320 NATIONAL CENTER NO. 1 ARLINGTON VA 20360	,1
DIRECTOR NAVAL REAEARCH LABORATORY ATTN: LIERARY (ONRL) CODE 2029 WASHINGTON, C.C. 20375	1
TECHNICAL INFORMATION DIVISION NAVAL RESEARCH LABORATORY WASHINGTON, D. C. 20375	1

DISTRIBUTION LIST	No. of Copies
PRCF. C. R. BAKER DEPARTMENT CH STATISTICS UNIVERSITY OF NOTRH CAFCLINA CHAPEL HILL NOFTH CARGLINA 27514	1
FRCF. R. E. DECHHOFER CEFARTMENT OF OPERATIONS RESEARCH COFNELL UNIVERSITY ITHACA NEW YORK 14850	1
FRCF. N. J. BERSHAD SCHOOL OF ENGINEERING UNIVERSITY OF CALIFORNIA IRVINE CALIFORNIA 92664	1
P. J. BICKEL CEFARTMENT OF STATISTICS LNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA	1
FROF. F. W. BLOCK DEPARTMENT OF MATHEMATICS UNIVERSITY OF, PITTSBURGH	ļ
FITTSBURGH FA 15260	1
PROF. JOSEPH BLUM DEPT. OF MATHEMATICS, STATISTICS AND COMPLTER SCIENCE THE AMERICAN UNIVERSITY WASHINGTON CC 20016	
PROF. R. A. BRADLEY DEFARTMENT OF STATISTICS FLORIDA STATE UNIVERSITY	l
TALLAHASSEE, FLORIDA 32306 FROF. R. E. BARLOW OPERATIONS RESEARCH CENTER COLLEGE OF FNGINGERING UNIVERSITY OF CALIFORNIA BERKLEY CALIFORNIA 94720	1
MR. C. N EENNETT NAVAL COASTAL SYSTEMS LAECRATORY CCDE P7G1 FANAMA CITY, FLORIDA 32401 29	1

•

.

DISTRIBUTION LIST

No. of Copies

PRCF. L. N. PHAT COMPUTER SCIENCE / OPERATIONS RESEARCH CENTER SOUTHERN METHODIST UNIVERSITY DALLAS TEXAS 75275	1
FROF. W. R. ELISOPHE DEPT. OF QUANTITATIVE BUSINESS ANALYSIS UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CALIFORNIA 90007	1
CR. DERRILL J. BORDELON NAVAL UNDEFWATER SYSTEMS CENTER CODE 21 NEWPORT PI 02840	1
J. E. BOYER JR DEPT. OF STATISTICS SOUTHERN METHODIST UNIVERSITY DALLAS TX 75275	l
DR. J. CHANDRA U. S. ARMY RESEARCH F. G. EOX 12211. RESEARCH TRIANGLE PARK NUFTH CARCLINA 27706	1
FROF. F. CHERNOFF DEPT. OF MATHEMATICS MASS INSTITUTE OF TECHNOLOGY CAMBRIDGE. MASSACHUSETTS 02139	1
PFOF. C. CERMAN DEFARTMENT OF CIVIL ENGINEERING AND ENGINEERING MECHANICS COLUMEIA UNIVERSITY NEW YORK NEW YORK 10027	1
PRCF. R. L. DISNEY VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY DEFT. OF INCUSTRIAL ENGINEERING AND OPERATIONS RESEARCH ELACKSEURG, VA 24061	1

DISTRIBUTION LIST

.

1

1

1

1

1

1

1

1

1

MR. GENE F. GLEISSNER AFFLIED MATHEMATICS LABORATORY CAVID TAYLOR NAVAL SHIP RESEARCH AND DEVELOFMENT CENTER BETHESDA MD 20084 FROF. S. S. GUPTA DEPARTMENT OF STATISTICS PURCUE UNIVERSITY LAFAYETTE INDIANA 47907 FFOF. C. L. HANSCN DEPT OF MATH. SCIENCES STATE UNIVERSITY OF NEW YCRK, BINGHAMTON BINGHAMTON NY 13901 Prof. M. J. Hinich Dept. of Economics Virginia Polytechnica Institute and State University Blacksburg, VA 24061 Dr. D. Depriest, ONR, Code 102B 800 N. Quincy Street Arlington, VA 22217 Prof. G. E. Whitehouse Dept. of Industrial Engineering Lehigh University Bethlehem, PA 18015 Prof. M. Zia-Hassan Dept. of Ind. & Sys. Eng. Illinois Institute of Technology Chicago, IL 60616 Prof. S. Zacks Statistics Dept. Virginia Polytechnic Inst. Blacksburg, VA 24061 Head, Math. Sci Section National Science Foundation 1800 G Street, N.W. Washington, D.C. 20550

No. of Copies

Dr. H. Sittrop Physics Lab., TNO P.O. Box 96964 2509 JG, The Hague The Netherlands	1
DR. R. ELASHOFF BIOMATHEMATICS UNIV. CF CALIF. LCS ANGELES CALIFORNIA 90024	1
PROF. GECRGE S. FISHMAŇ UNIV. EF NORTH CARGLINA CUR. IN OR AND SYS. ANALYSIS PHILLIFS ANNEX CHAPEL HILL, NORTH CAROLINA 20742	1
DR. R. GNANACESIKAN EELL TELEPHONE LAB HOLPDEL, N. J. 07733	1
DR. A. J. GOLEMAN CHIEF. GR DIV. 205.02, ADMIN. A428 U.S. DEPT. OF COMMERCE WASHINGTON, E.C. 20234	
DR. H. FIGGINS 53 BONN 1, POSTFACH 585 NASSESTRASSE 2 WEST GERMANY	1
DR. P. T. HOLMES DEPT. OF MATH. CLEMSON UNIV. CLEMSON SOUTH CAROLINA 29631	1
Dr. J. A. Hocke Bell Telephone Labs Whippany, New Jersey 07733	1
Dr. RobertHooke Box 1982 Pinehurst, No. Carolina 28374	1

LR. D. L. IGLEHART DEPT. CF C.F. STANFCRD LNIV: STANFCRD LNIV: CALIFCRNIA	94305	1
Dr. D. Trizna, Mail Code 5323 Naval Research Lab Washington, D.C. 20375		1
Dr. E. J. Wegman, ONR, Cdoe 436 Arlington, VA 22217		1
DR. H. KGEAYASHI IBM NCFKTCHN HEIGHTS NEW YORK		1
	10598	
CR. JOHN LEHOCZKY STATISTICS DEPARTMENT CARNEGIE-MELLON UNIVERSITY PITTS BURGH PENNSYLVANIA	15213	l
DR. A. LEMOINE 1020 GUINCA ST. FALO ALTC. CALIFORNIA	0(201	1
	94301	
DR. J. MACCUEEN UNIV. OF CALIF. LOS ANGELES CALIFORNIA		1
	90024	
FRCF. K. T. MARSHALL DEFT. CF CF NAVAL POSTGPACUATE SCHCCL MONTEREY CALIFORNIA	62.04.0	1
	53 940	
DR. M. MAZUMCAR MATH. DEPT. ESTINGHOLSE RES. LABS CHURCHILL BCFC FITTSBURGH PENNSYLVANIA	15235	1
22		

.

No. of Copies
1
1
l
i
Ē
1
1
1
1

	No. of copies
FRCF G. LIEPERMAN STANFORC INIVERSITY CEFARIMENT OF GPERATIONS RESEARCH STANFORD CALIFORNIA 94305	1
DR. JANES R. MAAR NATIONAL SECURITY AGENCY FORT MEADE, MARYLAND 20755	1
FPCF. R. W. MAESEN DEPARTMENT OF STATISTICS UNIVERSITY OF MISSEURI COLUMBIA MO	1
65201	
DR. N. R. MANN SCIENCE CENTER ROCKWELL INTERNATIONAL CORFCRATION F.C. BOX 1085 THOUSAND C4KS CALIFORNIA S136C	1
CR. W. H. MARLCW PROGRAM IN LOGISTICS THE GEORGE WASHINGTON UNIVERSITY 707 22ND STREET, N. W. WASHINGTON, D. C. 20037	1
PROF. E. MASRY	1
DEFT. APPLIED PHYSICS AND INFORMATION SERVICE UNIVERSITY OF CALIFORNIA LA JOLLA CALIFORNIA 92093	
CR. BRUCE J. MCCONALD SCIENTIFIC DIRECTOR	1
SCIENTIFIC LIAISON GROUP DEFICE CE NAVAL RESEARCE AMERICAN EMBASSY - TOKYC AFC SAN FRANCISCO 96503	

DISTRIBUTION LIST

Dr. Leon F. McGinnis School of Ind. And Sys. Eng. Georgia Inst. of Tech. Atlanta, GA 30332		1
CR. D. R. MCNEIL DEFT. CF STATISTICS PRINCETON UNIV. FRINCETON		1
NEW JERSEY	08540	
CR. F. MOSTELLER STAT. CEPT. HARVARC UNIV. CAMBRIEGE MASSACHUSETTS	02139	1
DR. M. REISER IEM THOMAS J. WATSON RES. CTR. YORKTOWN HEIGHTS NEW YOFK	10598	1
DR. J. RICREAN DEPT. OF MATHEMATICS FOCKEFELLER UNIV. NEW YORK NEW YORK	100 21	ľ
DR. LINUS SCHRIGE LNIV. OF CHICAGE GRAD. SCHOOL OF BUS. 5826 GREENWOOD AVE. CHICAGO, ILLINGIS	60637	1
Dr. Paul Schweitzer University of Rochester Rochester, N.Y. 14627		١
Dr. V. Srinivasan Graduate School of Business Stanford University Stanford, CA. 94305		١
Dr. Roy Welsch M.I.T. Sloan School Cambridge, MA 02139		1

DISTRIBUTION LIST	No. of Copies
CR. JANET M. MYHRE THE INSTITUTE OF DECISION SCIENCE FOR BUSINESS AND PUBLIC POLICY CLAREMONT MEN'S COLLEGE	1
CLARENGRT S1711	
MR. F. NISSELSCN BUREAU OF THE CENSUS ROCM 2025 FREERAL EVILCING 3 WASHINGTCN . D. C. 2033	1
MISS E. S. CRLEANS NAVAL SEA SYSTEMS COMMAND (SEA OFF)	l
ARLINGTON VIRGINIA 20360	
FRCF. C. E OWEN DEPARTMENT OF STATISTICS SOUTHERN METHODIST UNIVERSITY CALLAS TEXAS 75222	1
Prof. E. Parzen Statistical Sceince Division Texas A & M University College Station TX 77843	1
DR. A. PETRASOVITS RCCM 2070, FOCC AND CRLG BLDG. TUNNEY'S PASTLRE CTTOWA, ENTARIC KLA-CL2, CANADA	1
FRCF. S. L. PFCENIX SIELEY SCHOOL OF MECHANICAL AND AEROSPACE ENCINEERING CORNELL UNIVERSITY ITHACA NY 14850	1
DR. A. L. POWELL DIRECTOR	1
CFFICE OF NAVAL RESEARCH BRANCH UFF 495 SUMMER STREET BESTEN	
	1
MR. F. R. FRICFI CODE 224 CPERATIONSL TEST AND ONRS EVALUATION FORCE (OPTEVFOR) NORFOLK , VIRGINIA 37	Ŧ
20300 37	

PROF. N. L. PURI DEFT. CF MATHEMATICS P.G. BGX F INCIANA UNIVERSITY FOUNDATION 1 ELCOMINGTON IN 47401 FROF. H RCPBINS DEPARTMENT OF MATHEMATICS 1 CCLUPEIA UNIVERSITY NEW YORK, NEW YORK 10327 PFOF. M ROSENBLATT DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA SAN DIEGO 1 LA JCLLA CALIFORNIA 92093 PROF. S. M. RCSS COLLEGE OF ENGINEERING UNIVERSITY OF CALIFORNIA BERKELEY 1 CA 9472) PROF. I RUBIN SCHOOL OF ENGINEERING AND APPLIED SCIENCE UNIVERSITY OF CALIFORNIA LOS ANGELES CALIFORNIA J0024 1 PRCF. I. R. SAVAGE CEPARTMENT OF STATISTICS YALE UNIVERSITY NEW HAVEN, CONNECTICUT 1 **C6520** FRCF. L. L., SCHARF JR DEPARTMENT OF ELECRICAL ENGINEERING COLORACO STATE UNIVERSITY FT. COLLINS, COLORACO E0521 1 PROF. R. SERFLING DEPARTMENT OF STATISTICS FLORIDA STATE UNIVERSITY 1 TALLAHASSEE FLOR IDA 32306 PROF. N. R. SCHLCANY DEFARTMENT OF STATISTICS SOUTHERN METHODIST UNIVERSITY 1 CALLAS , 1E XA S 75222

•

PROF. C. C. SIEGMUND CEPT. OF STATISTICS STANFORD UNIVERSITY STANFORD	1
CA \$43.05	
FRCF. M. L. SHGOMAN DEPT. CF ELECTRICAL ENGINEERING POLYTECHNIC INSTITUTE CF NEW YORK BRCCKLYN, NEW YORK 11201	1
DR. A. L. SLAFKOSKY SCIENTIFIC ADVISOR COMMANUANT OF THE MARINE CORPS WASHINGTON, D. C. 20380	1
CR. C. E. SMITH DE SMATICS INC. P.C. BCX 618 STATE COLLECE PENNSYLVANIA 16801	1
PROF. W. L. SMITH DEFARTMENT OF STATISTICS UNIVERSITY OF NORTH CARCLINA CHAPEL HILL NOFTH CARCLINA 27514	1
Dr. H. J. Solomon ONR 223/231 Old Marylebone Rd London NW1 5TH, ENGLAND	1
MF. GLENN F. STAFLY NATIONAL SECURITY AGENCY FORT MEADE MARYLAND 20755	1
Mr. J. Gallagher Naval Underwater Systems Center New London, CT	1
Dr. E. C. Monahan Dept. of Oceanography University College Galway, Ireland	1

DR. R. M. STARK STATISTICS AND COMPUTER S UNIV. OF DELAWARE		1
NEWARK DELAWARE	19711	
FFOF. RICHARC VANSLYKE RES. ANALYSIS CORP. BEECHWOOD CLD TAFPEN FOXO GLEN COVE, NEW YORK	11 542	. 1
PROF. JOHN M. TUKEY FINE HALL FRINCETON UNIV. PRINCETON NEW JERSEY	08540	1
CR. THOMAS C. VARLEY CFFICE OF NAVAL RESEARCH CODE 434 ARLINGTON VA	22217	1
FREF. G. HATSON FINE HALL PRINCETON UNIV. PRINCETON NEW JERSEY	C8540	1
MR. EAVIE A. SWICK Advanced projects group Code Bics Naval Research LAB. Nashington CC	20375	l
NR. WENDELL G. SYKES Arthur D. Little, INC. Accrn Park Cambridge MA	02140	1
PROF. J. R. THEMPSON		1
DEPARTMENT OF MATHEMATICAL RICE UNIVERSITY HOUSTON, TEXAS 77001	. SCIENCE	
PROF. W. A. THEMPSEN DEFARTMENT OF STATISTICS UNIVERSITY OF MISSOURI COLUMBIA, MISSOURI 65201	4 0	1
	10	

DISTRIBUTION LIST

	No. of Copies
FREF. F. A. TILLMAN DEPT. CF INDUSTRIAL ENGINEERING KANSAS STATE UNIVERSITY MANHATTAN KS	1
66506	
PROF J. W. TUKEY DEFARTMENT OF STATISTICS FRINCETON UNIVERSITY FRINCETON, N. J. 08540	1
PRCF. A . F . VEINOTT DEFARTMENT CF CPERATIONS RESEARCH STANFORD UNIVERSITITY STANFORC CALIFORNIA 94305	ļ
CANIEL H. WAGNER STATION SOLARE ONE FACLI , FENNSYLVANIA 19301	1
PREF. GRACE WAHBA EEFT. CF STATISTICS UNIVERSITY CF WISCENSIN MADISON WI 53706	1
FRCF. K. T. WALLENIUS DE FARTMENT OF MATHEMATICAL SCIENCES. CLEMSON UNIVERSITY CLEMSON, SOUTH CARCLINA 29631	l
PRCF. BERNARD WIDRCW STANFORD ELECTRONICS LAB STANFORD UNIVERSITY STANFORD CA	1
94305	

DISTRIBUTION LIST	No. of Copies
OFFICE OF NAVAL RESEARCH SAN FRANCISCU AREA OFFICE 760 MARKET STREET SAN FRANCISCO CALIFORNIA 94102	.1
TECHNICAL LIBRARY Naval Grenance Station Incian Head Maryland 20640	1
NAVAL SHIP ENGINEERING CENTER PHILADELPHIA DIVISION TECHNICAL LIBRARY PHILADELPHIA PENNSYLVANIA 19112	1
BLREAU OF NAVAL PRESONNEL DEFARTMENT OF THE NAVY TECHNICAL LIGRARY WASHINGTON C. C. 20370	1
PRCF. M. AEDEL-HAMEED DEPARTMENT OF MATHEMATICS UNIVERSITY OF NORTH CARCLINA CHARLOTTE NC 28223	1
PROF. T. W. ANCERSON DEFARTMENT OF STATISTICS STANFORD UNIVERSITY STANFORD , CALIFORNIA ' 94305	1
PRCF. F. J. ANSCOMBE DEPARTMENT OF STATISTICS YALE UNIVERSITY NEW HAVEN CONNECTICUT C6520	1
PROF. L. A. ARCIAN INSITIUTE OF INCUSTRIAL ACFINISTRATION UNION COLLEGE SCHENECIADY , NEW YORK 12308	1

