LIBRARY TECHNICAL REPORT SECTION NAVAL POSTGRADUNT MONTEREY, CALIFORNIA 9294

NPS61-78-007

NAVAL POSTGRADUATE SCHOOL Monterey, California

ATMOSPHERIC MARINE BOUNDARY LAYER MEASUREMENTS IN THE VICINITY OF SAN NICOLAS ISLAND DURING CEWCOM-78

> C.W. Fairall, G.E. Schacher K.L. Davidson, and T.M. Houlihan

> > September 1978

Approved for public release; distribution unlimited

Prepared for: Naval Air Systems Command (AIR 3706) Washington, DC 20360

FEDDOCS D 208.14/2: NPS-61-78-007

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral T.W. Dedman Superintendent J.R. Borsting Provost

The work reported herein was supported in part by the Naval Air Systems Command (AIR 370) and Naval Ocean Systems Center (EOMET).

Reproduction of all or part of this report is authorized.

This report was prepared by:

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)						
REPORT DOCUMENTATION F	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
NPS61-78-007						
4. TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERED				
Atmospheric Marine Boundary Layer	Measurements	April - September 1978 Tochnical Poport				
in the Vicinity of San Nicolas Island During		6. BEREORNING ORG. REPORT NUMBER				
7. AUTHOR(*)	8. CONTRACT OR GRANT NUMBER(*)					
T M Houliban	Davidson	N00019-78-WK-81002				
		N66001-78-WR-00156				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK				
Naval Postgraduate School		AREA & WORK ONTE NUMBERS				
Monterey, CA 93940						
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
Naval Aim Swatama Campand (ARD 070		September 1978				
Washington, DC 20360	(0	13. NUMBER OF PAGES				
A NONITORING AGENCY NAME & ADDRESS(// d//ace)	from Controlling Office)					
		Unclas				
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16 DIST BURITION STATEMENT (of this Property						
Approved for public release; distribution unlimited						
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)						
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessary and	Identity by block number)					
Uptical propagation, boundary layer, turbulence						
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)						
This is a report on the boundary layer aspects of the NPS participation in						
CEWCOM-78. The primary purpose of the experiment was to determine how represen-						
the validity of boundary laver measurements at the NPL tower on the NUL tip of the						
island. Under favorable wind conditions (NW) the turbulance and profile structure						
of the boundary layer near SNI was characterisitic of typical marine conditions.						
A comparison of simultaneous measure	ments at the NRL	tower and the R/V ACANIA				
indicated considerable shoreline influence on the velocity fluctuations (U, or ε)						

#20. and the mean wind speed (U) but essentially no influence on temperature fluctuations (C_T^2). Using the bulk method to calculate T, and ξ from the ACANIA data, the actual measurements of C_T^2 could be predicted to within about a factor of two.

ATMOSPHERIC MARINE BOUNDARY LAYER MEASUREMENTS IN THE VICINITY OF SAN NICOLAS ISLAND DURING CEWCOM-78

C. W. Fairall, G. E. Schacher, K. L. Davidson and T. M. Houlihan Environmental Physics Group Naval Postgraduate School Monterey, California 93940

ABSTRACT

This is a report on the boundary layer aspects of the NPS participation in CEWCOM-78. The primary purpose of the experiment was to determine how representative San Nicolas Island is of an open ocean marine boundary layer and to examine the validity of boundary layer measurements at the NRL tower on the NW tip of the island. Under favorable wind conditions (NW) the turbulence and profile structure of the boundary layer near SNI was characteristic of typical marine conditions. A comparison of simultaneous measurements at the NRL tower and the R/V Acania indicated considerable shoreline influence on the velocity fluctuations (U_{*} or ε) and the mean wind speed (U) but essentially no influence on temperature fluctuations (C_T^2). Using the bulk method to calculate T_{*} and ξ from the Acania data, the actual measurements of C_T^2 could be predicted to within about a factor of two.

TABLE OF CONTENTS

I.	SUMMARY			
	Α.	Introduction	7	
	В.	Conclusion	7	
	С.	Recommendations	9	
II.	SHIP	MOVEMENTS	10	
III.	THEO	RETICAL SUMMARY	15	
	Α.	Definitions	15	
	в.	Monin-Obukhov Similarity	15	
	с.	Bulk Method	16	
	D.	Applications of the Bulk Method to C_N^2	18	
IV.	DATA		18	
	Α.	Surface Layer Data	18	
	в.	NRL Tower Site Evaluation	27	
	с.	Acoustic Sounder Data	32	
V.	V. CONCLUSIONS			
	Α.	Bulk Method	32	
	в.	SNI Boundary Layer Measurements at the NRL Tower	33	
	С.	SNI as a Representative Marine Boundary Layer	34	

APPENDICES

APPENDICES

- A. MOS Stability Functions
- B. R/V Acania Boundary Layer Data
- C. NPS Data From the Tower Site on SNI
- D. Acoustic Sounder Data

FIGURES

l.	Positions of R/V Acania from 5/8/78 to 5/15/78.			
2.	Positions of R/V Acania from 5/18/78 to 5/25/78.			
3. of Sa	Positions and anchorages (x) of R/V Acania in the Vicinity an Nicolas Island, a) 5/13-15; b) 5/18; c) 5/19-20.			
4.	R/V Acania Atmospheric Surface Layer Data for 5/14/78.			
5.	R/V Acania Atmospheric Surface Layer Data for 5/15/78.			
6.	R/V Acania Atmospheric Surface Layer Data for 5/18/78.			
7.	R/V Acania Atmospheric Surface Layer Data for 5/19/78.			
8.	R/V Acania Atmospheric Surface Layer Data for 5/20/78.			
9.	R/V Acania Atmospheric Surface Layer Data for 5/21/78.			
10.	R/V Acania Atmospheric Surface Layer Data for 5/22/78.			
11.	R/V Acania Atmospheric Surface Layer Data for 5/23/78.			
12. Comparison of Turbulence (C_T^2 and U_\star) and Mean Wind (U) Data from the R/V Acania with NPS Measurements at NRL Tower on San Nicolas Island.				
13. Comparison of C_T^2 Data from the R/V Acania with NPS Measurements at the NRL Tower on San Nicolas Island. For this data, the Acania was 30 miles to 50 miles upwind of SNI.				

14. Dimensionless Temperature Structure Function Parameter $(C_T^2 z^{2/3}/T_*^2 = f(\xi))$ vs Atmospheric Stability (ξ). The circled points are data and the solid curve is $f(\xi)$ from Wyngaard et al. (1971). The bulk method was used to calculate T_* and ξ .

TABLES

I. Primary data periods relevant to R/V Acania evaluations of SNI.

II. Comparison of turbulence $(C_T^2 \text{ and } U_*)$ and mean wind speed (U) measurements taken simultaneously at the NRL tower and aboard the R/V Acania. The Acania data are in Z=10 meter equivalent values The SNI C_T^2 and U data are from the Z=11.4 meter level. The U_{*} values from both sites are obtained by combining multilevel ε data.

III. Ratio of SNI to Acania measurements (r) for C_{π}^{2} , U_{*} and U.

REFERENCES

1. Businger, J. A., J. C. Wyngaard, Y. Izumi and E. F. Bradley, "Flux Profile Relationships in the Atmospheric Surface Layer", J. Atmos. Sci. 28, 181-189 (1971).

2. Davidson, K. L., T. M. Houlihan, C. W. Fairall, G. E. Schacher and D. Hinsman, "Description of Optically Relevant Turbulence Parameters", Proc. of Optical-Submillimeter Atmos. Propagation Conf., Colorado Springs, CO (1971).

3. Davidson, K. L., T. M. Houlihan, C. W. Fairall, and G. E. Schacher, "Observations of the Temperature Structure Function Parameter, C_{π}^2 , Over the Ocean", NPS Report (1978).

4. Fairall, C. W., K. L. Davidson, T. M. Houlihan, and G. E. Schacher, "Atmospheric Turbulence Measurements in Marine Fog During CEWCOM -76", NPS Report NPS61-77-004 (1977).

5. Friehe, C. W., J. C. LaRue, F. H. Champagne, C. H. Gibson, and G. F. Dryer, "Effects of Temperature and Humidity Fluctuations on the Optical Refractive Index in the Marine Boundary Layer", J. Opt. Soc. Amer., 65, 1502-1511 (1975).

6. Haugen, D. Workshop on Micrometeorology, American Meteorology Society [Science Press] 392 pp (1974).

7. Wyngaard, J. C., Y. Izumi and S. A. Collins, "Behavior of the Refractive Index Structure Parameter Near the Ground", J. Opt. Soc. Amer., 61, 1646-1650 (1971).

8. Wyngaard, J. C. and O. R. Cote, "The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer", J. Atmos. Sci., 28, 181-189 (1971).

I. SUMMARY

A. Introduction

This is a report on atmospheric measurements made by the Naval Postgraduate School Environmental Physics Group aboard the R/V Acania in the vicinity of San Nicolas Island (SNI) in May of 1978. The primary goal of these measurements was to examine the open ocean "representativeness" of SNI and to evaluate the validity of measurements made at the NRL tower site on the north west tip of the island. This report will focus on the turbulence and boundary layer data, leaving the aerosol evaluation for a later report. In addition, the NPS group provided direct micrometeorological support for optic experiments and a rather conclusive study of the bulk method scaling law predictions of turbulence parameters in the surface layer.

B. Conclusions

How representative SNI is of the marine condition is more of an aerosol question than a turbulence question. However, the turbulence aspect is important. During CEWCOM-76 it was found that coastal areas exhibited diurnal variations of temperature structure function, C_T^2 , characteristic of overland sites (minima in C_T^2 at sunrise and sunset) whereas open ocean areas exhibited almost no diurnal variation. Under the W-NW wind conditions that predominated during the turbulence evaluation periods of CEWCOM-78, the C_T^2 measurements near SNI showed no obvious diurnal variation.

The Naval Research Laboratory (NRL) tower site measurement made by NPS personnel using identical equipment to that

being employed on the R/V Acania have been compared to simultaneous shipboard measurements. For data taken when the Acania was in the immediate vicinity of the tower site (primarily anchored within .3 miles) the C_T^{2} comparison showed excellent agreement. Neglecting a few low wind speed cases, the average disagreement was only 7% for 23 periods with a single measurement standard deviation of 64%. Given the combined measurement uncertainty of about 30% and the uncertainty introduced by the stochastic nature of atmospheric turbulence, it may be quite difficult to do significantly better. Although only a few periods were available, C_T^{2} measurements made at the NRL tower compared fairly well with shipboard measurements made when the Acania was 30 to 50 miles upwind of the island. This indicates that SNI is in a region of good horizontal homogeneity under NW wind conditions.

Comparisons of wind speed, U, and the rate of disipation of turbulence kinetic energy, ε , were not nearly as favorable as the C_T^{2} comparison. The values of ε were used to calculate the friction velocity U_{*} (the surface stress is proportional to U_{*}²). On average, the tower measurements of U_{*} were 2.5 times greater than the ship measurements with a standard deviation of 93%. The tower measurements of wind speed (at Z=11 meters) were, on average, 16% lower than the ship measurements with a standard deviation of 10%. The lower wind speed and higher surface stress at the tower is a result of the increased drag imposed by the surf and land. This means that neither

turbulence nor profile measurements at the tower can be used to determine the atmospheric stability and Monin-Obukhov scaling parameters over the immediate ocean area.

The estimation of C_T^{2} (as well as ε) using Monin-Obukhov scaling parameters not only requires a validation of the C_T^{2} parameterization formulae, but also requires a practical method of obtaining the scaling parameters. Employing only four physical quantities (sea surface temperature and wind speed, air temperature and relative humidity at some reference height above the sea surface) the bulk method is not only the simplist but is also the least demanding in terms of accuracy. Using data from several cruises, the NPS group has shown that Wyngaard et al.'s (1971) C_T^{2} parameterization is valid over the ocean and that the bulk method provides an excellent rendition of the scaling parameters [Davidson et al. (1978)]. Included in this report is a comparison of bulk predictions with observations obtained during CEWCOM-78, demonstrating the applicability of this technique.

C. General Comments and Recommendations

1. Obviously the NPL tower site location is most suitable for NW wind conditions. During CEWCOM-78 we did find good tower data for winds from 240 to 320 degrees (this does not necessarily exclude other wind directions). However, there is evidence of land influence under light wind conditions. In view of this, it would be prudent to limit the tower data to wind speeds greater than 2.5 m/sec.

2. We feel that atmospheric stability and Monin-Obukhov scaling parameters should be calculated using the bulk method with the updated coefficients and techniques given in the text. This will require supplementing the tower measurements with a sea surface or bulk ocean temperature measurement. Also, the tower measured wind speed should be increased to account for the surface drag effects.

3. Given the importance of the humidity contribution to C_N^2 , the temperature-humidity covariance, C_{Tq} , should be measured at the tower site. Based on bulk estimates, during CEWCOM-78 the average relative contribution of C_T^2 and C_N^2 was 70%, the C_{Tq} contribution was 24% and the C_q^2 contribution was 6%.

II. SHIP MOVEMENTS

The primary movements of the R/V Acania are shown in Figures 1 and 2. Anchorage locations at SNI are shown in Figure 3. A summary of data periods relevant to SNI evaluations is given in Table I. Periods of running downwind and periods inside the Channel Islands have been excluded.

:

Figure 1. Positions of R/V Acania from 5/8/78 to 5/15/78

Figure 2. Positions of R/V Acania from 5/18/78 to 5/25/78

TABLE I. PRIMARY DATA PERIODS RELEVANT TO R/V ACANIA EVALUATIONS OF SNI.

			POSITION		
DATE	START	END	FROM SNI	MOVEMENT	07222
5.73 A	0700	1000	Henrice (70 withe)	11:2	A trea
C7 4 7	0220	1070	Chevron Changer (Chevron Chevron Chevr	1.) 1.)	A-77 k
· 1번 기가 1번	0100	0.020	The state of the set	Listist	A kts
for a second	1920	1920	Pacallel North Shore	11	s kts
	1920		J mile NW	AKIX	0
5714	** **	0.00	.3 mile NW	A	0
5/15	****	1900	.3 mile NW	â	0
5713	1800	2200	Near NW Point	∇	3 kts
	2200	****	Urwind	U	varie
5/19		0300	Urwind	U	6 kts
	0700	09,00	Near NW Point	V	3 kts
	1000	****	.3 mile NW	A	0
5720	****	0800	.3 mile NW	Δ	0
	0800	1340	Urwind	U	ő kts
	1340	4° 44	Urwind (30 miles)	U	2 kts
5/21		0700	Upwind (40 miles)	U	2 M.Us
	1000	1130	Upwind (30 miles)	U	2 kts
	2200	0000	Urwind (30 miles)	U	2 kts
5722	****	1130	Upwind (40 miles)	U	2 kts

*V - Varied **U - Upwind

***A - Anchored

III. THEORETICAL SUMMARY

A. Definitions

The optically relevant turbulence quantities measured were temperature structure function parameter, C_T^2 , and the rate of dissipation of turbulent kinetic energy, ϵ . The refractive index structure function parameter, C_N^2 , is related to C_T^2 by

$$C_N^2 = (79 \times 10^{-6} P/T) (C_T^2 + .11 C_{Tq} + .0032 C_q^2)$$
 (1)

where C_{Tq} is the temperature - water vapor covariance parameter and C_q^2 is the water vapor structure function parameter. The microscale of turbulent functions, n, is related to ε by

$$\eta = (v^3/\varepsilon)^{1/4}$$
⁽²⁾

where v is the kinematic viscosity of air.

B. Monin-Obukhov Similarity (MOS)

In the atmospheric surface layer ($Z \stackrel{\leq}{=} 50$ meters) C_T^2 and ε can be calculated from scaling parameters that are related to more easily measured atmospheric properties [see Haugen (1973) for a review]. The appropriate MOS formulae are

$$C_{\rm T}^{2} = {\rm T}_{\star}^{2} {\rm z}^{-2/3} {\rm f}(\xi)$$
(3)
$$\varepsilon = ({\rm U}_{\star}^{3}/{\rm Kz}) {\rm F}(\xi)$$
(4)

Where T_* and U_* are the potential temperature and wind speed scaling parameters, $f(\xi)$ and $E(\xi)$ are dimensionless MOS functions (Appendix A), Z is the vertical coordinate and K is Von Karmon's constant (K = .35). The MOS dimensionless stability parameter, ξ , is related to the Monin-Obukhov length, L,

$$\xi = Z/L = \frac{KgZ}{T} \frac{(T_* + .61 Tq_*)}{U_*^2}$$
(5)

where q_* is the water vapor mixing ratio scaling parameter, T is the temperature and g is the acceleration of gravity.

The vertical profile of the mean quantity X (where X = T, q, U) can be represented by

$$X(Z) = X(O) + \frac{X_{\star}}{\alpha_{\chi}KZ} (\ln Z/Z_{OX} - \psi_{\chi}(\xi))$$
(6)

where Z_{ox} is the roughness length for X and $\psi_{x}(\xi)$ is the profile function (Appendix A). The value of K is chosen so that $\alpha_{u}=1$. We have assumed $\alpha_{T} = \alpha_{\sigma} = 1.35$.

C. Bulk Method

One cannot calculate C_T^2 and ε from Equations 3 and 4 until one first obtains values for T_* , U_* and ξ . The bulk method of determining the MOS scaling parameters is based upon relating X_* to the air-sea X difference (ΔX) through the drag coefficient c_X .

$$X_{\star} = c_{X}^{1/2} (X(Z) - X(O)) = c_{X}^{1/2} \Delta X$$
(7)

Using Equation 6 we can define the neutral value ($\xi = 0$) of the drag coefficient, c_{XN}

$$c_{XN}^{1/2} = \frac{\alpha_{X}^{K}}{\ln Z/Z_{QX}}$$
(8)

and relate c_{XN} to c_X

$$c_{X} = \frac{c_{XN}}{(1 - (\alpha_{X}K)^{-1}c_{XN}^{-1/2}\psi_{X}(\xi))^{2}}$$
(9)

Using Equation 5 and Equation 7 we can calculate

$$\xi = \xi_{0} \frac{(1 - K^{-1}c_{UN}^{1/2}\psi_{U}(\xi))^{2}}{(1 - (\alpha_{T}K)^{-1}c_{TN}^{1/2}\psi_{T}(\xi))}$$
(10)

with

$$\xi_{0} = \frac{KgZ}{T} - \frac{c_{TN}^{1/2} (\Delta T + .18\Delta q)}{c_{UN}^{2}}$$
(11)

where Δ T is the air-sea potential temperature difference (°C), Δ q is the air-sea water vapor mixing ratio difference (gm/kg) and U is the wind speed (m/sec). c_{UN} varies with wind speed but is well approximated by c_{UN} = 1.3 x 10⁻³. Based upon Davidson et al.'s (1978) work, a good value for c_{TN} is c_{TN} = 1.3 x 10⁻³.

The actual bulk method process goes as follows:

- 1) From U calculate c_{UN}
- 2) From U, ΔT , Δq , $c_{\rm UN}$ calculate $\xi_{\rm O}$ (Equation 11)
- 3) From ξ_{0} , solve Equation 10 to find ξ
- 4) From ξ and $c_{\pi N}$ calculate c_{π} (Equation 9)
- 5) From ΔT and c_{π} calculate T_{\star} (Equation 7)
- 6) From T_{*} and ξ calculate C_{T}^{2} (Equation 3)

The process can be greatly simplified by ignoring the wind speed dependence of c_{UN} . In this case (for z = 10 meters and T=15°C)

$$\xi_{0} = 3.3 (\Delta T + .18 \Delta q) / U^{2}$$

We have solved Equation 10 for this case, allowing a simple algebraic relation between ξ_0 and ξ .

$$\xi = \xi_0 (1 - .03\xi_0^{4}) \qquad \xi_0 < 0 \quad (13a)$$

$$\xi = \xi_0 (1 + .18\xi_0^{.8} + .13\xi_0^{.3}) \qquad \xi_0 > 0 \qquad (13b)$$

This leads to the simplified bulk method process:

- From U, ΔT and Δq calculate ξ_{o} (Equation 12) 1)
- From ξ_{O} calculate ξ (Equation 13) 2)
- From ξ and $c_{\pi N}$ calculate c_{π} (Equation 9) 3)
- From ΔT and c_{π} calculate T_{\star} (Equation 7) 4)
- From T_* and ξ calculate C_{π}^2 (Equation 3) 5)
- D. Application of Bulk Method to C_N^2

In order to calculate C_N^2 from Equation 1, one must have available estimations of C_{T}^{2} , C_{Tq}^{2} and C_{q}^{2} . Since the bulk method calculations have given us T_* , q_* and ξ , let us suppose that C_{α}^{2} and $C_{T\alpha}$ can be calculated from the MOS analagous form for Equation 3

$$C_q^2 = q_*^2 Z^{-2/3} f(\xi)$$
 (14a)

$$C_{Tq} = T_* q_* Z^{-2/3} f(\xi)$$
 (14b)

From Equation 1, we now have

$$C_N^2 = (79 \times 10^{-6} P/T^2)^2 (T_*^2 + .11 T_*q_* + .0032q_*^2) z^{-2/3} f(\xi)$$
 (15)
In Equations 14a and 14b we have assumed that C_q^2 and C_{Tq} obey
Monin-Obukhov similarity and they have the same dimensionless
structure function parameter (f(ξ)) as C_T^2 .

IV. DATA

In

Α. Surface Layer Data

The shipboard turbulence, mean and MOS scaling parameter data are shown in Figures 4 through 12. The turbulence

Figure 4. A/V Acania Atmospheric Surface Layer Data for 5/14/78.

Figure 5. R/V Acania Atmospheric Surface Layer Data for 5/15/78.

Figure 7. R/V Acania Atmospheric Surface Layer Data for 5/19/78.

= q. 2 T_{*}(C) q_{*}(g/kg) . ° 00 00 0 ~2 1.0 U. .5 = - ξ $\circ + \xi$ ξ 5/20 .01L 12 TIME (PDT) 15 18 21 24 g 6 10-1 Predicted • Observed × Obs(SNI) 10-2 ഀൟ൦ 00 C_T^2 (K²/m^{2/3}) 10-10 10-2 8 € (m²/sec³) 10-3 5/20 10-4 L 12 TIME (PDT) 18 3 g 21 24 f 15

• T"

Figure 8. R/V Acania Atmospheric Surface Layer Data for 5/20/78.

Figure 9. R/V Acania Atmospheric Surface Layer Data for 5/21/78.

Figure 11. R/V Acania Atmospheric Surface Layer Data for 5/23/78.

figures include both the measured values and the values predicted on the basis of the bulk method MOS parameters. Data tables are given in Appendix B.

B. NRL Tower Site Evaluation

Although there is evidence that shore based measurements of C_T^{2} can be poorly correlated with measurements made over the ocean [Davidson et al. (1976)], there is still hope that the NRL tower can provide meaningful data. The primary source of this optimism is the excellent location of the tower on a well exposed point of the island. In order to compare NRL tower measurements with R/V Acania measurements, NPS personnel installed and operated standard NPS C_T^{2} and ε equipment on the NRL tower. In this way, measurements with identical equipment and procedures could be compared, thus eliminating (or reducing) one source of uncertainty. We did take the liberty of using the wind speeds measured by NRL equipment.

A table of the NPS measurements from the NRL tower is given in Appendix C. Table II is a compilation of data for those time periods when simultaneous SNI and Acania measurements are available. The data is further restricted to time periods when the Acania was either at anchor or underway immediately upwind of the tower site on the NW tip of SNI. Included at the end of the table is a comparison when the Acania was 30 miles to 50 miles upwind of SNI (5/20-1515 to 5/21-1045). The C_T^2 and U data from the Acania are Z = 10 meter equivalent values. The SNI C_T^2 and U data are from the Z = 11.4 meter level. Since the ε data is subject to greater statistical scatter, the

TABLE II. Comparison of turbulence (C_T^2 and U*) and mean wind speed (U) measurements taken simultaneously at the NRL tower and aboard the R/V Acania.

DATE	TIME	¢,DEG	$c_{T}^{2}, 10^{-3}$	°C ² /M ^{2/3}	U*	M/SEC	U	M/SEC
			SNI	ACANIA	SNI ·	ACANIA	SNI	ACANIA
5/14	1315	254	5.76	.40	.19	.096	2.0	2.1
	1515	240	4.40	.25	.12	.094	1.5	2.0
	1745	257	.10	.49	.17	.072	3.3	2.4
	1845	241	4.63	.19	.49	.080	2.4	2.8
	1915	240	.51	.26	.55	.13	3.7	4.4
	2015	244	.17	.29	.50	.14	4.0	4.5
5/15	0845	276	.33	.38	1.0	.30	9.0	10.1
	0900	275	.22	. 2.7	1.0	.34	10.5	10.7
	0945	279	.45	.32	.86	.33	10.0	11.6
	1000	277	.32	.37	1.0	.32	9.5	11.4
	1515	321	1.49	1.05	.71	.35	11.7	13.4
	1615	276	.148	1.17	.64	.41	11.9	14.7
	1915	279	1.13	1.44	.73	.45	14.4	17.3
	2000	271	1.72	1.65	.80	.50	14.3	19.6
5/18	2045	308	.96	1.01	.19	.10	2.4	3.0
	2200	307	.57	2.87	.13	.15	2.6	6.3
5/19	1045	300	.392	1.23	.33	.14	3.4	3.8
	1145	290	3.19	4.17	.43	.15	3.9	4.9
	1315	287	5.87	4.97	.45	.16	4.1	5.3
	1345	285	8.15	5.26	.58	.17	4.1	5.3
	1845	269	5.99	7.82	.46	.24	5.7	7.2
	2115	217	4.33	6.63	.54	.23	5.5	7.1
5/20	0945	326	5.11	8.00	.60	.25	5.7	7.6
	1045	304	4.24	7.24	.60	.30	5.7	8.4
	1115	297	7.26	4.25	.76	.30	5.4	7.6
5/20	1515	274	6.62	5.34	.80	.35	6.7	8.6
	1845	302	3.20	5.16	.90	. 42	7.1	10.6
	1945	296	3.67	3.17	.80	.45	7.6	10.6
	2045	305	5.18	1.77	.76	.43	7.3	10.3
5/21	1015	398	5.83	2.57	.73	.17	5.8	7.2
	1045	304	5.53	1.90	.60	.16		7.2

multi-level measurements were combined (using Equation 4) into a single U_{*} value. Only the Z = 11.4 meter SNI C_T^2 data was used for the comparison since those measurements were available for the entire period from 5/14 to 5/21.

The C_T^{2} comparison (Figure 12) indicates very reasonable agreement between the tower and shipboard measurements. A few cases of greater disagreement occurred during light winds (U~2 m/sec). The average ratio of the SNI to Acania values (Table III), excluding the light wind cases, indicates only a 7% average disagreement with a standard deviation of 64%. Given a single measurement error of about 20%, the combined instrumental error for this comparison is about 30%. On the last two days of the direct comparison (5/19 and 5/20) we also had available C_T^{2} measurements at a second level on the NRL tower Z=17.5 meters). When converted to Z=10 meter equivalent, the level 2 values did not agree as well with the Acania values. For this period, a level 1 and 2 combined C_T^{2} would have a 20% average disagreement with the Acania values, still a respectable result.

The velocity data shows significantly greater shoreline influence (Table III). The velocity scaling parameter comparison indicates U_{*} values 2.5 times greater at the tower than at the Acania (Figure 12), implying a considerably greater surface drag immediately upwind of the tower. This increased drag leads to 16% lower wind speeds at the tower (Figure 12) for the Z = 11.4 meter level. The average velocity drag coefficient measured at the tower was $c_{\rm UN} = 1.0 \times 10^{-2}$, considerably greater than the typical ocean value of 1.3 $\times 10^{-3}$.

Figure 12. Comparison of Turbulence $(C_T^2 \text{ and } U_*)$ and Mean Wind (U) Data from the R/V Acania with NPS Measurements at NRL Tower on San Nicolas Island.

TABLE III. RATIO OF SNI TO ACANIA MEASUREMENTS (r) FOR C_T^2 , U_{*} AND U

	c _T ²	U.	U
<r></r>	1.07	2.48	.84
σ	.64	.93	.10
N	23.0	25.0	25.0
aVN	.13	.19	.02

We also compared SNI C_T^2 measurements to Acania values when the ship was 30 miles to 50 miles upwind of the island (Figure 13). Since only a few C_T^2 values were available from the SNI measurements; the comparison is rather incomplete but it is encouraging that no large disagreements were found.

FIGURE 13. Comparison of C_T² Data from the R/V Acania with NPS Measurements at the NRL Tower on San Nicolas Island. For this data, the Acania was 30 miles to 50 miles upwind of SNI.

C. Acoustic Sounder Data

The NPS acoustic echosounder (Aeroenvironment Model 300) was mounted aboard the Acania and provided inversion height and plume structure data throughout the cruise. A tabulation of the sounder data is given in Appendix D.

V. CONCLUSIONS

A. Bulk Method

A brief examination of Figures 4 through 11 will reveal that the bulk method is a fairly good predictor of the measured values of C_T^2 and ε . A log average of the ratio of predicted C_T^2 to measured yields a single measurement standard deviation of 120% for CEWCOM-78. In other words, the bulk method predicted the measured value to within roughly a factor of 2 for a single half-hour averaging period. A considerable portion of this scatter is due to measurement problems (such as salt contamination of C_T^2 sensors) discussed in Davidson et al. (1978). Figure 14 [from Davidson et al. (1978)] indicates that excellent average agreement between the bulk method and measured values of C_T^2 .

Included in the boundary layer data (Appendix B) is a calculation of C_N^2 (Equation 15) from bulk values of T_* , q_* , and ξ . The average relative magnitude of the terms contributing to C_N^2 were: C_T^2 (70%), C_{Tq} (24%) and C_q^2 (6%). This agrees well with the direct measurements during the BOMEX experiments [Friehe et al. (1975)].

FIGURE 15. Dimensionless temperature structure function $(C_T^2 Z^{2/3}/T_*^2 = f(\xi))$ vs. atmospheric stability (ξ) . The circled points are data and the solid curve is Wyngaard et al's (1971) formulae for $f(\xi)$. The bulk method was used to calculate T_* and ξ .

B. SNI Boundary Layer Measurements at the NRL Tower Comparison of the NPS measurements on the Acania and the NRL tower (Figure 12) used to evaluate the tower site data were summarized in Tables II and III. During the periods of the comparison the wind direction was most favorable (westerly to northerly) so be advised that our conclusions should be confined to those limits. Based on this data and the discussion of Section IV, we conclude the following about the NRL tower site:

1) The data is subject to land influence effects for

wind speeds less than about 2.5 m/sec.

2) The $C_{\rm T}^{\ 2}$ data is quite representative of the marine boundary layer.

3) The U_{*} (or ε) data is not representative of the marine boundary layer, presumably due to increased surface drag upwind of the tower.

4) The mean wind speed (U) is about 15% less than the marine boundary layer value at Z = 11.4 meters.

5) The marine boundary layer value of U_* cannot be obtained from wind speed profiles at the tower. This follows from 3 and 4.

In addition to these conclusions, we offer the speculation that T_* and q_* cannot be correctly inferred from tower measurements of temperature and humidity <u>profiles</u>. This opinion is based upon the known strong interaction between velocity structure and scalar structure. On the other hand, since the C_T^2 data seems to be unaffected at the tower, it is quite possible that the temperature and humidity profiles are similarly unaffected. Perhaps this question can be resolved by a comparison of NRL's profile data and the NPS R/V Acania data. Alternatively, one could use the bulk method with the tower data (requiring the addition of a suitable sea surface sensor) as has already been suggested by Carl Friehe.

C. SNI as a Representative Boundary Layer

From a turbulence and boundary layer point of view, SNI seemed to be a good example of a typical open ocean marine

boundary layer during CEWCOM-78 (5/14-5/25). This is based primarily on the lack of diurnal variation of boundary layer parameters which is typical of open ocean conditions. A comparison of C_T^2 values (admittedly limited) showed a reasonble correlation between SNI values and values measured 30 miles to 50 miles upwind. Obviously this conclusion is limited to favorable wind directions.

ACKNOWLEDGEMENTS

The authors wish to thank Captain Reynolds and the crew of the R/V Acania, Tim Stanton, Ray Garcia, Ted Calhoun and Dale Leipper. A special thanks to Ted Blanc for providing facilities at the NRL tower on San Nicolas Island. Work supported by Naval Air Systems Command, AIR 370.

APPENDIX A MOS STABILITY FUNCTIONS

The forms of the mean gradient functions (Businger et al., 1971)

 $\phi_{U}(\xi) = (1 - 15\xi)^{-1/4} \qquad \xi < 0$ $\phi_{U}(\xi) = (1 + 4.7\xi) \qquad \xi > 0$ $\phi_{T}(\xi) = (1 - 19\xi)^{-1/3} \qquad \xi < 0$ $\phi_{T}(\xi) = (1 + 6.4\xi) \qquad \xi > 0$

The mean profile function

$$\psi(\xi) = 1 - \phi(\xi) - 3\ln\phi(\xi) + 2\ln(\frac{1 + \phi(\xi)}{2}) + 2\tan^{-1}\phi(\xi) - \pi/2 + \ln(\frac{1 + \phi^2(\xi)}{2})$$

The dimensionless velocity dissipation function (Wyngaard and Cote, 1971)

 $E_{U}(\xi) = (1 + .51\xi^{2/3})^{3/2} \qquad \xi < 0$ $E_{U}(\xi) = (1 + 2.5\xi^{2/3})^{3/2} \qquad \xi > 0$

The dimensionless temperature structure function parameter (Wyngaard et al., 1971).

$$f_{T}(\xi) = 4.9(1 - 7\xi)^{-2/3} \qquad \xi < 0$$

$$f_{m}(\xi) = 4.9(1 + 2.4\xi^{2/3}) \qquad \xi > 0$$

Marine boundary layer evaluation from R/V Acania measurements during CEWCOM-78 - bulk data, MOS scaling parameters, turbulence data and bulk calculation of C_N^2 . The bulk and turbulence data are Z = 10 meter equivalent values. The MOS scaling parameters are calculated by the bulk method. The C_N^2 values are bulk estimates from Equation 15.

Cn^2 (1/m^2/3)	1.14E-15	3.25E-10 2.57E-16	2,02E-16	1.50E-16	4.24E-16	1.17E-16	8.27E-16	1.21E-15	6.91E-16	4.88E-16	4.24E-16	2.68E-16	7.68E-16	3.81E-16	1.44E-16	4.50E-18	1.23E-15	7.66E-16	1.23E-15	3.68E-16	3.65E-17	8.46E-17	8.53E-18	7.18E-18	3.28E-17	1.03E-16	1.29E-16	3.55E-17	6.01E-18	1.49E-17	1.39E-17	1.48E-17	2.69E-17	6.42E-16	2.86E-16	1.06E-16	6.71E-16	9.70E-16
Eps (m^2/s^3)	1.77E-03	1,21E-03	1.83E-03	2.05E-03	6.32E-04	1.01E-03	1.10E-03	5.00E-04	5.25E-04	4.19E-04	3 . 55E-04	4.35E-04	6.10E-04	6.66E-04	3.22E-04	9.99E-04	4.98E-04	2.38E-04	1.65E-04	1.97E-04	8.48E-04	8,98E-04	1.16E-03	1.09E-03	2.87E-03	4.66E-03	4.72E-03	4.11E-03	1.48E-02	1.34E-02	1.10E-02	1.08E-02	1.50E-02	1.48E-02	1. 30E-02	1.17E-02	1.49E-02	1.42E-02
ct^2 (c^2/m^2/3	4.95E-04	3.43E-04 3.01E-04	5.37E-04	3.70E-04	3.99E-04	6.02E-04	5.07E-04	4.30E-04	3.18E-04	4.25E-04	3.98E-04	2.86E-04	4.49E-04	4.00E-04	2.47E-04	3.80E-04	3.81E-04	4.69E-04	4.95E-04	2.09E-04	2.61E-04	2.62E-04	2.87E-04	3.06E-04	2.79E-04	1.42E-04	1.76E-04	2.90E-04	3.31E-04	3.83E-04	3.71E-04	3.82E-04	2.75E-04	3.30E-04	3.76E-04	4.25E-04	6.07E-04	6.99E-04
g* (g∕Kg)	-0.02		0.00	-0,01	-0.02	-0.02	-0,06	-0.05	-0.05	-0,06	-0.05	-0.04	-0.05	-0.03	-0.04	-0.04	-0.02	-0.01	-0.01	-0.02	-0.03	-0.03	-0.03	-0.03	-0.03	-0.03	-0,03	-0.03	-0.07	-0.07	-0.07	-0.05	-0.05	-0.06	-0.05	-0 • 0 6	-0.08	-0,08
T* (C)	-0,06	-0.02	-0.02	-0,02	-0.03	-0,02	-0.06	-0,06	-0.05	-0.05	-0.04	-0.03	-0,03	-0.02	-0.02	00.0	0.02	0.02	0.02	0.02	00.0-	-0,01	00*0	00°0	0.01	0.01	0.01	0,01	0.01	00.0	0,01	0.01	0,01	-0.02	-0.01	-0.01	-0.02	-0,03
u* (m∕s)	0.11	60°0	0.07	0,09	0,10	0.06	0.07	0.10	0.08	0.06	0.07	0.07	0.15	0.12	0.07	0.07	0,08	0.07	0.06	0,08	0.15	0.14	0.15	0.14	0.23	0,28	0.28	0,26	0.39	0,38	0.34	0.37	0.40	0.44	0.43	0.39	0.45	0.42
2/L	-6.12E-01	-3,00E-UI	-5,35E-01	-2.33E-01	-4.27E-01	-6.29E-01	-1.78E 00	-9.14E-01	-1.11E 00	-1.79E 00	-1.19E 00	-7.96E-01	-2,30E-01	-2.39E-01	-6,99E-01	-6.01E-02	4.07E-01	3,75E-01	6.91E-01	2.03E-01	-5.85E-02	-8.59E-02	-3,58E-02	-9.95E-03	4.12E-03	9.24E-03	1.00E-02	2.76E-03	-5,01E-03	-1.04E-02	-5.08E-03	-1.87E-03	-4.98E-04	-2.13E-02	-1.56E-02	-1.44E-02	-2.20E-02	-2.84E-02
U (m/s)	3,1	2°2	2.2	2.8	2.9	1,9	2,0	2.8	2,3	1,8	2.0	2,2	4,3	3,6	2.0	2,3	2 .8	2.6	2,3	2.7	4.3	4.1	4.4	4 • 2	6 . 5	7.7	7.6	7.0	10,3	6°6	8 ,9	9 . 8	10.4	11,3	11,0	10.2	11,5	11.0
RH (6° 66	, 90 90, 90	6 66	97.3	95.3	94.4	93 .4	93 .4	93,3	91,3	91,0	91.2	90,1	92.4	91.2	86.2	86.3	88 .5	89,3	87.5	88.7	90,5	89,1	87.8	88 • 8	88.8	87.0	87.4	78.9	78.4	78.3	83.4	83.5	83.6	85,3	81.3	80.4	80.2
T (C)	12.95	L3.04 13.57	13,98	14.08	13.73	14,31	13.73	13,59	13.79	14,00	14.17	14.27	13,98	14.01	14.56	15,32	15.66	15.40	15,53	15,07	14.29	14,22	14.18	14,39	14.24	14.40	14.37	14.24	14.70	14,52	14.68	14.73	14.73	13.90	14.09	14.32	14,33	14.32
TS (C)	14.43	14.25 14.25	14.66	14.60	14.60	14.84	15,28	15,20	15.08	15.20	15,20	15.04	14.98	14.75	15,13	15,30	14,98	14,88	14.86	14.71	14.52	14.56	14.32	14.36	14.14	14.19	14.12	14.13	14.63	14.61	14.58	14,65	14.62	14.62	14.58	14.61	15.04	15,18
P D'P	0830	5C80 5190	0933	0953	1013	1051	1121	1151	1224	1300	1330	1400	1430	1500	1530	1600	1636	1730	1800	1830	1930	2000	2050	2120	2150	2240	2310	0002	0651	0721	0751	0835	0000	0939	1009	1116	1146	1216
Date	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/14	05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/15

Cn ² 2	(1/m ² /3	1.28E-15	1.77E-15	1.66E-15	1.60E-15	1.05E-15	1.09E-15	1.50E-15	1.77E-15	3.02E-15	1.72E-15	3.77E-13	3.00E-16	5.84E-16.	3.22F-16	4.68E-16	1.56E-15	1.46E-15	1.5JE-15	1.84E-16	7.36E-16	9.20E-16	1.12E-15	6.17E-16	8.53E-16	9.68E-15	6.01E-15	5.93E-15	6.17E-15	5.97E-15	5.94E-15	5.45E-15	5.79E-15	6.02E-15	6,58E-15	7.48E-15	8.17E-15	8.43E-15	8.66E-15	9.98E-15
Eps) (ຫ ົ 2/ຣີ3)	1.66E-02	1.89E-02	1.77E-02	2.07E-02	2.35E-02	2.73E-02	2.74E-02	2.84E-02	3.80E-02	3.99E-02	5.03E-02	6.75E-05	1.79E-04	3.09E-03	4.56E03	4.785-03	1.36E-02	6.44E-03	3.91E-03	3.57E-03	4.32E-03	5.96E-03	2.15E-03	7.05E-03	5.43E-03	3.17E-04	6.82E-03	1.67E-02	7.94E-03	8.01E-03	1.39 E-02	8.47E-03	1 .55E-02	1.07E-02	1.98E-02	2.69E-02	2.43E-02	2.16E-02	2.05E-02
Ct ²	(C ² /m ² /3	6.93E-04	7.15E-04	8.80E-04	1.05E-03	1.17E-03	1.19E-03	1.24E-03	l.28E-03	1.35E-03	1.46E-03	1.67E-03	2.31E-03	1.75E-03	1.17E-03	1.67E-03	2.75E-03	5.37E-03	2.39E-03	4.81E-04	1.19E-03	6.30E-04	6.68E-04	1.02E-03	2.89E-04	1.24E-03	6.30E-03	4.19E-03	0°00E 00	4.97E-03	5,30E-03	4.83E-03	4.79E-03	5.52E-03	5.33E-03	6.22E-03	5.12E-03	6.34E~03	6.71E-03	7.89E-03
ď*	(g/Kg)	-0.08	-0.08	-0.10	-0.13	-0.14	-0.14	-0.15	-0.15	-0.16	-0.14	0,23	-0.28	-0.23	-0.19	-0.17	-0.13	-0.12	-0.10	-0.07	-0.08	-0.07	-0.07	-0.04	-0.03	-0.07	-0.08	-0.08	-0,09	-0,09	-0,09	-0.08	60°0-	60°0-	-0.09	-0.08	-0.08	-0.08	-0.08	-0.09
T*	(c)	-0.03	-0.04	-0.04	-0.03	-0.03	-0.03	0,03	-0.04	-0.05	-0.03	0.47	-0.03	-0.04	-0.02	-0.02	-0.04	-0.04	-0.04	-0.01	-0.03	-0.04	-0.06	-0.04	-0.03	-0.12	-0.12	-0.12	-0.12	-0.12	-0.12	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.12	-0.12	-0.13
*"	(m/s)	0.46	0.51	0.48	0.51	0.53	0.57	0.58	0,59	0.62	0,68	0.74	0.07	0.08	0.09	0.13	0.22	0.26	0.23	0.20	0.18	0.13	0.10	0.10	0.46	0°30	0.17	0.18	0.20	0.19	0.19	0,19	0.20	0,21	0.22	0.25	0.28	0.28	0.27	0.27
Z/L		-2.68E-02	-2.45E-02	-2.83E-02	-2.61E-02	-2.18E-02	-1.89E-02	-2.11E-02	-2.13E-02	-2.42E-02	-1.55E-02	1.11E-01	-2,09E 00	-1.44E 00	-8.82E-01	-4.03E-01	-1.60E-01	-1.08E-01	-1.35E-01	-7.47E-02	-1.71E-01	-4.20E-01	-8.24E-01	-5.59E-01	-1.92E-02	-1.84E-01	-5.47E-01	-4.88E-01	-3.94E-01	-4.28E-01	-4.23E-01	-3.89E-01	-3,69E-01	-3.52E-01	-3.14E-01	-2.44E-01	-1.97E-01	-1.95E-01	-2.28E-01	-2.52E-01
Ŋ	(m/s)	11.7	13,0	12.3	13,0	13,3	14,3	14.4	14.8	15.4	16.8	18.9	1,9	2.4	2.6	3 • 6	6 • 0	6 .8	6.2	5 , 5	4.9	3 • 6	2.9	2 .9	11.9	7.7	4.7	4 . 9	5,3	5,2	5 .2	5 , 2	5.4	5°2	5,9	6 . 6	7.3	7.4	7.0	6 . 9
RH	(%)	82.7	82.3	78.0	70.6	67.5	67.5	65.0	64.8	62.8	65.7	63,5	58,1	66.4	63.7	68,2	76.8	77.5	79.9	81.7	82.2	87.7	90,5	93 .5	93,5	98 .0	95,2	94.6	93.6	93,1	93,0	93,0	92.6	92.7	93,2	94,1	93,9	94.0	94.7	95,3
Ŧ	(c)	14.39	14.36	14.56	14.71	14.88	14.84	14.69	14.60	14.25	13,85	13,71	19,53	19,58	19,07	17.92	16.40	16.06	15,68	15,49	15.42	14.80	14.42	14.25	14.45	11.78	12.06	12.21	12,33	12.41	12,51	12.68	12,65	12.61	12,59	12.47	12,36	12,25	12,13	11,95
TS	(C)	15,39	15,53	15.67	15.75	15,69	15.66	15,66	15.66	15,66	14.90	00°0	20.32	20,60	19.73	18.61	17.62	17,19	16,83	15,89	16.30	15,98	15,92	15,32	15,32	15,10	15,22	15.28	15,33	15.40	15.49	15.49	15,52	15,51	15,56	15,50	15.42	15,36	15,36	15.47
PDT		1246	1348	1440	1520	1550	1620	1700	1730	1855	1925	1955	1331	1401	1459	1600	1700	1730	1300	1320	1900	1948	2018	2049	2218	1057	1200	1230	1300	1330	1400	1430	1500	.1530	1600	1630	1700	1730	1800	1830
Date		05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/15	05/13	05/18	05/18	05/18	05/13	05/18	05/18	05/18	05/18	05/13	05/18	$0 \frac{5}{18}$	05/18	05/19	05/19	05/19	05/19	05/19	05/19	$0 \frac{5}{19}$	05/19	05/19	05/19	05/19	05/19	05/19	05/19	05/19

Cn ² (1/m ^{2/3})	1,10E-14	1.21E-14	1.03E-14	1.04E-14	1.12E-14	1.05E-14	1.06E-14	1.12E-14	9.77E-15	1.18E-14	9.57E-15	9.92E-15	1.01E-14	9.84E-15	1.03E-14	9.10E-15	8.78E-15	8.11E-15	7.75E-15	9.17E-15	9.71E-15	9.07E-15	1.22E-14	1.19E-14	9.74E-15	6.45E-15	5.92E-15	4.63E-15	3.11E-15	1.55E-15	2.45E-15	2.64E-15	2.72E-15	2.61E-15	2.65E-15	3.79E-15	4.25E-15	4.65E-15
Eps (π [°] 2/s [°] 3)	2.57E-02	2.68E-02 3 29F-02	2.72E-02	1.84E-02	2.09E-02	2.61E-02	2.21E-02	2.07E-02	1. 34E-02	1. 64E-02	1. 23E-02	1.57E-02	1.51E-02	1.52E-02	2.26E-01	1.7 9E-02	1.66E-02	1. 72E-02	1.65E-02	2.40E-02	2.29E-02	2.68E-02	2.59E-02	2.83E-02	3.88E-02	3.84E-02	2.83E-02	3.06E-02	3.81E-02	4.23E-02	5.69E-02	5.05E-02	5.87E-02	5.00E-02	4.29E-02	5.59E-02	7.02E-02	6.53E-02
Ct ² (C ² /m ² /3	7.42E-03	6.92E-03	7.77E-03	6 •67E-03	8.00E-03	7.19E-03	6.74E-03	6.73E-03	7.25E-03	7.32E-03	7.51E-03	7.95E-03	7.37E-03	6.41E-03	6.62E-03	5.75E-03	6.95E-03	6.84E-03	6.44E-03	6.56E-03	5.83E-03	6.02E-03	8.12E-03	8.20E-03	7.29E-03	4.31E-03	4.68E-03	4.11E-03	2.85E-03	2.47E-03	0.00E 00	5.34E-03	5.37E-03	4.96E-03	4.67E-03	5.08E-03	5.68E-03	3.46E-03
q* (g∕Kg)	60.0-		-0,08	-0,09	-0.09	-0.08	-0.08	-0.09	-0.09	-0.10	-0.09	-0.09	- 0°0 -	-0.09	-0.09	-0.09	60.0-	-0.08	-0.08	-0.08	-0.08	-0.08	-0.10	-0.10	-0.10	-0.09	-0.08	-0.08	-0.06	-0.07	-0.08	60.0-	-0.09	-0.09	-0.09	-0.09	-0.09	-0.09
T* (C)	-0.14	-0 - 14	-0,13	-0.14	-0.14	-0.14	-0.14	-0.15	-0.15	-0.16	-0.15	-0.15	-0.15	-0.14	-0.14	-0.14	-0.14	-0.12	-0.12	-0,13	-0.13	-0.12	-0.15	-0.14	-0.12	-0.10	-0.09	-0.08	-0.06	-0.04	-0.05	-0.05	-0.05	-0.05	-0.05	-0.07	-0.07	-0.07
u* (m∕s)	0.27	0,29	0.27	0.26	0.27	0.27	0.26	0.26	0.22	0.24	0.21	0.22	0.22	0.24	0.25	0.23	0.22	0.25	0.24	0.26	0.27	0.27	0,28	0.32	0.32	0.28	0.30	0.29	0.31	0.32	0.30	0.32	0.32	0.32	0.31	0.34	0.35	0.36
Z/L	-2.49E-01	-2.13E-01	-2.44E-01	-2.63E-01	-2.56E-01	-2.48E-01	-2.63E-01	-2,98E-01	-4.13E-01	-3.67E-01	-4.73E-01	-4.00E-01	-3.98E-01	-3,38E-01	-3.07E-01	-3.46E-01	-3.56E-01	-2.68E-01	-2.90E-01	-2.44E-01	-2.29E-01	-2.21E-01	-2.44E-01	-1.83E-01	-1.668-01	-1.70E-01	-1.46E-01	-1.29E-01	-8.84E-02	-6.19E-02	-8.69E-02	-8.13E-02	-8.39E-02	-8.24E-02	-8.67E-02	-3.29E-02	-8.46E-02	-8.08E-02
U (m∕s)	7.1	0.7	7.0	6.9	7.1	7.0	6.9	6.7	5,8	6 .3	5 ° 2	5,9	5°9	6 • 2	6 • 5	6,1	6 0	6 • 5	6.2	6 • 9	7.1	7.1	7.3	8,1	8,1	7.4	7.7	7.7	8,1	8 ° 3	7.9	8,3	8,3	8 , 3	8,1	8,9	0.6	9.4
RH (8)	97.0	97.8	98,1	98,2	98,1	98.2	98.4	98,3	98.8	98.7	98.6	98,3	98,2	98,1	97.7	97.3	97.0	96 . 9	96.6	96.4	96,3	96.3	93.6	92.9	90.5	89.4	88.7	87.0	90.4	84.4	82.9	81.2	80.7	80,5	81.4	82.7	82.4	84.4
т (С)	11.65		11.71	11.72	11,56	11.65	11.60	11.42	11.40	11,12	11,30	11.27	11.26	11,38	11,30	11.40	11,35	11.43	11.41	11,31	11.26	11,39	11.64	11.82	12.02	12.01	12,10	12,35	12,32	12.44	12.68	12.78	12.88	12.87	12,82	12.58	12,51	12.46
TS (C)	15,34	15.37	15.27	15,35	15,29	15,26	15,25	15.26	15,21	15.20	15.17	15,08	15,09	15,06	15,01	14.96	14.86	14.65	14.60	14.68	14.69	14.69	15.49	15.46	15.26	14.67	14.59	14.52	14.05	13.62	14.18	14.32	14.44	14.40	14.37	14.43	14.47	14.51
PDT	1930	2030	2100	2130	2200	2230	2300	2330	0130	0200	0230	0300	0330	0400	0430	0500	0230	0090	0630	0100	0730	0800	0930	1000	1100	1130	1200	1230	1300	1330	1400	1455	1530	1600	1630	1700	1730	1800
Date	05/19	61/50	05/19	05/19	05/19	05/19	05/19	05/19	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20

Cn ² 2	(1/m ² /3)	6.04E-15	5.78E-15	4.06E-15	3.50E-15	2.29E-15	1.67E-15	1.34E-15	7.72E-16	9.81E-16	1.31E-15	1.39E-15	1,53E-15	1.56E-15	1.44E-15	1.44E-15	1.36E-15	1.29E-15	1.24E-15	1.10E-15	8.50E-16	7.47E-16	6.79E-16	3.56E-15	1.24E-15	1.02E-15	9.73E-16	5.15E-15	1.81E-15	1.46E-15	8.15E-16	3.64E-16	4.37E-16	8.44E-16	1.16E-15	1.38E-15	1.34E-15	1.38E-15	1.08E-15	1.27E-15
Eps)(m ² /s ³)	1.01E-01	1,01E-01	6.71E-02	1.18E-01	9.69E-02	9.96E-02	9.25E-02	7.93E-02	6.93E-02	6.80E-02	7.67E-02	6.22E-02	5.74E-02	4.66E-02	4.11E-02	3.78E-02	5.10E-02	5.20E-02	4.33E-02	4.80E-02	2.84E-02	2.83E-02	8.81E-03	4.41E-03	9,33E-03	1.03E-02	7.14E-02	3.75E-02	2.70E-02	2.48E-02	2.39E-02	3 • 22E-02	3.46E-02	3.66E-02	3.58E-02	3.13E-02	3.20F-02	4.51E-02	5.61E-02
Ct^2	(C 2/m 2/3	5.30E-03	5.21E-03	3.17E-03	3.21E-03	2.43E-03	1.79E-03	1.51E-03	9.78E-04	1 .43E-03	1.26E-03	2.64E-03	1.71E-03	1.82E-03	1.79E-03	2.69E-03	1.69E-03	3.46E-03	1.42E-03	1.31E-03	1.07E-03	8.56E-04	2.81E-02	3.74E-03	2.07E-03	3.29E-03	6.63E-04	0°00E 00	0°00E 00	0.00E 00	0°00E 00	0.005 00	0°00E 00	0.00E 00	0.00E 00	0.005 00	0°00E 00	l.74E-04	2.85E-03	3.43E-03
*5	(6X/6)	-0.10	-0.09	-0.08	-0.07	-0.06	-0.06	-0.06	-0.05	-0.05	-0.05	-0.06	-0.05	-0.06	-0.06	-0.06	-0.07	-0.07	-0.08	-0.07	-0.08	-0.08	-0.08	-0.14	-0.12	-0,11	-0.11	-0.13	-0.10	-0.09	-0.08	-0.08	-0.08	60°0-	-0.10	60°0-	60°0	60°0-	60°0-	60*0-
*T	(c)	-0.08	-0.08	-0.07	-0.06	-0,05	-0.04	-0.04	-0.03	-0.03	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.03	-0.03	-0.03	-0.03	-0.02	-0.07	-0.04	-0.03	-0,03	-0.07	-0.04	-0.04	-0°03	-0.02	-0.02	-0.03	-0,03	-0.03	-0.03	-0.03	-0,03	-0.03
*n	(m/s)	0.40	0.40	0.35	0.40	0,39	0,39	0.37	0.36	0.35	0.36	0.37	0,35	0.34	0.31	0,31	0,31	0.33	0.34	0.30	0,31	0.29	0.25	0.22	0.18	0,22	0.29	0.41	0,33	0,28	0.35	0,35	0.39	0.39	0,38	0.37	0.36	0,38	0.37	0.40
Z/L		-7.40E-02	-7.21E-02	-8.11E-02	-5.58E-02	-4.77E-02	-4.03E-02	-4.01E-02	-3.29E-02	-4.00E-02	-4.25E-02	-4.11E-02	-4.72E-02	-5.28E-02	-6.13E-02	-6.07E-02	-6.13E-02	-5,21E-02	-4.95E-02	-6.04E-02	-5.09E-02	-5,57E-02	-7.26E-02	-2.38E-01	-2.33E-01	-1.28E-01	-6.96E-02	-7.00E-02	-6.64E-02	-8.72E-02	-4.02E-02	-2.92E-02	-2.57E-02	-3,33E-02	-4.05E-02	-4.50E-02	-4.72E-02	-4.14E-02	-4.11E-02	-3.68E-02
D .	(m/s)	10.3	10.3	0°6	10.2	10.0	10,1	6.7	9.4	0°6	9,3	9 • 6	9 .2	8°8	8,1	8 .2	8,1	8.7	8,9	7.9	8 .2	7 ° L	6.8	6 • 0	5,0	6.0	7.6	10.4	8 • 6	7.3	9,1	9.1	10,0	10,1	6 °8	9 • 6	6 °3	6°6	9.6	10.4
RH	(%)	83.5	84.3	87.0	86.7	87.6	87.7	87.3	87.7	87.1	87.9	87.3	88,3	87.4	87.0	85.7	83,9	82.7	81,2	81.4	80.0	79.5	78.8	74.4	72.1	72.8	72.5	76.3	76 .8	79.0	79.0	78.1	77.3	76.6	75.7	77.0	78.7	78.3	75.5	75.8
EH j	(C)	12.26	12.21	12.20	12.05	12.24	12.20	12,12	12.15	12.07	12.02	11.86	11.96	11,85	11.91	11,88	11,89	11.91	11,96	12,08	12,20	12.29	12.36	13,39	13.43	13,34	13.37	13,49	13,34	13,11	13,02	13,02	12,88	12.78	12.71	12.69	12,50	12,50	12,29	12.18
TS	(C)	14.57	14.47	14.14	13,80	13,65	13.40	13,20	12.97	13,00	13,09	12.96	13,12	13,03	13,05	13,02	12.98	12.96	12,98	13,06	13,04	13,08	13,13	15,39	14.59	14.30	14.25	15,56	14.56	14.25	13,82	13,54	13.45	13,58	13,65	13.73	13,54	13,54	13,20	13.17
PDT		1830	1900	1954	2030	2100	2130	2200	2230	2300	2330	0000	0130	0200	0300	0330	0356	0430	0458	0530	0558	0630	0658	1445	1500	1600	1630	2100	2130	2200	2230	2300	2330	0000	0030	0100	0130	0152	0230	0300
Date		05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/20	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/21	05/22	05/22	05/22	05/22	05/22	05/22	05/22

Cn^2 (1/m^2/3)	9.38E-16	7 96FLIG	1.16E-15	1.31E-15	1.36E-15	1.59E-15	1.59E-15	1.20E-15	1.31E-15	l.25E-15	2.41E-15	1.94E-15	1.37E-15	9.87E-16	1.22E-15	2.27E-15	1.70E-15	2.69E-16	6.47E-16	7.96E-16	3.05E-15	4.09E-15	3.21E-15	5.30E-15	8.57E-15	1.84E-15	2.77E-15	4.27E-15	3.67E-15	1.74E-15	2.47E-15	9.43E-15	4.21E-15	1.98E-15	1.39E-16	l.64E-15	1.00E-15	1.36E-16
Eps (m^2/s^3)	5.28E-02	5.01F-02	5.41E-02	5.28E-02	5.30E-02	7.06E-02	6.29E-02	4.72E-02	4.41E-02	3.59E-02	2.49E-20	5.21E-02	5.43E-02	4 .05E-02	2.54E-02	6.78E-02	9.45E-02	1.09E-01	9.16E-02	8.23E-03	1.49E-03	6.38E-03	1.64E-03	8.54E-03	1.91E-02	2.83E-03	9.98E-04	1.84E-03	9.26E-03	1.43E-03	4.45E-04	5.06E-02	5.94E-02	6.85E-02	8.69E-02	7.358-02	6.35E-02	9.33E-02
ct^2 (c^2/m^2/3	1.99E-03	1 47F-03	1.09E-07	4.58E-08	7.35E-03	6.78E-03	5.61E-03	1.16E-02	4.02E-03	0.00E 00	0.00E 00	2.38E-03	4.42E-03	3.16E-03	1.87E-03	0.00E 00	0.00E 00	0.00E 00	0.00E 00	1.94E-03	0.00E 00	0.00E 00	3.98E-03	3.65E-03	5.19E-03	2.28E-03	1.82E-03	3.62E03	4.15E-03	1.86E-03	1.48E-03	1.13E-02	1.42E-04	4.23E-03	0.00E 00	0.00E 00	5.22E-04	2.96E-04
q* (g/Kg)	60.0-		60.0-	60°0-	60°0	-0.10	-0.10	-0.10	-0°00-	-0.10	-0°06	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	-0.10	-0.15	-0.14	-0.19	-0.18	-0.20	-0.18	-0.18	-0.21	-0.21	-0.22	-0.23	-0.27	-0.25	-0.20	-0.20	-0.20	-0.17	-0.17	-0.15	-0.16
T* (C)	-0.03		-0.03	-0.03	-0.04	-0.04	-0.04	-0.03	-0.03	-0.03	-0.05	-0.04	-0.03	-0.03	-0.03	-0.05	-0.04	-0.01	-0.02	-0.03	60.0-	-0.08	-0.11	-0.10	-0.11	-0.12	-0.12	-0.15	-0.13	-0.16	-0.15	-0.10	-0.06	-0.04	-0.00	-0.03	-0.03	-0.00
u* (m∕s)	0,39	0,36	0,35	0.38	0.35	0.40	0,35	0.32	0.36	0.34	0.34	0.40	0.41	0.37	0.33	0.39	0.48	0.42	0.44	0.23	0.14	0.21	0.12	0.21	0.29	0.07	0.09	0.10	0.11	0.05	0.07	0.40	0.51	0.41	0.50	0.45	0.41	0.45
Z/L	-3.46E-02	-3.80F-02	-4.56E-02	-4.16E-02	5.07E-02	-4.20E-02	-5.63E-02	-5.77E-02	-4.75E-02	-5.17E-02	-6.89E-02	-4.37E-02	-3.57E-02	-4.03E-02	-5.60E-02	-5.13E-02	-2.86E-02	-1.92E-02	-2.72E-02	-1.16E-01	-7.38E-01	-3.23E-01	-1.18E 00	-3.42E-01	-2.13E-01	-4.24E 00	-2,30E 00	-2.32E 00	-1.63E 00	-1.02E 01	-4.87E 00	-1.04E-01	-4.47E-02	-5.16E-02	-1.58E-02	-3.77E-02	-3.79E-02	-1.83E-02
U (m/s)	10.1	7°01	9.2	9 .8	0.6	10.3	0.6	8,5	6 °3	0 • 6	8 8	10.4	10.7	9 • 5	8.6	10.0	12.3	10.9	11.4	6.2	3,9	5.6	3,3	5.7	7.4	1,8	2.5	2.7	3.1	1.2	1.8	10.2	12.8	10.6	12.8	11,5	10.5	11.6
RH (74.5	C 92	7.77	78.2	78.4	73.6	73.8	73.5	75.0	72.6	78.6	76.3	73.7	73.3	74.1	74.8	73.5	70.5	60.8	64.5	63.9	63.7	63.3	65.8	66.7	65.6	64.2	64.8	58,3	59,3	60,0	56.0	52.1	51,2	51,3	58.4	61,1	57.5
Т (С)	12.17	10 01 01	12.20	12.20	12.25	12.26	12.08	12.15	12.14	12,11	12,15	12.26	12.21	11.98	11,95	12.00	12.09	12.40	13.50	13.97	12.53	12.43	11,93	11.89	11.50	11.80	11.56	10.91	11,33	11,35	11.23	11.48	13,34	13.77	13.87	13.74	13,91	14.44
TS (C)	13.01	12.21	13,16	13.22	13,30	13,36	13.21	13,13	13,16	13,10	13,59	13,50	13,23	12.85	12.94	13,35	13.21	12,81	14.10	14.75	14.78	14.65	14.50	14.47	14.54	14.40	14,35	14.40	14.28	14,38	14.33	14.33	15.03	14.88	14.03	14.76	14.69	14.62
P D'I	0330	0430	0200	0530	0600	0630	0200	0730	0800	0830	1130	1300	1330	1400	1430	1500	1600	1630	1850	2055	0004	0103	0230	0300	0330	0200	0524	0548	0645	0100	0725	0810	1048	1130	1200	1230	1300	1330
Date	05/22	27/00	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/22	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23

Cn ² 2	(1/m ² /3)	4.35E-17	3.71E-16	2.94E-15	5.72E-15	6.37E-15	7.71E-15	6.47E-15	6.10E-15	6.65E-15	3.90E-15	1.54E-15	1.36E-15	1.97E-16	1.86E-16	5.26E-16	2.79E-13	2.10E-16	3.55E-15	3.10E-15	9.97E-16	2.96E-16	8.74E-16	6.15E-16	1.86E-13	8.49E-16	4.63E-16	1.14E-16	3.09E-16	1.57E-16	1.24E-16	6.12E-18	7.70E-18	8.53E-17	1.90E-16	3.96E-16	1.40E-15	1.73E-15	1.85E-15	1.41E-15
Eps) (m [°] 2/s [°] 3)	7.73E-02	7.665-02	9.96E-02	7.76E-02	6.285-02	9.15E-02	1.25E-01	1.53E-01	1.76E-01	2.40E-01	1.50E-01	6.76E-02	5.74E-02	5.36E-02	5.96E-02	1.53E-01	4.49E-03	6.52E-03	9.67E-04	2.92E-03	6.43E-03	3.09E-02	2.28E-01	1.33E-01	1.03E-01	8.25E-02	9.12E-02	7.35E-02	7.21E-02	6.43E-02	5.96E-02	5.95E-02	6.35E-02	7.42E-02	l.34E-01	8.30E-02	9.74E-02	8.03E-02	9.36E-02
Ct^2	(C ² /m ² /3	6.07E-04	0.00E 00	3.10E-03	2.88E-03	2.57E-03	0.00E 00	4.58E-03	3.60E-03	3.87E-03	2.14E-03	3.42E-03	2.83E-03	0.00E 00	0.00E 00	0.00E 00	4.81E-03	7.99E-04	8.80E-03	5.79E-03	8.28E-03	3.87E-03	2.96E-03	3,33E-03	4.10E-03	0.00E 00	0.005 00	0.00E 00	0°00E 00	0.00E 00	0.00E 00	0,00E 00	0.00E 00	0,00E 00	0.00E 00	0.00E 00	0.00E 00	0°00E 00	0,00E 00	0.00E 00
4,6	(g/Kg)	-0.15	-0.13	-0.14	-0.15	-0.15	-0.15	-0.16	-0.15	-0.16	-0.16	-0.15	-0.16	-0.16	-0.17	-0.14	0.17	-0.14	-0.13	-0.13	-0.16	-0.20	-0.19	-0.16	-0.00	-0.08	-0.07	-0.06	-0.07	-0.07	-0.06	-0.06	-0.07	-0.06	-0.06	-0.06	-0.06	-0 • 0 0	-0.05	-0.06
T*	(C)	00 • 00	0.03	0.06	0.08	0,08	60°0	0.08	0.08	0.08	0.07	0.05	0.04	0.02	00.0-	-0.02	0.38	-0.01	0.05	0.04	0.04	0 03	0.04	-0.02	0,31	-0.03	-0.02	-0.01	-0.01	-0.01	-0.01	00°00	0.01	0.01	0.02	0.02	0.04	0.04	0.04	0.04
"n	(m/s)	0.42	0.40	0.42	0.41	0.39	0.47	0.56	0.54	0.54	0.61	0.64	0.47	0.41	0.46	0.43	0.52	0,13	0.15	0.09	0.11	0,15	0.29	0.54	0.40	0.46	0.42	0.45	0.43	0.42	0.41	0.40	0.41	0.41	0.43	0.43	0.43	0.45	0.43	0.46
Z/L		-1.69E-02	1. 88E-03	2.20E-02	3.40E-02	3.88E-02	3.18E-02	2.00E-02	2.08E-02	2.14E-02	1.21E-02	5.35E-03	7.76E-03	-4.80E-03	-1.93E-02	-2.61E-02	1.78E-01	-2.47E-01	1.47E-01	3.38E-01	5.97E-02	-4.08E-02	5.99E-03	-1.85E-02	2.30E-01	-2.31E-02	-2.10E-02	-1.12E-02	-l.76E-02	-1.44E-02	-1.35E-02	-7.42E-03	-4.11E-03	7.21E-04	3.62E-03	7.34E-03	1.73E-02	1.81E-02	2.11E-02	1.50E-02
D	(m/s)	10.8	10.4	10.9	10.8	10.5	12.3	14.4	14.0	14.0	15 . 5	16.0	12.2	10.8	11.9	11.2	14.2	3 ° 0	4 . 7	3.0	3.4	4.3	7.8	13.7	11.2	11.8	10.9	11.5	11,1	10.9	10.6	10,4	10.6	10.8	11.1	11,1	11.3	11,8	11.2	12.0
RH	(8)	58.6	59.4	53.7	47.3	46.7	46.3	45.1	46.0	42.7	45.2	48.7	46.0	47.1	49.3	56.7	58.4	58.8	49.4	47.3	43.7	36.6	35,3	48.4	49.3	73.0	76.2	76.5	74.0	75.1	77.9	76.5	74.4	74.2	74.2	73.6	72.1	72.0	72.6	71.5
Т	(c)	14.36	14.50	15.32	15.73	15,65	15.63	15,39	15,15	15,28	14.58	13.86	13.78	13,23	12,52	11,53	11,38	11.96	13,19	12,80	13.09	13,11	12.48	10.63	10.35	10,13	10.24	10.35	10,32	10.45	10.41	10.88	11.16	11,31	11.40	11.48	11.62	11.70	11.84	11.97
TS	(C)	14.41	13,89	13,83	13.71	13,54	13,30	13,20	13,03	13,05	12.82	12.69	12.67	12.70	12.74	12.12	00°0	12.36	11.73	11.49	12.17	12.41	11,51	ll.18	1,00	10.93	10,84	10.65	10,80	10.79	10.73	10,95	11,09	ll.06	11.04	10.96	10.67	10.65	10.76	11,01
PDT		1400	1430	1500	1540	1600	1620	1640	1700	1720	1800	1830	1900	1930	2000	2030	2100	0206	0250	0324	0344	0404	0424	0200	0530	1000	1030	1100	1130	1200	1230	1330	1400	1430	1500	1530	1600	1630	1700	1730
Date		05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/23	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24	05/24

Cn^2 /m^2/3)	11E-16	61E-16	45E-17	89E-16	50E-15	94 E-16	35E-16
) (1	10		9	3 2.	3.	8	.9
Eps (m^2/s^3	2.00E-02	3.06E-02	1.93E-02	8.33E-03	3.55E-03	3.22E-02	1.52E-02
ct^2 (c^2/m^2/3	0.00E 00	0.00E 00	0.00E 00	0.00E 00	0.00E 00	3.02E-04	1.23E-04
g* (g∕Kg) (-0.07	-0.06	-0.06	-0.04	-0.03	-0.05	-0.04
Т* (С)	-0.02	-0.01	-0.01	0.02	0.04	0.03	0.02
u* (m∕s)	0.11	0.11	0.11	0.10	60.0	0.12	0.12
Z/L	-2.72E-01	-2.39E-01	-1.70E-01	9.44E-02	4.67E-01	1.46E-01	1.15E-01
U (m/s)	3 • 3	3°3	3 ° 3	3 ° 3	3 ° 3	3 °8	3 . 8
RH (%)	79.0	79.9	79.8	78.8	75.7	76.6	78.2
T (C)	10.47	10.54	10.72	10.87	11.47	11.65	11.80
TS (C)	11.00	11.00	11.00	10.50	10.25	11.00	11.25
PDT	1400	1429	1454	1600	1630	1720	1745
Date	05/25	05/25	05/25	05/25	05/25	05/25	05/25

APPENDIX C

NPS data from the tower site at SNI. Level 1 is a Z=11.4 meters and level 2 is at Z=17.5 meters. The wind direction (ϕ) is from the Acania measurements. The drag coefficient (c_{10}) is from the NRL tower U_{*} data.

$$c_{10} = (U_*/U_{10})^2$$

c10,10 ⁻⁵		0.0	6.4	2.7	40.0	22.0	23.0	16.0	12.0	9.1	7.4	11.0	16.0	4.9	3.7	2.9	2.6	3.1	2.8	2.5	7.7	6.2	1.9	5.4	2.1	2.1	4.9	22.0	11.0	8.0
U*,m/sec		.19	.12	.17	.48	.55	.56	.50	1.00	1.00	.86	1.00	1.10	.61	.71	.64	.73	. 80	79	.70	.94	.84	.46	. 79	.52	.52	.32	.30	.43	.13
m ² /sec ³	2																										7.80	17.00	13.00	.57
ε,10 ⁻³	1	184.00	.43	1.29	28.00	42.00	45.00	31.00	280.00	250.00	160.00	280.00	360.00	56.00	88.00	67.00	96.00	130.00	120.00	85.00	210.00	150.00	24.00	120.00	35.00	35.00	5.30	.57		
°c ² /m ^{2/3}	2																												.68	. 29
c _T ² ,10 ⁻³	1	5.76	4.40	.10	4.63	.61	.38	.17	• 33	.22	.45	.32	.14	1.14	1.49	1.48	1.14	1.72	1.52	1.35	1.82	3.35	1.30	2.30	3.22	2.13	2.98	5.07	4.19	
U,m/sec	1	2.0	1.5	3°3	2.4	3.7	3.7	4.0	0.6	10.5	10.0	9.5	8.6	8.8	11.7	11.9	14.4	14.3	15.1	15.7	10.7	10.8	10.5	10.8	11.4	11.4	4.8	2.0	4.1	1.5
:ME	END	1324	1533	1745	1841	1922	1930	2014	0855	0902	0949	1000	1030	1045	1630	1614	1930	1939	1951	2019	1001	1026	1130	1421	1512	1558	1112	1315	1531	1856
ΓŢ	START	1310	1520	1725	1835	1919	1927	2011	0846	0854	0946	0954	1023	1030	1515	1552	1918	1936	1941	2002	0947	1004	1108	1335	1443	1540	1052	1249	1520	1845
DATE		5/14							5/15												5/16						5/17			

C-2

c ₁₀ ,10 ⁻³	D ł	1.0	с. Г.	T•0	1.9	1.4	l.5	6.9	2.1	2.9	17.0	23.0	8.9	11.0	11.0	11.0	20.0	6.8	7.7	15.0	11.0	11.0	17.0	17.0	14.0	14.0	12.0	11.0	20.0	18.0	13.0	
U,,m/sec		.032	• 16	07.	.15	.13	.10	.19	.11	.13	• 50	.62	• 33	.40	.40	.40	. 58	. 47	.44	. 65	. 60	. 60	.76	. 76	. 80	06.	.80	. 78	.81	.73	. 58	
m ² /sec ³	2	060.			.74	.15	.073	1.56	.11	.22	24.0	42.0	6.2	14.0	13.0	$15 \circ 0$	30.0	24.0	14.0	66.0	41.0	41.0	91.0	76.0	76.0	140.0	100.0	95.0	100.0	65.0	41.0	
ε,10 ⁻³	l		1•0	. 27	.54	.96	.48	1. 34	.54	1.1	27.0	54.0	8.1	12.0	12.0	18.0	51.0	18		46.0	50.0	50 0	89.0	100.0	140.0	170.0	96.0	93°0	120.0	94.0	40.0	
°c ² /m ^{2/3}	2	.065							.10		l.25	L.30	.56	.62	.58	.98	l.79	.57		1.52	l.94	L.50	2.10	1.72	1.89	2.52	1.45	1.71	2.70	2.02	1.32	
$c_{\rm T}^{2}, 10^{-3}$	1							.96	.64	.57	5.11	4.44	3.92	3.88	3.19	5.87	8.15	5,99	2.03	5.76	5.11	4.24	7.62	6.62	6.26	3.20	3.67	5.18	6.78	5.83	5.53	
U,m/sec	1	2.6	3.7	3.4	3°2	3°2	2.6	2.4	2.4	2.6	3.8	4 • 1	3.4	3.9	3.9	4.1	9.1	5.2	5.5	5.3	5.6	5.7	5.4	6.7	6.8	7.6	7.6	7.3	5.8	5.5	5.2	
1E	END	0947	1540	1600	1921	1953	2022	2041	2129	2207	0838	0850	1046	1140	1208	1332	1401	1850	2115	2133	1012	1045	1115	1518	1535	1851	1945	2042	0935	1016	1040	
TIV	START	0940	1527	1551	1906	1730	2011	2031	2100	2145	0830	0840	1025	1115	1145	1310	1350	1835	2110	2123	0945	1015	1108	1507	1525	1840	1933	2025	0921	1005	1025	
DATE		5/18									5/19										5/20								5/21			

APPENDIX D ACOUSTIC ECHOSOUNDER RESULTS FROM R/V ACANIA

P: Surface Plume Maximum Height (m)

- Inl: Lowest Inversion Height
- In2: Second Lowest Inversion (m)

In3: Third Lowest Inversion (m)

In4: Fourth Lowest Inversion (m)

In5: Fifth Lowest Inversion (m)

In6: Sixth Lowest Inversion (m)

In6											a 4th inversion							
In5		310W		440 420							possibly							
In4		250 340 220 160	merge	260 200														
In3	280 320 320	~180 270 cges cges	l10 merges→	180 110	200	200 180	180	TRO	140	240	160		+ merges					
In2	110 210 220 270	~150 merges mei	merges 110	100 merges	120	110	~110	±uu ≁merge	+merges +merges	80	100	~100	120	260				
Inl	70 80 80 *	surface 70 70	60 surface	80 surface	70	70	54	surface	surfaces 65	surface	60	surface	surface	80	100	, UEL	140	130
д	80																	
TIME	0000 0100 0130 0130	0230 0300 0330 0400	0430 0500	0530	0630	0730	0800	0000	0630	1030	1100	1130	1200	T Z 3 U	1300	1400 125U	1430	1500
DATE	5/8																	

In6																															
In5																															
In4																															
In3																															
In2																															
Inl	120	160	200	210	220	200	220	220	260	300	320	340	330	340	380	400	440	420	440	460			~420	400	420	400	420	~410	400	420	
Ь																															
TIME	1530	1600	1630	1700	1730	1800	1830	1900	1930	2000	2030	2100	2130	2200	2230	2300	2330	2400	0030	0100	0130	0200	0230	0300	0330	0400	0430	0500	0530	0600	0630
DATE																			5/9												

In6																														
In5																														
In4																														
In3																														
In2																														
Inl		~300	~316	340	340	320		320	300	360	460	460	520	510	460	390	360 (M)	360			~430 (W)		435	440			440	450	430	410
д																														
TIME	0700 0730	0800	0830	0060	0630	1000	1030	1100	1130	1200	1230	1300	1330	1400	1430	1500	1530	1600	1630	1700	1730	1800	1830	1900	1930	2000	2030	2100	2130	2200
ATE																														

UI						
In5						
In4						
In3						
In2						
Inl	380 420 ~320 310	300 300 460 460	510 570 580	Too Weak 580 610 660 700	700 ~700 ~700 640 (W) 640	Too Weak + + 540 480
Ч						
TIME	2230 2300 2330 2400	0030 0100 0200	0300 0330 0400	0430 0500 0530 0600 0630	0700 0730 0800 0830 0900 0930	1000 1030 1130 1230 1230 1300
DATE		5/10				

In6																										
In5																										
In4																										
In3																										
In2																										
Inl	580 560	540	510	500	440	360	340 460	500	480	500	420	0		260				440	440	440	440	480	440	440	440	480
д																										
TIME	1330 1400	1430	1500	1530	1600	1630 1700	1730 1730	1800	1830	1930	2000	2030	2100	2130	2200	2230	2330 2330	2400	0030	0100	0130	0200	0230	0300	0330	0400
DATE																			5/11							

In5																													
In4														610	600		340												
In3											380	360	360	360	380	360	240												
In2											160	+ merges	140	280	310	~300 (M)	200	400	400		300	420	1						
Inl	460	460	440 ~400	360	260	320	260	200	100	100	surface	160	100	80	120	100	80	100	80	100	100	100	200	220				200	200
Ч																													
TIME	0430	0500	0520	0630	0 2 0 0	0730	0800	0830	0060	0930	1000	1030	1100	1130	1200	1230	1300	1330	1400	1430	1530	1600	1630	1700	1730	1800	1830	1900	U S Y T
DATE																													

In6

In6		
In5		· ·
In4		
In3		260 240 240
In2	260	180 120 300 (W) 320 (W) 240 240 240 240 240 240 240 240 240 260 110
Inl	240 240 300 280 280 220 220	100 70 60 80 80 100 100 100 100 100 80 80 80 80 60 60 60 60
Ъ		·
TIME	2000 2100 2130 22300 2330 2330 2400	0030 0100 0200 0200 0230 0330 0330 0330
DATE		5/12

In6																												
In5																												
In4																												
In3										220																		
In2						210	240			160								160										
Inl	80	140	140	100		100	120	180	200	60	260	260	260	60	100	140	140	80	80	80	80	80	80	80	100	120	140	140
Ч																												
TIME	1700 1730 1800	1830	1900	2000	2030	2100	2130	2200	2230	2300	2330	2400	0000	0030	0100	0130	0200	0230	0300	0330	0400	0430	0500	0530	0600	0630	0700	0730
DATE													5/13															

Jn6																					300					
In5																					220	260 (W)	420 (W)	460		
In4				200	200													340	300	300	160	280	280	34		
In3			150	160	160	140		280	~300	220								200	200	180	120	240	240	260		
In2			120	120	120	100	140	200	200	120				180		120		160	140	120	80	140	140	160	120	100
Inl	100 100 100	60	00 90	60	60	60	120	140	80	80				70	surface	100		80	80	surface	surface	110	100	80	70	70
<u>с</u> ,							100	80						80		60						100	06			
TIME	0800 0830 0900	0930	1030 1030	1100	1130	1200	1700	1730	1800	1830	1900	1930	2000	2030	2100	2130	2200	2300	2330	2400	0030	0100	0130	0200	0330	0400
DATE																					5/14					

15 In6																	0														
II																	30														
In4													400				260														
In3			200	240	200	280			170				280				220														
In2	100	120	120 (W)	140	200 (W)	200	200	140	130			300	180				160													240	100
Inl	70	60	surface	80	120	120	110	100	surface	80	~ 100	140	100				80	180	280	300					320	300	280	220	200	100	80
Ъ																															
TIME	0400	0430	0200	0230	0090	0630	0700	0730	0800	0830	0060	0630	1000	1030	1100	1130	1200	1230	1300	1330	1400	1430	1500	1530	1600	1630	1700	1730	1800	1830	1900
DATE																															

In6																										
In5																۰.										
In4																										
In3																										
In2	240	240																								
Inl	~160	140 140	120	140	140	180	170	~200	160	340	360	360	380	400	380	400	340	320	320	340	280	300	240	240	220	260
đ																										
TIME	1930	2000	2100	2130	2200	2230	2300	2330	2400	1600	1630	1700	1730	1800	1830	1900	1930	2000	2030	2100	2130	2200	2230	2300	2330	2400
DATE										5/15																

0030 160 0100 180 0120 120 0230 120 0230 120 0330 120 0400 180 0530 140 0530 140 0700 220 0530 240 0700 220 0730 220 0730 220 0730 220 0730 220 0730 220 07100 220 07100 220 07100 220 07100 220 07100 220 07100 220 07100 220 07100 220 07100 200 1200 200 1200 200 1200 220 1200 220 1200 220 1200 220 1200 220	티	TIME	പ	Lnl	In2	In3	In4	In5	In6
0100 180 0230 120 0230 120 0230 120 0330 140 0430 180 0430 180 0430 180 0430 180 0430 240 0530 240 0530 220 0630 220 0730 280 0730 280 0730 220 0730 220 0730 220 0730 220 0730 220 0730 120 1130 120 1130 120 1130 120 1230 120 1330 120 1330 120 1330 120 1440 120 1330 120 1330 120 1430 120 1330 120 1330 120 1430 120 1330 120 1430 120 1500 160 160 160 150 160 160 <td< td=""><td></td><td>0030</td><td></td><td>160</td><td></td><td></td><td></td><td></td><td></td></td<>		0030		160					
0130 160 0230 120 0230 120 0330 140 0430 180 0500 240 0530 240 0530 240 0600 220 0630 220 0630 220 0730 220 0630 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 1030 120 1100 120 1200 120 1300 120 1400 120 1400 120 1400 160 1400 160 1400 160 150 160 <		0100		180					
0200 120 0300 120 0330 140 0410 180 0500 240 0530 240 0530 240 0530 240 0530 240 0530 240 0700 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 230 1000 160 1130 -300 1200 120 1200 120 1200 120 1300 120 1300 120 1430 150 1500 150 1500 150		0130		160					
0320 120 0330 140 0430 180 0430 240 0530 240 0530 220 0600 2240 0530 220 0630 2260 0700 220 0710 220 0710 220 0710 220 0710 220 0710 220 0710 220 0710 220 0710 220 0710 220 0710 220 0710 120 1100 120 1120 -400 1120 -700 1230 220 1230 220 1330 120 1330 120 1330 120 1430 150 150 160 150 150 150 180		0700		07T					
0300 100 0410 180 0430 180 0500 240 0500 220 0630 ~260 0730 ~260 0730 220 0730 ~260 0730 ~260 0730 ~220 0730 ~260 0730 ~260 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 0730 220 1030 160 1130 ~400 120 120 1330 120 1430 150 1500 150 1500 160 1500 150 1500 150		00000		120					
0400 180 0430 180 04500 240 0530 240 0500 ~260 0630 ~250 0700 ~260 0700 ~260 0730 ~260 0730 ~260 0730 ~260 0730 ~260 0730 ~260 0730 ~260 0730 220 0730 220 0730 220 0730 160 1100 400 1120 ~300 1200 120 1200 120 1330 220 1200 120 1330 120 1430 120 1500 150 1500 150 1500 180		0330		140 140					
0430 180 0500 240 0630 ~ 260 0630 ~ 260 0700 0730 220 0700 0730 220 0800 220 0830 220 0930 160 1130 ~ 160 1130 ~ 120 1130 ~ 240 1200 120 1200 120 1200 120 1200 120 1410 120 1430 120 1430 120 1500 150 150 160 150 150 160 150 150 150 160 150 150 150 150 160 150 150 150 150 150 150 150 150 150 15		0400		180					
0500 240 0530 ~ 220 0630 ~ 220 0730 ~ 280 0730 280 0830 280 0830 280 0830 280 0830 280 0830 280 0830 280 0830 280 160 1100 120 1130 ~ 400 1130 ~ 300 120 120 120 120		0430		180					
0530 ~ 220 0600 ~ 260 0730 280 0730 280 0830 220 0830 220 0830 220 0930 160 1000 120 1130 ~ 400 1130 ~ 300 1130 ~ 300 1130 220 1130 210 120 120 120 120 120 120 120 120 1400 120 1400 120 1400 120 1400 120 1400 120 1400 120 1400 120 1400 120 1400 120 160 180 180		0500		240					
0600 ~260 0730 280 0730 280 0800 280 0800 280 0900 200 0930 160 1000 120 1130 ~300 1130 ~300 1200 ~3000 1200 ~3000 ~3000 1200 ~3000 ~3000 ~300		0530		220					
0630 0730 0730 0730 0800 0830 0930 160 1000 1000 1120 1000 1120 1000 1120 1200 1		0000		~260					
0700 0730 0830 0830 0900 0930 160 1000 120 120 120 120 120 120 1		0630							
0730 0800 0830 0900 0930 160 1000 1100 120 120 120 120 120		0 2 0 0							
0800 280 0830 220 0930 160 1000 1160 11100 120 1130 2100 120 1130 240 1230 240 1330 240 1330 240 1400 120 1410 120 1430 150 150 160 180		0730							
0830 220 0900 200 0930 160 1000 150 1100 400 1130 ~300 1200 ~300 1230 240 1230 2240 1330 2240 1330 120 1430 120 1430 150 150 160 180		0800		280					
0900 200 0930 160 1000 120 1100 400 1130 ~300 1130 ~300 1230 240 1230 120 1330 2240 1330 120 1430 120 1430 120 1430 150 160 180		0830		220					
0930 160 1000 120 1030 160 1130 ~ 400 1200 ~ 300 1230 ~ 300 1230 240 1330 240 1330 220 1400 120 1430 150 150 180		0060		200					
1000 120 1030 160 1100 400 1130 ~300 1200 240 1230 240 1330 240 1330 120 1230 240 1330 120 1330 120 1330 120 1330 120 1330 120 1400 120 1430 160 150 180		0930		160					
1030 160 1100 400 1130 ~300 1200 240 1230 240 1330 120 1330 120 1400 120 1430 150 1500 160 1500 180		1000		120					
1100 400 1130 ~300 1200 ~300 1230 240 1330 120 1330 120 1400 120 1430 150 1500 180		1030		160					
1130 ~300 1200 240 1230 240 1300 120 1330 220 1400 120 1430 150 1500 160		1100		400					
1200 1230 240 1300 120 1330 220 1430 120 1500 160 180		1130		~300					
1230 240 1300 120 1330 220 1400 120 1430 150 180		1200							
1300 120 1330 220 1400 120 1430 150 180		1230		240					
1330 220 1400 120 1430 150 180		1300		120					
1400 120 1430 150 1500 160 180		1330		220					
1430 1500 180 180		1400		120					
1500 160 180		1430		150					
		1500		160	180				

In5																									
In4								220																	
In3		200	250				160	150																	
In2		180	180	140	+ merges	160	100	100								190	150	160	160	200	260	210 (W)	200 (W)	200 (W)	
Inl	200 100 120 ~160	70	09 0	70	80 110	60	60	60	260	surface	surface	60	60	60	60	surface	surface	80	80	110	120	06~	80	surface	surface
Ч									120																
TIME	1600 1630 1700 1730 1800	0630	0700	0730	0830 0830	0060	0930	1000	1130	1500	1530	1600	1630	1700	1730	1800	1830	1900	1930	2000	2030	2100	2130	2200	2230
DATE		5/18																							

In6

In6																														
In5																														
In4																														
In3																														
In2																														
Inl	~60	06	80	85	80	110	100	120	140	160	180	180	180	180	200	180	200	200	200	180	180	220	180	220	200	180	210	190	170	180
Ч		80	60	80		100		06	100	100	110	110	140	140	130	120	160	150	140	130	120	120	110	100	100	140	140	100	120	100
TIME	2300	2330	2400	0030	0100	0130	0200	0230	0300	0330	0400	0430	0500	0530	0600	0630	0700	0730	0800	0830	0060	0930	1000	1030	1100	1130	1200	1230	1300	1300
DATE				5/19																										

In6																														
In5																		1.												
In4																														
In3																														
In2																														
Inl	190	200	~ 200	180	200	210	220	240	250	230	220	220	260	250	280	230	230	220	240	240	250	270	280	330	310	360	340	370	360	350
Ч	100	80	80	100	80	80	100	150	140	100	100	~100	150	140	06	120	100	160	120	120	100	120	140	140	140	140	140		103	100
TIME	1400	1430	1500	1530	1600	1630	1700	1730	1800	1830	1900	1930	2000	2030	2100	2130	2200	2230	2300	2330	2400	0030	0100	0130	0200	0230	0300	0330	0400	0430
DATE																						5/20								

ម្ម	TIME	ሲ	Inl	In	12	In3	In4	In5	In6
	0200	100	360						
	0530	100	370						
	0600	180	420						
	0630	210	420						
	0700	140	420						
	0730	220	460						
	0800	150	420						
	0830	100	410						
	0060	180	430						
	0930	100	430						
	1000	110	460						
	1030	06	440						
	1100	110	440						
	1130	100	420						
	1200	100	420						
	1230		440						
	1300		440						
	1300	100	430						
	1400	100	400						
	1430	110	410						
	1500	120	450						
	1530	120	420						
	1600	110	450						
	1630	80	420						
	1700	100	450						
	1730	~ 100	430						
	1800	120	440						
	1830	100	420						
	1900	100	420						
	1930	100	430						

DATI

In5 In																														
In4																														
In3																														
In2																														
Inl	360 360 380 380 400 410 380	460 460 520 520 530 530 530 530 530 530 530 530 530 53																												
<u>д</u>	0																													
TIME	2000 2030 2130 22130 22130 22300 2330 233	0130 0130 0130 0230 0230 0330 0400 0400 0430 0530 0630 0630 0630 0630 0630 0730 0630 0730 0630 0730 07																												
DATE		5/21																												
In5																														
------	------	------	------	------	------	------	---------	------	------	------	------	------	------	------------	------	------	------	---------	------	------	------	------	------	------	------	------	------	---------	---------	---------
In4																														
In3												680																		
In2									760	750	720	240	600	520	500			~300	~300											
Inl	720	730	710	720	400	220	surface	300	500	420	320	140	200	~ 100	100	180	80	surface	200	320	430	460		600	600	640	600	to dark	to dark	to dark
പ																														
TIME	1100	1130	1200	1230	1300	1330	1400	1430	1500	1530	1600	1630	1700	1730	1800	1830	1900	1930	2000	2030	2100	2130	2200	2230	2300	2330	2400	0030	0100	0 T 7 0
DATE																												5/27		

In6

D-19

In6																													
In5																	۰.												
In4																													
In3																													
In2			070																										
Inl	540	540	590 590	too dark	~ 700	~ 700	~700	720	780	800	860	860	860	880	880	890	006	910	920	860	760	680	600	too dark	500	350	250	250	too dark
ቧ																													
TIME	0200	0230	0330	0400	0430	0500	0530	0600	0630	0700	0730	0800	0830	0060	0930	1000	1030	1100	1130	1200	1230	1300	1300	1400	1430	1500	1530	1600	1630
DATE																													

In5																												
In4																		470										
In3	-700	700	:S W/ 1														~ 400	340	420	410	680							
In2	280 340	300	merge	1			220							~150	330	300	120	merges	320	260	300			330	340			
Inl	100	surface	340	~ 300	280	surface	surface	160	surface	surface		~120		~ 80	80	80	surface	surface	140	80	surface	~120	06	180	180	270	surface	~ 280 ~ 280
Ч								100			100	120	180								80	80		100	100			200
TIME	1700 1730	1800	1830	1900	1930	2000	2030	2100	2130	2200	2230	2300	2330	2400	0030	0100	0130	0200	0230	0300	0330	0400	0430	0200	0530	0090	0630	0700 0730
DATE															5/23													

In6

D-21

In6																																
In5																																
In4																																
In3																																
In2										250	260	180	200	280			~200	180									200					
Inl	260 140	320	200	160	surface	surface	140	160	60	70	80	surface	220					100	200	100	200	210	200	0070	007							
Ч	160 120																		100	100	80	~ 90	100	100	100					0	0 m 0 m 0 m	140
TIME	08000830	0060	0930	1000	1030	1100	1130	1200	1230	1300	1330	1400	1430	1500	1530	1600	1630	1700	1730	1800	1830	1900	1930	2000	2030	2100	2130	2200	2230	2300	00000	0057
DATE																																

INITIAL DISTRIBUTION LIST .

		No. of Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0212 Naval Postgraduate School Monterey, California 93940	2
3.	Dean of Research, Code 012 Naval Postgraduate School Monterey, California 93940	1
4.	Asst. Professor C. W. Fairall, Code 61Fr Naval Postgraduate School Monterey, California 93940	5
5.	Professor K. E. Woehler, Code 61Wh Naval Postgraduate School Monterey, California 93940	1
6.	Dr. Ralph Markson Airborne Research Associates 46 Kendal Common Road Weston, Massachusetts 02193	1
7.	Assoc. Professor K. L. Davidson, Code 63Ds Naval Postgraduate School Monterey, California 93940	5
8.	Assoc. Professor T. Houlihan, Code 69Hm Naval Postgraduate School Monterey, California 93940	5
9.	Assoc. Professor G. Schacher, Code 61Sq Naval Postgraduate School Monterey, California 93940	5
10.	Mr. Murray Schefer Code Air-3706 Naval Air Systems Command Washington, D. C. 20360	1
11.	LT Michelle Hughes PM-22/PMS 405 Naval Sea Systems Command Washington, D. C. 20362	1

.

1

1

1

1

1

1

12.	Dr. Stuart Gathman
	Code 8326
	Naval Research Laboratory
	Washington, D. C. 20375

- 13. Dr. Lothar Rohnke Code 8320 Naval Research Laboratory Washington, D. C. 20375
- 14. Dr. Barry Katz Code 231 Naval Surface Weapons Center White Oak Laboratory Silver Spring, Maryland 20910
- 15. Professor Dale Leipper, Code 68Lr Naval Postgraduate School Monterey, California 93940
- 16. Eugene J. Mack Calspan Corporation Buffalo, New York 14221
- 17. Theodore V. Blanc Code 8322B Naval Research Laboratory Washington, D. C. 20375
- 18. Dr. J. H. Richter Code 813 Submarine Systems Division Communications Systems and Technology Department Naval Oceans Systems Center San Diego, California 92152

U184754

U184754