NPS55-79-027 NAVAL POSTGRADUATE SCHOOL Monterey, California

CHANNELS THAT COOPERATIVELY SERVICE
A DATA STREAM
AND VOICE MESSAGES, I
by
D. P. Gaver
and
J. P. Lehoczky

November 1979
Approved for public release; distribution unlimited.
Prepared for:
Naval Research
in, VA 22217

Naval Postgraduate School
 Monterey, California

Rear Admiral T. F. Dedman
Jack R. Borsting
Superintendent
Provost

This report was prepared by:

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NPS55-79-027	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subitie) Channels that Cooperatively Service a Data Stream and Voice Messages, I.	5. TYPE OF REPORT \& PERIOD COVERED Technical
	6. PERFORMING ORG. REPORT NUMEER
7. AUTHOR(s) D. P. Gaver and J. P. Lehoczky	8. CONTRACT OR GRANT NUMBER(s) DD 1473
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, Ca. 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS 61152N; R000-01-10 N0001480WR00054
11. CONTROLLING OFFICE NAME AND ADDRESS Chief of Naval Research Arlington, VA 22217	12. REPORT DATE November 1979
	13. NUMBER OF PAGES 44
14. MONITORING AGENCY NAME A ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this roport) Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract ontored in Block 20, it difterent from Roport)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Communication Data-Voice Communications
Channels
Queues
Probability Models
20. ABSTRACT (Continue on reverso eide if neceseary and identify by block number)

A system of channels mutually accommodate both data and voice messages, voice having pre-emptive priority but being a loss system, and data being allowed to queue. Approximations to the data queue properties are derived.

CHANNELS THAT COOPERATIVELY SERVICE A DATA STREAM
AND VOICE MESSAGES*
by
D. P. Gaver
Naval Postgraduate School Monterey, CA 93940
J. P. Lehoczky

Carnegie-Mellon University Pittsburgh, PA. 15213

I. INTRODUCTION

A system of channels cooperatively services both voice and data messages arriving at one node of a communications network. This paper is devoted to the analysis of a particular channel-sharing strategy, in which voice traffic always occupies its channels when available, but data service is allowed to occur on empty voice channels. Voice traffic is taken to be of high priority; voice arrivals that find all voice channels busy are treated as losses. Note that voice traffic will be relatively infrequent as compared to data, and will also exhibit relatively long holding (service) times. Data traffic is taken to be heavy, and exhibits very short holding times (per word unit): compared to voice, data appears to arrive nearly continuously; when all data (and empty voice) channels are filled, queueing occurs.

[^0]We present an analysis of the performance of a special type of integrated circuit and packet-switched multiplexor structure. This structure essentially occurs within the SENET network; descriptions are given by Coviello and Vena (1975), and Barbacci and Oakley (1976). In this network a time-slotted frame is utilized; a certain portion of each frame is allocated to voice traffic, while any remaining data traffic can use all remaining capacity, including that left unused by voice. Voice, on the other hand, cannot use capacity unused by data, and operates on a loss system. The subject of our analysis has the same qualitative flavor. Typical performance measures that may be calculated are (i) the loss rate of voice traffic, and (ii) the expected waiting time, or, equvialently, mean queue length, of the data.

The analysis begins with standard probabilitistic assumptions. Specifically, voice traffic arrives according to a Poisson(λ) process, and each customer has an independent exponential(μ) service time. Data arrivals are according to an independent Poisson(δ) process, and exhibit exponential (n) service times. A total of c channels are reserved for exclusive used of data, while v channels can be used by both data and voice; however, voice pre-empts data. Voice operates as an $M / M / v$ loss system, and the well-known "Erlang B" loss formula will give the loss rate. We are mainly interested in the behavior of the data queue; however, we wish to
develop expressions for mean queue lengths for certain extreme (and realistic) parameter values. First, we will require that $\delta / \eta=\rho_{\mathrm{d}}>c$. This assumption indicates that the data must be able to use excess voice capacity in order to remain stable. Second, we require that η / μ be large, perhaps on the order of 10^{4}. This indicates that the voice requires long service periods while the data service periods are very short. This problem has been studied in a number of papers including Halfin and Segal (1972), Halfin (1972), Fischer and Harris (1976), Bhat and Fischer (1976), Fischer (1977), and Chang (1977). Many of these studies begin with the Kolmogorov forward equations appropriate for this system and introduce some approximations leading to a solution. While this approach is entirely appropriate, the approximations heretofore introduced have not been tailored to the $\rho_{d}>c$ and $n / \mu \approx 10^{4}$ situation. In fact, several of the approximations give quite misleading results in this case. We develop an approximation which is tailored to these rather extreme but realistic parameter conditions. While the Kolmogorov equations can be easily written for the Markov chain $\{(Q(t), N(t)), t>0\}$ where $Q(t)$ represents the number of data messages in the system and $N(t)$ represents the number of voice messages at time t, the fact that both $Q(t)$ and $N(t)$ are subject to random fluctuation seems to make any direct approach to solving the equations difficult. We thus propose to treat the data as a deterministic process behaving like a fluid flow.

2. THE APPROXIMATION

To better understand the behavior of the data queue process, we first consider the special case $c=0, v=1$. In this case, the data can use the single channel only when voice traffic is not present. Consider a set of parameter values given by $\lambda=.01, \mu=.01, \delta=25$, and $\eta=100$. It follows that $\rho_{d}=.25$ and $\rho_{v}=1$. The overall traffic intensity parameter $\rho=\rho_{d}+\rho_{v}(1-q)$ where q, the voice blocking probability, is .75, so the system is stable. Nevertheless, very long data queues will occasionally be created for the following simple reason. When no voice traffic is present and no data queue is present the system appears to data traffic to be an $M / M / 1$ system with $\rho=.25$. There will be essentially no queueing at all, and this situation will persist for an average of $l / \lambda=100$ time units. However, when a voice message arrives, the channel becomes unavailable to the data, and all data messages must now be queued. This queue will grow at a rate of 25 per unit time. Furthermore, the voice message exhibits a long holding time (on the average 100 time units), so the data queue will reach a height of 2500 on the average before it can begin to be serviced. The channel is now free, and will remain so for about 100 time units--but now the queue has 2500 customers, not zero as before. It is clear that the steady-state mean queue length is very large (2500 in fact) ; however, it is also clear that this classical performance evaluation measure can be very
misleading. The actual behavior of the data queue is one of long periods of essential emptiness followed by long periods of great queue length. The mean gives an average of these two extreme situations and therefore is misleading. We propose to develop approximations for this mean but to also provide other descriptions of system behavior such as idle and busy period lengths, first-passage times and steady-date distributions.

The mean queue length has been calculated exactly for $c=0, v=1$ by Fischer (1377) and is given by

$$
\begin{equation*}
\frac{\rho_{d}}{\left(1+\rho_{v}\right)^{2}(1-\rho)} \quad\left\{\frac{\eta}{\mu} \rho_{v}+\left(1+\rho_{v}\right)^{2}\right\} \tag{2.1}
\end{equation*}
$$

where $\rho=\rho_{d}+\rho_{v} /\left(1+\rho_{v}\right)$. It is clear that if $\eta / \mu \approx 10^{4}$ and $\rho_{v} \approx 1$ as in the above example, then of the two terms in brackets η / μ will be large compared with $\left(1+\rho_{v}\right)^{2}$, hence. we can ignore this term. Ignoring this term is equivalent to ignoring the queueing that occurs when the system is empty. The analysis presented in this paper ignores terms of this type.

The fluid flow approximation is based on treating the data as a deterministic stream. Let us suppose that there are i voice channels occupied. This leaves $c+v-i \quad$ available for data. Data arrives at rate δ and is serviced at rate $(c+v-i) n$ giving an overall change in the queue length of $\delta-\eta(c+v-i)=r_{i}$ per unit time, where $i=0,1, \ldots, v$. It is clear that $r_{0}<r_{1}<\cdots<r_{v}$. We assume $r_{0}<0$ and
$r_{v}>0$. The first is necessary for system stability while the latter follows from $\rho_{d}>c$. Thus there is a state N for which $r_{N} \leq 0<r_{N+1}$. We treat the case $r_{N}<0$, while $r_{N}=0$ is a straightforward generalization. We refer to the states $0,1, \ldots, N$ as "down" states, while $N+1, \ldots, v$ are "up" states $(0 \leq N \leq v$, so the two sets of states are nonempty). These names reflect the fact that if i voice channels are occupied, then the data queue tends to increase if i is an up state, and to decrease if i is a down state. The steady-state distribution of the occupancy of the voice channels is given by a truncated Poisson (ρ_{v}) distribution,

$$
\begin{equation*}
p_{i}=\frac{\rho_{v}^{i} / i!}{\sum_{j=0}^{v} \rho_{v}^{i} / i!}, \quad 0 \leq i \leq v \tag{2.2}
\end{equation*}
$$

and the loss probability $q=p_{v}$.
For the data queue to remain stable

$$
\sum_{i=0}^{v} r_{i} \rho_{v}^{i} / i:<0
$$

If one defines $\rho=\left[\rho_{d}+\rho_{v}(1-q)\right] /(v+c)$ then the stability condition becomes $\rho<1$.

We wish to compute a variety of quantities for the data queueing system. These quantities include

$$
\begin{array}{r}
\mathrm{P}_{\mathrm{ij}}(\mathrm{x})=\mathrm{P}(\text { voice is in state } j \text { when queue empties|voice } \\
\text { is in state } i \text { and data in state } \mathrm{x}), 0 \leq i \leq \mathbb{N} .
\end{array}
$$

```
\tau}\mp@subsup{i}{}{(x)}= expected first-passage time for data from state x
    to state 0 starting in voice state i, 0\leqi\leqv.
```

$$
\begin{aligned}
\mathrm{a}_{\mathrm{i}}(\mathrm{x})= & \text { expected area under data queue-length process } \\
& \text { accumulated during the first passage time to } 0, \\
& 0 \leq i \leq \mathrm{v} .
\end{aligned}
$$

The above quantities give important characterizations of the system performance. The first-passage times indicate the time needed to work off a backlog of size x. The area gives essentially the waiting time. If the queue is empty and the voice is in a down state then for the fluid model the queue will remain empty until the voice reaches the first up state, $N+1$. The queue immediately begins to grow at rate r_{N+1}. It follows that ${ }^{\tau}{ }_{N+1}(0)$ represents the expected duration of the busy period. Similarly $a_{N+1}(0)$ gives the expected area accumulated during the busy period. Using renewal-theoretic ideas $a_{N+1}(0) / \tau_{N+1}(0)$ gives the mean queue length during the busy period. Similarly $p_{N+1, i}(0)$ gives the probability that the busy period will end in voice state i. The time for the voice to reach $N+1$ from i and hence the expected time to initiate a new busy period is easily calculated from the birth-death nrocess. Let us designate this mean by S_{i}. Then $\sum_{i=0}^{N} S_{i} p_{N+1, i}(0)=T$ gives the expected idle time (we ignore all queueing during this period). Clearly $T /\left(T+{ }^{\tau}{ }_{N+1}(0)\right)$ gives the steady state data component idleness probability and
$a_{N+1}(0) \cdot T /\left(T+\tau_{N+1}(0)\right) \cdot{ }^{\tau}{ }_{N+1}(0)$ gives the steady-state mean data queue length. It is clear that the quantities $a_{i}(x)$, $\tau_{i}(x)$, and $p_{i j}(x)$ give valuable insight into the behavior of the queueing process, incidentally providing all of the standard queueing performance measures. The special case of one down state $(N=0)$ is easiest to handle, since in this case the $p_{i j}$'s can be ignored.
3. DERIVATION OF $p_{i j}(x)$ FUNCTIONS

We use a backward equation approach. Let us assume that at time $t=0$ the queue length is $x>0$ and i voice channels are occupied. It follows that at time $d t$, the new queue length will be $x+r_{i} d t$. The system will remain in state i with probability $1-(\lambda \min (1, v-i)+i \mu) d t+o(d t)$, will move to state $i+l$ with probability $\lambda \min (1, v-i) d t+o(d t)$, or will move to i-1 with probability iudt $+o(d t)$. Thus

$$
\begin{align*}
p_{i j}(x)= & p_{i j}\left(x+r_{i} d t\right)(1-(\lambda \min (1, v-i)+i \mu) d t+o(d t)) \\
& +p_{i-1}\left(x+r_{i} d t\right) i \mu d t \\
& +p_{i+1 j}\left(x+r_{i} d t\right) \lambda \min (1, v-i) d t+o(d t) \tag{3.1}
\end{align*}
$$

One expands the $p_{i j}\left(x+r_{i} d t\right)$ into $p_{i j}(x)+r_{i} p_{i j}^{\prime}(x) d t$ $+o(d t)$, collects terms and lets $d t \rightarrow 0$ to derive

$$
\begin{align*}
& p_{i j}^{\prime}(x)\left(-r_{i}\right) \\
& =-p_{i j}(x)(\lambda \min (v-i, 1)+i \mu)+p_{i-1, j}(x) i \mu \\
& \quad+p_{i+1, j}(x) \lambda \min (v-i, 1) \quad \text { with } 0 \leq j \leq N . \tag{3.2}
\end{align*}
$$

If $\quad r_{N}=0$, then (3.2) indicates a linear relationship among $p_{N j}(x), p_{N-1, j}(x)$ and $p_{N+1, j}(x)$. This relationship serves to allow elimination of $\mathrm{p}_{\mathrm{Nj}}(\mathrm{x})$ and therefore allows us to assume $r_{N}<0$. Equation (3.2) can be divided by $-r_{i}$ and the entire system rewritten in matrix form to yield

$$
{\underset{\sim}{P}}^{\prime}(x)=\frac{\mu}{\eta} \underset{\sim}{Q}{ }_{\sim}^{*}(x)
$$

here $\underset{\sim}{P}(x)=\left(p_{i j}(x)\right), 0 \leq i \leq v, 0 \leq j \leq N, a(v+l) \times(N+1)$
stochastic matrix for each x, and Q^{*} is defined by

where $k=c+v-\rho_{d}$. We assume $0<k<v$.
Equation (3.3) can be routinely solved to give

$$
\begin{equation*}
\underset{\sim}{P}(x)=\exp \left(\frac{\mu}{\eta} Q^{*}\right) \underset{\sim}{P}(0) \tag{3.4}
\end{equation*}
$$

where $\exp (M)=I+M+M^{2} / 2!+\cdots$ for a square matrix M. Interestingly, one still needs to determine $\underset{\sim}{P}(0)$ before $P(x)$ is fully determined.

To determine $P(0)$, we partition into down and up states. Thus

$$
\underset{X}{P}(x)=\binom{{\underset{\sim}{P}}_{D}(x)}{{\underset{P}{P}}_{U}(x)}
$$

where

$$
\begin{aligned}
& {\underset{\sim}{\sim}}_{D}(x)=\left(p_{i j}(x)\right), \quad 0 \leq i \leq N, \quad 0 \leq j \leq N \\
& {\underset{\sim}{P}}_{U}(x)=\left(p_{i j}(x)\right), \quad N+1 \leq i \leq v, \quad 0 \leq j \leq N .
\end{aligned}
$$

If no data queue is present $(x=0)$ and i is a down
state, then

$$
P_{i j}(0)=\left\{\begin{array}{rll}
+1 & \text { if } & i=j \\
0 & \text { if } & i \neq j
\end{array}\right.
$$

since emptiness is instantaneously achieved. Thus $\underset{\sim}{P}{ }_{D}(0)=I$, the $(N+1) \times(N+1)$ identity matrix. It remains to calculate ${ }_{\sim}^{P}{ }_{U}(0)$.

A second system of equations can be developed as follows. Beginning in state $i(i \quad u p)$ and $x>0$, one must first return to level x and then hit 0 . The return to level x must occur in a down state. This allows one to write a system of "ChapmanKolmogorov like" equations

$$
\begin{equation*}
{\underset{\sim}{P}}_{U}(x)=P_{U}(0) P_{D}(x) \tag{3.5}
\end{equation*}
$$

Equations (3.3) and (3.5) can be combined to give an expression for ${\underset{\sim}{P}}_{U}(0)$. This expression is in the form of a matrix quadratic equation:

$$
\begin{equation*}
\left({\underset{\sim}{P}}_{U}(0),-I_{V-N}\right) \&^{*}\binom{I_{N+1}}{P_{U}(0)}=0 \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
{\underset{\sim}{P}}_{U}(0){\underset{\sim}{A}}_{1}-{\underset{\sim}{A}}_{21}+{\underset{\sim}{P}}_{U}(0) \underset{\sim}{A} 12 \underset{\sim}{P}(0)-{\underset{\sim}{P}}_{22}{\underset{\sim}{P}}_{U}(0)=0 \tag{3.7}
\end{equation*}
$$

where

$$
Q^{*}=\left(\begin{array}{ll}
\stackrel{A}{\sim}_{1} 1 & \stackrel{A}{\sim}_{\sim} 12 \\
{\underset{\sim}{A}}_{21} & {\underset{\sim}{A}}_{22}
\end{array}\right) \quad \text { with } \quad \underset{\sim}{A} 11 \text { an }(N+1) \times(N+1) \text { matrix }
$$

Equation (3.7) does not yield a closed form solution except. in very special cases. It can, however, be solved numerically using a Newton-type iteration. Such solutions have been carried out, but the results will not be provided here.

DERIVATION OF $\tau_{i}(x)$ FUNCTION
The first-passage time functions can also be derived using a backward equation approach. A straightforward derivation gives

$$
\left(\begin{array}{c}
-r_{0} \tau_{0}^{\prime}(x) \tag{3.8}\\
\vdots \\
-r_{v} \tau_{v}^{\prime}(x)
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)+Q\left(\begin{array}{c}
\tau_{0}(x) \\
\vdots \\
\tau_{v}(x)
\end{array}\right)
$$

or

$$
\left(\begin{array}{c}
\tau_{0}^{\prime}(x) \tag{3.9}\\
\vdots \\
\tau_{v}^{\prime}(x)
\end{array}\right)=\frac{1}{\eta}\left(\begin{array}{c}
\frac{1}{\kappa} \\
\frac{1}{\kappa-1} \\
\vdots \\
\frac{1}{r-v}
\end{array}\right)+\frac{\mu}{n} Q^{*}\left(\begin{array}{c}
\tau_{0}(x) \\
\tau_{1}(x) \\
\vdots \\
\tau_{v}(x)
\end{array}\right)
$$

Equation (3.9) can be solved and has an exponential solution similar to (3.4); however, the initial conditions must be determined. Letting

$$
{\underset{\sim}{\tau}}_{D}(x)=\left(\begin{array}{c}
\tau_{0}(x) \\
\vdots \\
\tau_{N}(x)
\end{array}\right) \quad \text { and } \quad{\underset{\sim}{\tau}}_{U}(x)=\left(\begin{array}{c}
\tau_{N+1}(x) \\
\vdots \\
\tau_{V}(x)
\end{array}\right)
$$

one can develop a Chapman-Kolmogorov relationship as follows.
Beginning in an up state at level x the process must first return to x and then hit 0 . It follows that

$$
\begin{equation*}
\sim_{\sim}^{\tau}(x)={\underset{\sim}{\sim}}^{\tau}(0)+{\underset{\sim}{P}}_{U}(0) \underset{\sim}{\tau}(x) \tag{3.10}
\end{equation*}
$$

Clearly $\underset{\sim}{\tau}(0)=\underset{\sim}{0}$ and it remains to calculate $\underset{\sim}{\top}(0)$. Straightforward manipulations of equations (3.9) and (3.10)
give

$$
\left.{\underset{\sim}{P}}_{P}(0),-{\underset{\sim}{I}}_{V-N}\right)\left(\begin{array}{c}
\frac{1}{k} \tag{3.11}\\
\vdots \\
\frac{1}{K-V}
\end{array}\right)=\mu\left({\underset{\sim}{P}}_{U}(0),-{\underset{\sim}{I}}_{V-N}\right) \overbrace{0}^{*}\left(\begin{array}{c}
0 \\
\sim \\
{\underset{\sim}{\sim}}_{U}^{\tau}(0)
\end{array}\right)
$$

where $\underset{\sim}{P}{ }_{U}(0)$ has been previously determined. Using the partitioned version of

$$
Q^{*}=\left(\begin{array}{ll}
\stackrel{A}{\sim}_{\sim} 11 & \stackrel{A}{\sim}_{\sim} 12 \\
\mathrm{~A}_{21} & {\underset{\sim}{A}}_{22}
\end{array}\right)
$$

Equation (11) becomes

$$
\underset{\sim}{\tau}{ }_{U}(0)=\frac{1}{\mu}\left({\underset{\sim}{U}}_{U}(0){\underset{\sim}{A}}_{12}-\underset{\sim}{A_{22}}\right)^{-1}(\underset{\sim}{(P}(0),-\underset{\sim}{V}-N)\left(\begin{array}{c}
\frac{1}{\kappa} \tag{3.12}\\
\vdots \\
\frac{1}{K-V}
\end{array}\right)
$$

For example, in the special case $v=1,{\underset{\sim}{P}}_{U}(0)=(1)$, $k=1-\rho_{d}$ and

$$
\begin{equation*}
{ }_{\sim}^{\tau} U(0)=\tau_{I}(0)=\frac{1}{\mu\left(1+\rho_{V}\right)(1-\rho)} . \tag{3.13}
\end{equation*}
$$

In general if $N=v-l$ (only l up state)

$$
\begin{equation*}
\tau_{\mathrm{V}}(0)=\frac{1}{\mu} \frac{\sum_{i=0}^{\mathrm{i}-1} p_{\mathrm{Vi}}(0) \frac{1}{\kappa-i}-\frac{1}{\kappa-v}}{\frac{\rho_{v}}{k-\frac{(v-1)}{} p_{v, v-1}(0)+\frac{v}{k-v}}}, \tag{3.14}
\end{equation*}
$$

while if $N=0$ (only 1 down state)

$$
\sim_{U}^{\tau}(0)=-\frac{1}{K \mu}\left(\left(\begin{array}{c}
1 \tag{3.15}\\
\vdots \\
1
\end{array}\right) \quad\left(\rho_{v} 0 \cdots 0\right)-A_{2}()^{-1}\left(\begin{array}{c}
\frac{1}{K-1} \\
\frac{2}{K-2} \\
\vdots \\
\frac{v}{K-v}
\end{array}\right)\right.
$$

Explicit solutions for other cases can be written down but become very complicated.
4. DERIVATION OF $a_{i}(x)$ FUNCTIONS

The backward equation approach gives a straightforward derivation of the area accumulated under the queve length proced during the first-passage time. One derives

$$
\left(\begin{array}{c}
-r_{0} a_{0}^{\prime}(x) \\
\vdots \\
-r_{v} a_{v}^{\prime}(x)
\end{array}\right)=x\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)+2\left(\begin{array}{c}
a_{0}(x) \\
\vdots \\
a_{v}(x)
\end{array}\right)
$$

Once again we define

$$
{\underset{\sim}{a}}_{D}(x)=\left(\begin{array}{c}
a_{0}(x) \\
\vdots \\
a_{N}(x)
\end{array}\right) \quad \text { and } \quad{\underset{\sim}{U}}^{a_{U}(x)}=\left(\begin{array}{c}
a_{N+1}(x) \\
\vdots \\
a_{v}(x)
\end{array}\right)
$$

Clearly $\underset{\sim}{a}(0)=\underset{\sim}{0}$, but $\underset{\sim}{a}(0)$ must be determined. Equation (4.1) can be rewritten as

$$
a^{\prime}(x)=\frac{1}{n} x\left(\begin{array}{c}
\frac{1}{k} \\
\vdots \\
\frac{1}{k-v}
\end{array}\right)+\frac{\mu}{\eta} Q^{*} \underset{\sim}{a}(x)
$$

which has a straightforward exponential solution once the initial conditions have been determined. To this end, a second set of equations can be found using the Chapman-Kolmogorov approach.

Beginning in an up state at level x the process must return to level x, then to 0 . The expected area accumulated during the return to x is given by $a_{i}(0)+x_{i}(0)$. It follows that

$$
\begin{equation*}
a_{u}(x)=a_{u}(0)+x \tau_{u}(0)+P_{u}(0) a(x) \tag{4.3}
\end{equation*}
$$

Equations (4.2) and (4.3) can be combined to give

$$
\begin{equation*}
\sim_{\sim}^{\tau}(0)=\frac{\mu}{n}\left({\underset{\sim}{P}}_{U}(0),-{\underset{\sim}{\sim}}_{V-N}\right) \quad Q^{*}\binom{0}{{\underset{\sim}{U}}^{a_{U}}(0)} . \tag{4.4}
\end{equation*}
$$

By partitioning \mathbb{E}^{*} one finds

$$
\begin{equation*}
{\underset{\sim}{a}}_{U}(0)=-\frac{\eta}{\mu}\left({\underset{\sim}{U}}_{U}(0){\underset{\sim}{A}}_{12}-{\underset{\sim}{A}}_{22}\right)^{-1} \tau_{U}(0) \tag{4.5}
\end{equation*}
$$

A simple example of the calculation involved in (1.5)
is the $v=1$ case. It can be shown that

$$
\begin{equation*}
a_{I}(0)=\frac{\eta}{\mu^{2}} \frac{\rho_{d}\left(I-\rho_{d}\right)}{\left(I+\rho_{v}\right)^{2}(I-\rho)^{2}} \text { for } \rho<1 \tag{4.6}
\end{equation*}
$$

Carrying this a sten further one can see that the idle period has mean length $l / \lambda=(l / \mu)\left(l / \rho_{v}\right)$. Thus recalling (3.13), we find the mean queue length given by $a_{1}(0) /\left(\tau_{1}(0)+1 / \lambda\right)$ or

$$
E(Q)=\frac{\eta}{\mu} \frac{\rho_{v^{\rho}} d}{(1-\rho)\left(1+\rho_{v}\right)^{3}} \quad \rho<1 .
$$

The $v=1$ case can be carried further. Once $a_{1}(0)$ and $\tau_{I}(0)$ are known, $a_{i}(x)$ and $\tau_{i}(x)$ can be determined. Equation (3.11) becomes $\tau_{l}(x)=\tau_{1}(0)+\tau_{0}(x)$ indicating $\tau_{1}(x)-\tau_{0}(x)=\tau_{1}(0)$ given by (3.13). Equation (3.9) can be routinely solved to find

$$
\begin{equation*}
\tau_{0}(x)=\frac{1}{\eta\left(1-\rho_{d}\right)}\left(1+\frac{\rho_{v}}{\left(1+\rho_{v}\right)(1-\rho)}\right) x \tag{4.8}
\end{equation*}
$$

$$
\tau_{1}(x)=\frac{1}{\mu}\left[\frac{\mu}{n\left(1-\rho_{d}\right)}\left(1+\frac{\rho_{v}}{\left(1+\rho_{v}\right)(1-\rho)}\right) x+\left(\frac{1}{\left(1+\rho_{v}\right)(1-\rho)}\right)\right]
$$

The area function can also be explicitly determined. Equation (4.3) becomes $a_{1}(x)-a_{0}(x)=x_{1}(0)+a_{1}(0)$. Substituting this into (4.1) gives

$$
\begin{align*}
& a_{0}(x)=\frac{x^{2}}{2}\left(\frac{1}{\kappa}+\tau_{1}(0)\right)+\frac{\rho v}{\kappa} \frac{\mu}{\eta} a_{1}(0) x \\
& a_{1}(x)=\frac{x^{2}}{2}\left(\frac{1}{\kappa}+\tau_{1}(0)\right)+\left(\frac{\rho v}{\kappa} \frac{\mu}{\eta} a_{1}(0)+\tau_{1}(0)\right) x+a_{1}(0) \tag{4.9}
\end{align*}
$$

all coefficients of which have been previously determineä. In the special case $\rho_{\mathrm{d}}=1 / 4, \rho_{\mathrm{V}}=1, \rho=3 / 4$ mentioned earlier with $\lambda=.01, \mu=.01, \delta=25, \quad \eta=100$ then

$$
\begin{aligned}
& \tau_{0}(x)=\frac{x}{25} \\
& \tau_{1}(x)=4 x+200 \\
& a_{0}(x)=\frac{602}{3} x^{2}+100 x \\
& a_{1}(x)=\frac{602}{3} x^{2}+300 x+750,000 \\
& E(Q)=\frac{a_{1}(0)}{\tau_{1}(0)+\frac{1}{\mu} \frac{1}{\rho_{V}}}=\frac{750,000}{200+100}=2500 .
\end{aligned}
$$

The voice loss rate is given by $\lambda \rho_{\mathrm{v}} /\left(1+\rho_{\mathrm{v}}\right)=\lambda / 2=.005$.
5. STEADY-STATE DISTRIBUTION OF DATA QUEUE LENGTH

One can use a forward equation approach to develop an equilibrium distribution for the data queue length. Define $p(x, j, t)$ to be the probability of j voice channels occupied and x data units in the system at time t. It is easily seen that for $x>0$ and $d t$ small
$p(x, j, t+d t)$
$=p\left(x-r_{j} d t, j, t\right)(1-(\lambda+j \mu) d t)+p\left(x-r_{j-1} d t, j-1, t\right) \lambda d t$

$$
+p\left(x-r_{j+1} d t, j+1, t\right)(j+1) \mu d t+o(d t), \quad 0 \leq j \leq v
$$

where $p(x,-l, t) \equiv 0$.
Standard manipulations that treat x as a continuous variable lead to these equations

$$
\begin{align*}
r_{j} \frac{\partial p}{\partial x}+\frac{\partial p}{\partial t}= & -(\lambda \min (1, v-j)+j \mu) p(x, j, t) \tag{5.1}\\
& +\lambda p(x, j-1, t)+(j+1) \mu p(x, j+1, t), x>0 .
\end{align*}
$$

Setting $t \rightarrow \infty$ and assuming $p(x, j, t) \rightarrow p_{j}(x)$ and $[\partial p(x, j, t)] / \partial t \rightarrow 0$, we find

$$
\begin{align*}
r_{j} p_{j}^{\prime}(x)= & -(\lambda \min (1, v-j)+j \mu) p_{j}(x) \\
& +\lambda p_{j-1}(x)+(j+1) \mu p_{j+1}(x), 0 \leq j \leq v \tag{5.2}
\end{align*}
$$

with $x>0, p_{-1}(x)=p_{v+1}(x)=0$. The prime denotes x-derivatives.

Equation (5.2) is incomplete as it does not contain information about the boundary behavior.

Equation (5.2) can be summarized in matrix form by

$$
\begin{equation*}
{\underset{\sim}{P}}^{\prime}(x)=-\underset{\sim}{P}(x) R^{*} \frac{\mu}{\eta}, \quad x>0 \tag{5.3}
\end{equation*}
$$

where

$$
\underset{\sim}{P}(x)=\left(p_{0}(x), \ldots, p_{v}(x)\right) \text { and }
$$

Equation (3) can be routinely solved to get

$$
\begin{equation*}
\underset{\sim}{P}(x)=\underset{\sim}{c} \exp \left(-\frac{\mu}{\eta}{\underset{\sim}{R}}^{*} x\right) \tag{5.4}
\end{equation*}
$$

with $\underset{\sim}{c}=\left(c_{0}, c_{1}, \ldots, c_{v}\right)$. The constants $\underset{\sim}{c}$ must be determined, and equation (5.4) gives only the density function, not the mass at the boundary. In view of the fluid flow approximation, there will be mass at 0 , given by π_{i}, for each down state i, $0 \leq i \leq N$, however, no mass at the boundary for any up state, $N+1 \leq i \leq v$. Furthermore, the equilibrium distribution over i is given by $\left(\rho_{\mathrm{V}}^{i} / i!\right) / \sum_{j=0}^{\mathrm{V}} \rho_{\mathrm{V}}^{j} / j$: It follows that

$$
\begin{array}{ll}
\int_{0}^{\infty} p_{i}(x) d x+\pi_{i}=\left(\rho_{v}^{i} / i!\right) / \sum_{n=0}^{v} \rho_{v}^{j} / i!, & 0 \leq i \leq N \\
\int_{0}^{\infty} p_{i}(x) d x=\left(\rho_{v}^{i} / i!\right) / \sum_{j=0}^{v} \rho_{v}^{j} / j!, & N+1 \leq i \leq v \tag{5.5}
\end{array}
$$

It remains to determine $\underset{\sim}{c}$ and $\left(\pi_{0}, \ldots, \pi_{N}\right)$. Let ${\underset{\sim}{R}}^{*}=\Phi \underbrace{\Phi} \underset{\sim}{ }$ with $\psi \Phi=I$ and

$$
\underset{\sim}{D}=\left(\begin{array}{llll}
0 & & & \\
& \alpha_{1} & & \\
& & \ddots & \\
& & & \alpha_{v}
\end{array}\right)
$$

where we order the eigenvalues such that
$\alpha_{N+1}, \ldots, \alpha_{v}>0$ while $\alpha_{1}, \ldots, \alpha_{N}<0$. It is clear that (5.4) can be rewritten to give

The functions $p_{i}(x)$ are linear combinations of the $\exp \left(-\frac{\mu}{\eta} x \alpha_{i}\right)$. In order for these functions to be integrable, the coefficients associated with those α_{i} which are negative must be 0 . This provides constraints on the $\underset{\sim}{c}$. If $\Phi=\left(\Phi_{0}, \Phi_{1}, \ldots, \Phi_{\mathrm{V}}\right)$ whose columns are right eigenvectors, then $\underset{\sim}{c} \Phi_{i}=0,0 \leq i \leq N$. The remaining equations governing $\underset{\sim}{c}$ come from (5.5). Letting $\epsilon_{\phi_{\tilde{i}}}=0$ for $0 \leq i \leq N$ we have

$$
p_{i}(x)=\sum_{j=N+1}^{v} c d_{j} \psi_{j i} \exp \left(-\frac{\mu}{n} x \alpha_{j}\right), \quad N+1 \leq i \leq v,
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} p_{i}(x) d x=\frac{\rho_{v}^{i} / i!}{\sum_{k=0}^{V}\left(\rho_{v}^{k} / k!\right)}=\frac{\eta}{\mu} \sum_{j=N+1}^{v}{\underset{N}{N}}_{j}^{c} \psi_{j i} / \alpha_{j} . \tag{5.7}
\end{equation*}
$$

This gives $\mathrm{v}+1$ independent equations which determine $\underset{\sim}{c}$. Once $\underset{\sim}{c}$ has been determined, $p_{i}(x), 0 \leq i \leq N$ are determined by (5.4). One can now determine π_{0}, \ldots, π_{N}, the boundary probabilities, using (5.5). The equilibrium distribution is now completely determined.

$$
\begin{equation*}
\text { Let us consider the special case } v=1 \text {. Equation } \tag{1}
\end{equation*}
$$

becomes

$$
\begin{aligned}
& p_{0}^{\prime}(x)=-\frac{\mu}{\eta}\left(-\frac{\rho v}{k} p_{0}(x)+\frac{1}{\kappa} p_{1}(x)\right) \\
& p_{1}^{\prime}(x)=-\frac{\mu}{\eta}\left(\frac{\rho}{k-1} p_{0}(x)-\frac{1}{k-1} p_{1}(x)\right) \\
& k p_{0}^{\prime}(x)+(k-1) p_{1}^{\prime}(x)=0,
\end{aligned}
$$

hence,

$$
k p_{0}(x)+(k-1) p_{1}(x)=0 \quad \text { and } \quad p_{1}(x)=-\frac{k}{k-1} p_{0}(x) .
$$

Substitution into (8) yields

$$
\begin{align*}
p_{0}^{\prime}(x) & =-\frac{\mu}{n}\left(\frac{-\rho_{v}}{\kappa}-\frac{1}{\kappa-1}\right) p_{0}(x)=-\frac{\mu}{n} \frac{(1-\rho)\left(1+\rho_{v}\right)}{\rho_{d}\left(1-\rho_{d}\right)} p_{0}(x) \\
\therefore p_{0}(x) & =c \exp \left[\frac{\mu}{n} \frac{(1-\rho)\left(1+\rho_{v}\right)}{\rho_{d}\left(1-\rho_{d}\right)}\right] \tag{5.9}\\
p_{1}(x) & =c \frac{1-\rho_{d}}{\rho_{d}} \exp \left[-\frac{\mu}{n} \frac{(1-\rho)\left(1+\rho_{v}\right)}{\rho_{d}\left(1-\rho_{d}\right)} x\right]
\end{align*}
$$

Now

$$
\int_{0}^{\infty} p_{1}(x) d x=\frac{\rho_{v}}{1+\rho_{v}}
$$

thus

$$
\begin{equation*}
\frac{\rho_{v}}{1+\rho_{v}}=c \frac{\left(1-\rho_{d}\right)}{\rho_{d}} \frac{n}{\mu} \frac{\rho_{d}\left(1-\rho_{d}\right)}{(1-\rho)\left(1+\rho_{v}\right)} \quad \text { and } \quad c=\frac{\rho_{v}(1-\rho)}{\left(1-\rho_{d}\right)^{2}} \frac{\mu}{\eta} \tag{5.10}
\end{equation*}
$$

It is then possible to determine π_{0} by means of the relation

$$
\pi_{0}=\frac{1}{1+\rho_{v}}-\int_{0}^{\infty} p_{0}(x) d x
$$

Finally we find the marginal queue length distribution in a simple explicit form

$$
p(x)= \begin{cases}\frac{\mu}{\eta} \frac{\rho_{v}(1-\rho)}{\left(1-\rho_{d}\right)^{2} \rho_{d}} \exp \left[-\frac{\mu}{\eta} \frac{\left(1-\rho^{\prime}\left(1+\rho_{v}\right)\right.}{\rho_{d}\left(1 \cdots \rho_{d}\right)} x\right] & x>0 \tag{5.11}\\ \frac{1-\rho_{1}}{1-\rho_{d}} & x=0\end{cases}
$$

The mean queue length is given by

$$
\begin{equation*}
E(Q)=\left(\frac{\eta}{\mu}\right) \frac{\rho_{d} \rho_{v}}{(1-\rho)\left(1+\rho_{v}\right)^{2}} \tag{5.12}
\end{equation*}
$$

$$
\rho<1
$$

6. GENERALIZATIONS

The preceding analysis giving the data queue length can be carried out in greater generality. One may wish to view voice transmissions as a stream of alternating bursts and dead times. At any time, t, a voice customer assigned to a particular channel will be in one of two states: active transmission or inactive. During an inactive period the channel could be used for data transmissions. Such a strategy could greatly increase the data capacity, or reduce the data queue length, or both. One might assume a voice user moves between the active and inactive states in a Markovian way. As a result, one can define voice states \{I, ... , M\} and a continuous time Markov chain with generator \& describing the movement among these states. For each voice state i the number of channels available for data transmission can be found, and a rate of increase or decrease in the data queue length determined. Let that rate be denoted by r_{i}, and assume that the voice states are labelled in such a way that $r_{1} \leq r_{2} \leq \cdots \leq r_{M}$. We would assume there is a state I for which $r_{I}<0<r_{I+1}$. Up and down states can now be defined. The analysis carried out in previous sections can be shown to hold for this more general situation. The expression μQ^{*} must be replaced by \mathbb{Q}, while the expression

$$
n\left(\begin{array}{c}
\frac{1}{k} \\
\frac{1}{k-1} \\
\vdots \\
\frac{1}{k-v}
\end{array}\right)
$$

must be replaced by

$$
\left(\begin{array}{c}
\frac{1}{r_{1}} \\
\vdots \\
\frac{1}{r_{N}}
\end{array}\right)
$$

It follows that first passage times, queue lengths, and busy period lengths can be determined for this more general problem.

A second generalization involves a voice limitation procedure. One way to prevent the buildup of very long data queues is to increase the number of voice channels. This can be accomplished by providing lower transmission rates on certain voice channels, for example, one might provide 108 kBPS channels; however, when 8 of those are in use one might divide the remaining 2 into $42 k B P S$ channels. This results in lower quality transmission but less delay. Again this situation can be modelled by assuming various voice states $\{1, \ldots, N\}$ and movement among them according to a Markov chain with generator Q. Each voice state determines a data queue rate r_{i}. Again the preceding analysis can be applied directly to this case. One can therefore study the tradeoffs between data queue length (and delays), voice blocking probabilities, and voice transmission quality from formulas in this paper.

BIBLIOGRAPHY

Barbacci, M. R. and Oakley, J. D. (1976). "The integration of Circuit and Packet Switching Networks Toward a SENNET Implementation," l5th NBS-ACM Annual Technique Symposium.

Bhat, U. N. and Fischer, M.J. (1976). "Multichannel Queueing Systems with Heterogeneous Classes of Arrivals," Naval Research Logistics Quarterly 23

Chang, Lih-Hsing (1977). "Analysis of Integrated Voice and Data Communication Network," Ph.D. Dissertation, Department of Electrical Engineering, Carnegie-Mellon University, November.

Coviello, G. and Vena, P.A. (1975). "Integration of Circuit/Packet Switching in a SENET (Slotted Envelop NETwork) Concept," National Telecommunications Conference, New Orleans, December, pp. 42-12 to 42-17.

Fischer, M. J. (1977a). "A Queueing Analysis of an Integrated Telecommunications System with Priorities," INFOR 15,

Fischer, M. J. (l977b). "Performance of Data Traffic in an Integrated Circuit- and Packet-Switched Multiplex Structure," DCA Technical Report.

Fischer, M. J. and Harris, T.C. (1976). "A Model for Evaluating the Performance of an Integrated Circuit- and Packet-Switched Multiplex Structure," IEEE Trans. on Comm., Com-24, February.

Halfin, S. (1972). "Steady-state Distribution for the Buffer Content of an M/G/l Queue With Varying Service Rate," SIAM J. Appl. Math., 356-363.

Halfin, S. and Segal, M. (1972). "A Priority Queueing Model for a Mixture of Two Types of Customers," SIAM J. Appl. Math., 369-379.
Defense Documentation Center 2Cameron Station
Alexandria, VA 22314
Library Code 2Code 0142Naval Postgraduate SchoolMonterey, CA 93940
Library Code 55 1
Naval Postgraduate School
Monterey, Ca. 93940
Dean of Research 1
Code 012A
Naval Postgraduate School
Monterey, Ca. 93940
Attn: A. Andrus, Code 55 1
D. Gaver, Code 55 25
D. Barr, Code 55 1
P. A. Jacobs, Code 55 1
P. A. W. Lewis, Code 55 1
P. Milch, Code 55 1
R. Richards, Code 55 1
M. G. Sovereign, Code 55 1
R. J. Stampfel, Code 55 1
R. R. Read, Code 55 1
J. Wozencraft, Code 74 1
Mr. Peter Badgley 1
ONR Headquarters, Code l02B
800 N. Quincy Street Arlington, VA 22217
Dr. James S. Bailey, Director 1
Geography Programs,
Department of the Navy ONR
Arlington, VA 93940
Prof. J. Lehoczky 5
Dept. of Statistics
Carnegie Mellon University Pittsburgh, PA. 15213

STATISTICS FANO PRCBABILITY FROGRAM CFFICE OF NAV IL KESEARCL. COCE
AFL
$\forall A$
22217

CFFICE OF A AVLL FESEARCF

10303

NEW YORK. NY

DIRECTCR CFFICEOVAL RESEARCF ERANCH OFF 1

536 SCUTH CLAFK STREET
ATTN: DSPUTY ANO CHISF SCIENTIST

LIERARY
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO
CA
92152

AAVY LIBRAFY
NATIONAL SPACE TECHNOLCGY LAB
ATIN: NAY LIERARIAN
BAY ST. LGUIS
MS
AAVAL ELECTRONIC SYSTEHS COMMAND
AAVELEX EC
AATINAL CENTER NJ. 1
ARLINGTOA
VA

TECHMICAL IMFCGMATIDN CIVISION
AAVAL FSEESKCH LAEJRATDRY WASHIFGTCH, C. C.
FRCF. C. R. RAKFRDEFARYMENT CO STATISTICSCNIVEKSITY CF ACTRH CAFCLIAACHAFEL HILL\}NA27514
FRCF. R. E. BECFHOFER
CEFARTMENT CF CPERATICNS RESEARCH CCFNELL LNIVEKSITY

ITHACA

NEW YORK 148501
FRCF A J. EERSHAC
IRVINE C ALIFCRAIA
92664
P• JO BICKEL 1
CEFARTMENT OF STATISTICS
BERKELEY , CALIFCRNIA$\$ 4720$
FPOF F. W. BLOCK 1DEPARTAENT CF NATHENATICSUNIVERSITY ZF. PITTSBURGHFITTSBUFGHfá15260
PROF. JCSEFF ELUN 1
OEPT: OF MATHENATICS, STATISTICS
THE ANERICAN UNIVERSITY WASHINGTON
CC
20016
20016
PROF. R. A. 3RAD!EY1
DEFARTMENT CF STATISTICS
FLCRIDA STATE LAIVERSITY
TALLAHASSEE, FLORIDA 323C6
FROF. R. E. ESRLOW 1
CCILEGE CF FNGINBERIOG
UHI VERSI TY CF LALIFERAIA
BERKLFY
CALIFCFNIA 94720
MR. C. A EENAETT 1
NAVAL CCASTAL SYSTEMS LAECRATORY

FAAAIM CITY,

FLCRIDA

こ2401

FRCF．H．R．EIISCRKE
DEPT：CF GLANYITATIVE
BUSIHESS RAMY YIS
LNIVEKSITYCF SCLMBERM CALIFCRNIA LOS ANGELES，CALIFOKNIA 90007

CR．DERRILL J．ECRDELON
AAVAL UNLEFWATER SYSTEMS EENTER COCE 21

NEHPORT
 RI

02840
J．E．EOYER JR
CEPT：OF STATISTICS
SOUTRERN NUETHCDIST UNIVERSITY DALLAS
TX
75275

DR．J．CHANCRA
1
U．S．ARMY PESEARCF
Fo G EOX 12211 ．
RESEAFCH TRIGNGLE PARK
MJFTH CARCLINA
277CE

FRCF F．CFERNEFF
DEPT：CF MATHENATICS
NASS INSTITUTE CF TECHNGLOEY
caMbrivee
MASSACMUSETTS 0213 G

FFOF．C．［ERMAN
1
DEFARTMENT CF CIVIL EVEINEERING ANO ENGl NEミ「：NGECHANICS
COLUSEIA URIVERSITY
MEh YCFK
AEh YORK
10027

```
PRCF．R．L．OISNEY
VIFGINIA FCLYTECFAIC INSTITLTE AND STATE LAISERSITY
DEFT．CF LI，CUSTAIAL ENGIAESRING AND OFERATIENS KEJEARCH
ELfCKSEURG，VA
24061
```

FROF．S．S．GLPTA
1
OEPARTM ENT OF STATISTICS
PLRCUE UNIVERSITY
LAFAYETTE
INCIANA 479：J7

FFOF C．L．HAASCN
1
OEPT OF FATH．SCIYNCES
STATE LMILERSITY OF NEW YCRK， BINGHADTCN
BIAGHAMTCN
NY
13901

```
Prof．M．J．Hinich
Dedt．of Economics
Virginia Polytechnica Institute and State University
Blacksburg，VA 24061
```

Dr．D．Depriest， ONR，Code 102B
800 N．Quincy Street
Arlington，VA 22217
Prof．G．E．Whitehouse
Dept．of Industrial Engineering
Lehigh University
Bethlehem，PA 18015
Prof．M．Zia－Hassan
Dept．of Ind．\＆Sys．Eng．
Illinois Institute of Technology
Chicago，IL 60616
Prof．S．Zacks
Statistics Dept．
Virginia Polytechnic Inst．
Blacksburg，VA 24061
Head，Math．Sci Section
Dr. H. Sittrop
Physics Lab., TNO
P.0. Box 96964
2509 JG, The Hague
The Netherlands

90024

PROF. CECPCE S. FISHMAN
1
L'AIV. Ci NCRTH CARCLIMA
CUR I II CR ANO SYS. ANALYSIS PHILLIFS GANEX
CHAPEL HILL, NGFTH CARCLINA
20742

```
DR. R. GAAMACESIKAN EELLTELEFRCAE LAE HOLMOEL, \(N\).J. 07733
OR:A. J. CCL[HAN
CHIEF, CF
OIV. 2C5.C2, ADHIN. A42E
L' S. DEPT. CF CCFMERCE
WASHINGTGN, [.C.
20234
```

DR. H. FICEINS
NASSESTRASSE ${ }^{2}$ CTFACH. 58 S

HEST GERNANY

DR:P. TV HALMCLEMSCN LNIV.CLEMSONSCUTH CAROLINA29631
Dr. J. A. Hocke 1
Bell Telephone Labs
Whippany, New Jersey 07733
Dr. RobertHooke 1Box 1982
Pinehurst, No. Carolina 28374

Dr. D. Trizna, Mail Code 5323
Naval Research Lab
Washington, D.C. 20375

```
Dr. E. J. Wegman,
ONR, Cdoe 436
Arlington, VA 22217
```

DR: H. KGEAYASHI
IBN
ICFKTCLIN FEICRTS
NEK YORK
10598
CROTOFN LEFOCZKY
CTATISTICS CEASRTHAT CARNEGIE-FELLCN UNIVERSITY FITTSEURCR:
PEANSYLVANIA

```
OR A ALEMCINE
10 GO GUNACAST.
FALO ALTC,
CALIFGRNJA
```

94301

CR. J. NACGUEGN
1
LOS ANCELES
CALIFCRNIA
90024

```
FFCF. K. T• MARSHALL. 1
DEFT: CF CF
honterey
CALIFCRNIA

> PrOF. H. M. HIRSCH.
> JNSTITLTE: CF MATHENATICAL SCIENCES NEG YURN UNIVORSITY
> \(\begin{array}{ll}\text { AEh YCFK } \\ \text { AE KGRK } \\ \text { AGA53 }\end{array}\)

FRCF J. E. KACDNE
1
DEFARTHटirT CF STATISTICS
CAFNEGIE-HELLDN
FITTSEURER
PENN
15213

DR. RICHARE LAU
IIFECTOR
CFFICE CF MAVAL RESEARCF ERANCH OFF IC3OEAST GRE:EN STREET PASADENA
CA
51101
DFOAGR LAUFER
CIRECTCR
CFFICFAF NAVAL RESEARCF BRANCH OFF
IOBOEAST GPEEN STREET
FASACENA
CA
```

CR. J. LEE LESOCIATES, INC.
1
2OCI JEFFERSCA DAVIS HIGHhAY
SLITE 802
ARLINCTCA
VA

FPCF R H．HACSEN
1
DEPARTUEAT CF STATISTICS LNIVERSITY UF HISSLURI COLUNEIA MO

65201

DRENE RAAN
ROCKHIELL IAT：Z FiFCUSADO COE 10 C
IFCUSAAD CFKE
CALIFGRNIA CIZEC
1

Dr．Leon F．McGinnis
School of Ind．And Sys．Eng．
Georgia Inst．of Tech．
Atlanta，GA 30332

PKJNCCTHIV URIV．	
FRINCETON	
NEh JERSEY	08540

CR．F．MOSTEL！ER
STAT CEFT．
FARVARE LAIV．
Camisricee
NASSACトUSETTS
02139
DR．M．REISER
IEN
THOMAS J．HATSCA FES．CTR．
YCRKTOHN HEIGHTS AESi YCFK

10598

10021

OR．LINUS SCHR\＆GE
1
LNIV．CF CFICAEC
CFAD SCHOJL OF OLS
$58 こ 6$ GKEEAHECC AVE
CHICKGC，ILLINOIS
DRETJ．RICREAN C NATICS
FCCKEF：LLER UMIV。
NEK YOIRK
AEH YOFK

60637

Dr．Paul Schweitzer 1
University of Rochester
Rochester，N．Y． 14627
Dr．V．Srinivasan
Graduate School of Business
Stanford University
Stanford，CA． 94305
Dr．Roy Welsch

CR. JAAFT M NYHRE
 THE INSIITIGOF DECISICN SCIENCE FCR BUSIN: CLAREMCHT NEN'S CULLEGE CLARENGIIT

BLREAL
ROC:I 2025
FFCERAL EUILCINE 3
WASHIAGTCN

```
MISS E: SO CRLEANS CDMAAND (SEA O
FM \(10 \subseteq C 3\)
ARLINGTON VIREINIA
20360
```

```
FRCF - C E OHEN
DEPARTI-ENT CF STATISTICS
SOUTHERN HETHOCIST UNIVERSITY
cALLAS
TEXAS
75222
```

Prof. E. Parzen 1

Statistical Sceince Division
Texas A \& M University
College Station TX 77843

```
FRCF S S PROCENIX
SIELEY SCHCOL OF MECFAHICAL AND AERCSPACE ENGINEERIIVG
CORNELL UNIVEFSITY
ITHACA
AY
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\[
\begin{aligned}
& \text { DR A A L, POHELL } \\
& \text { CIRECTG } \\
& \text { CFICE OF NAVAI RESEARCH BRANCH OFF } \\
& 4 S 5 \text { SUNMEF STREET } \\
& \text { CCSTCN } \\
& M A
\end{aligned}
\]}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\(\$ 4305\)
```

FRCF．M．L．SHGJMAN
OEPT．CF ELECTFICAI ENGINEERING
POLYTECHINIC INSTITUTE CF IVEW YORK BRCCKL Yí，
AE Y YORK
12201

```
```

DR AEÁILIC SLAFKNSKY
SCIENTIFISER
COIFMANLNAT OF TVE MARINE CORPS
haSHINGTCK．
DOこと。

```
```

CR：COIE SNITR
PTATEBCXGLEKE
PENNSYLVANIA
16801

```

PROF WEFRTMENT SNITH
LNIVERSITY CF NERTH CARCLIMA
CH：APEL KILL
NGFTH CAFCLINA 27514

Dr．H．J．Solomon

ONR

223／231 01d Maryledone Rd

Loridon NWl 5 TH，ENGLANLD
```

MF．GLENN F．STAFLY．
ASTICNAL SECURITY AGENCY
FORT HEAE
20755

```
Mr．J．Gallagher ..... 1
Naval Underwater Systems Center
New London，CT
Dr．E．C．Monahatn ..... 1
Dept．of Oceanography University College
Galway，Ireland

QR R R M．§TARK
STATISTICS ANC CCAPUTEF SCI．
UNIV CF CELAhDRE
AELARK
CELAWARE

FFOF．RICFARC VAISLYKE
RES．AnALYSIS CCRF．
EEECトHCOC
CLC TAFF关N FORC
GLEN CCVE，NEH YORK
11542

PRCF•JOHN H．TIKEY 1
FINE FNLL FRIACETON UNIV．
PRINC：TON
NEW JERSEY
08540

CR．THCHAS C．VARLEY
CFFICE GF NAVAL KESEARCF
CODE
ARLING
NGTCA
VA
22217
```

FRCF G．hATSCA
FING HAL．
FRIICETI UNIV．
FRINEF：́．UNIV．
NEG JERSE゙Y
$C 8540$

```
```

NR．［AVIC A．SinlCK

FREF: F A TILLMAN ENEINEERING
DEPT: CF IANSTAL ENEIN

1 FRINCETON UNIVERSITY

```
FRINCETON , N. J. 08540
```

PRCF A
DEFARTMENT CF V CFINOTT
CATICAS RESEAPCH STANFORL UNIVEASTITY
STANFCRC
CALIFCRNIA
94305

CANIEL H. hAGTER
STATION SULLRE JNE
1
FACLI, FEANSYLVAAIA
15301

PRCF GRAC.E HAHRA
[EFT:CF STATISTICS
CNIVENS
fil
53706
FRCF. K. T. HALLENIUS
OEFART:GNT OF MATHEMATICAL SCIENCES.
CLEMSTM UNIVERSITY
CLENSCH.
SOLTH CARCIINA 25631

OFFICE CF AAVAL RESEARCh
SAF FFANC $15 C O$ IREA CFFICE
760 MAFKETSRREET
SAN FRANCISCC CALIFCRNIA 94102

TECFNICAL LIERARY
MAVAL CRENANCE STATION
IACIAN HE\＆C MARYLAND 2C64C

AAVAL SHIP ENEINEERING CENTER
PhILAOELFHIA
CIVISION TECFNICAL LIBRARY
PHILADELFHIA FENNSYLVANIA
19112

BLREAU DF MAVAL FFESGNNEL
CEFARTMEAT CFTRENAVY
TECHACAL IERARY 20370
WASHINGTCH C．C． 2037

PRCF NA AECEL－FANEED
OEPARTNAT CF NATHEMATICS
LNIVERSITY CF NCRTHMATICS
CHARLCTTE
NC
28223

```
FROF T． \(\mathrm{H}_{\mathrm{C}}\) ANEERSON
DEFARTMENT OF STATISTICS
STANFORD LNIVEREITY
STANFCRE，CALIFCRNIA•S43C5
```

FRCFOFEN J ENSCOHBE
1
YALE UVIVERSITY
AEn HAVEA
CEANECTICLT CE520


```
                                    1
ACHINISTAAT1:
UNI!日 Collele
SCトも?
```


U190211

[^0]: ${ }^{\star}$ Research in part sponsored by ONR at Naval Postgraduate School, NOOl480WR00067, and in part by NSF at Carnegie-Mellon University, ENG79 05526.

